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Abstract 
 

In this paper we gauge the degree of interconnectedness and we quantify the linkages 
between systemically important institutions and the entire system. We document an increase in 
interconnectedness during the crisis, especially between global systemically important banks and 
the system. As we expected, global systemically important banks are the main contributors to 
system wide distress being at the same time the most exposed to systemic risk. However, on 
average, the other systemically important institutions have a greater idiosyncratic risk, reiterating 
again the drawbacks of a micro-prudential supervision. Global systemically important banks and 
the system appear to be the transmitters of return spillovers, whereas other systemically important 
institutions are the receivers of return spillovers. 
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1. Introduction 
 

Understanding contagion among financial institutions is a top priority for regulators and 

policy makers who aim to foster financial stability and to prevent financial crises. Policymakers 

and supervisory bodies (see for instance BCBS, 2010; EC, 2013; and OCC, 2013) have agreed 

that new regulatory measures are required in order to assure a more resilient banking system that 

is capable to absorb losses and not to make use of public money, to reduce systemic risk and, 

ultimately, to foster financial stability, including capital surcharges, liquidity requirements and 

resolution regimes. Given these considerations, on November 4, 2011 at the G20 Summit in 

Cannes, the Financial Stability Board (FSB) in consultation with Basel Committee on Banking 

Supervision (BCBS) published a list of 29 global systemically important banks (G-SIBs), which 

is a particular category of systemically important institutions (SIFIs)1. All these banks were 

required to increase their capital in a range that varies from 1% to 3.5% of their risk-weighted 

assets in order to improve the loss absorption capacity (FSB, 2011). Moreover, the G-SIBs will 

be subject to a tighter and a more effective supervision, given their systemically importance. The 

G-SIBs list is updated and published every year in November by the FSB. In addition, the BCBS 

(2012) developed a framework for assessing the domestic systemically important banks (D-

SIBs). 

The European Banking Authority (EBA), besides the G-SIBs adopted by the Basel 

Committee, established upon  consultation with the European Systemic Risk Board (ESRB) its 

own guidelines for identifying other systemically important institutions (O-SIIs), that is, 

institutions “[...] that, due to their systemic importance, are more likely to create risks to financial 

stability2” for the European Union or a Member State. The identification process, followed the 

principles of Basel Committee to deal with D-SIBs and it includes both national and 

supranational authorities. Therefore, the O-SIIs are the financial institutions that are systemically 

important at the European Union or Member State level. The criteria on which these institutions 

are selected are size, interconnectedness, relevance to the economy and complexity. The 

identified institutions must maintain a Common Equity Tier 1 (CET1) capital buffer of up to 2% 

																																																													
1 Besides financial intermediaries (banks), SIFIs include insurance companies (non-bank financial intermediaries), 
and other financial institutions. According to Zhou (2012), systemically important financial institutions may 
jeopardize financial stability through counterparty, liquidity and contagion risk.  
2 http://www.eba.europa.eu/risk-analysis-and-data/other-systemically-important-institutions-o-siis-/2015. 
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of the total risk exposure they hold. The first official list was disclosed by the EBA on 25 April 

2016 and it is updated on a yearly basis.  

In this paper we measure the spillover effects: a) from the G-SIBs to the O-SIIs and the 

system; b) from the O-SIIs to the G-SIBs and the system; and c) from the system to the G-SIBs 

and the O-SIIs. Our aim is to gauge the degree of interconnectedness and to quantify the linkages 

between the two groups of systemically important institutions and the system. As some G-SIBs 

are also O-SIIs, we exclude them from the O-SIIs list. Our study covers a period that starts in 

2004, long before the release of the first list of G-SIBs (November 4, 2011) or the first list of O-

SIIs (April 25, 2016). Thus, we are able to carry-out an ex-post analysis concerning the systemic 

risk contribution of these institutions and we are able to capture the spillover effects focusing 

especially on the GFC period. 

We document an increase in interconnectedness during the GFC crisis, especially between 

G-SIBs and the system. As expected, G-SIBs are the main contributors to the system wide 

distress, being at the same time highly exposed to systemic risk. However, on average, the O-SIIs 

displayed a greater individual market risk as measured by value-at-risk (VaR), reiterating again 

the drawbacks of a micro-prudential supervision. Our analysis suggests that G-SIBs play the role 

of transmitters of return spillovers, whereas O-SIIs are the receivers of return spillovers. 

Given the systemically importance of the banks, a strand of literature has emerged, 

especially in the last decade, trying to quantify the systemic risk and to identify the institutions 

with a great contribution or exposure to systemic risk (for some surveys and comparisons of the 

measures of systemic risk, see for instance Bisias et al., 2012; Zhang et al., 2015; Benoit et al., 

2017; Silva et al., 2017). However, as systemic risk varies with time, institutions may prove not 

to be systemically important in some periods while remaining critical in others (Elliott and Litan, 

2011) such that the systemic risk rankings may move in opposite directions (van de Leur et al., 

2017). Moreover, the majority of the systemic risk measures proposed in the literature are 

market- and/or accounting-based and Löffler and Raupach (2018) pointed out that market-based 

measures’ ability to identify systemically important banks is limited. Furthermore, many senior 

economists have agreed that imposing capital and/or liquidity surcharges based on institution’s 

contribution to systemic risk in order to absorb future losses may be a good tool to reduce 

negative externalities (e.g. Adrian and Brunnermeier, 2016; Acharya et al., 2017; Ötker-Robe et 

al., 2011; Elliott and Litan, 2011). Elliott and Litan (2011) argue that charging additional capital 
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for SIFIs may not result in less risk-taking. In addition, Benoit et al. (2014) document that 

different measures of systemic risk may lead to conflicting results in identification of 

systemically important financial institutions. 

In order to overcome these deficiencies and to augment the systemic risk metrics, several 

methodologies have been developed or have been borrowed from other fields, emphasizing on 

the degree of interconnectedness and contagion between financial institutions. Indeed, Betz et al. 

(2016) point out that the GFC highlighted that a lesson that the idiosyncratic risk of a company 

tends to spill over to another company and thus a common framework is needed to analyze the 

riskiness of firms. 

