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Abstract

We propose new methodology to estimate arbitrage portfolios by utilizing infor-

mation contained in firm characteristics for both abnormal returns and factor

loadings. The methodology gives maximal weight to risk-based interpretations

of characteristics’ predictive power before any attribution to abnormal returns.

We apply the methodology in simulated factor economies and to a large panel of

U.S. stock returns from 1965–2014. The methodology works well in simulation

and when applied to U.S. stocks. Empirically, we find the arbitrage portfolio has

(statistically and economically) significant alphas relative to several popular asset

pricing models and annualized Sharpe ratios ranging from 1.35 to 1.75.
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1 Introduction

Many variables have shown some ability to predict the cross section of asset returns.

This predictive power could be due to their ability to predict the cross section of sys-

tematic risk (beta); their ability to predict asset mispricing (alpha); and spurious cross-

sectional relations due to overfitting (data snooping). Rosenberg and McKibben (1973)

use 32 stock-level characteristics to predict the cross-section of systematic risk and

find a significant relation with a number of characteristics common in the subsequent

literature, such as asset size, book-to-market equity, share turnover, and a measure

of quality. Betas on portfolios formed using firm-level characteristics have had much

success in explaining the cross-section of returns (e.g., Fama and French (1993, 2015);

Hou et al. (2015)). Daniel and Titman (1997) argue that it is difficult to disentangle a

purely characteristics-based model (in which characteristics only predict alpha) from a

risk-based model because the characteristics and factor loadings in the characteristic-

sorted portfolios are collinear. In their influential approach to disentangling the beta

vs. alpha explanations, assets are sorted into portfolios based on lagged beta estimates

and firm characteristics. Returns on long–short portfolios made of long and short legs

with similar beta exposure but different levels of the characteristics are designed to

measure the pure returns to the characteristics. Similarly, returns on long–short port-

folios made of portfolios with similar levels of the characteristic but different levels

of beta exposure are designed to measure the pure risk premium. They find signifi-

cant characteristic-based returns, controlling for betas, but not for beta-based returns,

controlling for characteristics. These results rekindled the beta vs. alpha debate.

An issue with the double–sorting procedure arises when the true risk measures

are related to firm characteristics. Regression-based estimates of systematic risk are

often very noisy, and potentially stale, estimates of the true systematic risk. This

may lead to the characteristic predicting returns, holding estimated betas constant, not

because the characteristics predict abnormal returns, but because the characteristics

are better predictors of beta (Ferson and Harvey (1997) and Berk (2000)). Regression

estimates of systematic risks are known to be relatively imprecise. Furthermore, the

issue of staleness of the estimates is somewhat inescapable because the estimates are

usually backward-looking functions of unconditional covariances and variances. For

example, leverage in a firm’s capital structure implies equity betas are time-varying
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and that time-series changes in equity betas will be related to changes in the firm’s

leverage. Since changes in firm size, book-to-market equity ratio, and the firm’s past

price movements are all correlated with leverage changes, commonly used characteristics

(such as market capitalization, book-to-market equity ratios, and momentum) might

help predict conditional betas, over and above the predictive power of unconditional

betas. In addition to (a) the issue of staleness, double sorting has the disadvantage

that (b) the approach handles one characteristic at a time and, hence, is unable to

analyze many characteristics simultaneously and (c) sorting into portfolios may mask

important variation in returns relative to using individual assets.

We propose a new methodology, which is an extension of the projected principal

components procedure (PPCA) of Fan et al. (2016). The estimator can accommodate

many characteristics simultaneously; can use individual assets, rather than portfolios;

and conditions systematic risk estimates on current values of firm characteristics. Thus,

the method addresses all three issues raised above. Our procedure gives characteristics

maximal explanatory power for risk premia before we attribute any explanatory power

to alphas.1 We project time-series demeaned asset returns (which eliminates alpha) onto

the characteristics (or, potentially, onto the series expansions of the characteristics).

We then estimate the relation between factor betas and characteristics by applying

principal components (PCA) to the projected returns. Given the estimated systematic

factor loading function, we extract the relation between alpha and the characteristics

that has maximal cross-sectional explanatory power, conditional on being orthogonal

to the systematic factor loadings.

To illustrate the issue of characteristics versus noisy/stale estimates of beta and

highlight the advantage of our approach over the double-sorting method, we simulate

a simple economy in which the Capital Asset Pricing Model (CAPM) holds. Alpha,

or abnormal returns, are identically zero, but the true underlying betas are functions,

cross-sectionally, of a firm characteristic. The economy is simulated for 2,000 firms

and 2,000 months. We perform month-by-month rolling sorts of assets based on OLS

estimates of market betas (estimated over the previous sixty months) and the charac-

teristic. We report average returns of double-sorted (first on characteristic and then on

the estimated beta) portfolios in Table 1 (full details about the simulation are in the

1Kozak et al. (2018) argue that the distinction between risk premia and abnormal returns is not
totally clear, because abnormal returns correlated with risk exposures are the only ones that would
survive arbitrage activities by investors.
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table legend). Although the true return generating process is the CAPM, the return

differences of the high-minus-low characteristic portfolios (reported in the last row)

are statistically significant while the return differences of the high-minus-low estimated

beta portfolios (reported in the last column) are insignificant. Thus, the table seems to

be indicating a strong relation between the characteristic and abnormal returns in an

economy in which no abnormal returns exist. In contrast, when we apply our procedure

(described fully below) to this economy, we find that the relation between abnormal

returns and the characteristic is insignificantly different from zero (p-value of 0.82).

We also show that when there exists any relation between alpha and characteristics,

one can use our method to construct an arbitrage portfolio that exploits such a relation.

Our arbitrage portfolio weights are proportional to the estimated alpha function. We

first apply our estimator in simulation and explore its finite sample properties as well as

robustness to model misspecification. The estimator performs well in simulated factor

economies, which we calibrate to mimic the CRSP/Compustat panel.

We apply the procedure to U.S. stock return data using the characteristics data set

of Freyberger et al. (2019). In the baseline implementation, we use 12 months of data

to estimate the weights of the arbitrage portfolio and then hold the portfolio for one

month.2 We then roll the estimation forward by one period and repeat the process.

Therefore, we obtain portfolio returns that are out-of-sample relative to the estimation

period, in the sense that the arbitrage portfolio weights for period t only use information

from periods prior to t. The arbitrage portfolio has (statistically and economically)

significant alphas relative to several popular asset pricing models and annualized Sharpe

ratios ranging from 1.35 to 1.75 (depending on the number of systematic factors we

estimate).

One possible way that data snooping could creep into the analysis is through the

selection of firm characteristics, which may be based on studies that use data over

the same sample period used to estimate the portfolio weights. As a check for this,

we test for a trend in alpha over our sample period. Data snooping would lead us to

expect a trend toward zero. We do find a slight downward trend, but it is economically

inconsequential.

Our approach allows us to make a number of contributions to empirical asset pric-

2We also provide the robustness of our results when we use 24 or 36 months to estimate the weights
of the arbitrage portfolio. We also show that the results are robust to alternative rebalancing periods.
See Tables A.9-A.13 in the Appendix.

4



ing. First, we provide useful guidance in portfolio construction for investors who want

to eliminate exposure to the common risks and focus on exploiting the mispricing of

traded securities. Second, we address, in a unified manner, the question of “betas vs.

characteristics” in a statistical factor pricing model (a long-standing issue since Fama

and French (1993) and Daniel and Titman (1997)).3 Our approach incorporates the

cross-sectional predictive power of asset characteristics for factor betas, as in Ferson

and Harvey (1997), Connor and Linton (2007), and Connor et al. (2012) for prespec-

ified factor models and Fan et al. (2016) and Kelly et al. (2018) for statistical factor

models. The “arbitrage” notion in our arbitrage portfolios is that we are constructing

portfolios that hedge out the systematic risk associated with firm characteristics. In

the limit, as the number of assets approaches infinity, the risk of the portfolio should

approach zero. We do not assume that there are necessarily arbitrage opportunities.

That is an empirical question. In the simulated economy above, there are no arbitrage

opportunities, and our procedure applied to those data correctly finds no evidence of

arbitrage opportunities. We are, ex ante, agnostic about whether the data support a

purely beta-based explanation, a purely alpha-based explanation, or a combination of

both. Our goal is to develop a procedure that does a good job disentangling these two

effects. Our simulation results suggest that it does. The the empirical results using

U.S. stock return data imply that the cross-sectional predictability is due to both beta-

and alpha-effects.

1.1 Related Literature

The early literature on risk-based determinants of cross-sectional expected returns is

closely linked to the Capital Asset Pricing Model (CAPM) of Treynor (1962, 1999),

Sharpe (1964), Lintner (1965), and Mossin (1966), the Intertemporal CAPM (ICAPM)

of Merton (1973), and the Arbitrage Pricing Theory (APT) of Ross (1976). There

is a large literature that relates observable firm characteristics to expected returns,

over and above those implied by extant asset pricing models. Early contributions to

this literature were made by Banz (1981) (market capitalization), Stattman (1980) and

Rosenberg et al. (1985) (book-to-market equity ratio), and Fama and French (1992) who

provide an early synthesis of findings across multiple characteristics. The explanatory

3See Chen et al. (2018) for the extension of Daniel and Titman (1997) on various characteristics.
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power of firm characteristics has led to alternative specifications of asset pricing models

(e.g., Fama and French (1993, 1996)) and further testing of the ability of characteristics

to explain the cross section of returns beyond that implied by the expanded set of

asset pricing models. The recent meta study by Harvey et al. (2016) provides an

extensive overview of many of the variables (coined the “zoo of new factors” by Cochrane

(2011)) that the literature has produced and also raises important statistical concerns

related to multiple hypothesis testing. After these influential papers, numerous efforts

to systematically reduce the dimension of the cross sectional return predictors and have

been undertaken, e.g. Freyberger et al. (2019), Feng et al. (2019) or Han et al. (2018).

A large portion of the earlier empirical literature works at the portfolio level. That

is, rather than using individual assets to test models, researchers group assets into

portfolios and conduct tests on these portfolios. Due to concerns about masking pricing

errors by portfolio grouping, Connor and Korajczyk (1988) test the CAPM and a latent

factor version of the APT using a large cross section of individual assets. Their tests

assume that idiosyncratic correlations are non-zero only for firms in the same three-

digit SIC code. Gagliardini et al. (2016) and Chaieb et al. (2018) also stress that the

“pre-grouping” possibly masks important variation in alphas and betas and develop a

new methodology to test asset pricing models on individual assets. Kim and Skoulakis

(2018a,b) argue in a similar fashion and propose various asset pricing tests using large

cross-sectional individual stock data over a short time horizon. In particular, Kim and

Skoulakis (2018b) estimate the rewards of firm characteristics after controlling for the

risk of a given asset pricing model. While their interest is in the evaluation of a specific

asset pricing model, we provide a methodology to form arbitrage portfolios in a general,

latent factor structure of returns without the need to specify the factors, ex ante.

Fan et al. (2016) make a methodological contribution by bridging the gap between

purely statistical factor models and characteristic-based models. We use their contri-

bution as the basis for our analysis and extend the method to explicitly estimate and

test for possible characteristic-related mispricing. Kelly et al. (2017, 2018) develop and

apply a similar methodology, instrumented principal component analysis (IPCA). Our

work is closely related to that of Kelly et al. (2018), who also investigate the question of

whether characteristics contain information on risk loadings, mispricing, or both. They

conclude that firm-level characteristics’ ability to predict the cross section of returns is

due to their ability to predict the cross section of risk loadings rather than mispricing,
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while we find that characteristics explain both risk and mispricing.

It is important to clarify the differences in economic questions between this paper

and Kelly et al. (2018). Our focus is on identifying and utilizing both the cross-sectional

and temporal relation of characteristics to risk or mispricing. Hence, we use the char-

acteristics at the beginning of each estimation sub-interval of short horizon (of one year

in our empirical work) to estimate the cross-sectional relation between alphas, betas,

and characteristics but allow the cross-sectional relation to vary across sub-intervals.

We apply the identified cross-sectional relation to the most recently observed charac-

teristics to construct our portfolio weights. In contrast, Kelly et al. (2018) allow the

characteristics to change period by period but hold the cross-sectional relation between

characteristics and either risk or alpha constant. The dynamics in our procedure are

primarily coming from changes in the cross-sectional relation between alphas, betas,

and characteristics, along with updating characteristics across sub-intervals of time.

The dynamics in Kelly et al. (2018) come from the time series of characteristics, hold-

ing the cross-sectional relation constant. Our procedure will tend to perform better

in situations where characteristics are relatively stable (e.g., market capitalization and

book-to-market equity) but whose relation to risk and alpha changes over time. This

would be the case if risk premia vary over time or if anomalies are arbitraged away

after discovery. The IPCA procedure will tend to perform better in situations where

characteristics have important short-term dynamics (e.g., short-term reversal and the

January seasonal) but whose relation to risk and alpha is stable over time. We also

apply IPCA to form out-of-sample arbitrage portfolios using data over a short time in-

terval in simulated economies and find the abnormal returns on the arbitrage portfolio

to be noisier than those from our procedure.4

The rest of the paper is organized as follows. In Section 2, we describe our large

cross-sectional economy and propose an estimator of arbitrage portfolio weights. In

Section 3, we simulate an economy in which asset risks match those in the U.S. equity

markets and examine the performance of our estimator of an arbitrage portfolio. The

estimator performs well with empirically relevant sample sizes. In Section 4, we apply

our methodology to a large cross section of individual stocks in the U.S. equity market

and provide evidence that our arbitrage portfolio indeed generates strong profitability

4This result does not mean that their method is deficient. Their asymptotic theory is based on
large T. However, we intentionally design the simulation setup for small T to justify our theoretical
results and empirical applications.
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after controlling for commonly used risk factors. We also test for time trends in the

abnormal returns on the arbitrage portfolio. One would expect that data mining would

lead to returns that dissipate over time. While we find a slight negative time trend, it

is not economically significant.

2 The Model

We assume that there exists a large number of securities indexed by i = 1, · · · , N,
and the return generating processes for those individual securities are stable for short

blocks of time (e.g., dozens of months) t = 1, · · · , T . We allow the return generating

process to change across time periods. The return generating process of each individual

security follows a K-factor model in which the factors are unobservable, latent factors.

In particular, the excess return of i-th asset at time t is generated by a factor model,

Ri,t = αi + β′ift + ei,t, i = 1, · · · , N and t = 1, · · · , T, (2.1)

where βi = [βi,1 · · · βi,K ]′ is the (K × 1) factor loadings of the i-th asset, ft is the

(K × 1) systematic factor realization (plus risk premium) in period t, and ei,t is the

zero-mean idiosyncratic residual return of asset i at time t. Since our objective is

to extract possible mispricing from a large cross section of assets and construct an

arbitrage portfolio, we explicitly add a mispricing term, αi, to the return generating

process (2.1). Throughout, we use 0m, 1m, and 0m×l denote the (m× 1) vectors of

zeros and ones and the (m× l) matrix of zeros, respectively. The return generating

process of (2.1) is expressed compactly in matrices:

R = α1′T + BF′ + E, (2.2)

where the (i, t) element of the (N × T ) matrix R is Ri,t, respectively, α is the (N × 1)

vector of [α1 · · ·αN ]′ , the i-th row of the (N ×K) matrix B is β′i, the t-th row of the

(T ×K) matrix F is f ′t=[f1,t · · · fK,t], and the (i, t) element of the (N × T ) matrix E

is ei,t.

Our estimator is an extension of the Projected Principal Components Analysis

(PPCA) approach of Fan et al. (2016). While they allow the factor loading matrix,

B, to be a nonparametric function of firm characteristics and estimate the model with
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the restriction that mispricing is zero, we allow both the mispricing, α, and the sys-

tematic risk, B, to be functions of asset-specific characteristics. Let xi = [xi,1 · · · xi,L]′

be the (L× 1) vector of the characteristics associated with stock i. Define the (N × L)

matrix of X, the i-th row of which is x′i. We assume the following structure for α and

B:

α = Gα (X) + Γα

B = Gβ (X) + Γβ,

where Gα (X) : RN×L → RN , Gβ (X) : RN×L → RN×K , and the (N × 1) vector,

Γα, and the (N ×K) matrix, Γβ, are cross-sectionally orthogonal to the characteristic

space of X. We call Gα (X) the “mispricing function” and Gβ (X) the “factor loading

function.” Γα and Γβ represent the sources of alpha and beta that are not related

to the characteristics, X. While the mispricing function, Gα (X) and factor loading

function, Gβ (X), can be consistently estimated in the large N /small T setting used

here, consistent estimates of Γα and Γβ are not obtainable. Therefore, our procedure

does not attempt to exploit the gammas, just their orthogonality to the characteristics.

