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Abstract

We address investment and financing decisions of entrepreneurs entering into

option-for-guarantee swaps (OGSs). OGSs increase investment option values.

The entrepreneur first accelerates investment but then postpones investment

as funding gaps rise. Guarantee costs increase with project risks when fund-

ing gaps are small or large enough and otherwise the opposite holds true.

Investment is postponed as the project risk, effective tax rate or bankruptcy

costs increase. Surprisingly, the higher the project risk, the more the en-

trepreneur borrows and optimal leverage is much higher than predicted by

previous models. Entrepreneurs can succeed in securitizing their assets by

OGSs.
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1. Introduction

China has experienced rapid economic growth since the 1980s. Due to the

very strict requirements for the initial public offerings (IPOs) of equity, many

Chinese companies are unable to access equity financing and trips to the debt

market are a last resort. According to Liu et al. (2016), during 2013, the

volume of bank loans represented 84.5%, bond issuances represented 10.5%,

and equity offerings represented only 1.3% of the total capital raised through

formal channels in China. Debt financing is therefore an major source of

capital for Chinese companies. However, although SMEs play a vital role in

promoting economic growth over the world and they represent 99% of all the

Chinese companies, it is difficult for them to get loans from a bank. For this

reason, a large number of SMEs have to give up investing in a project even

it is very profitable. This situation gets even more serious due to the recent

global financial crisis.

To overcome the financing constraints, some Chinese SMEs turn to in-

surers and enter into some equity default swaps (EDSs) agreement with an

insurer and a lender (bank). According to Dybvig, Shan and Tang (2016), the

amount of guaranteed loans was more than twice as much as that of equity

financing during this period while, according to the World Bank Enterprise

Surveys, more than 79% of the bank loan must be insured.

On the other hand, Peer to peer (P2P) lending is getting more and more
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popular, which plays a significant role for the inclusive finance. Since the

well-known Mandatory Payment Arrangements are forbidden in China, to

protect inexperienced investors, many P2P landing platforms ask a third

party to provide a guarantee for the lending and guarantee service gets much

more popular than before.

There are three popular types of loan guarantees in China: equity-, fee-

and option-for-guarantee swaps, denoted by EGSs, FGSs and OGSs respec-

tively. The OGSs appeared for the first time in Shenzhen of China, in August

2002, when Shenzhen Bak Battery Limited liability company (BB) signed an

OGS swap agreement with Shenzhen High-Tech Investment Group CO., LTD

(HTI) and obtained 30 million RMB yuan from a bank with the guarantee of

the latter. In return for the guarantee, the BB granted the HTI an American

call option to buy two percent of the BB’s equity, of which the value was

worth 20 million RMB yuan. Thanks to this swap, the BB grew rapidly. In

the year of 2011, its products represent 5% of the global market and and

ranked 7th in its industry over the world. In fact, the BB repurchased that

option, the value of which increased to 118 million RMB yuan, by negotiat-

ing with the HTI in December 2003. At present, a half of the public listed

companies in Shenzhen, including the well-known Huawei, BYD, Skyworth

and so on, have greatly benefited from the loan guarantees provided by the

HTI, according to our recent interview with the president, Dr. Suhua Liu,

of the corporation.

An OGS is a three-party agreement between a bank/lender, an insurer

and an SME/borrower, where a borrower obtains a loan from a lender at a

given interest rate and if he defaults on the loan, the insurer must pay all
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the outstanding interest and principal to the lender. In return, the borrower

must give the insurer a call option to buy a given fraction of equity at a given

exercise price per share.

OGSs are similar with credit default swaps (CDSs), which are designed to

transfer the credit exposure of fixed income products between parties. In a

CDS, the purchaser of the swap makes payments (the CDS ”fee” or ”spread”)

up until the maturity date of a contract to the seller of the swap. In return,

the seller agrees to pay off a third party debt if this party defaults on the

loan, see Rutkowski and Armstrong (2009) among others.

OGSs seem more similar with equity default swaps (EDSs) discussed by

Mendoza and Linetsky (2011), which are designed to deliver a protection

payment to the EDS buyer at the time of the triggering event defined as

the stock price decline below a pre-specified lower triggering barrier level. In

exchange, the EDS buyer makes periodic premium payments at time intervals

at the equity default swap rate up to the triggering event or the final maturity,

whichever comes first. For this reason, we think of OGSs as a new type of

EDSs since all of them are derivatives essentially underlying the value of

equity of a firm.

Roughly speaking, in addition to overcoming financing constraints, OGSs

actually force a borrower to reserve a part of his profits when his firm is well

profitable to pay his debt once the firm falls in distress. Doing so, insurers

play a key role but they do not obtain net earnings from the swap, since

we assume the guarantee market is fully competitive.1 As a result, such

1We assume this also because a lot of guarantee companies in China are supported by
the government, the main goal of which is to stimulate investment. On the other hand, it
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guarantee succeeds in smoothing the borrower’s cash flow and can improve

the social welfare level greatly, especially when idiosyncratic risk is taken into

account, as argued by Yang and Zhang (2015). In view of this, OGSs are a

considerable financial innovation, worth developing a formal OGSs’ theory.

This paper continues a long line of research originating in McDonald and

Siegel (1986) and Dixit and Pindyck (1994) using a real options model to

study firm’s investment and financing decisions. But differently, we address

the decisions with a swap agreement to overcome financing constraints.

Our paper is closely related with Yang and Zhang (2013), Wang et al.

(2015), Xiang and Yang (2015) and Yang and Zhang (2015). The first three

papers investigate another similar but different swap, i.e. EGS. OGSs bring

insurers more flexibility benefits but it leads to a much more challenging

problem, since we have to endogenously fix a new exercising threshold and

two different default thresholds instead of one for EGSs to solve the prob-

lem. The last one by Yang and Zhang (2015) explores OGSs for the first

time. However, they are silent about dynamic investment under irreversibil-

ity and uncertainty and their main goal is to make clear which are the better

of OGSs and EGSs in a static capital structure model. They show that

in view of utility-based prices, OGSs are generally better than EGSs. The

advantage increases quickly with the firm’s cash flow level and is generally

more pronounced when risk aversion, cash flow risk or the correlation be-

is true that the guarantee market would be not so competitive and furthermore, in many
cases, it is impossible for an entrepreneur (borrower) to invest in a project if he does not
get a guarantee. Accordingly, insurers should share the value of the option to invest in a
project with entrepreneurs, as argued by Gan et al. (2016), who, however, focus on FGSs
and EGSs instead of OGSs we consider here.
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tween the cash flow and the market increases. It is therefore interesting to