The remainder of this paper is structured as follows: In Section 2 we discuss the 

connection between contagion and systemic risk as it is reflected in the literature so far. In 

Section 3 we describe the data and in Section 4 we describe the systemic risk methodology we 

employ, in Section 5 we discuss the empirical findings, and in Section 6 we conclude. 

 

2. Connecting Contagion and Systemic Risk  
 

Systemic risk and contagion are often seen as a “hard-to-define-but-you-know-it-when-

you-see-it” concept (Benoit et al., 2017). Even though the literature on contagion was quite rich 

before 2008, this was not enough to prevent the crisis as the metrics to quantify the contagion did 

not have an early warning component. They were ex-post rather than ex-ante. Thus, new 

methodologies were needed in order to address these concepts and to understand the deep 

vulnerabilities of financial system. 

Contagion3 is broadly defined as the spillovers triggered by extreme negative events 

(Masson, 1999; Dornbusch, and Park, 2001; Forbes and Rigobon, 2002; Pericoli and Sbracia, 

2003; Forbes, 2012). Forbes (2012) contrasts contagion to interdependence - high correlations 

across markets during all states of the world, arguing that the former has deep roots in this 

globalized framework, being therefore “extremely difficult to stop”. Forbes and Rigobon (2002), 

analyzing the 1994 Mexican and the 1997 Asian crises, using a heteroskedasticity-adjusted 

correlation coefficient, report no contagion but find interdependence during both crises among 24 

																																																													
3 For some excellent reviews, see Pericoli and Sbracia (2003) and Chinazzi and Fagiolo (2015). 
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developed and emerging markets. More recently, De Bruyckere et al. (2013) use excess 

correlations to measure bank / sovereign risk spillovers in the European debt crisis and they 

found significant empirical evidence of contagion between bank and sovereign credit risk.  

Diebold and Yilmaz (2012,2009) develop a General VAR (GVAR) approach based on the 

seminal paper by Koop et al. (1996) to measure total and directional volatility spillovers from and 

to four assets classes: stocks, bonds, foreign exchange and commodities. They find an increase 

intensity of volatility spillovers from stock market to all other markets following the collapse of 

Lehman Brothers. Ballester et al. (2016) apply their methodology for the bank CDS market and 

discover supporting evidence of contagion in banking markets. 

Other methods in detecting dependence and contagion are based on copula functions in 

which marginal distributions and dependence structures of time-series are modeled separately. 

Abbara and Zevallos (2014)’s work is built on Patton (2006)’s framework in which they analyze 

linkages and contagion among stock markets from Latin America, Europe, Asia and the US from 

a bivariate standpoint. Their SJC time-varying copula models indicate evidence of contagion 

between Latin American stock markets during the Asian and Russian crises and during the GFC. 

Silva Filho et al. (2012) and Fei et al. (2017) model dependence through dynamic copula with 

Markov-switching regimes in equity and CDS markets, respectively. Both studies document an 

increase in the dependence structure across equity and CDS markets following the GFC. 

Recently, a new strand of literature has emerged, making use of network graphs in order 

to describe the interdependence between markets / institutions. Fagiolo et al. (2010) are among 

the first to model financial system as a network, applying it to international trade flows4. The 

relationship between the institutions acting within the financial system can be represented as a 

network5 where these institutions are the nodes and edges represent the existence of 

credit/lending relationships between any two parties (Chinazzi and Fagiolo, 2015). Billio et al. 

(2012) develop measures of connectedness based on principal-component analysis and Granger-

causality networks and apply the methodology to hedge funds, banks, broker / dealers, and 

insurance companies. Their findings indicate that banks are the main actors in transmitting 

																																																													
4 Easley and Kleinberg (2010), Acemoglu et al. (2012), Babus (2016) and Adamic et al. (2017), describe financial 
applications of network graphs.  
5 Empirical investigation of network connectedness includes, inter alia, the work of Diebold and Yilmaz (2009), 
Billio et al. (2012), Allen et al. (2012), Barigozzi and Brownlees (2018), Minoiu and Reyes (2013), Diebold and 
Yilmaz (2014), Bianchi et al. (2018), Peltonen et al. (2015), Giglio et al. (2016), Constantin et al. (2018) and 
Demirer et al. (2017). 
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shocks within four categories of financial institutions. Diebold and Yilmaz (2014) propose 

connectedness measures based on variance decomposition and apply them to US financial 

institutions’ stock return volatilities. Peltonen et al. (2015) employ macro-networks to measure 

the interconnectedness of the banking sector and document that a more central position of the 

banking sector in the network significantly increases the probability of a banking crisis. In the 

same context, Constantin et al. (2016) develop early-warning models based on network linkages 

for European banks and find that these models outperform the benchmark, without network. 

Finally, a novel approach is introduced by Linton and Whang (2007) through the so-called 

quantilogram that captures predictability in different parts of a univariate distribution. Han et al. 

(2016) extend it to cross-quantilogram that measures serial dependence between two series at 

different conditional quantile levels, with application to systemic risk measurement. 

 

3. Data  
 

A complete description of the data used in our analysis is given in the Table 1. For system 

risk indicators we use total assets, total shareholders’ equity and total liabilities with daily 

frequency derived from linear interpolation from quarterly data, market capitalization, equity 

returns and market indices with daily frequency.  
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Table 1. Description of variables 
Variable name Definition Units Freque

ncy 
Source 

Balance sheet data 
Market Equity  Market capitalization million USD D Datastream 
Total Liabilities The book value of Total Liabilities thousands 

USD 
Q Worldscope 

Total Assets The book value of Total Assets thousands 
USD 

Q Worldscope 

Book Equity  The book value of Common Equity thousands 
USD 

Q Worldscope 

Market indices     
MSCI World Index 
return Log-return of MSCI World Index % D Datatsream 

VIX Volatility index published by Chicago Board Options Exchange (CBOE) 
based on S&P 500 index options - D Datastream 

Real Estate 
market_Bank market 

MSCI World Real Estate Index log-return in excess of MSCI World Banks 
Index log-return % D Datastream 

T-bill rate Change in the three-month T-bill rate % D 

Federal 
Bank 
Reserve of 
St. Louis 
(FRED) 

Repo rate_T-bill rate  The spread between three-month repo rate and three-month T-bill rate % D Federal 
Bank 
Reserve of 
St. Louis 
(FRED) 