There are a number of ways in which one could incorporate non-linearity into the

mispricing and factor loading functions. We chose X to be a large set of characteristics,

possibly containing suitable polynomials of some underlying characteristics, X∗. Hence,

we treat Gα (X) and Gβ (X) as linear functions of a large set of characteristics X. We

then rewrite the return generating process (2.2) as follows:

R = (Gα (X) + Γα) 1′T + (Gβ (X) + Γβ) F′ + E. (2.3)

First, we can learn about alpha and beta through Gα (X) and Gβ (X) even when

data are relatively infrequently observed (such as monthly) over short horizon (such as

a year) by instrumenting characteristics. This is a strong advantage over other factor

extraction methods requiring large time series or high frequency observations. Second,

because we set T as a short horizon, the process in (2.3) can be treated as a local

approximation as an unconditional model of a conditional model over a long horizon

model.5 Third, our rolling estimation of (2.3) enables us to study the temporal relation

5We thank Yuan Liao for pointing out this. Our approach also works under smooth transition of
X over a short horizon.
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of characteristics to risk or mispricing. Many empirical approaches (e.g. Kelly et al.

(2018), Ferson and Harvey (1999), Ghysels (1998)) construct conditional model by

allowing the characteristics to change period-by-period but holding the cross-sectional

relation between characteristics and either risk or alpha constant, which is not suitable

for detecting anomalies that are arbitraged away after discovery.6 By estimating (2.3)

over rolling-windows, we can learn about the dynamics of Gα (X) and Gβ (X) . Lastly,

we do not need to necessarily have all important characteristics for risk and mispricing

(2.3). Because any information in the missing characteristics is captured by Γα and Γβ,

our model already incorporates the possibility of misspecifying the set of characteristics.

Hence, if some important characteristics are missing, we may lose some precision but

will not generate spurious alpha.

Note that the Arbitrage Pricing Theory (APT, Ross (1976)) implies that the sum

of squared pricing errors is finite, so that 1
N
α′α → 0. Hence, in an economy governed

by the APT, it follows that Gα(X)′Gα(X)
N

→ 0, because 0 ≤ Gα(X)′Gα(X)
N

≤ 1
N
α′α, since

1
N
α′α also involves 1

N
Γ′

αΓα. Allowing for significant mispricing of assets implies the

cross-sectional average of the squared mispricing function Gα (X) may be nonzero:

Assumption 1. As N →∞,

Gα (X)′Gα (X)

N
→ δ ≥ 0.

The above assumption specifies that the characteristics in X may contain information

about nontrivial levels of asset mispricing, α. It is beyond the scope of this paper to

examine the underlying cause of such a relation.7 Assumption 1 does not imply that

characteristics capture all potential mispricing. Mispricing orthogonal to the charac-

teristics is reflected in Γα. The main objective of this paper is to provide a method to

detect the relation between X and α while also allowing the characteristics to predict

differences in systematic risk across assets. Using the relation between X and both α

and B allows us to form portfolios that yield abnormal returns (if δ > 0) while hedging

out the systematic risk associated with the firm characteristics.

The following are standard regularity conditions on the characteristics and residual

6Besides, Kothari and Shanken (1992) and Grundy and Martin (2001) theoretically verify that the
relation between some firm characteristics and risk are guaranteed to be dynamic.

7See Jagannathan and Wang (2007), Baker and Wurgler (2006), Stambaugh and Yuan (2016),
Frazzini and Pedersen (2014) among many for potential causes of mispricing.
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returns.

Assumption 2. As N →∞, it holds that

(i) R′R
N

p→ VR and X′X
N
→ VX , where VR and VX are positive definite matrices,

(ii)
Gβ(X)′Γα

N

p→ 0K ,
Gβ(X)′Γβ

N

p→ 0K×K ,
X′Γα
N

p→ 0L,
X′Γβ
N

p→ 0L×K ,
Gβ(X)′E

N

p→ 0K×T

and X′E
N

p→ 0L×T .

Condition (i) simply states that the cross section of returns and characteristics are not

redundant but well-spread over individual stocks. Condition (ii) imposes the various

cross-sectional orthogonality conditions between the mispricing function, mispricing

function residuals, factor loading function, factor loading function residuals, and resid-

ual returns.

Lastly, we assume mild restrictions to separately identify Gα (X) and Gβ (X) . To

ease notation, we define the (T × T ) matrix JT = IT − 1
T
1T1′T , which corresponds to

time-series demeaning.

Assumption 3. As N →∞, we assume

(i)
Gβ(X)′Gα(X)

N
→ 0K ,

(ii)
Gβ(X)′Gβ(X)

N
= IK and

(iii) FJTF′ is a full rank (K ×K) diagonal matrix with distinct diagonal elements.

Condition (i) restricts the mispricing function of Gα (X) to be cross-sectionally or-

thogonal to the factor loading function of Gβ (X) . This assumption is without loss

of generality. If there is any correlation between Gα (X) and Gβ (X) , the correlated

component can be assigned to the risk-based component reflected in Gβ (X) by shifting

factors accordingly.8 Conditions (ii) and (iii), are minor modifications of the commonly

assumed identification restrictions. Without this restriction, we cannot identify Gβ (X)

separately because of the rotational indeterminacy of latent factor models. That is,

Gβ (X) FJT = Gβ (X) H−1HFJT for any invertible matrix H.

2.1 Methodology

Our Projected-PCA procedure first projects demeaned returns onto the cross-sectional

firm-specific characteristics. The factor loading function is then estimated by applying

8For a similar restriction in literature, see equation (6) of Connor et al. (2012), who assume the
cross-sectional orthogonality between alpha and beta for identification.
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a standard PCA procedure to the projected returns. Fan et al. (2016) show that the

estimated factor loading function converges to the true factor loading function as the

cross-sectional sample increases, even for small time-series samples. This allows us to

implement the procedure using rolling blocks of data to estimate portfolio weights for

the next month. It also allows for time variation in factor risk premia and the extent

to which any given characteristic can predict abnormal returns. We extend the PPCA

estimator to not only estimate factors, but also the mispricing function, a case not

covered in Fan et al. (2016).

We achieve the goal of constructing an arbitrage portfolio in three steps. In the first

step, we demean returns and obtain an estimator of Gβ (X) from applying Asymptotic

Principal Components (APC) to demeaned projected returns, (Connor and Korajczyk

(1986)). By demeaning the returns, we focus purely on systematic risk not on expected

returns or realized premiums. In the second step, we estimate Gα (X) by regressing

(in the cross-section) average returns on the characteristic space orthogonal to the esti-

mated Gβ (X) from the first step. Although the average returns contain both mispricing

and risk premiums from systematic risks, we extract the information about the mis-

pricing by imposing orthogonality to the systematic risks. In the third step, we use the

estimated Gα (X) to construct an arbitrage portfolio.

We define the convergence of large dimensional matrices as follows.

Definition. For two (N ×m) random matrices A and B with a fixed m, we say that

as N increases A
p→ B if as N increases 1

N
(A−B)′ (A−B)

p→ 0m×m.

The first step of our procedure is the estimation of Gβ (X). Recall that the observed

returns in (2.3) are driven both by Gβ (X) and Gα (X). We eliminate the effect of

Gα (X), by demeaning the observed returns:

RJT = (Gα (X) + Γα) 1′TJT + (Gβ (X) + Γβ) F′JT + EJT

= (Gβ (X) + Γβ) F′JT + EJT , (2.4)

where the last equality is from the property of 1′TJT = 1′T
(
IT − 1

T
1T1′T

)
= 1′T− T

T
1′T =

0′T . For further isolation of Gβ (X) , we project the demeaned returns of (2.4) on the

(linear) span of X by premultiplying by the projection matrix P = X (X′X)−1 X′.
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Then, we get

R̂ ≡ PRJT = PGβ (X) F′JT + PΓβF
′JT + PEJT . (2.5)

Note that PGβ (X) = Gβ (X), since Gβ (X) is already in the linear span of X. Due

to the orthogonality of Γβ and X and the limits in Assumption 2(ii) make PΓβ and

PE negligible for large N . Hence, it holds that R̂ = PRJT ≈ Gβ (X) F′JT with large

N . Finally, as in Fan et al. (2016), we estimate Gβ (X) by applying standard principal

component analysis to R̂.

Theorem 2.1. Let Ĝβ (X) denote the (N ×K) matrix, the k-th column of which is
√
N

times the eigenvector of R̂R̂′

N
corresponding to the k-th largest eigenvalue of R̂R̂′

N
, where

R̂ is given by (2.5). Under Assumptions 2 and 3, as N increases, Ĝβ (X)
p→ Gβ (X) .

To provide some intuition for the result, recall that R̂ converges (as N → ∞ ) to

Gβ (X) F′JT . Therefore, R̂R̂′

N
converges to

Gβ(X)√
N

F′JTF
Gβ(X)′√

N
. From Assumptions 3(ii),

Gβ(X)′Gβ(X)

N
→ IK , so each column of

Gβ(X)√
N

can be treated as an eigenvector. Fur-

thermore, F′JTF is a diagonal matrix by Assumptions 3(iii), and hence, each diagonal

element of F′JTF can be interpreted as an eigenvalue. Resorting to these observations,

we recover Gβ (X) through the eigen-decomposition of R̂R̂′

N
, as stated in 2.1.

Next, we proceed to estimate Gα (X) . Rather than demeaning R, as we did for the

estimation of Gβ (X) , we take the mean of R. by postmultiplying by the (T × 1) vector
1
T
1T .

9 From (2.3), the (N × 1) vector of average returns, 1
T
R1T = R, is:

R = (Gα (X) + Γα)
1

T
1′T1T + (Gβ (X) + Γβ)

1

T
F′1T +

1

T
E′1T

= Gα (X) + Γα + (Gβ (X) + Γβ) F + E, (2.6)

Our objective is to extract Gα (X) from R. Note that simply projecting R to the linear

span of X does not work because R contains not only Gα (X) but Gβ (X) F. That

is, projecting R to the linear span of X confounds the cross-sectional predictability of

returns due to mispricing with the predictability of returns due to factor risk premia.

Hence, we project R to the linear space spanned by X that is orthogonal to Ĝβ (X) .

The following theorem establishes that we can recover Gα (X) with this approach.

9We can weight the time series mean by post-multiplying any (T × 1) vector i such that 1′T i = 1.
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Theorem 2.2. Define Ĝα (X) = Xθ̂, where the (L× 1) vector of θ̂ is given by the

solution of the following constrained optimization problem:

θ̂ = arg min
θ

(
R−Xθ

)′ (
R−Xθ

)
subject to Ĝβ (X)′Xθ = 0K ,

where Ĝβ (X) is given by Theorem 2.1. Then, under Assumptions 2 and 3, as N

increases, Ĝα (X)
p→ Gα (X) .

The problem in the above theorem is a conventional ordinary least square problem with

linear equality constraints and the closed form solution is easily obtained.10

Alternatively, the estimator in Theorem 2.2 can be derived within the conventional

risk-adjusted approach as follows. Note that equation (2.7) can be rearranged as

R = Gβ (X) F +
(
Gα (X) + Γα + Γβ + E

)
(2.7)

and

R−Gβ (X) F = Gα (X) +
(
Γα + ΓβF + E

)
. (2.8)

Recall that our objective is to estimate Gα (X) . Equation (2.8) shows that we can

achieve this goal by regressing R−Gβ (X) F on X. Because we do not directly observe

Gβ (X) and F, we use Ĝβ (X) from Theorem 2.1 and estimate F by regressing R on

Ĝβ (X) , motivated by the expression (2.7). The two approaches yield identical results.

Finally, we construct an arbitrage portfolio that optimally exploits any mispricing

information in characteristics. Consider first the true but unknown (and thus infeasible)

arbitrage portfolio, w = 1
N

Gα (X) . Then, from (2.3), we find that the return of this

infeasible portfolio is given by

wR =

(
1

N
Gα (X)′Gα (X) +

1

N
Gα (X)′ Γα

)
1′T

+

(
1

N
Gα (X)′Gβ (X) +

1

N
Gα (X)′ Γβ

)
F′ +

1

N
Gα (X)′E.

From Assumptions 1-3, it is easy to verify that as N increases, 1
N

Gα (X)′Gα (X) con-

10The result in Theorem 2.2 can be extended to incorporate a weighting matrix to increase (or
decrease) the importance of some stocks vs. others as follows. Consider a (N ×N) diagonal matrix W,
the i-th diagonal element of which represents the weight for stock i. Then, we can estimate Gα (X) by

Ĝα (X) = Xθ̂W such that θ̂W = arg minθ

(
R−Xθ

)′
W
(
R−Xθ

)
subject to Ĝβ (X)

′
WXθ = 0K .
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verges to δ ≥ 0 and all other elements converge to zero such that wR
p→ δ1′T . The

following theorem states that the feasible portfolio, ŵ = 1
N

Ĝα (X), achieves the same

asymptotic property.

Theorem 2.3. Define ŵ = 1
N

Ĝα (X) , where the (N × 1) vector of Ĝα (X) is given in

Theorem 2.2. Then, under Assumptions 1, 2 and 3 as N increases, ŵR
p→ δ1′T .

The above theorem is the punchline of this paper: an investor can consistently recover

the arbitrage profits, should they exist, as the number of securities in the cross section

grows large. Our estimator does not require large T. Hence, we can estimate w over

one sample and calculate out-of-sample returns over a subsequent sample, as illustrated

in Figure 1. The details of the out-of-sample applications are described in Section 4.

3 Simulation

In this section we analyze the properties of our estimator in simulations. The purpose

of this exercise is three-fold. First, we illustrate the behavior of our arbitrage portfolio

estimator in finite samples, similar in size, to those of the U.S. stock market.11 Second,

we explore the properties of the estimator if the number of factors is not known. Third,

we document that our estimator is reasonably robust against model misspecification,

in particular time-varying characteristics.

3.1 Setup

We first describe the set of characteristics used for simulation. For the matrix X, we

consider 61 characteristics, which are available at the end of 2010, the beginning of

calibration period. The set of characteristics includes past returns such as momentum

(returns from t − 12 to t − 2) and short-term reversal (returns from t − 2 to t − 1),

the annual percentage change in total assets, return on operating assets, and operating

accruals (the full list is given in Table 2).

We generate returns according to four popular asset pricing models, the CAPM,

the Fama-French three-factor model (FF3), the Hou, Xue and Zhang four-factor model

11This section focuses on simulation evidence regarding our procedure’s ability to accurately estimate
the arbitrage profits (if any) as established in Theorem 2.3. We also confirm the results of Theorems
2.1 and 2.2. These additional results are available upon requests.

15



(HXZ4), and the Fama and French five-factor model (FF5). However, we depart from

those models by not restricting α to be zero. The number of factors in our estimator,

K, is set to the corresponding number in each asset pricing model, i.e., K = 1 for the

CAPM, K = 3 for the FF3, etc. We explore the effects of selecting too few or too many

factors in later sections.

We calibrate αi, βi, and the variance of residual returns, σ2
i,ε = E

[
ε2
i,t

]
, of individ-

ual stocks for each of the four models from time series regression of excess returns of

individual stocks on a constant and the factor realizations over the 36-month period

from January 2011 to December 2013. For ease of interpretation, we normalize the

cross-sectional variation of αi so that the quantity δ in Assumption 1 corresponds to 1

basis point per month, as follows: we estimate α̂i from time series regression and fit the

cross-sectional relation α̂i = xiθα + γα,i. We rescale α̃i = kα̂i, where k = 0.01√
θ′αX′Xθα

N

, and

use the rescaled α̃i in the simulated returns (3.1). Note that γα,i, in the above cross-

sectional relation, corresponds to the i-th element of Γα. Also, the calibrated betas are

significantly correlated with characteristics.

There are 2,458 individual stocks with full time series over the calibration sample

period. Because the consistency of our arbitrage portfolios is achieved with a large cross

section of stocks, we consider N = 1, 000 and N = 2, 000, which are sampled from the

2,458 individual stocks. In each repetition, we simulate returns from

R = α1′T
√
δ + BF′ + E (3.1)

=
(
Xθα
√
δ + Γα

√
δ
)

+ (XΘβ + Γβ) F′ + E,

where α and B are calibrated as in the above paragraph, F are resampled from the

realized factors over the 600-month sample from January 1967 to December 2016, and

E are drawn from a normal distribution with the calibrated σ2
i,ε parameters as in the

above paragraph. We consider different cases of mispricing, i.e., δ = 0, 5, and 10.

3.2 Simulation Results

3.2.1 Correctly Specified Model

In our baseline scenario, we first investigate the performance of our estimator if we know

the correct number of factors. Figure 2 shows the results for using the Capital Asset
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Pricing Model (upper–left panel), the Fama-French three-factor model (upper–right

panel), the Fama-French five-factor model (lower–left panel) and the Hou, Xue, and

Zhang model (lower–right panel). Our findings are consistent across all models used

for calibration. The weights of the arbitrage portfolio, ŵ, are estimated using the

returns over t = 1, · · · , 12, and the return of the arbitrage portfolio is computed in the

following month, t = 13, as in our empirical application. That is, we use T0 = 12 and

T = 13 in the setup of Figure 1. We report the mean of the out-of-sample return as

well as 95% confidence intervals for each level of δ = 0, 5, and 10 and N = 1, 000 and

N = 2, 000 from 10,000 repetitions. The confidence intervals are considerably narrower

with N = 2, 000 than those with N = 1, 000. This result is empirically relevant because

we can obtain a cross section of this size in the U.S. stock market. As expected, when

δ = 0, or there do not exist any arbitrage opportunities, our arbitrage portfolio yields

zero returns on average. Recall that αi is rescaled so that Gα(X)′Gα(X)
N

→ 1b.p./month.