further clarify how OGSs affect dynamic investment decisions. To this end,

we examine the interaction between investment and financing decisions of a

firm entering into OGSs. Without a doubt, it is more challenging to solve

our model than previous ones. For example, we must solve the Nash equi-

librium of a game between an insurer and a borrower and find four optimal

stoping times, i.e. the investment time of a project, the exercising time of

an insurer’s option and two default times. Furthermore, in contrast to Yang

and Zhang (2015), our focus is to study how OGSs influence the value of the

option to invest and how they affect investment threshold, coupon payments,

leverage and default thresholds. We also consider how a funding gap impacts

on investment time and the value of the option, and how a borrower’s incen-

tive behavior changes after he enters into an OGS. In particular, according

to Chinese taxation regulations, our model introduces a new factor to avoid

double taxation. In this way, we show that the benefit for an entrepreneur

entering into OGSs is much more than that uncovered by previous studies

and we therefore propose a new explanation for why loan guarantees are so

popular in China.

In short, our model reveals that an OGS agreement can not only over-

come financing constraints but also increase the value of the option to invest

greatly. An entrepreneur (borrower) first accelerates and then postpones in-

vestment as the funding gap rises. The guarantee cost increases with project

risk when the funding gap is small or large enough and otherwise the oppo-

site holds true. Investment is postponed as project risk, effective tax rate

or bankruptcy cost rise. In contrast to a classical case where debt is fully
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protected without a guarantee, the higher the project risk, the more an en-

trepreneur borrows. In particular, the value of the option to invest increases

remarkably due to OGSs and the increased amount rises quickly with effec-

tive tax rate. Interestingly, our model shows that the optimal leverage is

much higher than that predicted by Leland (1994). Thanks to the swap,

entrepreneurs raise much more funds than required to invest and in a sense

they succeed in ’securitizing’ their assets.

The rest of the paper proceeds as follows. Section 2 presents the mod-

el. Section 3 discusses the pricing of corporate claims and guarantee costs,

optimal financing and optimal investment. Section 4 considers model impli-

cations. Section 5 concludes. Technical developments are included in the

Appendix.

2. Model setup

We consider an entrepreneur who possesses the option to invest in a single

project at any time in the future, which requires a one-time investment cost

I. We assume the entrepreneur finances the cost via his own funds (internal

financing) and the remaining funding gap is raised by debt financing. It is

common that such investment has a high default probability, lacks collat-

eral and involves severe information asymmetry between a borrower and a

lender.2 Therefore we assume the entrepreneur cannot borrow money direct-

ly from a lender (bank) and he chooses to enter into an option-for-guarantee

swap. Under this swap, the entrepreneur obtains a loan from a lender (bank)

2By contrast, we presume insurers are powerful in accurately identifying the default
risk and specifically, there is no information asymmetry between borrowers and insurers.
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guaranteed by an insurer after granting the insurer a perpetual American

call option to purchase a fraction ϕ, called guarantee cost, of his equity at

the strike price K per share.3 Once the entrepreneur defaults, the insurer

must make a compensatory payment instead of the borrower, paying all the

outstanding interest and principal to the lender. For tractability reasons,

we assume debt is interest-only (consol) with its coupon rate being constant

c and it is issued only at the investment time remaining unchanged until a

default occurs.

After the investment option is exercised, we assume the project generates

earnings before interest and tax (EBIT) δt, which is given by the following

geometric Brownian motion:

dδt = µδtdt+ σδtdZt, δ0 > 0 given, (1)

where µ is the mean appreciation rate, σ > 0 is the volatility rate, and

Z is a standard Brownian motion defined on a filtered probability space

(Ω,F , {Ft}t≥0,Q). The filtration {Ft}t≥0 describes the flow of information

available to investors and Q is a given risk-neutral probability measure.

After debt is in place, at any time t > 0, the entrepreneur has the option

to default on the outstanding debt, the exercising of which leads to the liqui-

dation of his firm. The bankruptcy (liquidation) time might be either earlier

or later than the time when the call option of the insurer is exercised and so

it is referred to as pre-exercise or post-exercise default time respectively in

the following text.

3Without loss of generality, we assume the number of shares of stock is just one.
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Once the entrepreneur defaults, the outside lenders (creditors) take over

and liquidate the firm. We assume the liquidation value of the firm is equal

to a fraction (1− α) of its value and the remaining fraction α is lost due to

bankruptcy costs. Moreover, the creditors will gain an extra compensatory

payment from the guarantee company so that the lump-sum payment re-

ceived by the creditors equals c/r before tax at default time, where r is the

risk-free interest rate. For this reason, thanks to the option-for-guarantee

swap, the loan is actually risk-free.

Last, similar to Goldstein et al. (2001), we assume a simple tax struc-

ture that includes corporate and personal taxes, where interest payments are

taxed at a personal rate τi, effective dividends are taxed at τd, and corporate

profits are taxed at τc, with full loss offset provisions.

3. The pricing of corporate securities, guarantee cost, and optimal

investment

In this section, using a backward method, we first provide the pricing of

contingent claims after investment, calculate the fair guarantee cost of the

option-for-guarantee swap, and jointly determine the optimal bankruptcy

policy by the entrepreneur and the optimal exercising policy by the insurer.

Then, we consider the optimal financing and investment problems.

3.1. The risk-neutral prices of corporate securities

To price a claim, we must specify its cash flow in advance. We note that

default is endogenously decided by the entrepreneur and naturally the default

threshold must depend on whether the insurer’s call option is exercised or

not. For this reason, to define all the claims we discuss here, the key is
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to determine four thresholds (or equivalently four stopping times), i.e. the

investment threshold, the exercise threshold of the insurer’s option, the pre-

exercise and post-exercise default threshold, which are all independent of time

since our model is time-homogeneous, and we therefore denote them by δi,

δk, δbo, δb respectively throughout the text. Noting that the four thresholds

are endogenously determined by different investors, we first take them and

guarantee cost ϕ as given in this subsection to price contingent claims and

then in the next subsection derive their values, which actually constitute a

Nash equilibrium of a game between the entrepreneur and insurer.