10-year bond_T-bill 
rate 

The spread of change in 10-year bond yield and three-month T-bill rate % D Federal 
Bank 
Reserve of 
St. Louis 
(FRED) 

Indices     
System Log-return of MSCI World Financials Index % D Datatsream 
G-SIBs Market capitalization-weighted index of G-SIBs returns. The index is 

dynamic in the sense that we add or remove financial institutions in 
computing the index as the annual Financial Stability Board (FSB) list of 
G-SIBs changes 

% D Datatsream 

O-SIIs Market capitalization-weighted index of O-SIIs returns. The index is 
dynamic in the sense that we add or remove financial institutions in 
computing the index as the annual European Banking Authority (EBA) list 
of O-SIIs changes 

% D Datastream 

 

4. Tools for Measuring Interconnectedness of Systemic Risk 
 

In this section we describe how we assess and quantify the spillover effects from / to G-

SIBs, O-SIIs and System. We focus on the following approaches: systemic risk indicators, 

network measures, cross-quantilogram and dynamic copula with Markov-switching regimes. For 

network measures we use equity returns whereas for the remaining methodologies, that is cross-

quantilogram and dynamic copula with Markov-switching regimes, we construct market 

capitalization-weighted indices of O-SIIs and G-SIBs.  

In Table 2 we report the descriptive statistics for market capitalization-weighted indices 

disaggregated for G-SIBs or O-SIIs, and the system overall. 
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Table 2. Descriptive statistics for market capitalization-weighted indices 

  G-SIBs O-SIIs System 

 Mean -0.0002 -0.0004 0.0000 
 Median 0.0002 0.0000 0.0005 
 Maximum 0.1564 0.1570 0.1147 
 Minimum -0.1515 -0.1728 -0.1016 
 Std. Dev. 0.0162 0.0210 0.0135 
 Skewness -0.1819 -0.1691 -0.2548 
 Kurtosis 16.9238 10.8291 15.1465 
 Jarque-Bera 28995.69 9178.00 22089.66 
(p-value) (0.0000) (0.0000) (0.0000) 
LM test 60.2482 62.9040 94.3937 
(p-value) (0.0000) (0.0000) (0.0000) 
 Observations 3587 3587 3587 

 

4.1 Systemic risk indicators 

 We employ three well-known metrics that are widely used in the literature together with their 

extensions and improvements. 

The conditional Value at Risk (CoVaR) introduced by Adrian and Brunnermeier (2016) is 

based on Value at Risk (VaR) as a measure of idiosyncratic risk that is used in the context of 

micro-prudential regulation. It captures the contagion spillovers from a financial institution to the 

whole system when the institution’s market value of assets decreases below a target level. The 

market value of assets (!"#$%&	())%&)*+) for institution i at time t is defined as the book value of 

assets (-.&"/	())%&)*+) adjusted by the ratio of market value of equity or market capitalization 

(!"#$%&	0123&4*+) and book value of equity (5..$	0123&4*+): 

!"#$%&	())%&)*
+
= 	-.&"/	())%&)*

+
	7	

89:;<*	=>?+*@A
B

CDD;	=>?+*@A
B

     (1) 

We focus on the daily change of the market assets of institution i from t-1 to t and define 

the return of each institution: 

E*
+
= 	

89:;<*	FGG<*GA
B
H	89:;<*	FGG<*GAIJ

B

89:;<*	FGG<*GAIJ
B

       (2) 
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As total assets and book equity have a quarterly frequency whilst market equity has a 

daily frequency, we transform the former two accounting measures into daily frequencies through 

linear interpolation between two consecutive quarters6. 

Following Adrian and Brunnermeier (2016), we estimate CoVaR as the qth quantile of the 

system’s returns7 (E
*

G@G*<K
) distribution over a given period of time conditioned on the event that 

each financial institution registers the maximum possible loss of its returns for the same 

significance level q8: 

L#(E
*

G@G*<K ≤ O.P"E
>,*

G@G*<K|STUVWXA	YZZXAZ,A
B

[\9S],A
B

E89:;<*	FGG<*G,*
+

= 	P"E>,*
+

= 1 (3)  

In order to capture the time-variation of the financial institutions’ individual and systemic 

risk, we estimate the tail risk measures VaR and CoVaR using a vector of market indices (!_*`) 

that contains information representative for the world financial markets. More specifically, we 

have employed the following market indices9: (i) the daily return of MSCI World index, (ii) the 

volatility index (VIX), (iii) the daily real estate sector return (MSCI World Real Estate) in excess 

of the banking sector return (MSCI World Banks), (iv) the change in the three-month T-bill rate, 

(v) the spread between three-month repo rate and three-month T-bill rate, (vi) the spread of 

change in 10-year bond yield and three-month T-bill rate and (vii) the change in the spread of 

Moody's Baa corporate bond yield and 10-year bond yield. 

We use the quantile regression (QR) with robust standard errors10 (Machado et al., 2011) to 

estimate the following regressions: 

E89:;<*	FGG<*G,*
+

= 	a+ + !_*Hc
` 	7	d+ +	e+	7	O#3)3)* + f

+		 	 																					(4)	

E
*

G@G*<K
= aG@G*<K|+ +	hG@G*<K|+	7	E89:;<*	FGG<*G,*

+
+ 	!_*Hc

` 	7	dG@G*<K|+ +	eG@G*<K|+	7	O#3)3)* +

	i
*

G@G*<K|+                               (5)  

!_*Hc
′  is a (1 x k) vector of lagged market indices at time t-1, O#3)3)* is a dummy variable 

taking the value of 1 after the fall of investment bank Lehman Brothers and 0 otherwise, a+, 

aG@G*<K|+, 	d+, 	dG@G*<K|+, 	hG@G*<K|+, e+, eG@G*<K|+ are the parameters to be estimated and i+ and 

																																																													
6 As a robustness check, we also perform the cubic spline interpolations and the findings remain robust. 
7 Here we define the system as MSCI World Financials Index. Alternatively, we re-estimate the quantile regressions 
using the assets market value. 
8 All our systemic risk indicators are estimated for a 5% quantile. 
9 Initially, all market variables have been tested for unit stationarity using the Augmented Dickey-Fuller test. When 
the series were not stationary, we used instead the change of variables or the spread. 
10  The standard errors are asymptotically valid under heteroskedasticity and misspecification assumptions, which is 
not the case for financial markets data (Pagan, 1996). 
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iG@G*<K|+ are iid error terms. 	hG@G*<K|+ reflects the conditional dependence of the system’s return 

on financial institution i’s return, a large coefficient being associated with an increased 

contribution of that institution to systemic risk and thus with large spillover effects. 