Hence, 3.1 implies that the arbitrage portfolio generates asymptotic arbitrage profits

of δ = limN→∞

(
(Gα(X)

√
δ)
′
(Gα(X)

√
δ)

N

)
. In fact, we observe that, when the simulation

parameters are δ = 0, 5, or 10, the average of arbitrage portfolio returns corresponds

to the target size of δ b.p./month, suggesting that our arbitrage portfolio actually

generates the expected level of arbitrage profits.

3.2.2 Unknown Number of Factors

In the previous section, we used the true number of factors in extracting factor loadings

from the projected returns. In application, we do not know the correct number of

factors. Estimating the number of factors is a long-standing problem in panel-data

analysis for which many tests have been proposed, e.g., Connor and Korajczyk (1993),

Bai and Ng (2002) or Ahn and Horenstein (2013), and is a nontrivial task as emphasized

in Brown (1989). We therefore examine the effect of selecting one too few or one too

many factors. Figure 3 reports the results when we set the number of extracted factors

to be one more than the true number of factors. We find that the arbitrage portfolio’s

performance in Figure 3 is almost identical to those in Figure 2, where we set the

number of extracted factors to be the number of true factors. Hence, we conclude

that extracting one additional factor more than the true number does not seem to

harm the performance of our arbitrage portfolios materially. This result is not too

surprising because our arbitrage portfolio weights still achieve orthogonality to the

17



systematic factors. Obviously, extracting many more extraneous factors will likely lead

to imprecision in the estimates.

In contrast, if the number of extracted factors is less than the number of true factors,

our methodology does not guarantee that the arbitrage portfolio weights are orthogonal

to betas with respect to systematic factors. Figure 4 reports the performance of our

arbitrage portfolios when we extract one less factor than the underlying model for the

CAPM, FF3, HXZ4, and FF5. We find that the average returns are far off from the

target level and the portfolio returns are much more volatile (presumably due to the

exposure to systematic factors) relative to the case of overestimation (Figure 3 (too

many) vs Figure 4 (too few)). As a a guideline for empirical analyses, we should

therefore try to select slightly too many rather than too few factors, as the effects of

selecting too few are far more severe than those of selecting too many. In the empirical

analysis, we will explore the variation of the results as we change the number of factors.

3.2.3 Time-Varying Characteristics

The theory developed so far assumes that characteristics do not vary over time. In

this section, we explore how our estimator will behave if this assumption is violated.

We assume that each characteristic follows an AR(1) process. We find the AR(1)

parameters of each characteristic as follows. For each characteristic and each firm, we

have 36 observations of the characteristic over our calibration period. We estimate the

AR(1) autoregressive coefficient over this time period and the variance of the residuals

for each firm. We then determine the average AR(1) coefficient as the average across

firms and also determine the variance of the residuals (for each characteristic) in the

same way.

Across simulations, we fix the initial characteristic over the calibration period as X.

Let xi,c and xi,c,t denote the (i, c) element of X and Xt, respectively. Then, we generate

Xt with xi,c,t = xi,c + ρc (xi,c,t − xi,c) + σcεi,t, where ρc and σ2
c are the estimated AR(1)

coefficient and variance of residuals of a certain characteristic c, and εi,t is drawn from

N (0, 1) as i.i.d over i and t. We then generate Rt, the t-th column of R, as follows:

Rt = αt−1

√
δ + Bt−1ft + Et,
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where αt−1 = Xt−1θα, Bt−1 = Xt−1Θβ + Γβ and Et is the t-th column of E.12

Figure 5 reports the performance of our arbitrage portfolios when the returns are

generated with the time-varying alpha αt−1 = Xt−1θα and the time-varying beta Bt−1 =

Xt−1Θβ + Γβ, induced by time-varying characteristics. We find that our methodology

is robust to the empirically relevant dynamics in the characteristics.

3.2.4 Further Robustness Checks

To further investigate the robustness of our estimator, we introduce correlated residuals.

In each simulation, we randomly construct 50 clusters of equal numbers of stocks and

generate the residual shocks so that the residual correlation between stocks in the

same cluster is 0.1 and that between stocks in different clusters is zero. We calibrate

the within-cluster residual correlation using the average correlation of residual shocks

within a same industry relative to commonly used asset pricing models such as CAPM

or FF3. The results are reported in Figure A.1 in the online appendix.

We also repeat the analysis using a different time period for calibration. In an al-

ternative calibration, we use the data from the beginning of 2006 through 2008. This

time period contains the extremely volatile second half of 2008. We report these results

in the online Appendix, in Figure A.2. In addition, we provide simulation evidence of

the robustness of our method to missing characteristics. To this end, in each repetition,

we use 61 characteristics for simulating returns but drop randomly picked ten charac-

teristics for computing ŵ. We plot the results in Figure A.3 of the online appendix.

As an additional test, we also re-run the simulations and randomly select firms with

replacement in each iteration, thereby illustrating the robustness to a slightly different

composition of the panel. Overall, the performance of the estimator is very stable across

all these modifications.

4 Empirical Application

In this section we discuss the set of characteristics and the application of our method-

ology to U.S. stock market data.

12We obtain θα and Θβ by regressing the calibrated α and B on X. Also, we find Γβ from Γβ =
B−XΘβ .
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4.1 Data

The data are the same as in Freyberger et al. (2019); we use stock return data from

the Center for Research in Security Prices (CRSP) monthly file. As is common in

the literature, we limit the analysis to U.S. firms’ common equity, which is trading

on NYSE, Amex or Nasdaq. Accounting data are obtained from Compustat. As in

Freyberger et al. (2019), of year t+ 1, predicting returns from the beginning of July of

year t until the end June of year t+1. Table 2 provides an overview of the characteristics

used for estimation of the mispricing function and the factor loading function.

To alleviate potential concerns about survivorship bias, which may arise because of

backfilling, we require that a firm have a least two years of data in Compustat. Our

sample period is from 1965 through 2014. For the full sample, we have approximately

1.6 million firm/month observations in our analysis.13

4.2 Estimation

We initially assume that the factor loading function and the mispricing function are

linear in the characteristics.14

Figure 1 illustrates how we implement the arbitrage portfolio in an out-of-sample

manner. We estimate ŵ with the returns over t = 1, · · · , 12, and the return of the

arbitrage portfolio is measured in the following month, t = 13. We call the first pe-

riod t = 1, · · · , 12 the estimation period and the second period t = 13 the holding

period (below we also report results for alternative lengths for both the estimation and

the holding periods). Let X0 and X12 denote the characteristics at the beginning of

estimation and holding periods, respectively. For example, we first use X0 to obtain

the projected and demeaned return of R̂ over the estimation period corresponding to

PX0RJ12 in (2.5) (from a panel regression using 12 months from January 1967 to De-

cember 1967). The t-th column of the (N × 12) matrix R̂ is the demeaned projected

return for the t-th month. Then we compute the N × N matrix R̂R̂′

N
and the first K

eigenvectors of the matrix. We then project the average returns onto characteristics

13The appendix in Freyberger et al. (2019) contains a detailed description of the construction of the
data as well as numerous references to papers that have employed these characteristics in empirical
applications.

14Note that our methodology allows for (parametric) nonlinearities, which we explore in Section 5.3.
However, the results from employing these polynomial expansions are very similar to the linear case
and are, therefore, relegated to the appendix.
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subject to orthogonality to the estimated factor loadings as in Theorem 2.2 to obtain

θ̂. In computing the arbitrage portfolio weights as in Theorem 2.3 for the following

month of January 1968, we update characteristics with X12 in computing ŵ such that

ŵ = 1
N

X12θ̂. We repeat this process month by month until June 2014. In order to

make the results comparable in scale to common equity factors, we scale the portfolio

weights so that the in-sample standard deviation is 20% per year.

4.3 Performance of the Arbitrage Portfolio

In this section we document the out-of-sample performance of the arbitrage portfolio.

Table 3 shows the summary statistics for returns of the arbitrage portfolio for different

numbers of eigenvectors. From Table 3 we see that the returns and Sharpe ratios

increase with the number of eigenvectors until about six eigenvectors. Employing more

than six eigenvectors does not seem to materially harm the properties of the portfolio,

but there also does not seem to be an improvement in any performance metric. Overall,

the Sharpe ratios are very high, ranging from 1.35 to 1.75 . The increase in Sharpe ratios

with increasing number of eigenvectors is driven by increasing means, not decreasing

standard deviations, because the standard deviation is always normalized to be 20%

in-sample. The out-of-sample standard deviation is close to the in-sample standard

deviation. The table also displays the maximum drawdown, which ranges between

20.1% and 38.5%. These drawdown numbers are relatively moderate compared to the

maximum drawdowns of common factors over the same time period. The four factors

in Fama-French-Carhart model have maximum drawdowns of 55.71% (market factor),

52.78% (size factor), 44.68% (value factor) and 57.51% (momentum factor) over our

sample period. In addition, skewness, kurtosis, and the best and worst month are also

reported in Table 3.

The large Sharpe ratios of Table 3 could be driven by high exposures to common

risk factors and therefore not be related to possible mispricing. Therefore, aiming

to understand better the abnormal performance of the arbitrage portfolio, we run a

time-series regression of the arbitrage portfolio’s returns onto common risk factors.15

In Tables 4 (one estimated factor) and 5 (six estimated factors), we report the risk-

15We are grateful to Kenneth French for making the factors involved in the CAPM, FF3, and FF5
models available on his website. We also thank Chen Xue for providing the data for the Hou et al.
(2015) four-factor model.
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adjusted returns of the arbitrage portfolio with respect to the CAPM (column 1), the

Fama and French (1992) three-factor model (column 2), the Fama-French three-factor

model augmented with the Carhart (1997) momentum factor (column 3), the Fama

and French (2015) five-factor model (column 4), the Fama-French five-factor model

augmented with the momentum factor (column 5), the Hou et al. (2015) four-factor

model (column 6) and the HXZ model augmented with the momentum factor (column

7).

We limit our main discussion to the cases in which we extract one factor (one eigen-

vector) and six factors (six eigenvectors). The results for all other cases are contained in

the online appendix. In Table 4 with one eigenvector, we can see that the alpha (or the

intercept in the time-series regression) is fairly consistent across various asset pricing

models. Although our arbitrage portfolio has significant exposures to some factors, the

adjusted R2 is fairly low with the minimum of 0.00 and the maximum of 0.22. We find

consistent results when we increase the number of eigenvectors except that the alpha

tends to increase. For example, the CAPM alpha of our arbitrage portfolio with six

eigenvectors is 2.63 %/month (See Table 4), far higher than that with one eigenvector

1.79 %/month (See Table 5). We illustrate the relation between out-of-sample alpha

and the number of eigenvectors used in the estimator in Figure 6. We can see that

the alpha has a hump shape and decreases after approximately seveneigenvectors. We

attribute the deterioration to the overfitting of systematic risks.

Figure 7 summarizes the correlation of the arbitrage portfolios (using 1 through

10 eigenvectors) with common risk factors. If we look at the correlation between the

arbitrage portfolios, we see that the correlation between the arbitrage portfolio with

one eigenvector and the other arbitrage portfolios drops as the number of eigenvectors

increases, albeit it never drops below 0.8. If we compare the correlation of the arbitrage

portfolios with five or more eigenvectors, we see that the correlation is consistently

high, suggesting that the portfolio does not change very much after we extract five

common factors. The correlation between the arbitrage portfolios and the common

factors is relatively low except for the size factor, which again is consistent with the

factor regressions in Tables 4 and 5 and the additional factor regressions in the online

appendix.
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4.4 Properties of the Arbitrage Portfolio

In this section, we explore the properties of the arbitrage portfolio more deeply. In

particular, we open the “black box” and study the firm characteristics of the companies

in the arbitrage portfolio. Furthermore, we discuss the time-series properties of the

returns, the properties of the portfolio weights, as well as possible diminishing excess

returns over time.

4.4.1 Time-Series Properties

To develop further intuition about the performance of the arbitrage portfolio, we explore

its time-series properties more closely. In Figure 8 we plot the cumulative return. It is

noteworthy, that the arbitrage portfolio did not have a negative return (for a full year)

during the recent financial crises. Overall, the returns are positive in 42 out of 44 years.

Also, the arbitrage portfolio does not have significantly different returns during NBER

recessions versus other periods. With a simple regression of the portfolio return on a

constant and an NBER recession indicator, i.e. rt = a + b × NBERt + εt, we obtain

point estimates of â = 2.523 (significant at the 1% level) and b̂ = 0.539, with a p-value

of 0.40. This strongly suggests that the portfolio returns are not systematically related

to the business cycle.

In addition, we also explore whether the excess returns of the arbitrage portfolio

diminish systematically over time. We test for a time trend, by estimating the following

specification

rt = a+ b× tγ + εt. (4.1)

We estimate the model using non-linear least squares, the point estimates are â =

5.27, b̂ = −0.127, γ̂ = 0.5501.16 Only the intercept is significant at coventional levels,

with a p-value of less than 0.01.17 A possibly undesirable feature of this specification

is that it does not rule out arbitrarily negative returns in the limit. However, it seems

plausible to restrict the model to only allow returns to be zero in the limit. One easy

way to achieve this is restrict the intercept to be zero and require a positive value for

b in this case, we estimate b̂ = 10.18 and γ̂ = −0.262. This specification suggests a

16Note that this specification contains the linear time trend, rt = a+ b× t+ εt as a special case.
17p-values of b̂ and γ̂ are 0.77 and 0.25, respectively.
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mild decay in excess returns and predicts the returns to reach less than one percent

per month in approximately 7000 periods. We plot the trend estimated from this

specification in Figure 9. Both specifications confirm that the excess returns appear

not to diminish systematically over time. This finding is important in the context of the

work of McLean and Pontiff (2016) and Linnainmaa and Roberts (2018), who document

that many anomalies have become significantly weaker post publication. While it is

possible that data snooping will lead to reduced future performance of the arbitrage

portfolio, many of the predictive characteristics are the result of research done decades

ago. We conclude that the significant average excess returns are at least partially due

to mispricing of assets.

4.4.2 Firm Characteristics

In Figure 10 we show a comparison of the long and short side for nine well-known

characteristics for the arbitrage portfolio using six eigenvectors. All of the characteris-

tics in Figure 10 are well-known cross-sectional return predictors: the book-to-market

ratio (Fama and French (1992)), the debt-to-price ratio (Litzenberger and Ramaswamy

(1979)), market equity (often referred to as “size,” e.g., Banz (1981)), profitability (re-

cently reexamined by Ball et al. (2015)), investment (Fama and French (2015)), operat-

ing accruals (Sloan (1996)), last month’s turnover (Datar et al. (1998)), and short-term

reversal as well as (standard) momentum, both of which are documented in Jegadeesh

and Titman (1993)).

From Figure 10 we can see that the arbitrage portfolio is typically long smaller firms

and short larger firms, which is consistent with the positive loading on the size factor

in Table A.4. Another clear pattern emerging from the figure is that the arbitrage

portfolio is typically long firms with low returns in the month preceding the portfolio

formation. It is, however, very remarkable that there is no noticeable pattern for

book-to-market, momentum, and investment, which is again consistent with small and

insignificant loadings on the corresponding factors in Table A.4. Interestingly, the

pattern for profitability is not very clear in the figure, but the portfolio has a significant

negative loading on the “robust minus weak” factor in Table A.4. We show the cross-

sectional comparison for all 61 characteristics in Figure A.4 in the online Appendix.

To gain more intuition about the relationship between characteristics and systematic

risk on the one hand and mispricing on the other hand, we project the estimated factor
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loadings (Ĝβ (X)) and the estimated mispricing function (Ĝα(X)) onto the character-

istic in each period. We normalize the coefficients cross-sectionally so that the highest

coefficient always receives a value of one to ensure that we can compare the coefficients

over time. Figure 11 shows the projection results for systematic risk and Figure 12

shows the corresponding results for mispricing. From Figure 11 we can see there ap-

pears to be a relatively stable relationship between some groups of characteristics (e.g.

past returns, total volatility, idiosyncratic volatility and size related variables (LME and

AT)) and factor loadings. However, from Figure 12 we can see that one few characteris-

tics are consistently related to mispricing (size and total assets). Other characteristics

are only related to mispricing for few periods “on-and-off”. While there are clear limits

to “eyeball econometrics”, the results in Figure 12 underscore the importance of our

time-varying approach.

