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1. Introduction 

 

The Treasury bond and Treasury inflation-linked (IL) bond markets are two of 

the largest and most actively traded fixed-income markets in the world. Despite this, 

there is persistent mispricing across these two markets (Fleckenstein et al. (2014)). 

A large amount of research suggests that IL bonds are less liquid than conventional 

Treasury bonds (Auckenthaler et al. (2015), Fleming and Krishnan (2012), 

Gürkaynak et al. (2010), Campbell et al. (2009)). This finding has several 

implications. First, the illiquidity drives a wedge between real yields and IL bond 

yields (Grishchenko and Huang (2013)). Second, it complicates estimation of the 

breakeven inflation rate, which reflects inflation expectations and represents 

compensation to investors for bearing inflation risk. This compensation includes 

both expected inflation and an inflation risk premium because of inflation 

uncertainty. The inflation risk premium may include a component related to the 

illiquidity of the IL bond market. However, the level of bias incurred by these frictions 

on IL bond prices remains a topic of debate, as no consensus has emerged on 

estimates of the magnitude of the liquidity premium embedded in these securities. 

Since it can be accepted that market narrowness can deviate market prices from 

their fair prices, this mispricing can lead to arbitrage opportunities. Illiquidity can 

drive market prices down and IL bond yields up (Grishchenko and Huang (2013)). 

To explore whether there is mispricing, Fleckenstein et al. (2014) implement 

arbitrage strategies that highlight the possible divergence between the price of 

nominal Treasury bonds and inflation swapped TIPS that exactly replicate 

conventional cash flows. These authors conclude that nominal bonds are 

consistently overpriced relative to TIPS. Simon (2015) attempts to explain this TIPS–

Treasury puzzle. This author finds that the difference in liquidity and credit risk 

premium in IL and nominal bonds explains the persistent nature of the puzzle. 

Going further, Driessen, Nijman and Simon (2017) show that the level of liquidity 

affects TIPS, whereas swap yields include a liquidity premium. They also recall that 

the price of an asset can differ from its replicated cash flow counterpart due to 

specific liquidity effects. 

The present work differs from the aforementioned articles since it sets up a 

self-financing strategy based directly on the underlying assets constituted by 

nominal and IL Treasury bonds to compare the price of these two assets. One of the 

main purposes here is to identify and explain arbitrage opportunities between the 

French nominal and IL Treasury bond markets. To our knowledge, this is the first 

article to study directly the no-arbitrage relation between these two bond market 

segments. 

This study builds on prior and concurrent research from three strands of the 

literature on IL bonds. The first relies on the vast literature on inflation expectations, 

with the inflation risk premium obtained based on IL bond market prices or not. In 

this strand, Grishchenko and Huang (2013) estimate the magnitude of the inflation 

risk premium. Pflueger and Viceira (2001b) as well as Gürkaynak et al. (2010) and 
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Zeng (2013) use breakeven inflation rates as relevant time series to determine the 

liquidity premium in IL bonds. 

The second strand addresses the performance of IL bonds as an asset class 

and their role in portfolios. Recent studies that favor IL bonds include Mkaouar, 

Prigent and Abid (2017), Brière and Signori (2012), and Cartea, Saúl, Toro (2002), 

which illustrate the benefits of introducing TIPS in portfolios. 

The third strand focuses on the pricing of these assets. The first authors to 

set an arbitrage model to price TIPS are Jarrow and Yildirim (2003) and Chen, Liu, 

Cheng (2010). More recently, affine term structure models are developed by 

D’Amico, Kim and Wei (2018), Andreasen, Christensen and Cook (2017). Abrahams, 

Adrian, Crump, Moench and Yu (2016) present a Gaussian affine model for pricing 

IL bonds that adjusts for the relative illiquidity of this type of bond and generates 

estimates of the inflation premium. A special focus on the relative pricing of nominal 

and indexed Treasuries is implemented by Fleckenstein et al. (2014), Simon (2015), 

and Driessen et al. (2017). The approach of the present work is closely related to 

these papers. 

To set up arbitrage strategies, self-financing bond portfolios are constructed. 

To hedge these portfolios against interest rate risk, three hedging methods are 

implemented that rely on the number of duration orders measures used and the 

corresponding hedging ratios. The first uses a duration measure of order one (D1) 

measuring interest rate level–risk. The second uses D1 and D2 (second-order 

duration), where D2 measures yield curve slope risk. The third aims to hedge the 

portfolio against level, slope, and hump risks using respectively D1, D2, and D3. 

Additionally, each hedging method includes a duration measuring IL bond 

sensitivity to the inflation indexation factor. However, the duration measures of 

interest rate risk depend on the considered pricing model. Jarrow and Yildirim 

(2003) develop a model of IL bonds consistent with the Vasicek duration. Following 

Jarrow (2010), arbitrage strategies are built that replicate a French nominal 

Treasury bond with several IL Treasury bonds, based on Vasicek duration. To 

determine the impact of the duration measures on the results of the arbitrage 

strategies, we implement a Fisher-Weil duration measure alternately to Vasicek 

duration. Thus, two kinds of duration measure are considered and each allows us 

to calculate in a specific way D1, D2, and D3. 

Duration measures depend on (nominal and real) zero-coupon yields. Real 

zero-coupon yields are not available on the French bond market and must be 

estimated. They are deduced thanks to an innovative method that modifies and 

widens the Jarrow and Yildirim (2003) method used to extract forward nominal and 

real zero-coupon yields from market prices. Our estimations rely on market prices 

of nominal and IL bonds issued by the French Treasury on a daily basis from 

January 1, 2013 to December 31, 2015. 

Our main findings are as follows. First, we show that arbitrage profits exist 

even when the proportion of IL bonds is determined to avoid the risk of shift in level, 

slope, and hump of the nominal and real yield curve. This result must be compared 
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with those of Fleckenstein et al. (2014), who show that American nominal Treasury 

bonds are overpriced relative to TIPS. 