Running regression from Eq. (3) and Eq. (4) for a quantile of 5% (distressed periods) and 

a quantile of 50% (median or tranquil state) we obtain the value of regressors to be used in VaR 

and CoVaR estimations: 

P"E>,*
j
= 	a>,

j
	 + 	!_*Hc

` 	7	d>
j  + e>j 	7	O#3)3)*                             (6) 

O.P"E>,*
j
= 	a

>

G@G*<K|j
+	h

>

G@G*<K|j
	7	P"E>,*

j
	+ 	!_*Hc

` 	7	d
>

G@G*<K|j	
	+	e

>

G@G*<K|j
	7	O#3)3)*	 (7)	

In the end, each financial institution’s contribution to systemic risk (∆CoVaR) is defined 

as  

∆O.P"E
>,*

G@G*<K|+
= 	O.P"E

>,*

G@G*<K|STUVWXA	YZZXAZ
B

[\9S],A
B

− 	O.P"E
>,*

G@G*<K|S
TUVWXA	YZZXAZnoUp

qr%
B

B

 (8) 

In addition, we estimate a modified version of ∆CoVaR proposed by López-Espinosa et 

al. (2012), i.e., Asymmetric ∆CoVaR (∆ACoVaR) that accounts for asymmetries in the initial model 

as systemic risk presents a strong degree of asymmetric response, since negative returns pose greater 

contagion effects to the system compared with the positive ones (see López-Espinosa et al., 2012 for 

details). Furthermore, in a Dynamic Conditional Correlation (DCC) framework of Engle (2002), 

we compute two alternative measures, namely ∆CoVaR DCC and ∆CoVaR QR using asymmetric 

GJR-GARCH models, but without market indices, considering only the dependence between 

system’s returns and financial institutions’ returns. 

Another systemic risk measure that we apply is Marginal Expected Shortfall (MES) of 

Acharya et al. (2017). It works in the opposite direction as compared with CoVaR, denoting the 

exposure of financial institutions to systemic risk. MES is defined as the average return on 

financial institution’s market capitalization on the days the total market capitalization of the 

sample experienced a loss greater than a specified threshold C indicative of market distress: 

!0t*Hc
+

= 	0*Hc(E*
+
|E

*

G@G*<K
< O)        (9) 

where E*+  is the return of financial institution i at time t and E
*

G@G*<K is the return of the system, 

defined as MSCI World Financials Index. We model the bivariate process of firm and market returns 

as follows: 

E
*

G@G*<K
= 	v

*

G@G*<K
i
*

G@G*<K        (10) 
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E*
+
= 	v*

+
i*
+
= 	v*

+
w*
+
i
*

G@G*<K
+	v*

+
1 −	w

+,*
y z+,*	      (11) 

v*
+ and v

*

G@G*<K are the volatilities of financial institution i and system, respectively, w*+ is the 

correlation coefficient between the return of institution i and the return of the system, and 

i
*

G@G*<K, i*+ and z+,*are the error terms which are assumed to be iid. It follows that: 

!0t*Hc
+

= 	0*Hc E*
+
E
*

G@G*<K
< O = 	v*

+
0*Hc(i*

+
|i
*

G@G*<K
< 	

{

|
A

Z}ZAX~) = 	v*
+
w+,*0*Hc(i*

+
|i
*

G@G*<K
<

	
{

|
A

Z}ZAX~) +	v*
+
1 −	w

+,*
y 0*Hc(z*

+
|i
*

G@G*<K
< 	

{

|
A

Z}ZAX~)      (12) 

Conditional volatilities of the equity returns are modelled using asymmetric GJR-GARCH 

models with two steps QML, whilst time-varying conditional correlation is modelled using the 

DCC framework. As in Benoit et al. (2014), we consider the threshold C equal to the conditional 

VaR of the system return, i.e., VaR(5%), which is common for all institutions. The higher the 

MES, the higher is the exposure of the institution to the systemic risk. 

Finally, our last indicator to consider in our analysis is the Systemic Risk Index (SRISK) 

introduced by Acharya et al. (2012) and extended by Brownlees and Engle (2017). As in the case 

of the MES, SRISK is a measure of exposure of a financial institution to the wide systemic risk, 

defined as the loss of a specific institution (capital shortfall), conditioned by the whole financial 

system being in distress. A major convenient of SRISK is that it is expressed in monetary units 

making it very reliable in monitoring systemic exposure. As in the case of the MES, SRISK is 

estimated using the GARCH-DCC framework. When the institution is in distress, the SRISK 

indicator will be positive, indicating insufficient working capital, whilst a negative value 

indicates a capital surplus. 

 

4.2 Measures of connectedness 

Systemic risk involves a number of financial institutions that are connected one to each 

other through different channels and the financial system can be seen as a network composed of 

individual institutions (nodes), whereas the credit / lending relationships between any two parties 

can be seen as edges Similar to Billio et al. (2012), we analyze the interdependencies between G-

SIBs and O-SIIs through Granger-causality networks. 

In a Granger causality framework  one can determine the directional return spillovers in 

the financial system (composed, in our case, from G-SIBs and O-SIIs). A time series j can 
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Granger-cause another time series i if information contained in the past values of i and in the past 

values of j are better in predicting the value of i than the information based only on the past 

values of i. Defining the following relationships: 

� → 3 = 	
1	3Å	�	Ç#"ÉÑ%#	Ö"2)%)	3,

	0	.&ℎ%#à3)%												
      (16)  

and � → � ≡ 0.	Thus, based on these pairwise Granger causalities, one can construct the 

Granger-causality network. The network is defined as a set of nodes (G-SIBs and O-SIIs) 

connected by edges. It will be represented as an ã*-dimensional adjacency matrix (* with the 

elements "+å*	zeros and ones, "+å* = 1 if the node j Granger causes node i and "+å* = 0 otherwise. 