4.4.3 Portfolio Weights

The theory does not impose any limits or discipline on the portfolio weights of the

arbitrage portfolio. In the implementation, we scale the portfolio weights such that

the in-sample standard deviation of the arbitrage portfolio is 20% annualized. In the

implementation, we de-mean the characteristics so that the resulting portfolio weights

of the arbitrage portfolio sum to zero, it therefore by construction a “zero-investment

portfolio.” However, we do not impose any constraints on the largest (smallest) position

within the portfolio. It is therefore a potential concern that the portfolio allocates an

unrealistically large amount into individual assets. In Figure 13, we plot the median,

minimum, maximum as well as the 5% and 95% quantile of the weights in each month

over the sample period from January 1968 to June 2014. The largest weight (in absolute

value) over the entire sample is approximately 5.1%. In later parts of the sample, when

the number of stocks is larger, the weights are considerably smaller, with the largest

weights often being less than 1% in absolute value.

5 Robustness

The empirical implementation of the arbitrage portfolio in Section 4 naturally depends

on several choices, such as the number of estimated factors (eigenvectors) or the length

of the estimation window. It is therefore important to demonstrate that the results are
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robust to many of these choices, In the following, we relax many of these choices and

show that our results do not depend crucially on these implementation choices.

5.1 Estimation Windows

In our main specification, we use 12 months and then roll the estimation window forward

by one month. Since our theoretical results are derived in a local in time setting,

i.e. T is fixed, the choice of T should not drive the result. To illustrate this, we re-

estimate our main analysis with 24 and 36 months as the estimation window. Tables

A.9 and A.10 show the general performance statistics and estimated alphas (against the

standard factor models) for the arbitrage portfolio constructed using only 24 months

as an estimation window. Overall, the results are quite similar to our baseline of a 12

months window, althoughslightly worse than the base case. If we use an estimation

window of 36 months, the results are again similar to the baseline of 12, see Tables

A.11 and A.12.

5.2 Holding Periods

The heatmap for the mispricing component in Figure 12 shows the loadings on the dif-

ferent characteristics change from period to period. It is therefore natural to investigate

if the performance of the arbitrage portfolio deteriorates strongly if we do not rebal-

ance the portfolio each month. In this robustness check we therefore hold the arbitrage

portfolio for 2, 3, 6 and 12 months without rebalancing and analyze its performance.18

The Sharpe ratios from this exercise are shown in Table A.13 . The results show that

timely information is crucial for creating a arbitrage portfolio and that mispricing ap-

pears to be rather short lived. However, even if we only rebalance every second or

every third month, the arbitrage portfolio still achieves annualized Sharpe ratios close

to one. However, if we rebalance only once per year, the Sharpe ratio of the arbitrage

portfolio is in the same order as the Sharpe ratio of the U.S. stock market overall and

no abnormal performance can be obtained.

18Note that this approach does not yield same portfolio weights for each month in the holding
periods. Although we do not trade over the holding period, the portfolio weights change as the value
of securities evolve.
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5.3 Nonlinear Estimation

In Section 2, we have not taken a parametric stand on the functional form of Gβ (X).

In the application, we estimate Gβ (X) as a linear function. In this section, we briefly

outline one possible way to incorporate nonlinearities into Gβ (X). In Fan et al. (2016),

Gβ (X) is approximated by a series expansion in a nonparametric additive setting. The

assumption of additivity (Gβ (X) =
∑
g (x1) + g (x2) + ... + g (xL)) has the appealing

property that Gβ (X) can be estimated without the so-called “curse of dimensionality”

because the rate of convergence does not depend on the dimension of X, so that it can

be estimated with many characteristics. However, it introduces a complication in the

asymptotic theory, namely that the series expansion also grows with the cross-sectional

sample size. Since our interest is primarily applied and to avoid these technicalities, we

assume that Gβ (X) can be well approximated by a fixed order polynomial expansion.

In the application we will use Legendre polynomials to incorporate nonlinearities in the

estimation of Gβ (X).19

In Table A.15 we show alphas of the arbitrage portfolio against various factor mod-

els when we use fourth-order Legendre polynomials in the estimation of Gβ (X). The

alphas are slightly smaller than in the linear specification but mostly still in excess of

one percent per month and strongly statistically significant. This suggests that allow-

ing nonlinearities enables our method to estimate systematic factors more effectively.

Overall, however, the results of the higher-order expansions are consistent with the

the linear specification and do not erode the arbitrage profits. However, they leave

interesting avenues for future research.

5.4 Small Firms

The analysis in Section 4.4.2 suggests that the arbitrage portfolio tends to be long

smaller firms and short larger firms. It is therefore important to understand if the

results are materially driven by micro-cap stocks that are likely very illiquid. We there-

fore exclude all stocks below the 10% NYSE size quantile. Discarding firms below the

10% NYSE quantile eliminates much more than 10% of all firms, since the average

NYSE firm is larger than the after firm listed on NASDAQ. Excluding these firms re-

19Legendre polynomials are frequently used in econometrics to approximate unknown functions and
fall into the more general class of “orthogonal polynomials.” We refer to Bierens’s (2014) handbook
chapter for a deep theoretical treatment of orthogonal polynomials.
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duces the sample size on average by 38% per month, i.e. the total sample size shrinks

from approximately 1.6 million observations to roughly 900,000 observations. We then

re-compute the arbitrage portfolio using an estimation period of 12 months as in the

baseline analysis. Tables A.16 and A.17 show portfolio performance measures and esti-

mated alphas against various factor model. The performance does not weaken strongly

relative to using all available firms and even excluding very small firms leads to portfo-

lios with alphas in excess of 1% per month and annualized Sharpe ratios greater than

1, thereby reinforcing our earlier finding that characteristics contain information about

mispricing.

5.5 Alternative Factor Models

In the previous sections, we relied on the “classic” risk factors suggested in the literature.

While it is impossible to conduct an exhaustive analysis of all possible risk factors

suggested throughout the empirical asset pricing literature, it is important to analyze

the robustness of our results to “alternative” asset pricing factors, such as the liquidity

factor of Pástor and Stambaugh (2003) or the betting-against-beta factor of Frazzini and

Pedersen (2014).20 Lastly, since we are dealing with an arbitrage or mispricing portfolio,

we also employ the “mispricing factors” of Stambaugh and Yuan (2016).21 Table A.18

shows the estimated alphas and factor exposures for these additional factor models for

our baseline arbitrage portfolio (12 estimation months and six estimated factors). From

Table A.18 we can see that the arbitrage portfolio still has high and strongly significant

alpha’s. Moreover, the portfolio is only marginally exposed to the “mispricing” factor

of Stambaugh and Yuan (2016) . The exposure to the other “alternative” factors is

insignificant.

6 Conclusion

We propose new methodology to simultaneously recover conditional factor realizations

(returns on “smart-beta” portfolios), estimate conditional factor loadings, estimate con-

ditional alphas using firm-level characteristics, and construct arbitrage portfolios. Our

20The betting-against-beta factor was obtained from the AQR factor database.
21We are grateful to Robert Stambaugh for making the illiquidity factor and the mispricing factors

available on his website.
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methodology extends the method of Projected Principal Components of Fan et al.

(2016) to separately identify risk and mispricing. In an extensive simulation study, we

show that our methodology works well in a finite sample and is also robust against var-

ious forms of misspecification, in particular, it does not break down with time-varying

or some missing characteristics. The methodology only requires a large cross section

and can accommodate a short time span.

In the empirical application in the CRSP/Compustat panel from 1968 to 2014, we

find that characteristics carry significant information about mispricing despite giving

maximal explanatory power to the statistical factor model. Alphas against popular

factor models range between 1.5% and almost 3% per month.

While we do find significant abnormal returns for the arbitrage portfolio against

popular existing factors, our main contribution is the development of new methodol-

ogy that separately identifies alpha and beta and thereby correctly parses the ability

of firm characteristics to explain the cross-section of returns into risk and mispricing

components. This is important even if we had found no evidence of mispricing since

some common techniques can lead to incorrect inferences.
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A Proofs

Let P denote the projection matrix X (X′X)−1 X.

Lemma A.1. Let Y be a (N × T ) matrix. Assume that the first K eigenvalues of Y′Y

are distinct and strictly positive. Define F̂ and D such that the k-th column of the (N ×K)

matrix F̂ is the eigenvector of Y′Y corresponding to the k-th largest eigenvalue of Y′Y and

the k-th diagonal element of the (K ×K) diagonal matrix D is the k-th largest eigenvalue

of Y′Y. Define the (N ×K) matrix Λ̂ such that the k-th column of Λ̂ is the eigenvector

of YY′ corresponding to the k-th largest eigenvalue of YY′. Let Λ̃ = YF̃
(
F̃′F̃

)−1
, where

F̃ = F̂D1/2. Then, it holds that

Λ̂ = Λ̃.

Proof The k-th largest eigenvalue of Y′Y is the k-th largest eigenvalue of YY′ (see Greene

(2008) page 970). Hence, Λ̂ is identified by the following two conditions:

i) Λ̂′Λ̂ = IK

ii) Λ̂′YY′Λ̂ = D.

Using eigen-decomposition, we express the (T × T ) matrix Y′Y as QVQ′:

Y′Y = QVQ′. (A.1)

Note that the (T ×K) matrix made out of the first K columns of Q is F̂ and that the first

K diagonal elements of V correspond to the diagonal elements of D :

F̂ = Q
[
IK 0K×(T−K)

]′
and D =

[
IK 0K×(T−K)

]
V
[
IK 0K×(T−K)

]′
. (A.2)

We prove the lemma by showing that Λ̃ satisfies the two conditions of i) and ii) in the

above when we set Λ̂ = Λ̃. Because Λ̃ = YF̃
(
F̃′F̃

)−1
= YF̂

(
F̂′F̂

)−1
D−0.5 = YF̂D−0.5, it

follows that

Λ̃′Λ̃ = D−0.5F̂′Y′YF̂D−0.5 = D−0.5
[
IK 0K×(T−K)

]
Q′QVQ′Q

[
IK 0K×(T−K)

]′
D−0.5

= D−0.5
[
IK 0K×(T−K)

]
V
[
IK 0K×(T−K)

]′
D−0.5 = D−0.5DD−0.5 = IK , (A.3)
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where the second and fourth equalities are from equation (A.1) and equation (A.2), and

that

Λ̃′YY′Λ̃ = D−0.5F̂′Y′YY′YF̂D−0.5 = D−0.5F̂′QV2Q′F̂D−0.5

= D−0.5
[
IK 0K×(T−K)

]
Q′QV2Q′Q

[
IK 0K×(T−K)

]′
D−0.5

= D−0.5
[
IK 0K×(T−K)

]
V2
[
IK 0K×(T−K)

]′
D−0.5

= D−0.5
([

IK 0K×(T−K)

]
V
[
IK 0K×(T−K)

]′)2
D−0.5

= D−0.5D2D−0.5 = D, (A.4)

where the second equality is from equation (A.1) and the third and sixth equalities are

from equation (A.2). Finally, the two equalities of equations (A.3) and (A.4) prove the

lemma. �

Lemma A.2. Let Ĝβ (X) denote the (N ×K) matrix, the k-th column of which is
√
N

times the eigenvector of R̂R̂′

N
corresponding to the first k-th eigenvalue of R̂R̂′

N
, where

R̂ is given by (2.5) as in Theorem 2.1. Define G̃β (X) = R̂F̃
(
F̃′F̃

)−1
, where F̃ = F̂D1/2;

the k-th column of the (T ×K) matrix F̂ is the eigenvector of R̂′R̂
N

corresponding to the k-th

largest eigenvalue of R̂′R̂
N ; and the k-th element of the (K ×K) diagonal matrix D is the k-th

largest eigenvalue of R̂′R̂
N . Then, it holds that

(i) Ĝβ (X) = G̃β (X)

(ii) PĜβ (X) = Ĝβ (X) .

Proof Note that R̂R̂′

N =
(

R̂√
N

)(
R̂√
N

)′
and R̂′R̂

N =
(

R̂√
N

)′ (
R̂√
N

)
and that G̃β (X) =

√
N R̂√

N
F̃
(
F̃′F̃

)−1
. Hence, (i) directly follows from Lemma A.1.

We turn to (ii). Because PG̃β (X) = PPRJT F̃
(
F̃′F̃

)−1
= PRJT F̃

(
F̃′F̃

)−1
= G̃β (X) ,

(ii) is true from (i). This completes the proof of the lemma. �

Lemma A.2 shows there are two equivalent methods to estimate the factor loading matrix.

A direct approach is to calculate Ĝβ (X) by calculating the eigenvectors of the N ×N matrix

R̂R̂′

N (which is not feasible for very large cross-sectional samples). The second approach is to

first estimate the factors by asymptotic principal components (Connor and Korajczyk (1986))

using the eigenvectors of the much smaller K ×K matrix R̂′R̂
N and then to run regressions of

returns on the factors to estimate the factor loadings G̃β (X).

Lemma A.3. Under Assumptions 2 and 3(ii), it holds that as N increases, R̂′R̂
N

p→ JTFF′JT .
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Proof From (2.5), we have that

R̂ = l1 + l2 + l3,

where l1 = PGβ (X) F′JT , l2 = PΓβF
′JT and l3 = PEJT . Hence,

R̂′R̂

N
=

3∑
i=1

3∑
j=1

1

N
l′ilj . (A.5)

Note that

1

N
l′1l1 = JTF

(
Gβ (X)′Gβ (X)

N

)
F′JT = JTFF′JT (A.6)

from Assumption 3(ii) and that

1

N
l′1l2 = JTF

(
Gβ (X)′ Γβ

N

)
F′JT

p→ JTF0K×KF′JT = 0T×T (A.7)

from Assumption 2(ii) and that

1

N
l′1l3 = JTF

(
Gβ (X)′E

N

)
JT

p→ JTF0K×TJT = 0T×T (A.8)

from Assumption 2(ii) and that

1

N
l′2l2 = JTF

(
Γ′βX

N

)(
X′X

N

)−1(X′Γβ
N

)
F′JT

p→ JTF0K×LV−1
X 0L×KF′JT = 0T×T

(A.9)

from Assumptions 2(i) and 2(ii) and that

1

N
l′2l3 = JTF

(
Γ′βX

N

)(
X′X

N

)−1(X′E

N

)
JT

p→ JT0T×LV−1
X 0L×TJT = 0T×T (A.10)

from Assumptions 2(i) and 2(ii) and that

1

N
l′3l3 = JT

(
E′X

N

)(
X′X

N

)−1(X′E

N

)
JT

p→ JT0T×LV−1
X 0L×TJT = 0T×T (A.11)

from Assumptions 2(i) and 2(ii).
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Finally, plugging the results of equations (A.6)-(A.11) into (A.5), we have that R̂′R̂
N

p→
JTFF′JT , completing the proof of the lemma. �

Proof of Theorem 2.1 The following seven steps complete the proof of Ĝβ (X)
p→ Gβ (X) .

Step 1. F̂
p→ JTF (F′JTF)−0.5: Recall that R̂′R̂

N

p→ JTFF′JT from Lemma A.3 and F̂ is

the (T ×K) matrix, each column of which is an eigenvector of R̂′R̂
N .

Note that
(
JTF (F′JTF)−0.5

)′ (
JTF (F′JTF)−0.5

)
= IK and that

(
JTF

(
F′JTF

)−0.5
)′

JTFF′JT

(
JTF

(
F′JTF

)−0.5
)

= F′JTF,

which is a diagonal matrix from Assumption 3(iii). Thus, JTF (F′JTF)−0.5 is the (T ×K)

matrix, each column of which is an eigenvector of JTFF′JT . Due to the continuity of eigen-

decomposition, it follows that F̂
p→ JTF (F′JTF)−0.5 .

Step 2. D
p→ F′JTF: In Step 1, we show that F′JTF is the diagonal matrix whose

diagonal elements are eigenvalues of JTFF′JT . Due to the continuity of eigendecomposition,

it follows that D
p→ F′JTF.

Step 3. F̃
p→ JTF: From Steps 1 and 2, F̃ = F̂D0.5 p→ JTF (F′JTF)−0.5 (F′JTF)0.5 =

JTF.

Step 4. F′JT F̃
(
F̃′F̃

)−1 p→ IK : From Step 3, F′JT F̃
(
F̃′F̃

)−1 p→ F′JTF (F′JTF)−1 = IK .