At any time t ≥ 0 after investment but prior to both bankruptcy and the

exercising of the insurer’s call option, the entrepreneur gains an instantaneous

cash flow (1− τf )(δt − c) from the firm, where τf = 1− (1− τc)(1− τd) > 0

represents the corporate effective tax rate. The guarantee company holds an

American call option and the lender receives the cash flow c before tax. As

the EBIT δt of the firm becomes sufficiently small and hits from above the

pre-exercise threshold δbo, the firm is liquidated. On the other hand, if the

EBIT δt of the firm rises sufficiently high and hits from below the exercise

threshold δk, the insurer exercises the American call option and obtains a

fraction ϕ of equity after paying ϕK to the entrepreneur.

Since our model is time-homogenous, we assume without loss of generality

that the current time is zero and the current cash flow rate δ0 = x. To

facilitate exposition, we denote by E(x, c) the value of the levered firm’s

equity and by Ej(x, c), Dj(x, c) and V j(x, c) the value of the entrepreneur’s

equity, of debt and of the levered firm, respectively, where j ∈ {a, b} and

superscripts “a” and “b” indicate the value of that claim after and before
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the exercising of the insurer’s option, respectively.

Using the well known risk-neutral pricing theory, we derive the prices of

the corporate securities under the assumption that the guarantee cost, the

exercise and default thresholds are given in advance. To do so, we utilize the

backward induction method. That is, we begin with deriving the prices after

the insurer’s call option is already exercised and then turn to the pricing

prior to the exercise time. We directly list the results below and the details

of our derivations are relegated to the appendices.

First, we consider the case where the investment has taken place and

the insurer’s option is already exercised. The value of the levered firm’s

equity, of the entrepreneur’s equity and of debt without a guarantee are

given respectively by

E(x, c) = (1− τf )

(
x

r − µ
− c

r

)
− (1− τf )

(
δb

r − µ
− c

r

)(
x

δb

)β−

, (2)

Ea(x, c) = (1− ϕ)E(x, c), (3)

Da(x, c) = (1− τi)

[
c

r
+

(
(1− τf )(1− α)

(1− τi)

δb
r − µ

− c

r

)(
x

δb

)β−]
, (4)

where β− = 1
2
− µ

σ2 −
√
(1
2
− µ

σ2 )2 +
2r
σ2 < 0, is the negative root of the

characteristic equation 1
2
σ2x(1 − x) + µx − r = 0. The other positive root

of the characteristic equation is denoted by β+, which is β+ = 1
2
− µ

σ2 +√
(1
2
− µ

σ2 )2 +
2r
σ2 > 1, and will be cited later.

Remark 1. For some given investment threshold, exercising threshold, and

two default thresholds, all the prices of contingent claims in our model are

easy to derive and explain from economic intuition. For example, The value
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of equity in (2) is that of the total future cash flow received by shareholders if

default does not happen, less a deduction equal to the value of the total cash

flow received starting at default time. Or equivalently, the equity value equals

the present value of the cash flow without possibility of default plus the value

of the option to default.

Next, we turn to the situation where the investment has already taken

place but the insurer’s option is not exercised yet. In the same way, we derive

that the value of equity owned by the entrepreneur and of debt without a

guarantee are given respectively by

Eb(x, c) =(1− τf )

(
x

r − µ
− c

r

)
+Π1(x)

[
Ea(δk, c) + ϕK − (1− τf )

×
(

δk
r − µ

− c

r

)]
− Π2(x)(1− τf )

(
δbo

r − µ
− c

r

)
, (5)

Db(x, c) =(1− τi)
c

r
+Π1(x)

[
Da(δk, c)− (1− τi)

c

r

]
+Π2(x)

(
V (δbo)− (1− τi)

c

r

)
, (6)

where V (δbo) is the liquidation value, i.e. the value of the unlevered firm at

default time, given by

V (δbo) = (1− α)(1− τf )
δbo

r − µ
,
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and

Π1(x) =
δ
β+

bo x
β− − δ

β−
bo x

β+

δ
β+

bo δ
β−
k − δ

β−
bo δ

β+

k

, Π2(x) =
δ
β−
k xβ+ − δ

β+

k xβ−

δ
β+

bo δ
β−
k − δ

β−
bo δ

β+

k

(7)

are respectively the value of the claim on nothing but one dollar received at

the exercise time of the insurer’s option prior to default, and that of the claim

on nothing but one dollar received at the default time before the exercising of

the option, conditional on the current cash flow level being x, which satisfies

δbo < x < δk. The values defined by (7) are key to price contingent claims

since they give the prices of the claims like the well-known Arrow securities

and using them, we can easily explain the prices given by (5) and (6). In

particular, the value, denoted by V G(x), of the American call option can be

directly written as

V G(x) = Π1(x)[E(δk, c)−K]+ for δbo < x < δk, (8)

and naturally, the value of the insurer’s call option equals ϕV G(x).

3.2. Optimal exercise and default thresholds with the fair guarantee cost

Based on previous computations, in this subsection we derive the fair

guarantee cost, optimal exercise threshold decided by the insurer, and both

pre-exercise and post-exercise default threshold decided by the entrepreneur.

First, taking the default threshold δb as the decision variable and maxi-

mizing the value of the entrepreneur’s equity given by (3), we immediately
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derive the following optimal post-exercise default threshold:

δb = − β−

1− β−

(r − µ)c

r
. (9)

Second, according to (3) and (7), taking δbo as the decision variable and

maximizing the value of the entrepreneur’s equity given by (5), we derive

the optimal pre-exercise default threshold δbo satisfying the following algebra

equation:

(
Ea(δk, c) + ϕK

1− τf
−

(
δk

r − µ
− c

r

))
(β− − β+)δ

(β++β−−1)
bo −

(
δbo

r − µ
− c

r

)
×
(
β+δ

β−
k δ

(β+−1)
bo − β−δ

β+

k δ
(β−−1)
bo

)
+

δ
β−
k δ

β+

bo − δ
β+

k δ
β−
bo

r − µ
= 0. (10)

Third, according to (2) and (7), taking δk as the decision variable and

maximizing the value of the insurer’s option given by (8), we derive the

optimal exercise threshold δk satisfying

(
(1− β−)

δk
r−µ

+ β−c
r

+ β−K
1−τf

)
δ
β+

bo δ
β−
k + (β− − β+)

(
δb

r−µ
− c

r

)(
δk
δb

)β−

δ
β−
bo δ

β+

k

−
(
(1− β+)

δk
r−µ

+ β+c
r

+ β+K
1−τf

)
δ
β−
bo δ

β+

k = 0.