Following Billio et al. (2012), the returns will be modelled using a GARCH(1,1) process and  the 

following measures of connectedness are calculated:  

a. The Dynamic Causality Index (DCI), with the following expression: 

çO_* = 	
éA

y

Hc

"+å*
éA

å[c

éA

+[c
       (17) 

b. The In-Out network degree (IO) defined by: 

_è*
+
= 	 "+å*

éA

å[c
+	 "å+*

éA

+[c
         (18) 

The first part of the right-hand side of the relationship is called IN network degree 

measuring the number of financial institutions that significantly (at 5% level) Granger-cause 

institution j, whereas last part of the right-hand side of the relationship is called OUT network 

degree and measures the number of financial institutions that are significantly (at 5% level) 

Granger-caused by institution j. 

c. The closeness centrality (CC) measure determines the mean distance from a 

financial institution to other financial institutions and captures how close a node is to other nodes 

in the graph. If we denote Oå+the length of the shortest O-connection between j to i, CS for 

institution j is expressed as follows: 

OOå = 	
c

éAHc
Oå+

éA

å[c
         (19) 

d. The betweenness centrality (BC) measures the extent to which a financial 

institution lies on paths between other financial institutions. Very important, BC can capture how 

susceptible a node (financial institution) is to shocks that propagate through network. Denoting 

$å+(2) the number of shortest paths from j to i that pass through node u and êå+ the total number 

of shortest paths from j to i, we have: 



13	
	

5O? = 	
;ëB(?)

íëB

éA

å[c
                                                                                                        (20) 

The above network measures have a static character. A more informative analysis requires 

taking into account the temporal dynamics of systemic risk that evolves based on the ebbs and 

flows of financial markets. 

 

4.3 The Cross-quantilogram 

The cross-quantilogram is a relatively new tool introduced by Han et al. (2016), 

continuing the work of Linton and Whang (2007) who proposed the quantilogram as measure for 

predictability in different parts of the distribution of a stationary time series based on the 

correlogram of “quantile hits” (Han et al., 2016). The cross-quantilogram measures the 

predictability of different quantiles of the distribution of a stationary time series, but this time 

into a bivariate setting and can be used to study the return spillovers between two time series. The 

cross-quantilogram is suitable for financial series that exhibit stylized facts, such as non-

normality, fat tails and asymmetry. Moreover, quantifying the quantile dependence between time 

series, the cross-quantilogram can also be employed for assessing systemic risk.  

Considering two time series E*+  and E
*

å as continuous returns for G-SIBs and O-SIIs11 

weighted by market-capitalization with the unconditional distribution functions ì+ and ìå, the 

unconditional density function Å+ and Åå and the corresponding unconditional quantile functions 

1+ î+ = 3ÉÅ 2:	ì+ 2 ≥ 	 î+ 	and 1å îå = 3ÉÅ 2:	ìå 	≥ 	 îå 	for î+	and îå ∈ 0, 1 . With the 

pairs î = (î+, îå) we will estimate the dependence between E*+ 	≤ 	 1*+(î+)  and E
*

å
	≤ 	 1

*

å
(îå)  

for $ = 	±1,±2,…. .Having the function õ9 2 = 	_ 2	 < 0 − ",	the cross-quantilogram has the 

following form: 

wú $ = 	
=[ûü

B
SA
B
H	>A

B
úB ûü

ë
S
A

ë
H	>

AIW

ë
úë ]

=[û°
üB

SA	
B
H	>A

B
úB ] =[ûü

ë
S
AIW

ë
H	>

AIW

ë
úë ]

      (21) 

The cross-quantilogram is able to capture cross-correlation of quantile-hit processes and 

in the case where E*+  = E
*

å, the cross-quantilogram becomes the quantilogram of Linton and 

																																																													
11 Through this approach, we measure spillover effects from G-SIBs to O-SIIS, from O-SIIs to G-SIBs, from G-SIBs 
to system, from system from G-SIBS, from O-SIIs to system and from system to O-SIIs, but we consider only G-
SIBs and O-SIIs when presenting the methodological aspects. 
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Whang (2007). Given the unconditional estimate of quantiles 1∗B î+  and 1∗ë îå , the cross-

quantilogram becomes: 

w∗
ü

$ = 	

ûü
B
SA
B
H	>A

∗B
úB ûü

ë
S
A

ë
H	>AIW

∗ë
úë

£
AnW§J

û°
üB

SA
B
H	>A

∗B
úB

£
AnW§J

û°
üë

S
A

ë
H	>

AIW
∗ë

úë
£
AnW§J

     (22) 

In general  w∗ü($) 	∈ [−1, 1]but if  w∗ü $ = 0, there is no directional predictability (Han 

et al., 2016). If E*+  and E
*

å are the market capitalization-weighted indices of G-SIBs and O-SIIs, 

respectively and w∗ü 1 = 0 this implies that implies that if the returns on O-SIIs are below 

(above) a given quantile 1å(îå) at time t – 1, there is no possibility of prediction whether the 

return on the G-SIBs is below (above) a given quantile 1+(î+) at time t. 

As in Han et al. (2016) we construct the confidence interval (95% level) using the 

stationary bootstrap procedure of Politis and Romano (1994) where pseudo samples are 

constructed from blocks of data with random block lengths. 

 

4.4 Bivariate copula with Markov-switching regimes 

Using a heteroskedasticity-adjusted correlation coefficient, Forbes and Rigobon (2002) 

could not find evidence in favor of contagion during crisis periods but rather an increase in the 

interdependence across markets. Thus, a non-linear dependency measure could be more 

appropriate in assessing the linkages between markets. Hence, we try to capture the dynamics 

between G-SIBs and O-SIIs through a bivariate copula model with Markov-switching regimes. 

To capture the time-varying dependence, we employ an approach similar to Patton (2006), where 

the dependence parameter follows an ARMA(1, 10) restricted process, whereas the intercept term 

depends on a hidden two-state Markov chain (MC). The marginal distributions are modelled 

using an ARMA(1,1) - GARCH(1,1) process with skewed-T disturbances proposed by Hansen 

(1994). The parameters of the model are estimated by maximum likelihood. 