Step 5 G̃β (X) = PRJT F̃
(
F̃′F̃

)−1 p→ Gβ (X): Using the expression of PRJT in (2.5),

we find that

G̃β (X) = Gβ (X) F′JT F̃
(
F̃′F̃

)−1
+ PΓβF

′JT F̃
(
F̃′F̃

)−1
+ PEJT F̃

(
F̃′F̃

)−1
,

which gives

G̃β (X)−Gβ (X) = m1 +m2 +m3,

where

m1 = Gβ (X)

(
F′JT F̃

(
F̃′F̃

)−1
− IK

)
,

m2 = PΓβF
′JT F̃

(
F̃′F̃

)−1
,

m3 = PEJT F̃
(
F̃′F̃

)−1
.
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Hence,

1

N

(
G̃β (X)−Gβ (X)

)′ (
G̃β (X)−Gβ (X)

)
=

3∑
i=1

3∑
j=1

1

N
m′imj . (A.12)

Note that

1

N
m′1m1 =

(
F′JT F̃

(
F̃′F̃

)−1
− IK

)′ Gβ (X)′Gβ (X)

N

(
F′JT F̃

(
F̃′F̃

)−1
− IK

)
p→ (IK − IK)′ IK (IK − IK) = 0K×K (A.13)

from Step 4 and Assumption 3(ii) and that

1

N
m′1m2 =

(
F′JT F̃

(
F̃′F̃

)−1
− IK

)′ Gβ (X)′ Γβ
N

F′JT F̃
(
F̃′F̃

)−1

p→ (IK − IK)′ 0K×KIK = 0K×K (A.14)

from Step 4 and Assumption 2(ii) and that

1

N
m′1m3 =

(
F′JT F̃

(
F̃′F̃

)−1
− IK

)′ Gβ (X)′E

N
JT F̃

(
F̃′F̃

)−1

p→ (IK − IK)′ 0K×TJTF
(
F′JTF

)−1
= 0K×K (A.15)

from Step 4 and Assumption 2(ii) and that

1

N
m′2m2 =

(
F̃′F̃

)−1
F̃′JTF

(
Γ′βX

N

)(
X′X

N

)−1(X′Γβ
N

)
F′JT F̃

(
F̃′F̃

)−1

p→ IK0K×LV−1
X 0L×KIK = 0K×K (A.16)

from Step 4 and Assumptions 2(i) and 2(ii) and that

1

N
m′2m3 =

(
F̃′F̃

)−1
F̃′JTF

(
Γ′βX

N

)(
X′X

N

)−1(X′E

N

)
JT F̃

(
F̃′F̃

)−1

p→ IK0K×LV−1
X 0L×TJTF

(
F′JTF

)−1
= 0K×K (A.17)

from Step 4 and Assumption 2(i) and 2(iii) and that

1

N
m′3m3 =

(
F̃′F̃

)−1
F̃′JT

(
E′X

N

)(
X′X

N

)−1(X′E

N

)
JT F̃

(
F̃′F̃

)−1

p→
(
F′JTF

)−1
F′JT0T×LV−1

X 0L×TJTF
(
F′JTF

)−1
= 0K×K . (A.18)
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Finally, plugging the results of equations (A.13)-(A.18) into equation (A.12), we have that

1

N

(
G̃β (X)−Gβ (X)

)′ (
G̃β (X)−Gβ (X)

)
p→ 0K×K .

Step 6: Ĝβ (X) = G̃β (X): See Lemma A.2(i).

Step 7: Ĝβ (X)
p→ Gβ (X): This follows from Steps 5 and 6. �

Lemma A.4. Consider Ĝβ (X) defined in Theorem 2.1. Let Y be a (N ×m) matrix. If
1
NY′Y

p→ VY , a positive definite matrix, then the probability limit of 1
N Ĝβ (X)′Y is identical

to the limit of 1
NGβ (X)′Y.

Proof It suffices to show that 1
NGβ (X)′Y− 1

N Ĝβ (X)′Y
p→ 0K×m. Let Gβ (X)i, Ĝβ (X)i,

and Yj denote the i-th column of Gβ (X) , the i-th column of Ĝβ (X) , and the j-th column

of Y. Then, the (i, j) element of 1
NGβ (X)′Y − 1

N Ĝβ (X)′Y has the following expression:

1

N
Gβ (X)′i Yj −

1

N
Ĝβ (X)′i Yj =

1

N

(
Gβ (X)i − Ĝβ (X)i

)′
Yj .

From the Cauchy–Schwarz inequality, we have that(
1

N

(
Gβ (X)i − Ĝβ (X)i

)′
Yj

)2

≤ 1

N

(
Gβ (X)i − Ĝβ (X)i

)′ (
Gβ (X)i − Ĝβ (X)i

)( 1

N
Y′jYj

)

Because 1
NY′Y

p→ VY , a positive definite matrix, by assumption and Theorem 2.1 says

that 1
N

(
Gβ (X)i − Ĝβ (X)i

)′ (
Gβ (X)i − Ĝβ (X)i

)
p→ 0, the above inequality implies that

1
N

(
Gβ (X)i − Ĝβ (X)i

)′
Yj

p→ 0. Hence, 1
NGβ (X)′Y − 1

N Ĝβ (X)′Y
p→ 0K×m, completing

the proof of the lemma. �

Lemma A.5. Consider Ĝβ (X) in Theorem 2.1. Then, as N increases, 1
N Ĝβ (X)

′
R

p→ F.

Proof From Lemma A.4 and Assumption 2(i), it suffices to show that 1
NGβ (X)′R

p→ F.

From the expression of R in (2.3),

Gβ (X)
′
R

N
=

(
Gβ (X)

′
Gα (X)

N
+

Gβ (X)
′
Γα

N

)
1′T

+

(
Gβ (X)

′
Gβ (X)

N
+

Gβ (X)
′
Γβ

N

)
F′ +

Gβ (X)
′
E

N
.
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Then, from Assumptions 2(ii), 3(i), and 3(ii), it follows that 1
NGβ (X)′R

p→ F, which in

conjunction with Assumption 2(i) and Lemma A.4 completes the proof of the lemma. �

Lemma A.6. The minimization problem in Theorem 2.2 has the following closed form

solution:

θ̂ =
(
X′X

)−1
X′R−

(
X′X

)−1
X′Ĝβ (X)

(
Ĝβ (X)′ Ĝβ (X)

)−1
Ĝβ (X)′R.

Proof We use the following Lagrangian to solve the constrained minimization problem:

min
θ,λ

(
R−Xθ

)′ (
R−Xθ

)
+ λĜβ (X)′Xθ.

The first order conditions are[
2X′X X′Ĝβ (X)

Ĝβ (X)′X 0

][
θ̂

λ

]
=

[
2X′R

0

]
,

which yields [
θ̂

λ

]
=

[
2X′X X′Ĝβ (X)

Ĝβ (X)′X 0

]−1 [
2X′R

0

]
,

where the invertibility is guaranteed by Assumption 2(i) and the property of PĜβ (X) =

Ĝβ (X) in Lemma A.2(ii). Then, standard block matrix inversion gives

θ̂ =
(
X′X

)−1
X′R−

(
X′X

)−1
X′Ĝβ (X)

(
Ĝβ (X)′ Ĝβ (X)

)−1
Ĝβ (X)′R,

which completes the proof of the lemma. �

Proof of Theorems 2.2 and 2.3 Recall that P = X (X′X)−1 X′. From Lemmas A.2(ii)

and A.6, we have that

Ĝα (X) = PR− Ĝβ (X)
(
Ĝβ (X)′ Ĝβ (X)

)−1
Ĝβ (X)′R,

which in conjunction with the expression of R in (2.6) yields

Ĝα (X)−Gα (X) = n1 + n2 + n3,

with ni for i = 1, 2, 3 are given by n1 = P
(
Γα + ΓβF + E

)
, n2 = Gβ (X) F, and n3 =
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−Ĝβ (X)
(
Ĝβ (X)′ Ĝβ (X)

)−1
Ĝβ (X)′R. Then,

1

N

(
Ĝα (X)−Gα (X)

)′ (
Ĝα (X)−Gα (X)

)
=

3∑
i,j=1

1

N
n′inj . (A.19)

Note that

1

N
n′1n1 =

(
X′Γα
N

+
X′Γβ
N

F +
X′E

N

1T
T

)′(X′X

N

)−1(X′Γα
N

+
X′Γβ
N

F +
X′E

N

1T
T

)
p→
(

0L + 0L×KF + 0L×T
1T
T

)′
V−1
X

(
0L + 0L×KF + 0L×T

1T
T

)
= 0 (A.20)

from Assumptions 2(i) and 2(ii) and that

1

N
n′1n2 =

(
Gβ (X)′ Γα

N
+

Gβ (X)′ Γβ
N

F +
Gβ (X)′E

N

1T
T

)′
F

p→
(
0K + 0K×KF + 0K×T i

)′
F = 0 (A.21)

from Assumption 2(ii) and that

1

N
n′1n3 = −

(
Ĝβ (X)′ Γα

N
+

Ĝβ (X)′ Γβ
N

F +
Ĝβ (X)′E

N

1T
T

)′
Ĝβ (X)′R

N

1T
T

p→ −
(

0K + 0K×KF + 0K×T
1T
T

)′
F = 0 (A.22)

from Lemmas A.4 and A.5 and Assumption 2(ii) and that

1

N
n′2n2 = F

′
(

Gβ (X)′Gβ (X)

N

)
F

p→ F
′
F. (A.23)

from Assumption 3(ii) and that

1

N
n′2n3 = −F

′
(

Gβ (X)′ Ĝβ (X)

N

)
Ĝβ (X)′R

N

1T
T

p→ −F
′
F (A.24)

from Lemmas A.4 and A.5 and Assumption 3(ii) and that

1

N
n′3n3 =

1′T
T

R′Ĝβ (X)

N

Ĝβ (X)′R

N

1T
T

p→ F
′
F (A.25)

from Lemma A.5. Finally, plugging the results of equations (A.20)-(A.25) into equation
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(A.19), we have that

1

N

(
Ĝα (X)−Gα (X)

)′ (
Ĝα (X)−Gα (X)

)
p→ 0, (A.26)

which proves Theorem 2.2.

Next, we turn to Theorem 2.3.

ŵ′R = w′R + (ŵ −w)′R

We explain that wR
p→ δ1′T in the text. Hence, it suffices to show that (ŵ −w)′R shrinks

to zero. Let Rt denote the t-th column of R. Using the Cauchy–Schwarz inequality, we have

that

(
(ŵ −w)′Rt

)2 ≤ (ŵ −w)′ (ŵ −w)
(
R′tRt

)
=

(
Ĝα (X)−Gα (X)

)′ (
Ĝα (X)−Gα (X)

)
N

· R
′
tRt

N

p→ 0,

where the last limit is from (A.26) and Assumption 2(i). This completes the proof of Theorem

2.3. �
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Figures and Tables

Figure 1: Out-of-sample Implementation of the Arbitrage Portfolio

21 𝑇𝑇0-1 𝑇𝑇0 𝑇𝑇0+1 𝑇𝑇… …

Construct �̂�𝐰 Hold �̂�𝐰

This figure illustrates how to implement the arbitrage portfolio in an out-of-sample man-
ner. We construct ŵ with the first set of data t = 1, · · · , T0 and hold the constructed
portfolio of ŵ over the second set of data t = T0 +1, · · · , T in an out-of-sample manner.

44



Figure 2: Simulated Arbitrage Portfolio Returns in the CAPM, FF 3, FF5, and HXZ4
Models (correctly specified model)
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This figure shows the simulation results of the arbitrage portfolio when the return
generating process is calibrated to the CAPM (upper–left panel), the Fama-French
three-factor model (upper–right panel), the Fama-French five-factor model (lower–left
panel) and the Hou-Xue-Zhang four-factor model (lower–right panel). The arbitrage
portfolio ŵ is constructed with the returns from t = 1 to t = 12, and it generates
returns for one month out-of-sample (at a time). The solid dot represents the mean of
the arbitrage portfolio in the out-of-sample period over 10,000 simulations. The error
bars provide a 95% confidence interval. In this simulation, we use the correct number
of factors in constructing the arbitrage portfolio, i.e. K = 1 for the CAPM, K = 3
for the Fama-French three-factor model, K = 5 for the Fama-French five-factor model,
and K = 4 for the Hou-Xue-Zhang four-factor model.
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Figure 3: Simulated Arbitrage Portfolio Returns in the CAPM, FF 3, FF5, and HXZ4
Models with Kwrong = Ktrue + 1 (selecting too many factors)
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This figure shows the simulation results of the arbitrage portfolio when the return
generating process is calibrated to the CAPM (upper–left panel), the Fama-French
three-factor model (upper–right panel), the Fama-French five-factor model (lower–left
panel) and the Hou-Xue-Zhang four-factor model (lower–right panel). The arbitrage
portfolio ŵ is constructed with the returns from t = 1 to t = 12, and it generates
returns for one month out-of-sample (at a time). The solid dot represents the mean of
the arbitrage portfolio in the out-of-sample period over 10,000 simulations. The error
bars provide a 95% confidence interval. In this simulation, we use too many factors
in constructing the arbitrage portfolio, i.e. Kwrong = 2 for the CAPM, Kwrong = 4 for
the Fama-French three-factor model, Kwrong = 6 for the Fama-French five-factor model,
and Kwrong = 5 for the Hou-Xue-Zhang four-factor model.
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Figure 4: Simulated Arbitrage Portfolio Returns in the CAPM, FF 3, FF5, and HXZ4
Models with Kwrong = Ktrue − 1 (selecting too few factors)
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This figure shows the simulation results of the arbitrage portfolio when the return
generating process is calibrated to the CAPM (upper–left panel), the Fama-French
three-factor model (upper–right panel), the Fama-French five-factor model (lower–left
panel) and the Hou-Xue-Zhang four-factor model (lower–right panel). The arbitrage
portfolio ŵ is constructed with the returns from t = 1 to t = 12, and it generates
returns for one month out-of-sample (at a time). The solid dot represents the mean of
the arbitrage portfolio in the out-of-sample period over 10,000 simulations. The error
bars provide a 95% confidence interval. In this simulation, we use too few factors in
constructing the arbitrage portfolio, i.e. Kwrong = 0 for the CAPM, Kwrong = 2 for the
Fama-French three-factor model, Kwrong = 4 for the Fama-French five-factor model,
and Kwrong = 3 for the Hou-Xue-Zhang four-factor model.
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Figure 5: Simulated Arbitrage Portfolio Returns in the CAPM, FF 3, FF5, and HXZ4
Models with Time-Varying Characteristics
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This figure shows the simulation results of the arbitrage portfolio when the return
generating process is calibrated to the CAPM (upper–left panel), the Fama-French
three-factor model (upper–right panel), the Fama-French five-factor model (lower–left
panel) and the Hou-Xue-Zhang four-factor model (lower–right panel). The arbitrage
portfolio ŵ is constructed with the returns from t = 1 to t = 12, and it generates
returns for one month out-of-sample (at a time). The solid dot represents the mean of
the arbitrage portfolio in the out-of-sample period over 10,000 simulations. The error
bars provide a 95% confidence interval. In this simulation, we use the correct number
of factors in constructing the arbitrage portfolio, i.e. K = 1 for the CAPM, K = 3
for the Fama-French three-factor model, K = 5 for the Fama-French five-factor model,
and K = 4 for the Hou-Xue-Zhang four-factor model. Time-varying characteristics are
generated by fitting an AR(1) process to the empirically observed characteristics. The
construction is detailed in Section 3.2.4.
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Figure 6: Alpha for Varying the Number of Eigenvectors
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This figure shows the monthly alpha of the arbitrage portfolio against the CAPM, the
Fama-French three- and five-factor model, and their “momentum augmented” versions
for one through ten eigenvectors. The sample period is from January 1968 to June
2014.
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Figure 7: Correlation Matrix with Common Factors
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This figure shows the correlation matrix between the arbitrage portfolios with 1 through
10 eigenvectors, r

(1)
α , r

(2)
α , ..., r

(10)
α , and the Fama-French three and five factors as well

as the momentum factor. The sample period is January 1968 to June 2014.
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Figure 8: Price Path and Yearly Returns of the Arbitrage Portfolio
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The top panel of the figure shows the logarithmic price path (i.e., the cumulative
returns) of the arbitrage portfolio (using six eigenvectors) in black line and the market
portfolio in red line. The areas shaded in gray depict NBER recessions. The lower
panel shows the yearly returns of the arbitrage portfolio (with six eigenvectors). The
sample period is January 1968 to June 2014.
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Figure 9: Monthly Returns of the Arbitrage Portfolio 1968–2014

-20

0

20

40

1970 1980 1990 2000 2010

This figure shows the monthly excess returns of the arbitrage portfolio (six eigenvectors)
from January 1968 through June 2014 and a time trend (red). The time trend is

estimated by rt = a+ b× tγ + εt with â = 5.27, b̂ = −0.127, γ̂ = 0.5501.
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Figure 10: Firm Characteristics of the Long and Short Leg of the Arbitrage Portfolio
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This figure shows the normalized rank of nine cross-sectional return characteristics for the long
and short leg of the arbitrage portfolio. The firm characteristics are the book-to-market ratio,
the debt-to-price ratio, market equity (size), profitability, investment, operating accruals, last
month’s volume, the return one month before portfolio formation (r2−1) and the return from 12
to 2 month before portfolio formation (r12−2). Each month, the characteristics are normalized

to be in the unit interval, i.e., the normalized characteristics is computed as c̃i,t = rank(cit)
Nt+1 ,

where cit denotes the “raw” characteristic value and Nt denotes the number of firms in month
t. The rank normalization facilitates an easy comparison cross-sectionally and over time. The
sample period is January 1968 to June 2014.
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Figure 11: Beta Heatmap
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This figure plots beta-heatmap β̂norm(l) for each characteristic l. We compute β̂norm(l) as follows.