(11)

Last, we turn to the guarantee cost. Naturally, we assume the swap

agreement is signed just when the investment takes place. For this reason,

we take the current cash flow level as the investment threshold, i.e. x = δi,

satisfying δbo < x = δi < δk. Denote by Dguar(δi) the value of the insurer’s

compensatory payment to the bank/lender, which is taxed at a personal tax
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rate τi. Clearly, in order to fully protect the debt, the value Dguar(δi) at the

investment time must satisfy the following equation:

Db(δi, c) +
1− τi
1− τf

Dguar(δi) =
c

r
(1− τi). (12)

Substituting (6) into (12), we get

Dguar(δi) = (1− τf )

[
Π1(δi)

(
c

r
− Da(δk, c)

1− τi

)
+Π2(δi)

(
c

r
− V (δbo)

1− τi

)]
.

(13)

Clearly, the first term of the right-hand side in (13) represents the value of

the insurer’s compensatory payment at the exercise time of the insurer’s call

option, and the second term captures the value of the insurer’s compensatory

payment at the default time. This is quite in agreement with intuition.

We assume the market is competitive and therefore, at the investment

time, an insurer’s compensatory payment Dguar(δi) to a bank/lender must

equal the value of the granted call option, i.e.

(1− τf )

[
Π1(δi)

(
c

r
− Da(δk, c)

1− τi

)
+Π2(δi)

(
c

r
− V (δbo)

1− τi

)]
= ϕV G(δi).

(14)

From (8) and (14), the fair guarantee cost ϕ is given by

ϕ =

(1− τf )

[
Π1(δi)

(
c
r
− Da(δk)

1−τi

)
+Π2(δi)

(
c
r
− V (δbo)

1−τi

)]
Π1(δi)[E(δk, c)−K]+

. (15)

In short, for a given guarantee cost ϕ and coupon rate c of debt, we solve
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a set of nonlinear simultaneous equations given by (9)∼(11) to derive the

exercise threshold δk and the default thresholds δb and δbo, all of which are

independent of investment threshold δi but a function of the coupon rate c

and guarantee cost ϕ. On the other hand, for a given investment threshold δi

and coupon rate c of debt, we solve a set of nonlinear simultaneous equations

given by (9)∼(11) and (15), and conclude that the guarantee cost, exercise

threshold, pre-exercise and post exercise default threshold are a function of

the investment threshold δi and coupon rate c, which are determined in the

next subsection.

Remark 2. Unlike previous studies, say Yang and Zhang (2015) and Xiang

and Yang (2015), the second term of the left side of (12) is added a factor

1−τf in the denominator. This tax assumption is realistic in China and more

reasonable as well: First, debt in our model carries no risk and therefore, it

should still bring tax shields even after borrowers have defaulted. Second

and more importantly, according to the Chinese Administration of Taxation

(Circular Cai Shui [2007] No. 27), the compensatory payment of an insurer

can be deduced from the insurer’s income that must be taxed. As a result, the

insurer actually needs to pay less compensatory payment to the lender. This

new tax structure is also quite in agreement with the Chinese government’s

guarantee promotion policies, which encourage insurers to offer guarantee

services for SMEs. We emphasize that, due to our previous assumption that

the guarantee market is fully competitive, all tax shields are harvested at last

by entrepreneurs through paying less guarantee costs to insurers thanks to

(14). Naturally, under this tax assumption, debt financing is particularly

profitable and so the optimal leverage will get much higher than that without
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a guarantee, as shown in the following Section 4.

3.3. Financing and investment polices

Generally speaking, the financing amount or almost equivalently the

coupon rate c is determined by the funding gap to start a project. How-

ever, after entering into the option-for-guarantee swap, an entrepreneur can

finance his investment without financing difficulties. For this reason, we take

the coupon rate as a decision variable rather than the exogenously given one

as assumed before, and consider the optimal capital structure in this sub-

section. After that, taking all the items discussed before into account, we

address the pricing and timing of the option to invest in the project defined

by (1).

First, thanks to the swap, debt is actually risk-free and consequently the

entrepreneur can raise D0(c) ≡ (1 − τi)c/r of money at investment time in

return for the coupon payment c from a competitive market. That is, the

amount of money he must invest in the project is just the balance I −D0(c).

Hence, denoting by FV (x) the value of the entrepreneur’s option to invest,

he should solve the following optimization problem for the financing and

investment polices:

FV (x) = sup
δi,c≥0

E
{
e−rti

[
Eb(δi, c)− (I −D0(c))

]}
, (16)

where ti is the first hitting time of the investment threshold δi, which is a

stopping time on the filtered probability space (Ω,F , {Ft}t≥0,Q).

According to Dixit and Pindyck (1994), we have E[e−rti ] = (x/δi)
β+ .
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Thus, the optimization problem of (16) is rewritten as

FV (x) = sup
δi≥0,c≥0

(
Eb(δi, c) +D0(c)− I

)(
x

δi

)β+

. (17)

This is a nonlinear programming problem. Due to the fact that the value

Eb(δi, c) given by (5) depends on the exercise threshold δk, default threshold

δbo and guarantee cost ϕ, which are the functions of the two decision variables

δi and c given by (10), (11) and (15) respectively, we provide the following

numerical algorithm for solving (17) instead of presenting its first-order con-

dition: First, we fix an interval, denoted by Co, consisting of the candidates

for the optimal coupon rate c and an interval, denoted by Inv, consisting of

the candidates for the optimal investment threshold δi. Second, for a given

accuracy level, we choose a grid

{
(cj, δki ), j ∈ {1, · · · ,M}, k ∈ {1, · · · , N}

}
⊆ Co× Inv.

Last, we take a two-dimensional search scheme on the grid to get the optimal

investment threshold δ∗i and optimal coupon rate c∗, which maximize the

value (Eb(δi, c) +D0(c)− I)(x/δi)
β+ of the option to invest.

To sum up, our model states that investment and financing directly in-

teract with each other under the swap agreement. For a given guarantee

cost, the exercising of the insurer’s option and defaulting polices by the en-

trepreneur are independent of investment policy but the latter has a direct

effect on the guarantee cost, which has an important impact on the exercise

threshold and the two default thresholds. All of the guarantee cost, investing,

exercising and defaulting polices have an effect on optimal coupon rate and
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vice versa. In fact, to determine the guarantee cost, exercising, defaulting,

investment and financing polices, we have solved a system of nonlinear equa-

tions simultaneously given by (9)∼(11), (15) and the first-order conditions

(two equations) of the optimization problem (17).