Second, we demonstrate that those profits are explained by forward breakeven 

inflation (FBEI), calculated as the difference between forward nominal and forward 

real zero-coupon yields, and which represent inflation expectations at future dates 

plus an inflation risk premium. Forward breakeven inflation computed for this 

purpose refers to, respectively, 1 year, 3 years, 5 years, and 7 years in the future, 

and each FBEI variable has a 1-year term. The choice of these FBEI variables aims 

to explain the arbitrage between nominal and IL bonds with the difference between 

forward rates extracted from the nominal and real term structures at non-

overlapping maturity segments covering the short-, medium-, and long-term. 

This paper makes several contributions. First, it contributes to the literature 

on the pricing of IL bonds by comparing the price of these assets with their nominal 

counterparts. Second, it shows that the type of duration measure, i.e., Vasicek 

duration versus Fisher-Weil duration, has no significant impact on the level of the 

noted arbitrage profits. Nevertheless, the introduction of higher-order durations 

improves significantly the arbitrage strategies. Third, the methodology employed to 

extract nominal and real zero-coupon yields fits perfectly the market prices of the 

two securities used, e.g., nominal and IL coupon-bearing bonds. This methodology 

imposes no assumption on the term structure shape, and it assumes only piecewise 

constant forward rates within the maturity segments between coupon bonds with 

neighboring maturities. 

This article proceeds as follows. Section 2 begins with a formal analysis of the 

problem of hedging nominal bonds with IL bonds. Section 3 presents the data and 

estimations of the nominal and real zero-coupon yield curves. Section 4 describes 

the results of the arbitrage strategies and their analyses. Finally, Section 5 describes 

our conclusions. 

 

2. Arbitrage strategy 

 

We start with a formal analysis of the problem of setting an arbitrage strategy. The 

continuous time model of Jarrow and Yildirim (2003), henceforth JY2003, provides 

a convenient framework. This will lead to the definition of the long/short replicating 

strategy, which we test empirically. 

2.1 Nominal and IL bond price 

 

Our notations used have the following meanings: 

rn: nominal spot interest rate 

rr: real spot interest rate 

Pn (t,): price at time t of a nominal zero-coupon bond (i.e., nominal discount 

function of a coupon bond payoff) maturing at time t +  
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( ),rP t  : price at time t of a real zero-coupon bond (i.e., real discount function) 

maturing at time t +  

IFt: indexation factor of an indexed bond, which is the ratio between the value 

of the harmonized CPI (Consumer Price Index) excluding tobacco at time t (It) and 

the value of the same index at bond issuance date t0 (It0) 

( ),nomB t m : price on date t of a nominal bond that periodically pays C euros on 

each date t+ between t and t+m, and C+VF euros on maturity date t+m; bond 

current price is equal to the sum of the present value of its payoffs, given by 

 

𝐵𝑛𝑜𝑚(𝑡, 𝑚) = ∑ 𝐶𝑃𝑛
𝑚
𝜏=1 (𝑡, 𝜏) + 𝑉𝐹𝑃𝑛(𝑡, 𝑚)    (1) 

 

Bilb (t,m) is the price at date t of a Treasury inflation-indexed bond. The bond 

periodically pays C units of the CPI on each date t+ between t and t+m, and C+VF 

units of the CPI on maturity date t+m. Taking into account the current value of the 

bond indexation factor IFt, the bond price is equal to the sum of the present value 

of its nominal payoffs, given by: 

 

𝐵𝑖𝑙𝑏(𝑡, 𝑚) = 𝐼𝐹𝑡[∑ 𝐶 𝑃𝑟(𝑡, 𝜏) + 𝑉𝐹 𝑃𝑟
𝑚
𝜏=1 (𝑡, 𝑚)]    (2) 

 

In the context of IL bonds, breakeven inflation plays a key role and is defined by the 

difference between nominal and real interest rates with the same maturity: 

 

𝑏𝑒𝑖(𝑡, 𝜏) = 𝑟𝑛(𝑡, 𝜏) − 𝑟𝑟(𝑡, 𝜏)       (3) 

 

Breakeven inflation comprises expectations of inflation for maturity  plus an 

inflation risk premium. 

JY2003 set forth a pricing model for TIPS that relies on a foreign currency 

analogy, like Amin and Jarrow (1991), who price contingent claims on foreign 

currencies in an HJM context. JY2003 consider a hypothetical cross-currency 

economy under a no-arbitrage assumption, where the nominal currency 

corresponds to the domestic currency, real currency to the foreign currency, and 

the inflation index to the spot exchange rate. Hence, the model developed by JY2003 

is a three-factor model. 

Under historical probability P, the three-factor model of JY2003 is defined by the 

dynamics of its factors; the dynamic of the real forward rate is: 

( ) ( ) ( ) ( ), , ,r r r rdf t T t T dt t T dw t = +      (4) 

and the dynamic of the nominal forward rate is: 

( ) ( ) ( ) ( ), , ,n n n ndf t T t T dt t T dw t = +      (5) 
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Finally, the evolution of the inflation index, which allows the logarithm of the 

inflation index process to be normally distributed is: 

( ) ( ) ( ) ( ) ( )/ I I IdI t I t t dt t dw t = +       (6) 

where ( )rdw t , ( )ndw t and ( )Idw t  are Brownian motions with the following 

correlations: ( ) ( )n r nrdw t dw t dt= , ( ) ( )r I rIdw t dw t dt= . 

The difference between the nominal forward rate (fn(t,T)), and the real forward 

rate (fr(t,T) is the FBEI noted fbei(t,T), which comprises inflation expectations plus an 

inflation risk premium. 

To make the JY2003 model tractable, it is necessary only to specify r(t,T), the 

volatility function of the real forward rates and n(t,T), the volatility function of the 

nominal rates. We impose, like JY2003, an exponentially declining volatility for both 

functions: 

 

𝜎𝑖(𝑡, 𝜏) = 𝜎𝑖𝑒
−𝛼𝑖(𝜏) for i = r (real), n (nominal) (7) 

 

which is an extension of the Vasicek (1977) model for the term structure, where r 

and r  (respectively n and n) are constants. In this particular case, the zero-coupon 

bond return dPi(t,T)/Pi(t,T) follows a normal distribution. 