We project the k-th column of Ĝβ (X) onto the characteristics at each month: Ĝβ (X)k =

β0,k + Xβk + ε. We then take absolute value of β̂k for each characteristic and compute

β̂(l) =
∑K

k=1 |β̂k,l|. We then normalize cross-sectionally to have the normalized sum of absolute

coefficients β̂norm(j) =
β̂(j)

maxj β̂(j)
. This way, the characteristic with the largest (absolute) sum of

coefficients gets a 1. We then repeat this process each month, sliding the estimation window
forward. The sample period is January 1968 to June 2014.
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Figure 12: Alpha Heatmap
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This figure plots beta-heatmap α̂norm(l) for each characteristic l. We compute α̂norm(l) as follows.

We project Ĝα (X) onto the characteristics at each month: Ĝα (X) = α0 + Xα + ε. We then
take absolute value of α̂ for each characteristic and compute α̂(l) = |α̂l|. We then normalize

cross-sectionally to have the normalized sum of absolute coefficients α̂norm(j) =
α̂(j)

maxj α̂(j)
. This

way, the characteristic with the largest (absolute) sum of coefficients gets a 1. We then repeat
this process each month, sliding the estimation window forward. The sample period is January
1968 to June 2014.
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Figure 13: Portfolio Weights
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This figure shows the median, minimum, maximum, and the 5% and 95% quantiles of the
portfolio weights of the arbitrage portfolio (with five eigenvectors). The solid black line is
the median portfolio weight in a given month, the dark-gray area depicts the 5% and 95%
quantiles of the weights in a month and the light-gray area depicts the monthly minimum and
maximum. The sample period is January 1968 to June 2014.

56



T
ab

le
1:

A
ve

ra
ge

R
et

u
rn

s
on

D
ou

b
le

-S
or

te
d

P
or

tf
ol

io
in

a
S
im

u
la

te
d

C
A

P
M

E
co

n
om

y

P
as

t
B

et
a

L
ow

H
ig

h
C

h
a
ra

ct
er

is
ti

c
1

2
3

4
5

6
7

8
9

10
1
0-

1

L
ow

1
0
.2

4
0.

25
0.

29
0.

3
4

0.
2
6

0.
1
5

0.
3
4

0.
2
5

0.
1
8

0.
14

0.
23

-0
.0

3
2

0
.3

6
0.

40
0.

3
2

0.
3
9

0.
3
6

0.
3
7

0.
39

0.
2
9

0.
32

0
.2

5
0
.4

7
0
.0

6
3

0
.4

2
0.

3
7

0.
4
1

0.
42

0.
4
1

0
.4

6
0.

28
0.

47
0.

46
0
.4

8
0
.4

6
0
.0

9
4

0
.4

5
0.

46
0.

4
5

0.
45

0.
36

0
.4

2
0.

44
0.

39
0.

45
0
.5

8
0.

4
7

0
.0

2
5

0
.4

7
0.

48
0.

37
0.

4
8

0.
45

0
.5

2
0
.5

1
0.

47
0.

4
8

0.
44

0
.4

7
-0
.0

1
6

0.
53

0.
5
6

0.
5
1

0.
6
1

0.
43

0
.4

7
0
.5

6
0.

5
9

0.
47

0.
5
6

0.
5
5

-0
.0

1
7

0.
58

0.
52

0.
5
4

0.
61

0.
58

0
.6

0
0
.6

0
0.

5
1

0.
56

0.
7
1

0.
5
9

0.
07

8
0.

59
0.

56
0.

5
4

0.
56

0.
63

0
.6

0
0
.4

6
0.

6
6

0.
70

0.
62

0.
56

0.
01

9
0.

67
0.

67
0.

6
8

0.
59

0.
71

0
.6

6
0
.6

4
0
.7

1
0.

69
0.

67
0.

70
0.

03
H

ig
h

10
0.

78
0.

78
0.

74
0.

68
0.

83
0.

7
5

0
.7

4
0
.8

5
0
.7

8
0.

80
0.

86
0.

08

10
-1

0.
54
∗∗
∗

0
.5

2∗
∗∗

0
.4

5∗
∗∗

0
.3

3∗
∗

0.
57
∗∗
∗

0
.6

1∗
∗∗

0
.4

0∗
∗∗

0
.6

0∗
∗∗

0.
60
∗∗
∗

0.
6
6∗
∗∗

0.
63
∗∗
∗

∗∗
∗
p
<

0
.0

1
,
∗∗
p
<

0
.0

5
,
∗
p
<

0
.1

T
h

is
ta

b
le

re
p

or
ts

av
er

a
ge

re
tu

rn
s

of
d

o
u

b
le

-s
or

te
d

(fi
rs

t
on

ch
ar

ac
te

ri
st

ic
an

d
th

en
on

th
e

es
ti

m
at

ed
b

et
a

u
si

n
g

p
as

t
60

m
on

th
re

tu
rn

s)
p

o
rt

fo
li

o
s.

W
e

si
m

u
la

te
ex

ce
ss

re
tu

rn
s
R
i,
t

fo
r
i

=
1,
··
·,

20
00

an
d
t

=
1,
··
·,

20
00

w
it

h
th

e
fo

ll
ow

in
g

ca
li

b
ra

ti
on

:
f M

,t
∼
N
( µ M

,σ
2 M

) ,β
i
∼

N
( 1,

σ
2 β

) ,
ε i
,t
∼
N
( 0,

σ
2 ε

) ,w
h

er
e
µ
M

=
5%

/
12
,
σ
M

=
√ (2

0%
)2
/1

2,
σ
β

=
0
.4
,
σ
ε

=
2
σ
M
.

R
ep

or
te

d
n
u

m
b

er
s

ar
e

th
e

av
er

ag
es

ov
er

t
=

6
1,
··
·,

2
00

0
.

57



T
ab

le
2:

F
ir

m
C

h
ar

ac
te

ri
st

ic
s

b
y

C
at

eg
or

y

P
a
st

-r
e
tu

rn
s:

V
a
lu

e
:

(1
)

r 2
−

1
R

et
u
rn

1
m

on
th

b
ef

or
e

p
re

d
ic

ti
on

(3
2)

A
2M

E
T

ot
al

as
se

ts
to

S
iz

e

(2
)

r 6
−

2
R

et
u
rn

fr
om

6
to

2
m

on
th

s
b

ef
or

e
p
re

d
ic

ti
on

(3
3)

B
E

M
E

B
o
ok

to
m

ar
ke

t
ra

ti
o

(3
)

r 1
2
−

2
R

et
u
rn

fr
om

12
to

2
m

on
th

s
b

ef
or

e
p
re

d
ic

ti
on

(3
4)

B
E

M
E
a
dj

B
E

M
E

-
m

ea
n

B
E

M
E

in
F

am
a
-F

re
n
ch

4
8

in
d
u
st

ry

(4
)

r 1
2
−

7
R

et
u
rn

fr
om

12
to

7
m

on
th

s
b

ef
or

e
p
re

d
ic

ti
on

(3
5)

C
C

as
h

to
A

T

(5
)

r 3
6
−

1
3

R
et

u
rn

fr
om

36
to

13
m

on
th

s
b

ef
or

e
p
re

d
ic

ti
on

(3
6)

C
2D

C
as

h
fl
ow

to
to

ta
l

li
ab

il
it

ie
s

(3
7)

∆
S
O

L
og

ch
an

ge
in

sp
li
t-

ad
ju

st
ed

sh
ar

es
ou

ts
ta

n
d
in

g

In
v
e
st

m
e
n
t:

(3
8)

D
eb

t2
P

T
ot

al
d
eb

t
to

S
iz

e

(6
)

In
ve

st
m

en
t

%
ch

an
ge

in
A

T
(3

9)
E

2P
In

co
m

e
b

ef
or

e
ex

tr
ao

rd
in

ar
y

it
em

s
to

S
iz

e

(7
)

∆
C

E
Q

%
ch

an
ge

in
B

E
(4

0)
F

re
e

C
F

F
re

e
ca

sh
fl
ow

to
B

E

(8
)

∆
P

I2
A

C
h
an

ge
in

P
P

&
E

an
d

in
ve

n
to

ry
ov

er
la

gg
ed

A
T

(4
1)

L
D

P
T

ra
il
in

g
12

-m
on

th
s

d
iv

id
en

d
s

to
p
ri

ce

(9
)

IV
C

C
h
an

ge
in

in
ve

n
to

ry
ov

er
av

er
ag

e
A

T
(4

2)
N

O
P

N
et

p
ay

ou
ts

to
S
iz

e

(1
0)

N
O

A
N

et
-o

p
er

at
in

g
as

se
ts

ov
er

la
gg

ed
A

T
(4

3)
O

2P
O

p
er

at
in

g
p
ay

ou
ts

to
m

ar
ke

t
ca

p

(4
4)

Q
T

ob
in

’s
Q

(4
5)

S
2P

S
al

es
to

p
ri

ce

P
ro

fi
ta

b
il

it
y
:

(4
6)

S
al

es
g

S
al

es
gr

ow
th

(1
1)

A
T

O
S
al

es
to

la
gg

ed
n
et

op
er

at
in

g
as

se
ts

(1
2)

C
T

O
S
a
le

s
to

la
gg

ed
to

ta
l

as
se

ts
T

ra
d

in
g

fr
ic

ti
o
n

s:

(1
3)

∆
(∆

G
M

-∆
S
al

es
)

∆
(%

ch
an

ge
in

gr
os

s
m

ar
gi

n
an

d
%

ch
an

ge
in

sa
le

s)
(4

7)
A

T
T

ot
al

as
se

ts

(1
4)

E
P

S
E

ar
n
in

gs
p

er
sh

ar
e

(4
8)

B
et

a
C

or
re

la
ti

on
×

ra
ti

o
of

vo
ls

(1
5)

IP
M

P
re

-t
ax

in
co

m
e

ov
er

sa
le

s
(4

9)
B

et
a

d
ai

ly
C

A
P

M
b

et
a

u
si

n
g

d
ai

ly
re

tu
rn

s

(1
6)

P
C

M
S
al

es
m

in
u
s

co
st

s
of

go
o
d
s

so
ld

to
sa

le
s

(5
0)

D
T

O
D

e-
tr

en
d
ed

T
u
rn

ov
er

-
m

ar
k
et

T
u
rn

ov
er

(1
7)

P
M

O
I

af
te

r
d
ep

re
ci

at
io

n
ov

er
sa

le
s

(5
1)

Id
io

vo
l

Id
io

v
ol

of
F

am
a-

F
re

n
ch

3
fa

ct
or

m
o
d
el

(1
8)

P
M

ad
j

P
ro

fi
t

m
ar

gi
n

-
m

ea
n

P
M

in
F

am
a-

F
re

n
ch

48
in

d
u
st

ry
(5

2)
L

M
E

P
ri

ce
ti

m
es

sh
ar

es
ou

ts
ta

n
d
in

g

(1
9)

P
ro

f
G

ro
ss

p
ro

fi
ta

b
il
it

y
ov

er
B

E
(5

3)
L

M
E

ad
j

S
iz

e
-

m
ea

n
si

ze
in

F
am

a-
F

re
n
ch

4
8

in
d
u
st

ry

(2
0)

R
N

A
O

I
af

te
r

d
ep

re
ci

at
io

n
to

la
gg

ed
n
et

op
er

at
in

g
as

se
ts

(5
4)

L
tu

rn
ov

er
L

as
t

m
on

th
’s

v
ol

u
m

e
to

sh
ar

es
o
u
ts

ta
n
d
in

g

(2
1)

R
O

A
In

co
m

e
b

ef
or

e
ex

tr
ao

rd
in

ar
y

it
em

s
to

la
gg

ed
A

T
(5

5)
R

el
to

h
ig

h
p
ri

ce
P

ri
ce

to
52

w
ee

k
h
ig

h
p
ri

ce

(2
2)

R
O

C
S
iz

e
+

lo
n
gt

er
m

d
eb

t
-

to
ta

l
as

se
ts

to
ca

sh
(5

6)
R

et
m

ax
M

ax
im

u
m

d
ai

ly
re

tu
rn

(2
3)

R
O

E
In

co
m

e
b

ef
or

e
ex

tr
ao

rd
in

ar
y

it
em

s
to

la
gg

ed
B

E
(5

7)
S
p
re

ad
A

ve
ra

ge
d
ai

ly
b
id

-a
sk

sp
re

ad

(2
4)

R
O

IC
R

et
u
rn

on
in

ve
st

ed
ca

p
it

al
(5

8)
S
td

tu
rn

ov
er

S
ta

n
d
ar

d
d
ev

ia
ti

on
of

d
ai

ly
tu

rn
ov

er

(2
5)

S
2C

S
al

es
to

ca
sh

(5
9)

S
td

vo
lu

m
e

S
ta

n
d
ar

d
d
ev

ia
ti

on
of

d
ai

ly
vo

lu
m

e

(2
6)

S
A

T
S
al

es
to

to
ta

l
as

se
ts

(6
0)

S
U

V
S
ta

n
d
ar

d
u
n
ex

p
la

in
ed

vo
lu

m
e

(2
7)

S
A

T
ad

j
S
A

T
-

m
ea

n
S
A

T
in

F
am

a-
F

re
n
ch

48
in

d
u
st

ry
(6

1)
T

ot
al

vo
l

S
ta

n
d
ar

d
d
ev

ia
ti

on
of

d
ai

ly
re

tu
rn

s

In
ta

n
g
ib

le
s:

(2
8)

A
O

A
A

b
so

lu
te

va
lu

e
of

op
er

at
in

g
ac

cr
u
al

s

(2
9)

O
L

C
os

ts
o
f

go
o
d
s

so
ld

s
+

S
G

&
A

to
to

ta
l

as
se

ts

(3
0)

T
an

T
an

gi
b
il
it

y

(3
1)

O
A

O
p

er
at

in
g

ac
cr

u
al

s

T
h

is
is

a
re

p
ro

d
u

ct
io

n
of

T
a
b

le
1

in
F

re
y
b

er
ge

r
et

al
.

(2
01

9)
.

It
li

st
s

th
e

ch
ar

ac
te

ri
st

ic
s

w
e

co
n

si
d

er
in

ou
r

em
p

ir
ic

al
an

al
y
si

s
b
y

ca
te

go
ry

.
W

e
re

fe
r

to
th

ei
r

o
n

li
n

e
ap

p
en

d
ix

fo
r

a
p

re
ci

se
d

efi
n
it

io
n

of
th

es
e

va
ri

ab
le

s
an

d
th

ei
r

co
n

st
ru

ct
io

n
in

co
n
ve

n
ti

on
al

d
at

a
se

t
(C

R
S

P
,

C
o
m

p
u

st
a
t)

.
T

h
e

sa
m

p
le

p
er

io
d

is
J
an

u
ar

y
19

65
to

J
u

n
e

20
14

.

58



T
ab

le
3:

P
or

tf
ol

io
P

er
fo

rm
an

ce
S
ta

ti
st

ic
s

#
E

ig
en

v
ec

to
rs

M
ea

n
(%

)
S
ta

n
d
ar

d
S
h
ar

p
e

S
ke

w
n
es

s
K

u
rt

os
is

M
ax

im
u
m

W
or

st
B

es
t

D
ev

ia
ti

on
(%

)
R

at
io

D
ra

w
d
ow

n
M

on
th

(%
)

M
on

th
(%

)

1
21

.9
1

15
.1

9
1.

44
1.

15
7.

69
22

.3
7

-1
8.

77
29

.4
6

2
26

.7
0

17
.9

7
1.

49
0.

48
5.

86
23

.1
6

-2
2.

44
30

.0
6

3
25

.8
6

15
.1

2
1.

71
1.

20
9.

66
20

.9
1

-1
9.

89
34

.0
5

4
29

.5
4

16
.9

0
1.

75
1.

07
6.

57
22

.2
1

-1
9.

61
30

.6
6

5
30

.3
8

18
.2

5
1.

66
1.

05
7.

10
20

.0
8

-2
0.

08
36

.1
6

6
31

.3
0

18
.7

2
1.

67
1.

26
8.

71
20

.8
4

-1
9.

99
41

.8
8

7
31

.9
8

18
.6

1
1.

72
1.

29
9.

06
21

.9
2

-2
0.

21
42

.8
2

8
31

.7
2

20
.1

0
1.

58
1.

24
10

.4
9

27
.9

2
-2

6.
02

42
.7

4
9

31
.1

8
17

.8
4

1.
75

1.
39

8.
58

23
.7

4
-2

0.
43

36
.5

6
10

2
6.

51
1
9.

58
1.

35
0.

18
15

.1
7

38
.5

2
-3

8.
52

41
.1

9

T
h

is
ta

b
le

re
p

o
rt

s
an

n
u

a
li

ze
d

p
er

ce
n
ta

ge
m

ea
n

s,
an

n
u

al
iz

ed
p

er
ce

n
ta

ge
st

an
d

ar
d

d
ev

ia
ti

on
s,

an
n
u

al
iz

ed
S

h
ar

p
e

R
at

io
s,

sk
ew

n
es

s,
k
u

rt
os

is
,

th
e

m
ax

im
u

m
d

ra
w

d
ow

n
,

an
d

th
e

b
es

t
a
n

d
w

or
st

m
on

th
re

tu
rn

s.
T

h
e

ar
b

it
ra

ge
p

or
tf

ol
io

w
it

h
on

e
th

ro
u

gh
te

n
ei

ge
n
ve

ct
or

s
is

es
ti

m
at

ed
ev

er
y

m
on

th
u

si
n

g
th

e
st

ep
s

ou
tl

in
ed

in
S
ec

ti
on

4.
T

h
e

sa
m

p
le

p
er

io
d

is
J
an

u
ar

y
19

68
to

J
u

n
e

20
14

.