4. Model implications

After the analytical derivations in the previous text, we provide numerical

analysis in this section. To do so, following Mauer and Sarkar (2005) among

others in the real options literature, we take the following baseline parameter

values unless otherwise stated: the risk-free interest rate r=5%, expected

growth rate of the firm’s earnings µ=2%, its volatility σ=30%, personal tax

rate τi=25%, corporate profit tax rate τc=35%, dividend tax rate τd=20%

(i.e. the effective tax rate τf = 0.48), bankruptcy loss rate α=35%, initial

earnings before interest and tax δ0 = x = 1, irreversible investment cost

I = 10, the strike price of the American call option K=5.

The above-defined baseline parameter values are carefully selected to ex-

clude some obviously uninteresting cases, say the case of that the current

cash flow level satisfies x > min(δi, δk). That is, we do not consider the

following two situations: First, the entrepreneur exercises the investment op-

tion immediately; Second, the insurer exercises his call option once the swap

agreement is signed.

4.1. The effects of the funding gap and project risk on the entrepreneur’s and

insurer’s polices and guarantee cost

We assume an entrepreneur first utilizes his own funds to start a project

but there is a funding gap, which he must cover by external financing. Our
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Figure 1: The investment threshold vs.
coupon rate
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Figure 2: The value of the investment op-
tion vs. coupon rate.

model argues that he can cover the gap by entering into an option-for-

gurantee swap. Naturally, we wonder how the funding gap or equivalently

the corresponding coupon rate and project risk (volatility) impact on the

pricing and timing of the investment option and insurer’s call option, both

the pre-exercise and post-exercise default threshold, and the guarantee cost.

This subsection answers these problems.

Figure 1 depicts the impact of the coupon payment of debt on investment

thresholds for three different volatility levels (σ=0.2, σ=0.3, σ=0.4). As we

expected, no matter what capital structure is (i.e. how much the coupon

rate c is), the bigger the business risk of the firm, the larger the value of the

entrepreneur’s option to invest and thus the later the investment threshold.

It is seen that there is a U-shaped relation between investment thresholds

and the coupon payments: Investment thresholds decrease first and then

increase with the coupon payments of debt. The reason of the result is

that a higher coupon payments of debt has two opposite effects: one is to

accelerate investment since it increases tax shields and the other is to delay
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Figure 3: The exercise threshold of the in-
surer’s call option vs. coupon rate.
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Figure 4: The value of the insurer’s call
option vs. coupon rate.

investment because it increases bankruptcy costs as well as the guarantee

cost. These conclusions are in agreement with Xiang and Yang (2015) who

consider another but similar swap, called the equity-for-guarantee swap.

Figure 2 illustrates the value of the option to invest as a function of the

coupon payment for three different volatilities. It shows that the value first

rises and then declines with a growth of the coupon rate and the three curves

are globally concave, meaning there is an optimal coupon rate to maximize

the value of the option to invest for any given volatility of the project. This

actually explains why it is interesting for us to discuss the optimal capital

structure problem in (16). It happens just because of the same reason with

why the curves in Figure 1 are convex. In addition, Figure 2 states a well-

known phenomenon. That is, for a given coupon payment c, an increase in

the project risk (volatility) induces a larger value of the investment option.

Figure 3 depicts the exercise threshold of the insurer’s option as a function

of the coupon payment for three different volatilities. It says that a growth of

the coupon payment of debt gets rise to an increase in the exercise threshold,
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fault threshold vs. coupon rate.
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Figure 6: The guarantee cost vs. coupon
rate.

meaning that the exercising time of the call option is postponed. This results

from the fact that a higher coupon payment means a larger compensatory

payment and thus a higher value of his call option is needed in return for

his guarantee, as documented by Figure 4. What’s more, the larger the

coupon rate, the less the value of equity, i.e. the less the insurer obtains

upon exercising his option and therefore his waiting is more valuable. The

results displayed in Figure 4 are evident since according to (14), the value

of an insurer’s call option is just the insurer’s compensatory payment, which

naturally increases with the associated coupon rate.

In addition, for a given coupon payment of debt, Figures 3 and 4 indicate

that the higher the project risk, the larger the value and the higher the exer-

cise threshold of the insurer’s option. This is consistent with the conclusions

about the investment option displayed in Figures 1 and 2.

Figure 5 explains that as we expect, both the pre-exercise and post-

exercise default threshold increase with the funding gap but decrease with

the project risk. In particular, the pre-exercise default threshold is bigger
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than the post-exercise one as reported by Yang and Zhang (2015), and their

spread is very small when the coupon rate is low but it increases with a

growth of the rate.

Figure 6 says that the guarantee cost increases with the coupon rate. This

is obvious. However, we find from this figure that there can be ambiguity

as to whether the guarantee cost increases or decreases with project risk. In

fact, such cost might increase since a higher project risk leads to a larger

default probability and consequently the insurer demands a bigger fraction

(guarantee cost) of equity in return for his more likely default loss. On the

other hand, from the well-known option pricing theory, the higher the project

risk, the bigger the value of the insurer’s call option and so a less fraction of

equity is enough to match his guarantee commitment.

4.2. Asset substitution and debt overhang

Markets are generally imperfect and thus it is important to select a suit-

able capital structure. To assess capital structure, we usually consider inef-

ficiencies arising from asset substitution and debt overhang. Naturally we

wonder whether and how OGS induces the inefficiencies arising from asset

substitution discussed by Jensen and Meckling (1976) and debt overhang by

Myers (1977).

To see if there is an inefficiency from asset substitution and make a com-

parison between an OGS and its peer EGS, Figure 7 depicts the sensitivity of

the value of the entrepreneur’s claim Eb(x, c) to the volatility σ as a function

of the cash flow level x. Following the literature on corporate finance, the

sensitivity is measured by the derivative of the value of the entrepreneur’s

claim with regard to the volatility of the firm’s cash flow. The figure shows
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Figure 7: The sensitivity ∂Eb(x, c)/∂σ
of the value Eb(x, c) of the shareholders’
claim to the volatility σ as a function of
the cash flow level x
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Figure 8: The sensitivity ∂Eb(x, c)/∂A−1
of the value Eb(x, c) of the shareholders’
claim to the firm’s value A versus the cash
flow level x.

that the derivatives are always positive, implying that entrepreneurs will in-

vest in a higher risk project once they have such selection. The larger the

guarantee cost, the stronger the incentive. This happens because under the

swap agreements, debt is not protected in the entrepreneur’s view though the

existing creditor/lender is sufficiently protected since the swap transfers his

risk exposure entirely to the insurer. Jensen and Meckling (1976) documents

that when debt is not protected, there is a strong risk-shifting incentive for

shareholders to invest in high risk project since they harvest all the profit if

they succeed but transfer loss to the creditors if they fail. For this reason,

our model suggests that to enter into the swap, insurers should in advance

limit the project in which the borrower is permitted to invest the loan if he

has several investment opportunities in the future.