 

2.2. Interest rate risk measures: duration measures 

 

Two different types of duration measure are used. One is derived from the JY(2003) 

model. The other relies on the Fisher-Weil duration. 

The Vasicek duration 

 

The volatility function chosen by JY2003 is that of the extended Vasicek model. This 

exponential volatility implies that the duration of the real and nominal zero-coupon 

bond is: 

 

𝐷𝑖(𝑡, 𝜏) = |
𝑑𝑃𝑖(𝑡,𝜏)

𝑑𝑟𝑖

1

𝑃𝑖(𝑡,𝜏)
| = (

1−𝑒−𝛼𝑖𝜏

𝛼𝑖
) for i = r (real), n (nominal) (8) 

 

where r (n) are the elasticities of reversion of the real (nominal) short-term interest 

rate to its long-term value. 

 



7 
 

Fisher-Weil duration 

 

The Fisher-Weil duration is based on the assumption that stochastic changes in 

interest rates always consist of parallel shifts of the term structure. The Fisher-Weil 

duration of a zero-coupon bond is the absolute value of the sensitivity of its price 

relative to the corresponding spot rate, that is: 

 

𝐷𝑖(𝑡, 𝜏) = |
𝑑𝑃𝑖(𝑡,𝜏)

𝑑𝑟𝑖

1

𝑃𝑖(𝑡,𝜏)
| = 𝜏     for i = r (real), n (nominal)  (9) 

 

This equality results from the general definition of the price of ( ) ( ),
,

r t
P t e

 


−
= , where 

( ),r t   is the  period maturity spot rate. 

 

The duration of the nominal and IL coupon-bearing bonds are weighted 

averages of the durations of their payoffs, which can be derived using equations (1) 

and (2). 

 

Higher-order durations 

 

Duration is the key variable in bond portfolio immunization strategies, whether used 

as the single interest rate risk measure, as in Fong and Vasicek (1984), or with 

higher-order interest rate risk measures, as in Nawalkha (1995) and Nawalkha, De 

Soto and Zhang (2003). Higher-order durations are based on higher-order price 

derivatives. Thus, a kth order duration is based on the kth order price derivative, i.e., 

for a zero-coupon bond: 

 

𝐷𝑖
𝑘(𝑡, 𝜏) = |

𝑑𝑘𝑃𝑖(𝑡,𝜏)

(𝑑𝑟𝑖)𝑘

1

𝑃𝑖(𝑡,𝜏)
|  for i = r (real), n    (10) 

 

The higher-order durations of coupon-paying nominal and IL bonds are 

calculated with the same procedure used to calculate the first-order duration of 

these bonds. According to this procedure, the k order duration of a coupon bond, 

whether nominal or IL, is the weighted average of the k order duration of its payoffs. 

Fong and Vasicek (1984) show that immunization strategies need to 

supplement the first-order duration, D(1), with minimization of the second-order 

duration, D(2) (convexity), to minimize the portion of interest rate risk not captured 

by D(1). The direct relation between immunization risk and convexity is confirmed 

empirically by Lacey and Nawalkha (1993), Nawalkha (1995) and Nawalkha et al. 

(2003), who propose the use of duration vectors composed of durations of different 

order to take into account different types of shifts on the term structure, e.g., level, 

slope, and hump, whose risks are measured, respectively, by D1, D2, and D3. 
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This general definition of the duration of order k, Dk, can be specified in the 

case of JY2003 and Fisher-Weil. 

For the JY2003 model, the order k duration is defined as follows: 

𝐷𝑟𝑖

𝑘 = (
1−𝑒−𝛼𝑖𝜏

𝛼𝑖
)

𝑘

 for i = r (real), n (nominal)   (11) 

 

In case of a parallel shift shock on the term structure, the order k duration is defined 

as follows: 

 

𝐷𝑟𝑖

𝑘 =  𝜏𝑘 for i = r (real), n (nominal)    (12) 

 

2.3. Hedging strategies 

 

Several strategies are employed to construct a zero-value, self-financing portfolio 
with one nominal bond and several IL bonds whose proportions ensure that the 

portfolio has a zero derivative relative to one or more risk factors. Hence, three sets 
of hedged portfolios are set up, one using only D1 durations, the second using D1 
and D2 durations, and the third using D1, D2, and D3 durations. Introduction of D1, 

D2, and D3 is relevant since the prices of nominal and IL bonds are affected by 
changes in term structure of interest rate due to the discount factor effect (Xu 

(2011)). 

The proportions (𝑤𝑖
𝑖𝑙𝑏) of IL bonds required to replicate a nominal bond in 

portfolios based on duration of order k must respect the following system of k+2 

equations: 
 

(1)   1 + ∑ 𝑤𝑖
𝑖𝑙𝑏

𝑖=𝑘+2

𝑖=1

= 0 

 

 (2)   𝐷𝑛𝑜𝑚,𝑟𝑟

𝑗
+ ∑ 𝑤𝑖

𝑖𝑙𝑏𝑖=𝑘+2
𝑖=1 𝐷𝑖𝑙𝑏,𝑟𝑟

𝑗
= 0    for j = 1 to k    (13) 

 

(3)   𝐷𝑛𝑜𝑚,𝐼𝐹 + ∑ 𝑤𝑖
𝑖𝑙𝑏𝑖=𝑘+2

𝑖=1 𝐷𝑖𝑙𝑏,𝐼𝐹= 0 

 

where: 
Dnom,rr is the duration of the nominal bond relative to the real spot interest rate rr, 

which is zero by definition; 
Dilb,rr is the duration of the IL bond relative to the real rate r; 

Dnom,IF is the duration of the nominal bond relative to the inflation factor IF, which 
is zero by definition; and 
Dilb,IF is the duration the IL bond relative to the inflation factor IF, whose 

representation is: 
 

𝐷𝑖𝑙𝑏,𝐼𝐹 =
1

𝐼𝐹𝑡
         (14) 
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Frequently, nominal interest rates are correlated with real interest rates and 
inflation. Hence, both types of bond depend directly or indirectly on three factors: 

nominal interest rates, real interest rates, and inflation. 
According to JY2003, the IL zero-coupon bond does not depend directly on the 

nominal spot rate. Hence, the IL term structure depends only on two factors: the 
real rate and inflation. Symmetrically, the nominal zero-coupon bond depends on 
the nominal spot rate but does not depend on the real spot interest rate or the 

inflation factor. This implies that IL bonds have zero derivatives relative to nominal 
interest rates. Conversely, nominal bonds have zero derivatives relative to real 
interest rates and to inflation. Thus, Dnom,rr = 0 and Dnom,IF = 0.  
 