In our case, we consider a bivariate model defined by  • = (•c, •y) where •c and •y are 

the series of G-SIBs and O-SIIs, respectively. We proceed by first modelling the univariate time 

series for  •cand •y and then we estimate the dependence between these series using a copula 

density	Ö(2c, 2y) where 2c and 2y	have a uniform distribution. For our analysis, we employ two 
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copula models: the Gaussian (normal) and the Symmetrized Joe–Clayton (SJC) defined in Patton 

(2006), which is a modified form of the Joe–Clayton copula as follows: 

O¶ß{ 2c, 2y = 	0.5[Oß{ 2c, 2y +	Oß{ 1 −	2c, 1 − 2y +	2c +	2y − 	1]                (24) 

where  

Oß{ 2c, 2y = 	1 − (1 − { 1 −	 1 −	2c
; H™ +	 1 −	 1 −	2y

; H™ − 	1}

J

¨)
J

W            (25) 

with $ = 	 c

≠DÆ°(yH	úØ)
 and e = 	−	 c

≠DÆ°(ú∞)
, î?and î≠ ∈ (0, 1) being lower tail index and upper tail 

index, respectively, of the JC copula. The tail indices indicate the dependence in extreme values 

of the variables, capturing the dependence in the joint tails of the bivariate distributions (Abbara 

and Zevallos, 2014). In addition, the tail index is similar to the probability that an extreme event 

occurs in a market, given that this event is occurring in another market (Silva Filho et al., 2012). 

In a nutshell, tail indices measure the tendency of institutions to crash or boom together. The 

normal copula is asymptotically independent in both, the lower (extreme losses) and upper 

(extreme gains) tails, the dependence structure being described by the correlation coefficient	w	 ∈

(−1, 1). On the contrary, the SJC copula presents asymmetry in tails when î? 	≠ 	 î≠		and 

symmetry when	î? = 	 î≠. Given that negative shocks (news) affect more financial markets than 

positive shocks (news), the SJC copula could be more suitable in describing dependence, 

especially lower tail dependence. 

The copulas functions described in Eq. (23), (24) and (25) are static. Allowing the 

dependence parameter to follow a restricted ARMA(1, 10) process as in Patton (2006) we can 

derive a time-varying copula. In addition, the intercept term is allowed to vary as a first-order 

Markov chain: 

≤
≥*

¶A
= 	Λ(µ≥

¶A
+	d≥≤≥*Hc +	õ*)        (26) 

where t* follows a first-order Markov chain parameterized by the transition probability matrix 

∂ = 	
∂∑∑ ∂∑∏

∂∏∑ ∂∏∏
         (27) 

where ∂∑∑ is the probability of being in the high dependence regime at time t conditional on 

being in the same regime at time t-1, ∂∑∏ is the probability of being in the low dependence 

regime at time t conditional on being in the high regime at time t-1, ∂∏∑ is the probability of 

being in the high dependence regime at time t conditional on being in the low regime at time t-1 

and ∂∏∏ is the probability of being in the low dependence regime at time t conditional on being in 

the same regime at time t-1. Therefore, we assume two states: low dependence or a tranquil 
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period (state	tc) and high dependence or a crisis period (state tπ). Λ(∙) is a logistic transformation 

to constrain the dependence parameter in a fixed interval and õ*is a “forcing variable” defined as 

the mean absolute difference between 2c and 2y for the SJC copula: 

õ
*

¶ß{
= 	a≥ ∙

c

cπ
2c,*Hå −	2y,*Hå

cπ
å[c        (28) 

For the normal copula, the “forcing variable” is defined as the mean of the products between 

õ*
é = 	a≥ ∙

c

cπ
ΦHc(2c,*Hå) ∙ Φ

Hc(2y, & − �
cπ
å[c )     (29) 

across ten previous periods (Patton, 2006). Estimations12 are based on Kim’s filter (Kim, 1994).  

 

5. Empirical results 
 

In this section we analyze the empirical results resulted from applying the techniques described in 

the previous section. 

 

5.1 Systemic risk rankings 

Table 1 reports the main statistics of systemic and individual risk measures over the analyzed 

period. In terms of contribution to systemic risk as defined by ∆CoVaR and ∆ACoVaR one can 

observe that on average, G-SIBs contribute more to systemic-wide distress than O-SIIs with 0.33 

p.p. (∆CoVaR ) and with 0.21 p.p. (∆ACoVaR). This is also true if we use equity returns instead 

of asset market values, as showed by ∆CoVaR QR and ∆CoVaR DCC. In terms of exposure to 

systemic risk, again G-SIBs are more exposed to systemic risk than O-SIIs, as indicated by MES 

and SRISK. The major difference is with respect to SRISK, where on average G-SIBs have a 

capital shortfall greater with approximately 50 billion than O-SIIs. 

 

																																																													
12 We follow Silva Filho et al. (2012) to compute log-likelihood functions and robust standard errors. 
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Table 3. Descriptive statistics of systemic and individual risk measures for G-SIBs and O-SIIs 
over the period January 1, 2004 – September 29, 2017 

Variables Mean St. dev. Min p25 p50 p75 Max 

G-SIBs 

VaR 3.4700 2.4700 0.9200 2.1500 2.7400 3.8800 74.8000 
CoVaR 3.3100 2.1100 -3.0600 2.0000 2.7700 3.9500 27.0400 

∆CoVaR 0.9000 0.6600 0.0200 0.4700 0.7800 1.1400 6.7500 
∆ACoVaR 1.6200 1.1700 0.0100 0.8700 1.3900 2.0100 15.5600 

∆CoVaR QR 1.1300 0.8900 0.1600 0.6500 0.9100 1.3200 20.8100 
∆CoVaR DCC 1.0700 0.9400 0.0900 0.5400 0.7800 1.2900 7.8100 

MES 2.5700 2.2800 0.2300 1.3400 1.9500 3.0500 46.4800 
SRISK 54.8955 58.8898 -153.3780 12.9871 47.3924 91.9418 309.7803 

O-SIIs 

VaR 3.9600 2.5900 1.2000 2.5400 3.2900 4.4200 57.9900 
CoVaR 3.8400 2.2600 -1.3100 2.4100 3.2800 4.5300 34.5800 

∆CoVaR 0.5700 0.4900 -0.0300 0.2300 0.5300 0.7700 5.5100 
∆ACoVaR 1.4100 0.7900 -0.0500 0.8700 1.2600 1.7100 10.4200 

∆CoVaR QR 0.9600 0.6200 0.1600 0.5700 0.8500 1.1800 9.3600 
∆CoVaR DCC 0.7800 0.8100 -0.5300 0.3100 0.5400 0.9600 7.1600 

MES 2.1800 1.7800 -2.2300 1.1400 1.7500 2.6800 28.5200 
SRISK 4.1838 9.9733 -115.3400 -0.6823 0.4310 7.3803 67.0718 
Note: With the exception of SRISK that is expressed in billion USD, all other individual and systemic risk indicators 
are expressed in percentage.  