59



Table 4: Risk-Adjusted Returns with One Eigenvector

CAPM FF3 FF3+UMD FF5 FF5+UMD HXZ4 HXZ4+UMD

alpha 1.79∗∗∗ 1.71∗∗∗ 1.51∗∗∗ 1.83∗∗∗ 1.67∗∗∗ 1.74∗∗∗ 1.71∗∗∗

(0.22) (0.22) (0.21) (0.25) (0.25) (0.27) (0.28)
mktrf 0.07 0.01 0.05 0.01 0.04

(0.08) (0.07) (0.06) (0.07) (0.06)
smb 0.38∗∗ 0.39∗∗∗ 0.24 0.24∗∗

(0.18) (0.15) (0.15) (0.12)
hml 0.10 0.18 0.01 0.14

(0.14) (0.15) (0.15) (0.14)
umd 0.23∗ 0.25∗∗ 0.35∗∗∗

(0.12) (0.11) (0.11)
rmw −0.48∗∗∗ −0.54∗∗∗

(0.18) (0.14)
cma 0.20 0.08

(0.23) (0.19)
mkt 0.03 0.05

(0.07) (0.06)
me 0.30∗ 0.22∗

(0.18) (0.12)
ia 0.18 0.16

(0.23) (0.21)
roe −0.18 −0.50∗∗∗

(0.17) (0.14)

Adj. R2 0.00 0.07 0.12 0.12 0.18 0.07 0.15
Num. obs. 557 557 557 557 557 557 557

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

This table reports alphas (%/month) and factor loadings on the factors by Fama and French
(1993), Carhart (1997), Fama and French (2015) and the q-factor model (HXZ4) by Hou et al.
(2015). The arbitrage portfolio with one eigenvector is estimated every month using the steps
outlined in Section 4. Newey and West (1987) standard errors are given in parentheses. The
sample period is January 1968 to June 2014.
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Table 5: Risk-Adjusted Returns with Six Eigenvectors

CAPM FF3 FF3+UMD FF5 FF5+UMD HXZ4 HXZ4+UMD

alpha 2.63∗∗∗ 2.55∗∗∗ 2.13∗∗∗ 2.62∗∗∗ 2.28∗∗∗ 2.39∗∗∗ 2.33∗∗∗

(0.29) (0.30) (0.25) (0.33) (0.28) (0.35) (0.30)
mktrf −0.05 −0.10 −0.01 −0.09 −0.02

(0.08) (0.07) (0.06) (0.07) (0.06)
smb 0.36∗ 0.38∗∗ 0.21 0.20

(0.20) (0.15) (0.15) (0.13)
hml 0.11 0.27∗ −0.07 0.20

(0.14) (0.16) (0.17) (0.15)
umd 0.48∗∗∗ 0.49∗∗∗ 0.61∗∗∗

(0.12) (0.10) (0.11)
rmw −0.48∗∗ −0.61∗∗∗

(0.20) (0.16)
cma 0.41 0.16

(0.26) (0.23)
mkt −0.06 −0.02

(0.08) (0.06)
me 0.35∗ 0.19

(0.21) (0.14)
ia 0.37 0.35

(0.27) (0.24)
roe −0.04 −0.61∗∗∗

(0.18) (0.15)

Adj. R2 0.00 0.04 0.18 0.08 0.23 0.05 0.22
Num. obs. 557 557 557 557 557 557 557

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

This table reports alphas (%/month) and factor loadings on the factors by the Fama and French
(1993), Carhart (1997), Fama and French (2015) and the q-factor model (HXZ4) by Hou et al.
(2015). The arbitrage portfolio with six eigenvectors is estimated every month using the steps
outlined in Section 4. Newey and West (1987) standard errors are given in parentheses. The
sample period is January 1968 to June 2014.
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Arbitrage Portfolio in Large Panels
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Figure A.1: Simulated Arbitrage Portfolio Returns in the CAPM, FF 3, FF5, and HXZ4
Models (correlated errors)
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This figure shows the simulation results of the arbitrage portfolio when the return
generating process is calibrated to the CAPM (upper–left panel), the Fama-French
three-factor model (upper–right panel), the Fama-French five-factor model (lower–left
panel) and the Hou-Xue-Zhang four-factor model (lower–right panel). The arbitrage
portfolio ŵ is constructed with the returns from t = 1 to t = 12, and it generates
returns for one month out-of-sample (at a time). The solid dot represents the mean
of the arbitrage portfolio in the out-of-sample period over 10,000 simulations. The
error bars provide a 95% confidence interval. In this simulation, we use the correct
number of factors in constructing the arbitrage portfolio, i.e. K = 1 for the CAPM,
K = 3 for the Fama-French three-factor model, K = 5 for the Fama-French five-factor
model, and K = 4 for the Hou-Xue-Zhang four-factor model. We generated correlated
errors, by creating industry clusters, with “within-industry correlation”. Details of the
data-generation are given in Section 3.2.4.
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Figure A.2: Simulated Arbitrage Portfolio Returns in the CAPM, FF 3, FF5, and HXZ4
Models (calibration period 2006 - 2008)
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This figure shows the simulation results of the arbitrage portfolio when the return
generating process is calibrated to the CAPM (upper–left panel), the Fama-French
three-factor model (upper–right panel), the Fama-French five-factor model (lower–left
panel) and the Hou-Xue-Zhang four-factor model (lower–right panel). The arbitrage
portfolio ŵ is constructed with the returns from t = 1 to t = 12, and it generates
returns for one month out-of-sample (at a time). The solid dot represents the mean
of the arbitrage portfolio in the out-of-sample period over 10,000 simulations. In this
simulation, we use the correct number of factors in constructing the arbitrage portfolio,
i.e. K = 1 for the CAPM, K = 3 for the Fama-French three-factor model, K = 5
for the Fama-French five-factor model, and K = 4 for the Hou-Xue-Zhang four-factor
model. For this figure, we calibrate the parameters of the economy using the data from
2006 through 2008 to cover the parts of more volatile recent financial crisis.
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Figure A.3: Simulated Arbitrage Portfolio Returns in the CAPM, FF 3, FF5, and HXZ4
Models with Missing Characteristics
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This figure shows the simulation results of the arbitrage portfolio when the return
generating process is calibrated to the CAPM (upper–left panel), the Fama-French
three-factor model (upper–right panel), the Fama-French five-factor model (lower–left
panel) and the Hou-Xue-Zhang four-factor model (lower–right panel). The arbitrage
portfolio ŵ is constructed with the returns from t = 1 to t = 12, and it generates
returns for one month out-of-sample (at a time). The solid dot represents the mean of
the arbitrage portfolio in the out-of-sample period over 10,000 simulations. The error
bars provide a 95% confidence interval. In this simulation, we use the correct number
of factors in constructing the arbitrage portfolio, i.e. K = 1 for the CAPM, K = 3
for the Fama-French three-factor model, K = 5 for the Fama-French five-factor model,
and K = 4 for the Hou-Xue-Zhang four-factor model. For each repetition, we use 61
characteristics for simulating returns but drop randomly picked ten characteristics for
computing ŵ. The construction is detailed in Section 3.2.4.

4



F
ig

u
re

A
.4

:
F

ir
m

C
h
ar

ac
te

ri
st

ic
s

of
th

e
A

rb
it

ra
ge

P
or

tf
ol

io

St
d

tu
rn

ov
er

St
d

vo
lu

m
e

SU
V

TA
N

To
ta

lv
ol

R
O

C
R

O
E

R
O

IC
S2

C
S2

P
Sa

le
s

G
ro

w
th

SA
T

Sp
re

ad

PM
PM

ad
j

PR
O

F
Q

R
el

to
hi

gh
pr

ic
e

R
et

m
ax

R
N

A
R

O
A

LM
E

ad
j

Lt
ur

no
ve

r
N

O
A

N
O

P
O

2P
O

A
O

L
PC

M

EP
S

Fr
ee

C
F

Id
io

vo
l

In
ve

st
m

en
t

IP
M

IV
C

LD
P

LM
E

B
et

a
B

et
a

da
ily

C
C

2D
C

T
O

D
eb

t2
P

D
T

O
E2

P

r 6
−
2

A
2M

E
A

O
A

AT
AT

ad
j

AT
O

B
EM

E
B

EM
E

ad
j

∆
(∆

G
M

-∆
Sa

le
s)

∆
C

EQ
∆

PI
2A

∆
So

r 1
2
−
2

r 1
2
−
7

r 2
−
1

r 3
6
−
1
3

19
70

19
80

19
90

20
00

20
10

19
70

19
80

19
90

20
00

20
10

19
70

19
80

19
90

20
00

20
10

19
70

19
80

19
90

20
00

20
10

19
70

19
80

19
90

20
00

20
10

19
70

19
80

19
90

20
00

20
10

19
70

19
80

19
90

20
00

20
10

19
70

19
80

19
90

20
00

20
10

0.
3

0.
4

0.
5

0.
6

0.
7

0.
3

0.
4

0.
5

0.
6

0.
7

0.
3

0.
4

0.
5

0.
6

0.
7

0.
3

0.
4

0.
5

0.
6

0.
7

0.
3

0.
4

0.
5

0.
6

0.
7

0.
3

0.
4

0.
5

0.
6

0.
7

0.
3

0.
4

0.
5

0.
6

0.
7

0.
3

0.
4

0.
5

0.
6

0.
7

NormalizedRank

lo
ng

sh
or

t

T
h
e

fi
gu

re
sh

ow
s

th
e

n
or

m
al

iz
ed

ra
n
k

of
th

e
fu

ll
se

t
of

cr
os

s-
se

ct
io

n
al

re
tu

rn
ch

ar
ac

te
ri

st
ic

s
fo

r
th

e
lo

n
g

an
d

sh
or

t
le

g
of

th
e

ar
b
it

ra
ge

p
or

tf
ol

io
fo

r
al

l
th

e
ch

ar
ac

te
ri

st
ic

s
u
se

d
in

th
e

em
p
ir

ic
al

an
al

y
si

s
an

d
d
es

cr
ib

ed
in

T
ab

le
2.

E
ac

h
m

on
th

s,
th

e
ch

ar
ac

te
ri

st
ic

s
ar

e
n
or

m
al

iz
ed

to
b

e
in

th
e

u
n
it

in
te

rv
al

,
i.
e.

th
e

n
or

m
al

iz
ed

ch
ar

ac
te

ri
st

ic
s

is
co

m
p
u
te

d
as

,
c̃ i
t

=
ra

n
k
(c
it

)
N
t
+

1
,

w
h
er

e
c i
t

d
en

ot
es

th
e

“r
aw

”
ch

ar
ac

te
ri

st
ic

va
lu

e
an

d
N
t

d
en

ot
es

th
e

n
u
m

b
er

of
fi
rm

s
in

m
on

th
t.

T
h
e

ra
n
k

n
or

m
al

iz
at

io
n

fa
ci

li
ta

te
s

an
d

ea
sy

co
m

p
ar

is
on

cr
os

s-
se

ct
io

n
al

ly
an

d
ov

er
ti

m
e.

T
h
e

sa
m

p
le

p
er

io
d

is
J
an

u
ar

y
19

68
to

J
u
n
e

20
14

.

5



Table A.1: Risk-Adjusted Returns with Two Eigenvectors

CAPM FF3 FF3+UMD FF5 FF5+UMD HXZ4 HXZ4+UMD
alpha 2.24∗∗∗ 2.17∗∗∗ 1.72∗∗∗ 2.22∗∗∗ 1.87∗∗∗ 1.98∗∗∗ 1.91∗∗∗

(0.26) (0.26) (0.25) (0.28) (0.27) (0.31) (0.28)
mktrf −0.04 −0.09 0.01 −0.07 0.00

(0.08) (0.07) (0.06) (0.08) (0.06)
smb 0.33 0.35∗∗ 0.19 0.17

(0.21) (0.14) (0.18) (0.12)
hml 0.10 0.27∗ −0.09 0.20

(0.15) (0.14) (0.17) (0.13)
umd 0.51∗∗∗ 0.53∗∗∗ 0.65∗∗∗

(0.13) (0.12) (0.12)
rmw −0.45∗∗ −0.59∗∗∗

(0.20) (0.14)
cma 0.41∗ 0.15

(0.24) (0.18)
mkt −0.03 0.01

(0.08) (0.07)
me 0.31 0.14

(0.22) (0.13)
ia 0.38 0.35

(0.26) (0.23)
roe −0.01 −0.61∗∗∗

(0.18) (0.14)
Adj. R2 -0.00 0.03 0.21 0.08 0.26 0.04 0.26
Num. obs. 557 557 557 557 557 557 557

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

This table reports alphas (%/month) and factor loadings on the factors by the Fama and French
(1993), Carhart (1997), Fama and French (2015) and the q-factor model (HXZ4) by Hou et al.
(2015). The arbitrage portfolio with two eigenvectors is estimated every month using the steps
outlined in Section 4. Newey and West (1987) standard errors are given in parentheses. The
sample period is January 1968 to June 2014.
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Table A.2: Risk-Adjusted Returns with Three Eigenvectors

CAPM FF3 FF3+UMD FF5 FF5+UMD HXZ4 HXZ4+UMD
alpha 2.14∗∗∗ 2.06∗∗∗ 1.75∗∗∗ 2.18∗∗∗ 1.93∗∗∗ 2.02∗∗∗ 1.97∗∗∗

(0.24) (0.25) (0.22) (0.27) (0.25) (0.30) (0.26)
mktrf 0.02 −0.03 0.04 −0.03 0.02

(0.07) (0.06) (0.05) (0.06) (0.05)
smb 0.36∗ 0.37∗∗ 0.21 0.21∗

(0.20) (0.15) (0.15) (0.12)
hml 0.11 0.23∗ 0.01 0.22∗

(0.14) (0.14) (0.15) (0.13)
umd 0.36∗∗∗ 0.38∗∗∗ 0.49∗∗∗

(0.12) (0.11) (0.12)
rmw −0.49∗∗ −0.59∗∗∗

(0.20) (0.16)
cma 0.21 0.02

(0.22) (0.19)
mkt −0.01 0.02

(0.06) (0.05)
me 0.32∗ 0.20

(0.19) (0.13)
ia 0.24 0.22

(0.24) (0.22)
roe −0.11 −0.56∗∗∗

(0.16) (0.13)
Adj. R2 -0.00 0.06 0.18 0.12 0.25 0.06 0.23
Num. obs. 557 557 557 557 557 557 557

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

This table reports alphas (%/month) and factor loadings on the factors by the Fama and French
(1993), Carhart (1997), Fama and French (2015) and the q-factor model (HXZ4) by Hou et al.
(2015). The arbitrage portfolio with three eigenvectors is estimated every month using the steps
outlined in Section 4. Newey and West (1987) standard errors are given in parentheses. The
sample period is January 1968 to June 2014.
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Table A.3: Risk-Adjusted Returns with Four Eigenvectors

CAPM FF3 FF3+UMD FF5 FF5+UMD HXZ4 HXZ4+UMD
alpha 2.48∗∗∗ 2.39∗∗∗ 1.98∗∗∗ 2.45∗∗∗ 2.13∗∗∗ 2.23∗∗∗ 2.16∗∗∗

(0.26) (0.27) (0.23) (0.29) (0.24) (0.30) (0.25)
mktrf −0.04 −0.08 0.01 −0.06 −0.00

(0.07) (0.07) (0.06) (0.07) (0.06)
smb 0.35∗ 0.36∗∗∗ 0.20 0.19∗

(0.18) (0.14) (0.14) (0.12)
hml 0.13 0.28∗∗ −0.05 0.21

(0.13) (0.14) (0.16) (0.13)
umd 0.46∗∗∗ 0.48∗∗∗ 0.59∗∗∗

(0.10) (0.09) (0.10)
rmw −0.44∗∗ −0.57∗∗∗

(0.19) (0.15)
cma 0.39∗ 0.16

(0.23) (0.20)
mkt −0.04 0.00

(0.07) (0.06)
me 0.33∗ 0.19

(0.19) (0.12)
ia 0.38 0.36∗

(0.24) (0.20)
roe −0.03 −0.57∗∗∗

(0.16) (0.13)
Adj. R2 -0.00 0.04 0.20 0.09 0.26 0.05 0.25
Num. obs. 557 557 557 557 557 557 557

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

This table reports alphas (%/month) and factor loadings on the factors by the Fama and French
(1993), Carhart (1997), Fama and French (2015) and the q-factor model (HXZ4) by Hou et al.
(2015). The arbitrage portfolio with four eigenvectors is estimated every month using the steps
outlined in Section 4. Newey and West (1987) standard errors are given in parentheses. The
sample period is January 1968 to June 2014.
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Table A.4: Risk-Adjusted Returns with Five Eigenvectors