2.4 Estimation of nominal and real zero-coupon yields 
 
No data on real zero-coupon yields are public or available on the French bond 
market. Therefore, it is necessary to estimate the real zero-coupon yield curve from 

the market prices of French IL bonds. To avoid differences in estimating method, we 
apply the same method to estimate the nominal zero-coupon yield curve. 

JY2003 propose a method to estimate zero-coupon bond prices that relies on 
a discrete time approach to modeling forward interest rates and, additionally, it 
accepts the assumption that forward rates are constant within piecewise segments 

of the maturity spectrum. Under this method, the theoretical price function of a 
coupon bond, both nominal and indexed, has the following representation: 

( ) ( )
1 1

, exp ,
m K

i

i

B t m C f i
= =

  
= −  

  
 


        (15) 

where C is the bond payoff at date t+, K is the number of piecewise maturity 
segments of constant forward rates, and fi is the constant forward rate to be 

observed within the ith maturity segment and (i) is the part of i maturity segment 

covered by the maturity of C  payoff. The lower limit of the shortest maturity 
segment is zero and its upper limit is m(1). Similarly, the upper limits of the other 

maturity segments are m(i), for i = 2, …K. In many cases, the C  payoff maturity 
covers more than one maturity segment. Hence, the part of the ith maturity segment, 

m(i), covered by the C  payoff maturity is defined as follows: 
 

( ) ( ) ( ), 1i m i m i= − −  if ( )m i , 

( ) ( ), 1i m i= − −    if ( ) ( )1m i m i  − , and     (16) 

( ), 0i  =  if ( )1m i −  

 
This paper proposes an alternative to JY2003 that consists of setting the limits 

between two piecewise segments at the maturity dates of the coupon bonds. Hence, 
the upper limit of the first maturity segment is the maturity of the coupon bond with 
shortest maturity, represented by m(b(1)). Similarly, the upper limits of the other 

maturity segments m(b(i)), for i = 2, …K, K being the number of bonds in the sample, 
are adjusted to the maturity of the K coupon bonds. Under this approach, the 

portion of the ith maturity segment covered by the maturity of C  ( ),i   is defined 

as follows: 
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( ) ( )( ) ( )( ), 1i m b i m b i= − −  if ( )( )m b i , 

( ) ( )( ), 1i m b i= − −    if ( )( ) ( )( )1m b i m b i  − , and    (17) 

( ), 0i  =  if ( )( )1m b i −  

 

While the piecewise maturity limits in the JY 2003 model, m(i), are chosen 
arbitrarily, in the innovative procedure proposed in this article, the corresponding 

m(b(i)) limits are adjusted to the maturities of the coupon bonds in the sample. This 
procedure has the advantage of giving estimated prices that match perfectly the 
market prices. 

 
3.  Data description and estimation of zero-coupon yields 

 
3.1. Data presentation and preliminary statistics 
 
A database was constructed that comprises daily prices covering the period January 
1, 2013 through December 31, 2015, or 783 daily market prices for nominal and IL 
bonds issued by the French Treasury. Market prices and inflation factors are 

extracted from the Datastream data base (Thomson Reuters). The inflation factor is 
the ratio between the value of harmonized CPI excluding tobacco on date t and its 

value at the issuance date t0 of the IL bond. This inflation factor, or IF, is applied to 
IL bonds according to equation 2 and allows us to protect investor cash flows against 
inflation. The same database is used both for extracting zero-coupon yields and 

setting up hedging strategies. 
The period begins in 2013 because too few French IL bonds  were traded before 

that year. Two types of IL bonds are available on the French market. Some are 
indexed to the domestic Consumer Price Index (CPI) and named OATi. Others have 
been issued more recently (since July 2001) and are indexed to the euro area 

Harmonized Index of Consumer Prices and named OAT€i. As in Pericoli (2014), these 
two types of IL bonds are included in our sample. Before including these IL bonds, 
we took the precaution to calculate the correlation coefficients between the 

variations of the indexation factors (IF). As shown in Table 1, these coefficients are 
very high, not only within each group (OATis/OAT€is), but also between the two 

groups. 
 
Table 1: Correlation coefficients among the indexation factor changes 

  OAT€i-18 OAT€i-20 OAT€i-22 OAT€i-24 OATi-17 OATi-19 OATi-21 OATi-23 

OAT€i-18 1        
OAT€i-20 0.999848 1       
OAT€i-22 0.999845 0.999859 1      
OAT€i-24 0.999805 0.99985 0.999821 1     
OATi-17 0.820918 0.82084 0.820749 0.820575 1    
OATi-19 0.820368 0.820282 0.820183 0.820008 0.999704 1   
OATi-21 0.820933 0.820845 0.82076 0.820574 0.999683 0.999666 1  
OATi-23 0.820436 0.820319 0.820251 0.820069 0.999664 0.999636 0.999628 1 

*In this table, the different IL bonds are indicated by their inflation mode, I or EI, and their maturity 

dates. 
 



11 
 

For comparison purposes, we use a similar number of French Treasury nominal and 
IL bonds, even though there are many more available nominal bonds (OATs). 

Furthermore, the chosen nominal bonds have maturities close to those of the IL 
bonds. A total of 13 nominal bonds and 11 IL bonds with maturity ranges from 2016 

to 2029 are taken into account in our sample. 
 