 

However, O-SIIs are more risky based on their VaR and CoVaR, which are measures of 

individual risk. Thus, we reiterate again the necessity of a macro-prudential supervision for 

financial institutions because metrics based on their idiosyncratic risk may be misleading. The 

evolution over time of the main systemic risk measures is depicted in Figure 1, comparatively for 

the two main groups of companies. 
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Figure 1 The evolution of systemic and individual risk measures for G-SIBs and O-SIIs  

 

In the aftermath of the GFC all risk indicators increased in tandem, with greater spikes for 

G-SIBs, and therefore increased the spillover effects from G-SIBs and O-SIIs to system. The area 

between the two vertical red lines on each graph represents the period between the first release of 

G-SIBs list (4 November, 2011) and the first release of O-SIIs list (25 April, 2016). One can 

observe an increase in systemic and individual risk  when these designation lists were made 
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public (the so-called stigma effect). However, in the post-event days we can note a decrease in 

idiosyncratic and systemic risk which is associated with a safety perception by the investors as 

the banks were subject to a tighter macro-prudential supervision (Andrieș et al., 2017). 

 

5.2 Dynamic Causality Index Evolution and measures of connectedness 

The evolution of the DIC, we can note that the highest values are reached at the end of 

2008 and 2011, confirming our previous results documenting an increase in interconnectedness 

between G-SIBs and O-SIIs, even though at that time (2008) the lists of G-SIBs and O-SIIs were 

not published yet. The first list of G-SIBs was made public by the FSB of November 4, 2011 and 

the first list of O-SIIs was released by the EBA on 25 April, 2016 – and one can observe an 

increase in the DCI following these announcements. However, the subsequent list announcements 

of new G-SIBs and O-SIIs did not increase the interconnectedness between the two groups.  

 

 
Figure 2. Dynamic Causality Index 

Note: This graph exhibits the Dynamic Causality Index (DCI) which denotes the ratio of statistically significant 
Granger-causality relationships among all N(N-1) pairs of N financial institutions over the period January 1, 2004 – 
September 29, 2017. 

 
In Figure 3 we illustrate the network diagram of linear Granger-causality relationships 

between G-SIBs and O-SIIs over the whole period, indicated as straight lines connecting an 

institution that at time t Granger-causes the return of another institution at time t+1 .  
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Figure 3. Network graph of Granger-causality relationships between G-SIBs and O-SIIs 

Note: This diagram represents the Granger-causality relationships between G-SIBs (29 institutions) and O-SIIs (41 
institutions) that are significant at 5% level over the period January 1, 2004 – September 29, 2017. The size of the 
nodes is proportional to betweenness centrality measure. The estimation is performed over a rolling-window of 252 
trading days (one business year). 

 

Additionally, we perform the same analysis over two sub-periods: 2004-2007 and 2008-

201113. These are pre-crisis and crisis periods and the latter also includes the sovereign debt crisis 

in Europe. The number of Granger-causality relationships significant at 5% over the whole period 

was 1,593, whereas during 2004-2007 – 1,689 and during 2008-2011 – 1,789. We remark an 

increase in the number of connections between G-SIBs and O-SIIs, G-SIBs and G-SIBs and O-

SIIs and O-SIIs during the crisis period compared to the pre-crisis period. More importantly, 

during 2008-2011 the number of connections between the groups (G-SIBs and O-SIIs) was 

higher than within the groups (G-SIBs and G-SIBS and O-SIIs and O-SIIs) and one can associate 

																																																													
13 The network diagrams for these two sub-periods are presented in the Appendix section of this paper. 
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this with an increase in the interconnectedness between the two groups. Furthermore, the biggest 

nodes in terms of betweenness centrality which takes into account both direct and indirect 

linkages capturing the position of a node in the overall network appear to be banks from G-SIBS 

group, i.e., Mizuho Financial Group (MIZH), Sumitomo Mitsui Financial Group (SMFI), Bank of 

America (BAC) and Bank of New York Mellon (BK). Hence, they are the most susceptible to 

shocks that propagate through the network. 
 

 
Figure 4. Network graph of Granger-causality relationships between G-SIBs, O-SIIs and control 

group 
Note: This diagram represents the Granger-causality relationships between G-SIBs (29 institutions), O-SIIs (41 
institutions) and a control group of banks from the EU (30 institutions) that are significant at 5% level over the 
period January 1, 2004 – September 29, 2017. The size of the nodes is proportional to betweenness centrality 
measure. The estimation is performed over a rolling-window of 252 trading days (one business year). 
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Adding a control group of 30 banks14 from the EU, the number of Granger-causality 

relationships significant at 5% increases from 1,593 to 3,485, more than double. However, as it 

can be observed in Figure 4, the connections are more pronounced between O-SIIs and the 

control group than between G-SIBs and O-SIIs or between G-SIBs and the control group which is 

what we would expect given the fact that O-SIIs are financial institutions from Europe. 

 

5.3 Cross-quantilogram Results 

The regulators and supervisory authorities should be interested in the quantile dependence 

between G-SIBs and O-SIIs, O-SIIs and G- SIBs, G-SIBs and system, system and G-SIBs, O-SIIs 

and system and system and O-SIIs, over time. The cross-quantilogram from G-SIBs to system 

(first graph in Figure 5a) has the highest value for a lag of k = 1 (0.1636), meaning that it takes 

only one day for the systemic risk from G-SIBs to reach its peak once G-SIBs are in distress. This 

is also equivalent to G-SIBs contribution to systemic risk (spillover effects). On the other hand, 

the exposure of G-SIBs to systemic risk (system to G-SIBs, second graph in Figure 5a) is the 

highest (0.1694) for a lag of one. Therefore, as the system gets distressed, G-SIBs are instantly 

exposed. Concerning the O-SIIs, there is evidence of a reduced contribution and exposure to 

system-wide distressed as compared to G-SIBs. For O-SIIs to system, the cross-quantilogram 

takes the highest value (0.1400) for k = 13, which means that the systemic risk from O-SIIs 

reaches the peak in approximately two weeks once the O-SIIs encounter systemic problems (see 

Figure 5b). 