CAPM FF3 FF3+UMD FF5 FF5+UMD HXZ4 HXZ4+UMD
alpha 2.56∗∗∗ 2.48∗∗∗ 2.04∗∗∗ 2.53∗∗∗ 2.18∗∗∗ 2.30∗∗∗ 2.23∗∗∗

(0.28) (0.29) (0.24) (0.31) (0.27) (0.33) (0.28)
mktrf −0.06 −0.11 −0.02 −0.09 −0.03

(0.08) (0.07) (0.06) (0.07) (0.06)
smb 0.36∗ 0.38∗∗∗ 0.22 0.21

(0.20) (0.14) (0.16) (0.13)
hml 0.12 0.28∗ −0.08 0.20

(0.14) (0.16) (0.17) (0.14)
umd 0.49∗∗∗ 0.51∗∗∗ 0.63∗∗∗

(0.12) (0.11) (0.11)
rmw −0.45∗∗ −0.59∗∗∗

(0.21) (0.16)
cma 0.44∗ 0.18

(0.25) (0.22)
mkt −0.06 −0.02

(0.08) (0.06)
me 0.35∗ 0.20

(0.20) (0.13)
ia 0.39 0.36

(0.26) (0.24)
roe −0.03 −0.61∗∗∗

(0.18) (0.14)
Adj. R2 0.00 0.04 0.20 0.09 0.25 0.05 0.25
Num. obs. 557 557 557 557 557 557 557

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

This table reports alphas (%/month) and factor loadings on the factors by the Fama and French
(1993), Carhart (1997), Fama and French (2015) and the q-factor model (HXZ4) by Hou et al.
(2015). The arbitrage portfolio with five eigenvectors is estimated every month using the steps
outlined in Section 4. Newey and West (1987) standard errors are given in parentheses. The
sample period is January 1968 to June 2014.
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Table A.5: Risk-Adjusted Returns with Seven Eigenvectors

CAPM FF3 FF3+UMD FF5 FF5+UMD HXZ4 HXZ4+UMD
alpha 2.69∗∗∗ 2.63∗∗∗ 2.23∗∗∗ 2.68∗∗∗ 2.37∗∗∗ 2.47∗∗∗ 2.41∗∗∗

(0.29) (0.30) (0.26) (0.33) (0.29) (0.35) (0.32)
mktrf −0.06 −0.12∗ −0.04 −0.11 −0.05

(0.08) (0.07) (0.06) (0.07) (0.06)
smb 0.39∗∗ 0.40∗∗∗ 0.24 0.23∗

(0.19) (0.15) (0.16) (0.13)
hml 0.08 0.22 −0.12 0.14

(0.14) (0.15) (0.17) (0.15)
umd 0.45∗∗∗ 0.46∗∗∗ 0.59∗∗∗

(0.12) (0.11) (0.11)
rmw −0.45∗∗ −0.57∗∗∗

(0.20) (0.15)
cma 0.41 0.18

(0.26) (0.22)
mkt −0.07 −0.04

(0.08) (0.06)
me 0.36∗ 0.22

(0.20) (0.14)
ia 0.33 0.31

(0.27) (0.25)
roe −0.05 −0.59∗∗∗

(0.19) (0.16)
Adj. R2 0.00 0.04 0.17 0.09 0.22 0.05 0.21
Num. obs. 557 557 557 557 557 557 557

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

This table reports alphas (%/month) and factor loadings on the factors by the Fama and French
(1993), Carhart (1997), Fama and French (2015) and the q-factor model (HXZ4) by Hou et al.
(2015). The arbitrage portfolio with seven eigenvectors is estimated every month using the steps
outlined in Section 4. Newey and West (1987) standard errors are given in parentheses. The
sample period is January 1968 to June 2014.
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Table A.6: Risk-Adjusted Returns with Eight Eigenvectors

CAPM FF3 FF3+UMD FF5 FF5+UMD HXZ4 HXZ4+UMD
alpha 2.67∗∗∗ 2.62∗∗∗ 2.13∗∗∗ 2.65∗∗∗ 2.27∗∗∗ 2.41∗∗∗ 2.33∗∗∗

(0.29) (0.30) (0.26) (0.33) (0.28) (0.36) (0.31)
mktrf −0.05 −0.12 −0.02 −0.09 −0.02

(0.08) (0.07) (0.06) (0.08) (0.07)
smb 0.37∗∗ 0.39∗∗∗ 0.22 0.21

(0.18) (0.15) (0.18) (0.14)
hml 0.05 0.23 −0.17 0.14

(0.14) (0.16) (0.17) (0.15)
umd 0.55∗∗∗ 0.57∗∗∗ 0.70∗∗∗

(0.12) (0.11) (0.12)
rmw −0.44∗∗ −0.59∗∗∗

(0.20) (0.15)
cma 0.48∗∗ 0.20

(0.24) (0.22)
mkt −0.06 −0.01

(0.08) (0.06)
me 0.35∗ 0.18

(0.21) (0.14)
ia 0.33 0.30

(0.29) (0.25)
roe 0.03 −0.61∗∗∗

(0.21) (0.16)
Adj. R2 -0.00 0.03 0.19 0.07 0.24 0.03 0.23
Num. obs. 557 557 557 557 557 557 557

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

This table reports alphas (%/month) and factor loadings on the factors by the Fama and French
(1993), Carhart (1997), Fama and French (2015) and the q-factor model (HXZ4) by Hou et al.
(2015). The arbitrage portfolio with eight eigenvectors is estimated every month using the steps
outlined in Section 4. Newey and West (1987) standard errors are given in parentheses. The
sample period is January 1968 to June 2014.
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Table A.7: Risk-Adjusted Returns with Nine Eigenvectors

CAPM FF3 FF3+UMD FF5 FF5+UMD HXZ4 HXZ4+UMD
alpha 2.60∗∗∗ 2.57∗∗∗ 2.15∗∗∗ 2.66∗∗∗ 2.33∗∗∗ 2.45∗∗∗ 2.38∗∗∗

(0.29) (0.30) (0.25) (0.33) (0.28) (0.36) (0.30)
mktrf −0.01 −0.08 0.01 −0.07 −0.01

(0.07) (0.07) (0.05) (0.07) (0.06)
smb 0.35∗∗ 0.37∗∗ 0.20 0.19∗

(0.17) (0.14) (0.14) (0.11)
hml 0.02 0.17 −0.13 0.13

(0.13) (0.15) (0.17) (0.13)
umd 0.47∗∗∗ 0.49∗∗∗ 0.62∗∗∗

(0.12) (0.10) (0.11)
rmw −0.48∗∗ −0.61∗∗∗

(0.20) (0.15)
cma 0.33 0.09

(0.23) (0.18)
mkt −0.04 −0.00

(0.08) (0.06)
me 0.31∗ 0.16

(0.19) (0.12)
ia 0.21 0.19

(0.25) (0.23)
roe −0.03 −0.60∗∗∗

(0.19) (0.15)
Adj. R2 -0.00 0.04 0.18 0.08 0.24 0.03 0.23
Num. obs. 557 557 557 557 557 557 557

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

This table reports alphas (%/month) and factor loadings on the factors by the Fama and French
(1993), Carhart (1997), Fama and French (2015) and the q-factor model (HXZ4) by Hou et al.
(2015). The arbitrage portfolio with nine eigenvectors is estimated every month using the steps
outlined in Section 4. Newey and West (1987) standard errors are given in parentheses. The
sample period is January 1968 to June 2014.
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Table A.8: Risk-Adjusted Returns with Ten Eigenvectors

CAPM FF3 FF3+UMD FF5 FF5+UMD HXZ4 HXZ4+UMD
alpha 2.22∗∗∗ 2.22∗∗∗ 1.79∗∗∗ 2.33∗∗∗ 1.99∗∗∗ 2.06∗∗∗ 2.00∗∗∗

(0.28) (0.30) (0.27) (0.33) (0.30) (0.37) (0.32)
mktrf −0.02 −0.06 0.03 −0.05 0.01

(0.07) (0.07) (0.07) (0.07) (0.07)
smb 0.19 0.20 0.01 −0.01

(0.24) (0.18) (0.19) (0.16)
hml −0.03 0.13 −0.20 0.08

(0.16) (0.14) (0.17) (0.13)
umd 0.48∗∗∗ 0.50∗∗∗ 0.63∗∗∗

(0.13) (0.12) (0.14)
rmw −0.59∗∗∗ −0.72∗∗∗

(0.19) (0.16)
cma 0.37 0.12

(0.26) (0.22)
mkt −0.01 0.03

(0.08) (0.07)
me 0.18 0.02

(0.24) (0.17)
ia 0.22 0.20

(0.28) (0.23)
roe −0.00 −0.58∗∗∗

(0.18) (0.17)
Adj. R2 -0.00 0.01 0.13 0.06 0.20 0.01 0.18
Num. obs. 557 557 557 557 557 557 557

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

This table reports alphas (%/month) and factor loadings on the factors by the Fama and French
(1993), Carhart (1997), Fama and French (2015) and the q-factor model (HXZ4) by Hou et al.
(2015). The arbitrage portfolio with ten eigenvectors is estimated every month using the steps
outlined in Section 4. Newey and West (1987) standard errors are given in parentheses. The
sample period is January 1968 to June 2014.
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Table A.10: Alphas using 24-month Estimation Period

# Eigenvectors CAPM FF3 FF3+UMD FF5 FF5+UMD HXZ4 HXZ4+UMD

1 1.27 1.15 1.24 1.30 1.36 1.49 1.48
2 1.53 1.44 1.28 1.56 1.43 1.57 1.53
3 1.91 1.84 1.68 1.96 1.82 1.93 1.89
4 2.21 2.13 1.91 2.26 2.09 2.22 2.18
5 2.31 2.22 1.99 2.37 2.18 2.31 2.27
6 2.43 2.34 2.08 2.45 2.24 2.41 2.36
7 2.47 2.38 2.12 2.50 2.29 2.46 2.41
8 2.49 2.39 2.15 2.53 2.34 2.48 2.44
9 2.55 2.46 2.21 2.60 2.40 2.54 2.49
10 2.58 2.48 2.24 2.61 2.41 2.55 2.51

This table reports alphas (%/month) against Fama and French (1993), Carhart (1997), Fama
and French (2015) and the q-factor model (HXZ4) by Hou et al. (2015). The arbitrage portfolio
is constructed using one through ten eigenvectors. It is estimated every month using the steps
outlined in Section 2. The sample period is January 1968 to June 2014. We use 24 months of data
to estimate the weights of the arbitrage portfolio and then hold the portfolio for one month.
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Table A.12: Alphas using 36-month Estimation Period

# Eigenvectors CAPM FF3 FF3+UMD FF5 FF5+UMD HXZ4 HXZ4+UMD

1 0.94 0.75 1.14 1.04 1.31 1.46 1.49
2 0.90 0.82 1.00 1.06 1.18 1.22 1.23
3 1.22 1.14 1.29 1.41 1.50 1.55 1.55
4 1.37 1.28 1.35 1.56 1.59 1.68 1.68
5 1.65 1.53 1.60 1.80 1.83 1.93 1.92
6 1.76 1.66 1.71 1.92 1.93 2.03 2.02
7 1.84 1.75 1.77 1.99 1.99 2.10 2.09
8 1.85 1.75 1.77 1.99 1.98 2.08 2.07
9 1.90 1.81 1.82 2.05 2.04 2.15 2.13
10 1.94 1.85 1.87 2.09 2.08 2.19 2.18

This table reports alphas (%/month) against Fama and French (1993), Carhart (1997), Fama
and French (2015) and the q-factor model (HXZ4) by Hou et al. (2015). The arbitrage portfolio
is constructed using one through ten eigenvectors. It is estimated every month using the steps
outlined in Section 2. The sample period is January 1968 to June 2014. We use 36 months of data
to estimate the weights of the arbitrage portfolio and then hold the portfolio for one month.
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Table A.13: Sharpe Ratios using various rebalancing frequencies

Rebalancing Frequency per Year

# Eigenvectors 1 2 3 4 6 12

1 0.35 0.43 0.48 0.72 0.96 1.44
2 0.44 0.58 0.68 0.87 1.06 1.49
3 0.42 0.71 0.74 0.91 1.25 1.71
4 0.47 0.70 0.73 0.92 1.26 1.75
5 0.47 0.67 0.58 0.81 1.10 1.66
6 0.47 0.69 0.62 0.80 1.13 1.67
7 0.45 0.74 0.69 0.80 1.22 1.72
8 0.41 0.68 0.69 0.77 1.13 1.58
9 0.44 0.68 0.73 0.93 1.22 1.75
10 0.31 0.55 0.57 0.72 1.10 1.35

This table reports annualized Sharpe Ratios of our arbitrage portfolios with various rebalancing
frequencies. The last column of 12 rebalancing frequency corresponds to our baseline case. We use
12 months of data to estimate the weights of the arbitrage portfolio and then hold the portfolio
over for the next 12/frequency months, at the end of which we rebalance the arbitrage portfolio
using the previous 12 month data. The sample period is January 1968 to June 2014.
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Table A.15: Alphas for Fourth Order Legendre Polynomials

# Eigenvectors CAPM FF3 FF3+UMD FF5 FF5+UMD HXZ4 HXZ4+UMD

1 2.52 2.49 2.10 2.57 2.26 2.34 2.28
2 2.99 2.97 2.37 2.99 2.52 2.66 2.58
3 2.75 2.70 2.26 2.76 2.40 2.51 2.45
4 2.98 2.92 2.36 2.94 2.50 2.60 2.53
5 3.04 2.98 2.39 3.00 2.54 2.62 2.53
6 3.17 3.14 2.53 3.18 2.70 2.80 2.71
7 3.25 3.23 2.63 3.22 2.76 2.85 2.77
8 3.16 3.17 2.52 3.16 2.66 2.73 2.64
9 3.05 3.05 2.41 3.04 2.55 2.61 2.53
10 2.70 2.69 2.11 2.64 2.20 2.19 2.12

This table reports alphas (%/month) against Fama and French (1993), Carhart (1997), Fama
and French (2015) and the q-factor model (HXZ4) by Hou et al. (2015). The arbitrage portfolio
is constructed using one through ten eigenvectors. It is estimated every month using the steps
outlined in Section 2. The sample period is January 1968 to June 2014.
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Table A.17: Alphas without Micro-Cap Stocks

# Eigenvectors CAPM FF3 FF3+UMD FF5 FF5+UMD HXZ4 HXZ4+UMD

1 1.42 1.37 1.09 1.47 1.25 1.30 1.26
2 1.82 1.78 1.24 1.88 1.45 1.53 1.46
3 1.74 1.68 1.29 1.79 1.47 1.54 1.48
4 1.99 1.96 1.45 2.04 1.64 1.73 1.66
5 2.04 2.03 1.46 2.10 1.65 1.73 1.65
6 2.04 2.02 1.43 2.11 1.64 1.74 1.65
7 2.15 2.16 1.57 2.26 1.80 1.89 1.81
8 2.13 2.14 1.56 2.18 1.72 1.85 1.77
9 1.81 1.85 1.28 1.90 1.45 1.58 1.50
10 1.53 1.54 0.96 1.58 1.12 1.20 1.12

This table reports alphas (%/month) against Fama and French (1993), Carhart (1997), Fama
and French (2015) and the q-factor model (HXZ4) by Hou et al. (2015). The arbitrage portfolio
is constructed using one through ten eigenvectors. It is estimated every month using the steps
outlined in Section 2. The sample period is January 1968 to June 2014. We exclude micro-cap
stocks, smaller than 10% quantile of the market capitalization among NYSE traded stocks.
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Table A.18: Risk-Adjusted Returns with respect to Alternative Factor Models

SY MP FF3+UMD+LIQ FF3+UMD+BAB FF3+UMD+STREV

(Intercept) 2.19∗∗∗ 2.12∗∗∗ 2.18∗∗∗ 2.18∗∗∗

(0.28) (0.26) (0.27) (0.26)
mktrf 0.01 −0.01 −0.01 0.00

(0.08) (0.06) (0.06) (0.06)
smb 0.43∗∗ 0.38∗∗∗ 0.38∗∗∗ 0.39∗∗∗

(0.20) (0.14) (0.15) (0.15)
mgmt 0.30

(0.21)
perf 0.22∗

(0.12)
hml 0.27∗ 0.32∗∗ 0.28∗

(0.14) (0.13) (0.16)
umd 0.48∗∗∗ 0.50∗∗∗ 0.46∗∗∗

(0.11) (0.11) (0.11)
liqf 0.03

(0.06)
bab −0.10

(0.09)
strev −0.11

(0.10)

Adj. R2 0.06 0.17 0.18 0.18
Num. obs. 557 557 557 557

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

This table reports alphas (%/month) and factor loadings on the factors by the several alternative
factor models. The arbitrage portfolio with six eigenvectors is estimated every month using the
steps outlined in Section 4. Newey and West (1987) standard errors are given in parentheses. The
sample period is January 1968 to June 2014.
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