3.2. Real and nominal zero-coupon yield estimations 
 
As mentioned in Section 2, two alternative pricing methods are used to extract 
nominal and real zero-coupon bond prices: JY2003 piecewise constant forward rates 

and modified JY2003 piecewise constant forward rates. The estimations result from 
minimization of the sum of squared differences between market prices and 

estimated prices based on extracted zero-coupon yields, which in the case of IL 
bonds corresponds to: 

( ) ( ) ( )
2

1 1

min , , ,
N m

ilb q t r q r q

q

B t m IF CP t VFP t m
= =

  
− +  

  
 



     (18) 

and in the case of nominal bonds, corresponds to: 

( ) ( ) ( )
2

1 1

min , , ,
qmN

nom q n q n q

q

B t m CP t VFP t m
= =

   
− +  

   
 



     (19) 

where N is the number of bonds used in the estimation. To compare the ability of 
the implemented pricing procedures to reproduce market prices, the sum of the 
squared errors of each estimation is divided by the number of bonds used to 

compute the squared error per bond, SQE, which, for inflation-indexed bonds, is 

( ) ( ) ( )
2

1

, , ,
m

ilb t r r

ilb

B t m IF CP t VFP t m

SQE
N

=

  
− +  

  =






   (20) 

and for NOMs is 

( ) ( ) ( )
2

1

, , ,
m

nom n n

nom

B t m CP t VFP t m

SQE
N

=

  
− +  

  =






    (21) 

The statistics (mean, standard deviation, maximum, and minimum) of SQEilb 

and SQEnom related to the two models estimated are presented, respectively, in 
Table 2. 

 

Table 2: Statistics for SQE 

 SQEilb SQEnom 

 J2003Y Modified 

JY2003 

JY2003 Modified 

JY2003  

Mean 28.26182 2.63588 E 10-5 0.315437 1.29826E 10-5 

St. dev. 1.213068 0.000233141 0.781258 3.1909E 10-5 

Max. 36.3141 0.006450909 7.767054 0.000754167 

Min. 26.07986 4.78232 E10-7 0.030788 3.60719E 10-7 
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Comparison of the SQE statistics presented in Table 2 confirms that the 
modified JY2003 method fits market prices almost perfectly. These results also show 

that the methods perform much better for nominal bonds than for indexed bonds. 
Figures 1 through 4 graph the term structure generated from the two 

estimation methods for maturities ranging from 1 to 15 years. 
 

Figure 1. JY2003 
Nominal Term Structure 

Figure 2. JY2003 
Real Term Structure 

 

NOM2013=Nominal term structure on the 1st day of 2013 
NOM2014=Nominal term structure on the 1st day of 2014 
NOM2015=Nominal term structure on the 1st day of 2015 

REAL2013=Real term structure on the 1st day of 2013 
REAL2014=Real term structure on the 1st day of 2014 
REAL2015=Real term structure on the 1st day of 2015 

 

 

Figure 3. Modified JY2003 Nominal 
Term Structure 

Figure 4. Modified JY2003 Real Term 
Structure 

 

NOM2013= Nominal term structure on the 1st day of 2013 
NOM2014= Nominal term structure on the 1st day of 2014 

NOM2015= Nominal term structure on the 1st day of 2015 

REAL2013=Real term structure on the 1st day of 2013 
REAL2014= Real term structure on the 1st day of 2014 

REAL2015= Real term structure on the 1st day of 2015 
 

Comparing these two sets of graphics, the nominal term structure is much smoother 

with the modified JY2003 model. On the other hand, yield curves present more 
landings, but inside the same shape. 
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Although the figures presented above evidence the changes in interest rate 
curves at one-year intervals, they cannot replace the information provided by the 

statistics on the zero-coupon interest rates shown in Tables 3 and 4. 
 

Table 3. Statistics on zero-coupon spot rates given by the JY2003 method 

 Real Interest Rates Nominal Interest Rates 

Maturity 5 Years 7 Years 10 Years 15 Years 5 Years 7 Years 10 Years 15 Years 

Mean 0.017576 0.01016 0.004599 0.025551 0.003915 0.010903 0.016144 0.022553 

St. dev 0.004442 0.004226 0.007745 0.012662 0.003834 0.005486 0.00686 0.007549 

Kurtosis 0.410469 -0.14496 -1.29447 124.2216 -0.64055 -1.46532 -1.41558 -1.17615 

Skewness -0.92331 -0.49948 -0.29193 -6.06007 0.397301 -0.00514 -0.10033 -0.3115 

 

Table 4. Statistics on zero-coupon spot rates given by the modified JY2003 method 

 Real Interest Rates Nominal Interest Rates 

Maturity 5 Years 7 Years 10 Years 15 Years 5 Years 7 Years 10 Years 15 Years 

Mean 0.013968 0.01020 0.005579 0.02263 0.006093 0.010265 0.016984 0.021749 

St. dev 0.000348 0.000738 0.000286 0.001548 0.000154 0.00019 0.000253 0.000291 

Kurtosis -0.41486 415.514 74.38948 744.1544 -1.07922 -1.45824 -1.4161 -1.44479 

Skewness 0.838013 -17.3448 26.90998 -6.06007 0.262618 -0.00211 -0.12404 -0.23985 

 

The statistics shown in Tables 3 and 4 confirm, over the entire sample period, 

the monotonic increase in the nominal term structure, while a V shape dominates 
the real term structure, as illustrated by Figures 2 through 4. Kurtosis is also much 
higher for IL bonds than for nominal bonds. Similar results are observed in Pericoli 

(2014) on the French market between 2004 and 2014, which the author explains as 
resulting from the large segmentation and low liquidity of euro area inflation-linked 
bond markets. 

 
4. Results and analysis of arbitrage strategies 

 
The results from each strategy are presented, followed by analysis. 
 