To make clear if there is a debt overhang problem, Figure 8 illustrates the

sensitivity of the value of the shareholders’ claim Eb(x, c) to the unlevered

firm’s value A as a function of the cash flow level x, where the value A is
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equal to (1 − τf )x/(r − µ) when the firm’s EBIT is x. The sensitivity is

measured by the derivative ∂Eb(x, c)/∂A minus one, meaning that the net

gain harvested by shareholders after investing a unit of capital. The figure

shows that for different volatility of the firm’s earnings and the cash flow level,

the net profit is always negative, and thus there is a debt overhang problem

if OGSs or EGSs are signed. It implies that the entrepreneur is unwilling

to inject his own funds to make his firm solvent even if he has money. This

conclusion reminds the insurer that after entering into such swap contract,

the entrepreneur will not invest his funds in the project any more and so it

seems unrealistic. As a matter of fact, an SME might reinvest its retaining

earnings and grow with the time. It turns out that this inconsistency results

from the fact that an SME may be endowed with some growth options that

we do not take into account in this paper, see e.g. Hackbarth and Mauer

(2012).

In addition, Figures 7 and 8 show that the OGS induces less inefficiencies

arising from both asset substitution and debt overhang than its peer EGS.

4.3. The effects of the tax policy, project risk and bankruptcy loss on invest-

ment and financing decisions

In this subsection, we address the effects of project risk σ, effective cor-

porate tax rate τf and bankruptcy loss rate α on investment timing, financ-

ing structure, default thresholds, leverage level, guarantee cost, and exercise

threshold of the insurer’s option under optimal capital structure.

To make a sharp comparison, we introduce a benchmark model where

debt is fully protected as assumed by Leland (1994). That is, debt issued

is risk-free, and the firm must be liquidated once its EBIT hits a threshold
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Table 1: Investment and financing decisions under optimal capital structure

FV (x) δi Eb(δi, c) c∗ L∗ δbo ϕ δb δk IP
Panel A1: The benchmark model
τf=0.35 15.78 1.71 35.55 0.11 0.04 NA NA 0.12 NA NA
τf=0.45 12.67 2.01 34.21 0.20 0.08 NA NA 0.25 NA NA
τf=0.50 11.20 2.20 33.69 0.23 0.10 NA NA 0.32 NA NA
Panel A2: Financing with an option-for-guarantee swap
τf=0.35 16.67 1.65 16.11 1.41 0.57 0.42 0.23 0.38 3.39 5.68
τf=0.45 15.28 1.76 9.02 1.89 0.76 0.62 0.44 0.51 4.31 20.59
τf=0.50 14.72 1.82 7.23 2.02 0.81 0.69 0.51 0.54 4.61 31.44

Panel B1: The benchmark model
σ=0.30 11.78 2.12 33.88 0.22 0.09 NA NA 0.29 NA NA
σ=0.40 12.73 2.87 48.08 0.13 0.04 NA NA 0.17 NA NA
σ=0.50 13.66 3.79 64.89 0.06 0.01 NA NA 0.08 NA NA
Panel B2: Financing with an option-for-guarantee swap
σ=0.30 14.94 1.79 7.81 1.97 0.79 0.67 0.49 0.53 4.49 26.78
σ=0.40 16.00 2.42 9.89 2.71 0.80 0.77 0.56 0.54 6.56 25.64
σ=0.50 17.14 3.21 12.01 3.70 0.82 0.91 0.62 0.56 9.15 25.44

Panel C1: The benchmark model
α=0.40 11.74 2.12 34.63 0.17 0.07 NA NA 0.25 NA NA
α=0.50 11.67 2.13 35.69 0.10 0.04 NA NA 0.17 NA NA
α=0.60 11.63 2.14 36.40 0.05 0.02 NA NA 0.11 NA NA
Panel C2: Financing with an option-for-guarantee swap
α=0.40 14.83 1.80 8.32 1.94 0.78 0.65 0.47 0.52 4.45 26.30
α=0.50 14.62 1.82 9.15 1.89 0.76 0.62 0.44 0.51 4.38 25.24
α=0.60 14.44 1.84 9.97 1.83 0.73 0.59 0.42 0.49 4.29 24.11

Panel D1: The benchmark model
K=NA 11.78 2.12 33.88 0.22 0.09 NA NA 0.29 NA NA
Panel D2: Financing with an option-for-guarantee swap
K= 5 14.94 1.79 7.88 1.97 0.78 0.67 0.48 0.53 4.49 26.78
K=10 14.90 1.79 8.04 1.96 0.78 0.66 0.51 0.53 5.74 26.50
K=20 14.88 1.79 8.14 1.94 0.78 0.65 0.57 0.42 8.07 26.30

Note. This table reports the following quantities: The value FV (x) of investment option
when the current cash flow rate is x = 1; investment threshold δi; the value Eb(δi, c) of
the entrepreneur’s equity at investment time; optimal coupon c∗; optimal leverage L∗;
pre-exercise default threshold δbo; guarantee cost ϕ; post-exercise default threshold δb;
exercise threshold δk; the increased percentage IP of the value of the option to invest
due to OGSs.
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from above, at which the residual value of the firm collected by debt holders

is equal to the after-tax value of the outstanding debt. Like the OGS, such

entire protection is another candidate contract that makes it possible for a

borrower like an SME to get a loan from a lender. Table 1 indicates several

new findings shown below.

First, thanks to the OGS, the value of the option to invest increases

extremely, as seen in Panels A1 and A2. The increased percentage soars up

quickly with a growth of the effective tax rate τf . For example, if the tax rate

is 35%, the value of the option to invest is 15.78 under the benchmark model

and it is 16.67 if a borrower enters into an OGS, i.e. the increased percentage

is approximately 5.68%. By contrast, the percentage soars up to 20.59% if the

effective tax rate increases to 45%, which is roughly a typical rate in China.