4.1  Implementation and results of the arbitrage strategies 
 
Two different types (A and B) of self-financing portfolio are constructed. Types A and 
B aim to hedge the same nominal bond, but they comprise different IL bonds. Type 
A portfolios include the IL bonds with the highest maturities available in our sample, 

while type B portfolios include IL bonds whose maturities are lower than in type A 
portfolios. 
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Table 5: Portfolio constituents  

Bond  Type A   Type B 

     
Nominal bonds  OAT 2010-2 1/2%-2020  OAT 2010-2 1/2%-2020 

     

IL Bonds  OAT€i-2012-1/4%-2018  BTAN I 2011-0.45%-2016  

  OAT€i-2004-2 1/4%-2020  OAT-EI 2012-1/4%-2018  

  OATi-2012-0.1%-2021  OAT€i-2004-2 1/4%-2020 

  OATi-2008- 2.1%-2023  OAT-I 2012-0.1%-2021 

  OATi-2011- 1.85%-2027  OAT-I 2008-2.1%-2023 

 

According to JY2003, the entire term structure is governed by the short-term 
interest rate whose stochastic process is driven by the variable’s elasticity of return 

to its long-term normal value, parameter . 
The first duration measure, derived from JY2003, is implemented with two 

different values of   ( = 0.005, and  = 0.1). Different values for  enable us to 
determine whether the speed of interest rate convergence to its normal value 

significantly affects the results (profit or loss) of the hedged portfolio. The second 
duration measure relies on the Fisher-Weil duration, which supposes that the most 
frequent shocks to the term structure consist of parallel movements of the entire 

term structure. 
The hedged portfolios are constructed on a daily basis and their results (profit 

or loss) are based on market prices at the end of the holding period plus accrued 

interest during the portfolio holding period. Arbitrage results (APGt,t+ ) are the 
difference between the portfolio value on the liquidation date and the portfolio value 
on the date the arbitrage is implemented (initial date). By construction, the initial 
portfolio value is zero. 

 

𝐴𝑃𝐺𝑡,𝑡+∆ = 𝑉𝑡+∆ − 𝑉𝑡       (22) 

 

Where APGt,t+ is the arbitrage result and  is the holding period. 
Two holding periods are taken into account: 1-day and 10-day. This procedure 

yields 782 arbitrage results for the 1-day and 778 for the 10-day holding periods. 
The number of IL bonds included in portfolios A and B depends on the order 

of the duration implemented. Three IL bonds are necessary with D1, four with D1 

and D2, and five for strategies with D1, D2, and D3. While average maturity does not 
vary for nominal bonds since only one nominal bond is present (OAT 2010- 2 ½%- 

25-10-2020), average maturity differs and depends both on the order of duration 
implemented and on the nature of the IL bonds included, as shown in Table 6 below. 
 

4.2. Arbitrage results 
 

Table 6 shows basic statistics on the arbitrage strategy results APGt,t+ (expressed in 
% of bond nominal value). As described above, the arbitrage strategies are developed 

for 1-day and 10-day holding periods. For each holding period (1 day or 10 days), 
three portfolios are built, one for each hedging method (D1; D1 and D2; D1 D2 and 
D3). 
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Table 6: Statistics on arbitrage results 

Type A portfolios 

Hedging Method   D1  D1 & D2  D1 & D2 & D3 
             

           H=1 day             

Duration measure  
Mean Std. dev. 

p-
value  

Mean Std. dev. 
p-

value  
Mean Std. dev. 

p-
value 

             
Vasicek = 0.005  0.0008 0.0269 0.3847  0.0006 0.0155 0.2793  0.0006 0.0259 0.4864 

Vasicek = 0.1  0.0008 0.027 0.3954  0.0007 0.0226 0.3895  0.0006 0.0682 0.7958 
Fisher-Weil  0.0008 0.0269 0.3834  0.0006 0.0153 0.2761  0.0006 0.0249 0.4701 

            H=10 days           

Vasicek = 0.005  0.0089 0.0580 0.0000  0.0073 0.0415 0.0000  0.0181 0.1361 0.0000 

Vasicek = 0.1  0.0085 0.0584 0.0001  0.0088 0.0521 0.0000  0.0287 0.2470 0.0000 
Fisher-Weil  0.0089 0.0580 0.0000  0.0072 0.0412 0.0000  0.0178 0.1324 0.0000 

Type B portfolios 

Hedging Method   D1  D1 & D2  D1 & D2 & D3 
             
             
            H=1 day             

Duration measure  
Mean Std. dev. 

p-
value  

Mean Std. dev. 
p-

value  
Mean Std. dev. 

p-
value 

             
Vasicek = 0.005  -0.0074 1.8122 0.9091  0.0005 0.0136 0.2869  0.0006 0.0134 0.2507 

Vasicek = 0.1  -0.0022 0.1831 0.7416  0.0005 0.014 0.2988  0.0005 0.0179 0.4273 
Fisher-Weil  0.0435 1.1644 0.2961  0.0005 0.0137 0.2865  0.0006 0.0133 0,2487 

            H=10 days             

Vasicek = 0.005  0.4003 6.9282 0.1086  0.0049 0.0327 0.0000  0.0055 0.0330 0.0000 

Vasicek = 0.1  0.0017 0.4715 0.9193  0.0049 0.0331 0.0000  0.0048 0.0380 0.0000 
Fisher-Weil  0.1403 3.4196 0.2544  0.0049 0.0327 0.0000  0.0055 0.0330 0.0000 

  
           

Portfolio composition 

Portfolios A composition 

Hedging Method   D1  D1 & D2  D1 & D2 & D3 
             

Nominal bond  OAT -2010-2 1/2%-2020  OAT -2010-2 1/2%-2020  OAT -2010-2 1/2%-2020 
             

IL Bonds  
OAT€i-2012-   1/4%-2018  OAT€i-2012-   1/4%-2018  OAT€i-2012-   1/4%-2018 

  OAT€i-2012-  1/4%-2018  OAT€i-2012-   1/4%-2018  OAT€i-2004-2 1/4%-2020 

  OATi  -2012-  0,1%-2021  OAT€i-2004-2 1/4%-2020  OATi  -2012-   0,1%-2021 

  OATi  -2008-  2.1%-2023  OATi  -2012-    0,1%-2021  OATi  -2008-  2.1%-2023 

  
   

 OATi-  2008-    2.1%-2023  OATi  -2011-  1.85%-2027 
             

Portfolios B composition 

Hedging Method   D1  D1 & D2  D1 & D2 & D3 
             

Nominal bond  OAT -2010-2 1/2%-2020  OAT -2010-2 1/2%-2020  OAT  -2010-2 1/2%-2020 
             

IL Bonds   BTANi-2011-0.45%-2016  BTANi-2011-0.45%-2016  BTANi-2011-0.45%-2016 

  OAT€i-2012- 1/4%-2018  OAT€i-2012-1/4%-2018  OAT€i-2012-   1/4%-2018 

  OATi-  2012-  0.1%-2021  OAT€i-2004-2 1/4%-2020  OAT€i-2004-2 1/4%-2020 

      OATi-2008-2.1%-2023  OATi  -2012-  0.1%-2021 

                    OATi  -2008-  2.1%-2023 

 

None of the mean values of the results of the 1-day strategies significantly 
differs from zero. The opposite situation is observed in the 10-day strategies, where 
a much larger number of mean arbitrage profits are significantly different from zero. 

The profits from bond arbitrage portfolios stem from prices and accrued interest. 
The difference between the results in 1-day and 10-day holding periods suggests 

that bond prices adjust slowly to mispricing and the most important part of the 
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arbitrage portfolio gains stems from the difference between accrued interest during 
the holding period of the nominal bonds (held long) and the IL bonds (held short). 

The 1-day holding period is not sufficient to evidence profits. 
Type A portfolios held for a period of 10 days offer mean results that are 

positive and significantly different from zero, independent of the hedging method 
used against interest rate risks. On the contrary, Type B portfolios held for 10 days 
require a hedging method based at least on D1 and D2 to offer mean profits 

significantly different from zero. As a reminder, D1 is relative to level risk while D2 
is related to slope risk, and D3 is related to hump risk of interest rates. 

The average maturity of IL bonds in type A portfolios is longer than in type B 

portfolios. Since the real yield curve is more flat in long maturity segments than in 
short maturity ones, the need to hedge against slope and hump risk is more 

important in portfolios with lower maturity than in portfolios with longer maturity. 
Finally, the duration measures used (Vasicek or Fisher-Weil duration) do not impact 
the arbitrage results. 
 

4.3. Determinants of arbitrage results 
 

Arbitrage profits are caused by irregularities between the IL and nominal bond 

markets, which end up in breakeven inflation. The advantage of FBEI over 
breakeven inflation is that it is not impacted by the correlation between the 

breakeven inflation of different maturities, which overlap. Hence, FBEI for different 
maturities seems well adapted to explain the arbitrage strategy results. To test this, 
we carry out regressions to explain the profits of the arbitrage strategies (whose 

mean is significantly different from zero) via changes in four FBEI variables with 
short-, medium-, and long-term time horizons. 

It is important to determine in which maturity segments breakeven inflation 
has the more meaningful effect on the detected arbitrage profits. The forward rates 
used to calculate FBEI are the rates starting at the date corresponding to their 

maturity and lasting for 1 year. Hence, The forward breakeven inflation rate whose 
maturity is i, noted FBEI_iY, is the difference between nominal and real forward 

rates, such rates beginning in i year and ending at the end of the i+1 year1. 
As discussed above (paragraph 4.1), the arbitrage strategies are developed 

alternatively for 1-day and 10-day holding periods. Hence, the arbitrage portfolios 

constructed every day and held over 10 days are overlapped with 9 equivalent 
portfolios. To correct the autocorrelation effect caused by the portfolios overlapping, 

we include lagged values of the dependent variable in the regressions of the arbitrage 

portfolio profits, APGt,t+,over the FBEI variables. Hence, the estimated equations 
take the following form: 
 

𝐴𝑃𝐺𝑡,𝑡+∆ = 

𝛼 + 𝛽1𝑑𝐹𝐵𝐸𝐼1𝑌𝑡,𝑡+∆ + 𝛽2𝑑𝐹𝐵𝐸𝐼3𝑌𝑡,𝑡+∆ + 𝛽3𝑑𝐹𝐵𝐸𝐼5𝑌𝑡,𝑡+∆ + 𝛽4𝑑𝐹𝐵𝐸𝐼7𝑌𝑡,𝑡+∆ +

∑ 𝛿𝑖𝐴𝑃𝐺𝑡−𝑖,𝑡−𝑖+∆
𝐾
𝑖=1 + 𝜀𝑡,𝑡+Δ       (23) 

where 𝐴𝑃𝐺𝑡,𝑡+∆ is the gain of the arbitrage portfolio held between t and t+, 

𝑑𝐹𝐵𝐸𝐼1𝑌𝑡,𝑡+∆ ,  𝑑𝐹𝐵𝐸𝐼3𝑌𝑡,𝑡+∆ ,  𝑑𝐹𝐵𝐸𝐼5𝑌𝑡,𝑡+∆  and 𝑑𝐹𝐵𝐸𝐼7𝑌𝑡,𝑡+∆  are the changes, between t 

                                                           
1 FBEI_1Y is the difference between Fn(1,2) and Fr(1,2), where Fi(1,2) is the rate running for the period beginning at the 
end of year 1 and ending at the end of year 2. The same applies for other maturities. 



17 
 

and t+, of the FBEI variables included in the regressions, 𝐴𝑃𝐺𝑡−𝑖,𝑡−𝑖+∆ is the i th 

lagged value of the dependent variable (i = 1,…, K), and 𝜀𝑡,𝑡+Δ is the error term. Lags 

of the dependent variable are included in the regression for the purpose of 

eliminating residuals autocorrelation. The search for the minimum number of lags 
required to remove residuals autocorrelation is guided by the Breusch-Godfrey test 

on autocorrelation. 
The results of the regressions are shown in Table 8. Only strategies where 

profits exist are analyzed. 