This is because thanks to an OGS, debt is risk-free and so it generates tax

shields reaching the maximum value: In essence, it brings the issuing firm

tax shields still even it defaults. Indirectly, this phenomenon results from

our assumption that insurers’ compensatory payments make them eligible to

pay less income tax, according to the Chinese Administration of Taxation

(Circular Cai Shui [2007] No. 27). For this reason, an OGS can not only

overcome the financing constraints faced by an SME but also it can increase

the firm value (i.e. the value of the option to invest) greatly.

Second, in contrast to the benchmark model, where the coupon rate de-

creases fast with project risk, it is surprising that the coupon rate in our

model increases sharply with the project risk if the OGS is signed as dis-

played in Panels B1 and B2. In fact, in the borrower’s view, debt is actually

not protected under the OGS and thus he would default later if project risk
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is large for a given coupon rate of debt. As a result, the bankruptcy loss

gets less for investing in a higher risk project and naturally he would issue

more debt. In fact, all the bankruptcy losses and tax shields are harvested

by a borrower since both a lender and insurer obtains eventually what he

pays in our model. Moreover, Panels B1 and B2 report that in contrast to

the benchmark model, the optimal default boundary increases with the cash

flow risk under our OGS augmented model. This phenomenon results from

the fact that under the OGS model, the higher the cash flow risk, the more

the optimal coupon as shown in the table.

Third, from Panels C1 and C2 of the table, the effect of the bankrupt-

cy loss rate under benchmark model is inconsistent with that under our

OGS model, though the former is somewhat weaker than the latter. At first

sight, this is in conflict with our expectation but actually it happens because

the issued amount of debt under an OGS is much bigger than that under

the benchmark model and therefore the firm value is more sensitive to the

bankruptcy loss rate in our model.

Fourth, Panel D2 of the table explains that the strike price K has a weak

impact on investment and financing: The higher the strike price, the higher

the guarantee cost but the less the optimal coupon and the value of the

investment option by a moderate amount. However, this does not mean that

the optimal strike price should be the minimum value zero, which actually

simplifies the OGS into an EGS. The reason is that, as displayed by Figures 7

and 8, the OGS induces less inefficiencies arising from both asset substitution

and debt overhang than its peer EGS. In particular, if idiosyncratic risk is

taken into account, OGSs are much better than EGSs as argued by Yang
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and Zhang (2015).

Last, the optimal leverage ratio (say 57%) under the OGS is much higher

than that (say 4%) under the benchmark model. To begin with, the latter

seems implausibly low since it is much lower than predicted by Leland (1994).

It turns out that the interest payments are taxed at a personal rate τi = 0

in Leland (1994) rather than τi = 25% taken here. In addition, in our OGS

augmented model, debt brings full tax benefits to the issuing firm no matter

if default happens or not. This argument is implied by (12) and explained in

Remark 2. For this reason, debt should be issued much more than usual and

as a result, the optimal leverage ratio increases remarkably. We emphasize

that the optimal amount of money borrowed is much higher than the funding

gap, meaning that in a sense, entrepreneurs have in effect securitized their

assets after entering into the swap.

5. Conclusions

Recently and particularly during the post-financial crisis period, it get-

s more difficult for an SME to obtain a loan from a bank. To solve such

problem, a lot of credit guarantee schemes are popular over the world. For

example, the Chinese government encourages insurers to provide SMEs with a

credit guarantee by giving insurers many extra premiums. However, this gov-

ernment guarantee would lead to a moral hazard, which actually induces the

recent global financial crisis. As its important supplement, a credit guarantee

scheme in a market economy should be effectively developed. In particular,

an option-for-guarantee swap (OGS) invented by China entrepreneurs is pow-

erful to overcome financing constraints essentially originated from asymmet-
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ric information between borrowers and lenders, meaning that the borrowers

learn more about their productivity than the lenders.

In this paper, we assume there is no information asymmetry between

the borrowers and the insurers and we develop a model that analyzes the

investment and financing strategies of an entrepreneur (borrower), who sign-

s a three-party agreement, i.e. OGS, with a bank/lender and an insurer.

We compare our OGS augmented model with the classical capital structure

analyzed by Leland (1994), where debt is fully protected, and shed light on

the entrepreneur’s investment, financing, and bankruptcy strategies after the

agreement is signed.

We find that an entrepreneur entering into an OGS first accelerates and

then postpones investment as the coupon rate of debt rises. The invest-

ment threshold increases with the project risk, corporate effective tax rate,

bankruptcy costs.

In particular, we reveal that OGSs can significantly increase the value

of the investment option in addition to overcoming the financing difficulties

experienced by a lot of small- and medium-sized enterprisers over the world.

The latter is well known but the former is largely omitted. The increased

value of the option to invest soars up with a growth of the effective tax

rate. In contrast to the classical capital structure model, the optimal issued

amount of debt increases with project risk and the optimal amount of money

borrowed is much higher than required to start the project. In this sense,

after entering into an OGS, entrepreneurs can actually succeed in securitizing

their assets.

In a word, we succeed in providing a new and sufficiently strong argu-
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ment for why loan guarantees are so popular in China. However, like most

borrowing, OGSs would induce inefficiencies arising from asset substitution

and debt overhang. Moreover, our conclusions depend on the assumption

that insurers are powerful in accurately identifying default risk and there is

no information asymmetry between borrowers and insurers. This suggests

that to establish extremely powerful guarantee corporations is particularly

important to stimulate investment and finally improve social welfare level.

We leave the loan guarantee issue under asymmetric information for future

research.

Appendix. The pricing of contingent claims

According to Section 3 of Tan and Yang (2017), we present the following

approach to price the contingent claims discussed in the paper.

A general formula. A contingent claim here can be considered as a derivative

instrument underlying EBIT δ. Specifically, we assume its current cash flow

rate ζ is a linear function of the EBIT δ, i.e. ζs = a1δs + a2, s ≥ t, with t

representing the current time, and a1 and a2 being constants, up to stopping

time TD ≡ inf {s ≥ t : δs /∈ D}, which is the time of first departure of

δ from a domain D. Here we assume the current time is zero, i.e. t = 0,

without loss of generality since our model is time-homogeneous, meaning

all decisions and prices are independent of time. At the stopping time TD,

the claim generates a lump-sum dividend, which is a function, denoted by

g(·), of the cash flow rate δTD ∈ ∂D, where ∂D represents the boundary of

the domain D. After time TD, its claimant obtains nothing. According to

dynamic asset pricing theory, see e.g. Duffie (2001), the price of the claim is
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a function of x independent of time, denoted by F (x), and it is given by

F (x) = E
[ ∫ TD

0

e−rs(a1δs + a2)ds+ e−rTDg(δTD)|δ0 = x

]
, x ∈ D,

and

F (x) = g(x), x ∈ ∂D. (18)

According to a standard method, we conclude that the function F (·) must

satisfy the following ordinary differential equation (ODE):

1

2
σ2Fxx(x) + µFx(x)− rF (x) + (a1x+ a2) = 0, x ∈ D.