 
Table 7: Impact of forward breakeven inflation on arbitrage results 

H=10 days 

 
                  

        Type A Portfolios        

Hedging method  D1    D1 & D2   D1 & D2 & D3 

 
Vasicek  Vasicek  Fisher–

Weil  
Vasicek  Vasicek  Fisher–Weil Vasicek  Vasicek  Fisher–

Weil 

Duration measure   = 0.005    = 0.1       = 0.005    = 0.1       = 0.005    = 0.1    

FBEI_1Y -0.6468**  -0.6907***  -0.6441**  -0.5999***  -0.7463**  -0.5955***  -0.8267  -1.1308  -0.8132 

 0.0139  0.0091  0.0143  0.0042  0.0108  0.0040  0.1945  0.3721  0.1887 

FBEI_3Y -0.3241**  -0.3619**  -0.3216**  -0.3903***  -0.4974***  -0.3865***  -0.9453**  -1.3472*  -0.9242** 

 0.0354  0.0198  0.0368  0.0015  0.0039  0.0014  0.0134  0.0774  0.0127 

FBEI_5Y -0.0643  -0.0855  -0.0630  -0.1362  -0.2030*  -0.1352  -0.4415*  -0.6495  -0.4329* 

 0.5353  0.4137  0.5438  0.1021  0.0810  0.1001  0.0825  0.1985  0.0795 

FBEI_7Y -0.0125**  -0.0118*  -0.0126**  -0.0114**  0.0065  -0.0104**  -0.0251*  -0.0480  -0.0236 

 0.0469  0.0633  0.0461  0.026  0.3629  0.0381   0.0974  0.1096  0.1084 

R²  0.732    0.733    0.732    0.673   0.591   0.677   0.71246   0.648    0.714  

B&G 
(P-value) 

0.8430   0.8970    0.8380  
 

0.1084 
 

0.3508 
 

0.1150 
 

0.5429 
 

0.8068 
 

0.5587 

Lag number 15  20  20 

       Type B Portfolios         

Hedging method  D1    D1 & D2   D1 & D2 & D3 

 
Vasicek  Vasicek  Fisher–

Weil  
Vasicek  Vasicek  Fisher–

Weil  
Vasicek  Vasicek  Fisher–

Weil 

Duration measure   = 0.005     = 0.1       a = 0.005   a = 0.1       = 0.005    = 0.1    

FBEI_1Y 
     

 -0.4169***  -0.4218***  -0.4170***  -0.4425***  -0.5105***  -0.4413*** 

 
     

 0.0030  0.0032  0.0030  0.0006  0.0011  0.0006 

FBEI_3Y 
     

 -0.1634**  -0.1575*  -0.1636**  -0.1480**  -0.1114  -0.1494** 

 
     

 0.0466  0.0598  0.0465  0.0475  0.2204  0.0449 

FBEI_5Y 
     

 -0.1290**  -0.1315**  -0.1291**  -0.0992*  -0.1343**  -0.0986* 

 
     

 0.0216  0.02156  0.0216  0.0515  0.0296  0.0525 

FBEI_7Y 
     

 0.0003  0.0002  0.0003  0.0014  0.0055  0.0013 

          0.9246  0.9564  0.9242   0.6660  0.1440  0.6920 

R²        0.767   
 0.764  

 0.767  0.811   0.780    0.811  

B&G stat 
(P-value)       0.2248  0.663  0.224  0.121  0.783  0.115 

Lag number 
 

 25  25 

*** Significant at the 1% level; ** Significant at the 5% level; * Significant at the 10% level. 
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Table 7 presents the coefficient estimates, adjusted R2, and Breusch-Godfrey 
(B&G) p-value which confirms the absence of residual autocorrelation in all 

regressions. The number of lagged values of the dependent variable included in the 
regressions is also given in the table. 

The results of the regression differ between type A and type B portfolios. The 
difference between these two portfolio types is their composition, which affects the 
mean maturity of the IL bonds included in the portfolio. In type A portfolios, the 

mean maturity is closer to the nominal bond than for type B portfolios, where IL 
bonds have a shorter maturity. 

Within each portfolio type, the result differs according to the hedging method 
used, which relies on the type of interest risk hedged (level, slope, or hump). On the 
other hand, the results are independent of the chosen duration measure 

implemented (Vasicek  = 0.05, Vasicek  = 0.10, and Fisher-Weil). 
For type A portfolios, there is evidence that changes in one-year forward 

breakeven inflation (FBEI_1Y) explain the profits when the portfolio is hedged 
against level and slope, i.e., when D1 and D2 are implemented. The 3-year breakeven 
inflation changes explain significantly (at the level of 1% and 5%) the arbitrage 

results whatever the hedging method implemented. However, the 5-year breakeven 
inflation changes explain very poorly the arbitrage results. Changes in 7-year FBEI 

are significant at 1% level only in one case only, the most part is significant at 5%. 
For type B portfolios, FBEI_1Y changes explain at a very high level (1%) the 

arbitrage results whatever the hedging measures. The changes in FBEI_3Y and 

FBEI_5Y explain significantly (at 1% and 5% levels, respectively) the arbitrage 
results. Conversely, changes in FBEI_7Y never explain arbitrage profits. This result 

is not surprising considering the average maturity of the IL bonds included in these 
portfolios, which is lower than 7 years. 

Thus, it is possible to conclude that short maturities of breakeven inflation 

explain the arbitrage results. Portfolios of type A are more sensitive to a maturity of 
3 years while portfolios of type B are more sensitive to a 1-year maturity. The 
maturity of the breakeven inflation to which a portfolio is sensitive depends on the 

average maturity of the IL bonds present in the portfolio. 
 

5. Conclusion 
 
This paper focuses on French Treasury inflation-indexed bonds, their evaluation, 

and their relative prices relative to nominal Treasury bonds. To compare the prices 

of these two assets, we build portfolios composed of a Treasury nominal bond and 

several Treasury IL bonds whose proportions are determined such that the portfolio 

is self-financing and hedged against interest rate risks. Three types of risk are 

involved: level, slope, and hump risk. The results show arbitrage opportunities 

between these two types of assets. 

The arbitrage results show that choice of hedging method is important, since 

hedging against second- (slope risk) and third-order (hump risk) durations, and not 

only against first-order duration (level), is particularly important in the portfolios 

whose payoff maturities fall predominantly in yield curve segments with high slope 

and hump, usually the short and medium term. On the contrary, the type of 

duration measure used, which relies on the considered pricing model, does not 
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impact the arbitrage results. If arbitrage profits are detected, it is important to 

discover which factor explains these profits. Based on ordinary least squares 

regressions, this paper shows that the changes in FBEI (the difference between 

nominal and real forward interest rates) with reference to short- and medium-term 

maturities play an important role in explaining arbitrage portfolio gains. 
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