Its general solution is

F (x) = R1x
β+ +R2x

β− +
a1x

r − µ
+

a2
r
, x ∈ D, (19)

where R1 and R2 are constants to be determined by the boundary conditions

(18), and β+ and β− are the positive and negative root of the quadratic

equation:

1

2
x(x− 1) + µx− r = 0.

The pricing of equity after the insurer’s option is exercised. Under this spe-

cial situation, we note that D = (δb,∞), ζ = (1− τf )(x− c), i.e. a1 = 1− τf
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and a2 = −(1− τf )c for x ∈ D, and the boundary conditions

F (δb) = 0 and lim
x→∞

F (x) = (1− τf )

[
x

r − µ
− c

r

]
. (20)

Substituting (19) into (20), we derive (2) directly noting that F (x) = E(x, c)

here. Naturally (3) holds also.

The value of debt after the insurer’s option is exercised. To price the value of

debt after exercising the call option, we note that D = (δb,∞), ζ = (1− τi)c,

i.e. a1 = 0 and a2 = (1− τi)c for x ∈ D, and the boundary conditions

F (δb) = (1− α)
δb

r − µ
and lim

x→∞
F (x) = (1− τi)

c

r
. (21)

Substituting (19) into (21), we derive (4) at once.

We now determine the optimal post-exercise default threshold δb. For

this aim, we use the smooth-pasting condition, see e.g. Dixit and Pindyck

(1994) or Song et al. (2014): ∂Ea(x,c)
∂x

|x=δb = 0. Thanks to (3), this condition

leads to the optimal post-exercise default threshold given by (9).

The value of equity before the insurer’s option is exercised. For this end, we

note that D = (δbo, δk), ζ = (1−τf )(x−c), i.e. a1 = 1−τf and a2 = −(1−τf )c

for x ∈ D, and the boundary conditions

F (δbo) = 0 and F (δk) = Ea(δk, c) + ϕK. (22)

Substituting (19) into (22), we derive (5).
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The value of debt before the insurer’s option is exercised. In the same way,

we note here that D = (δbo, δk), ζ = (1− τi)c, i.e. a1 = 0 and a2 = (1− τi)c

for x ∈ D, and the boundary conditions

F (δbo) = (1− α)(1− τf )x/(r − µ) and F (δk) = Da(δk, c). (23)

Substituting (19) into (23), we derive (6).

The value of the claim on nothing but one dollar received at the exercise time

of the insurer’s option prior to default. This claim is similar with an Arrow

security. To derive its value, we note here that D = (δbo, δk), ζ = 0, i.e.

a1 = 0 and a2 = 0 for x ∈ D, and the boundary conditions

F (δbo) = 0 and F (δK) = 1. (24)

Substituting (19) into (24), we derive the first equation of (7). The second

one is similarly derived. After that, (8) is obvious based on our derivations

here.

Optimal pre-exercise default threshold decided by the entrepreneur and op-

timal exercise threshold decided by the insurer. On account of that the two

decisions depend on each other, we must fix a Nash equilibrium of the game

between the entrepreneur and insurer. For this end, using the following

smooth-pasting conditions

∂Eb(x, c)

∂x

∣∣∣∣
x=δbo

= 0 and
∂[ϕV G(x)]

∂x

∣∣∣∣
x=δk

=
∂[ϕ(E(x, c)−K)]

∂x

∣∣∣∣
x=δk

,
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we derive (10) and (11). We emphasize that while computing the second

condition mentioned above, guarantee cost ϕ, which is given by (15), must be

considered as a constant since the exercising of the insurer’s option happens

after the swap agreement is signed.

A benchmark model. For comparison, we introduce a benchmark model,

where an SME does not enter into an option-for-guarantee swap contract,

but instead, debt is still fully protected since we assume otherwise no lender

would like to provide an SME with a loan. Clearly, the value of debt is still

D0(c) defined before and there must be a bankruptcy threshold, denoted by

δb, such that once its EBIT reaches δb, the SME is liquidated. Thus due to

the fully protected covenant, it follows that

(1− α)(1− τf )
δb

(r − µ)
= (1− τi)

c

r
,

That is,

δb =
(1− τi)(r − µ)

(1− τf )(1− α)

c

r
.

Therefore, the value of the entrepreneur’s claim after investment equals

E(x, c) = (1− τf )(
x

r − µ
− c

r
)− (1− τf )(

δb
r − µ

− c

r
)

(
x

δb

)β−

.

We now consider optimal investment and financing policies under the

benchmark model. For a given investment threshold, δi, optimal coupon rate
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c∗ must satisfy the following first-order condition:

∂[E(δi, c) +D0(c)]

∂c

∣∣∣∣
c=c∗

= 0.

The optimal coupon payments rate c∗ is therefore a solution of the following

transcendental equation:

(1− β−)(1− τf )

[
(1− τi)

(1− τf )(1− α)

1

r
− 1

r

](
δi
δb

)β−

+
τf − τi

r
= 0.

For a given coupon rate c and investment threshold δi, the value of the

entrepreneur’s investment option is given by

FV (x) =

[
E(δi, c)−

(
I −D0(c)

)](
x

δi

)β+

.

Accordingly, for a given coupon rate c, the optimal investment threshold δ∗i

that maximizes the value FV (x) of the entrepreneur’s claim is a solution of

the following equation with the variable being δi:

β+

[(
δi

r − µ
− c

r

)
−

(
δb

r − µ
− c

r

)(
δi
δb

)β−

+
1− τi
1− τf

c

r
− I

1− τf

]
− δi

r − µ
+ β−

(
δb

r − µ
− c

r

)(
δi
δb

)β−

= 0.

Hence, the value of the option to invest is

FV (x) =

[
E(δ∗i , c

∗) +D0(c
∗)− I

](
x

δ∗i

)β+

. (25)
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The increased percentage (IP) of the value of the option to invest due to an

OGS. This percentage is defined from (17) and (25) by

IP ≡ FV (x)− FV (x)

FV (x)
, (26)

where x represents the current cash flow level as before.
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