However, O-SIIs get exposed to systemic risk much faster, i.e., in one day, the value of 

cross-quantilogram being 0.1636, comparable to the value of system to G-SIBS. Indeed, if we 

look back at Table 1, it showcases that on average, G-SIBs contribute more to systemic risk and 

at the same time are exposed more to systemic risk than O-SIIs. Therefore, the cross-

quantilogram may constitute a useful and easy to implement tool for assessing systemic risk of 

individual financial institutions based only on their equity returns. 

																																																													
14 The list of banks was taken from Thomson Reuters Datastream, with the symbol G#LBANKSEU. We initially 
started with 119 banks, but we eliminated all the banks that are either G-SIBs or O-SIIS, keeping only those with full 
data availability over January 1, 2004 – September 29, 2017. We thus ended up with 30 banks. 
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  (5a)            (5b)              (5c) 

 

Figure 5. The cross-quantilograms between G-SIBs, O-SIIs and system 
Note: These figures exhibit the bivariate cross-quantilograms between G-SIBs, O-SIIs and system. Bars are the cross-quantilograms and the red lines are the 95% bootstrap 
confidence intervals centered at zero based on 1,000 iterations. 
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Finally, the spillover effects from G-SIBs to O-SIIs are higher and propagate more rapidly 

than from O-SIIs to G-SIBs (one day comparing to 13 days, respectively for a maximum value of 

cross-quantilogram of 0.1928 comparing to 0.1342, respectively, as depicted in Figure 5c). 

 

5.4 Bivariate copula with Markov-switching regimes 

In Table 4 we present the estimation results of the marginal distributions of the 

conditional variance (mean omitted) for the two groups of banks derived from a ARMA(1,1)-

GARCH(1,1)-skewT model. ν and ξ are the degrees-of-freedom parameter and the asymmetry 

parameter of Hansen’s (1994) skewed Student’s t distribution, respectively. 

 

Table 4. Marginal distribution results 
Coefficient G-SIBs O-SIIs 

Intercept 0.0003 
(0.0002) 

0.0004 
(0.0005) 

AR(1) 0.0818 
 (0.1203) 

0.2368 
(0.7401) 

MA(1) 0.0230 
(0.1201) 

-0.1778 
 (0.7133) 

ARCH(1) 0.0773 
(0.0103) 

0.0777 
(0.0155) 

GARCH(1) 0.9195 
(0.0100) 

0.9215 
(0.0111) 

ν	 6.9330 7.8324 
	 (0.7647) (1.9036) 
ξ	 -0.0316 -0.0377 
	 (0.0217) (0.1038) 
Kolmogorov-Smirnov test 0.0003 0.0003 
Kolmogorov-Smirnov test p-value 1.0000 1.0000 
Berkowitz test 0.5336 0.3605 
Berkowitz test p-value 0.9115 0.9483 

 
This table presents the results of the marginal distributions of the conditional variance (mean omitted) derived 
from a ARMA(1,1)-GARCH(1,1)-skewT model. ν and ξ are the degrees-of-freedom parameter and the 
asymmetry parameter of Hansen’s (1994) skewed Student’s t distribution, respectively. 
Kolmogorov-Smirnov test is the test of goodness-of-fit with the null hypothesis that the probability integral 
transform is uniform in the interval (0,1). Berkowitz’test is similar to Kolmogorov-Smirnov test but instead 
uses Berkowitz’s (2001) transformation to a univariate normal distribution. Standard errors in parentheses. 

 

Table 5 presents the estimation results for the SJC copula and Normal copula. The values 

of p and q, which are the probabilities for the two regimes (high and low, respectively) are very 

high, which indicates that both regimes are persistent. 
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Table 5. SJC and Normal copula estimation results 
Coefficient SJC copula Coefficient Normal copula 

ω4,6
7  1.4329 

(0.4835) 
ω47	 -0.2959 

(0.0021) 
ω4,6
8  2.2126 

(0.3810) 
ω48	 0.2593 

(0.2547) 
β4,6 -1.4474 

(0.5356) 
β4	 2.7620 

(0.0010) 
α4,6 3.6625 

(0.2949) 
α4	 0.0972 

(0.0335) 
ω4,;
7  -1.6257 

(0.2445) 
p 0.9470 

(0.0385) 
ω4,;
8  -1.6613 

(0.2532) 
q 0.9767 

(0.0097) 
β4,; -6.7991 

(1.8694) 
Log − likelihood 1401.5822 

α4,; -0.9359 
(0.5759) 

AIC -2803.1506 

p 0.9986 
(0.0045) 

- - 

q 0.9983 
(0.0041) 

- - 

Log − likelihood 1358.6119 - - 
AIC -2717.2182 - - 

Copula estimation results corresponding to Eq. (26), (28) and (29). U and L represent lower and upper tail, 
respectively whereas p and q are the probabilities in being in state 0 (high dependence) and state 1 (low 
dependence), respectively. Standard errors in parentheses. 
 

Further, Figure 6 shows the filtered probabilities, that is, probabilities computed using 

past and contemporaneous information for the two regimes, high and low, concerning the 

dependence between G-SIBs and O-SIIs. We consider a change in the dependence regime once 

the probability is greater than 0.5. Thus, one can observe persistence in the high dependence 

regime especially between 2005-2006, when we faced an energy crisis. The crisis regime starts 

again in 2008 and lasts until de end of 2009. This period is associated, as we know well, with the 

GFC that has its roots in Lehman Brothers collapse from September 15, 2008. 
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Figure 6. Filtered probabilities for the two regimes derived from a SJC copula 

 

 
Figure 7. Dependence dynamics from a SJC copula 

Note: Red lines describe constant tail dependence whereas blue lines describe time-varying tail dependence. 
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In Figure 7, showing the dependence dynamics from fitting a SJC copula model for both 

regimes, high (state S0) and low (state S1), we can observe the evolution of the lower and upper 

tail parameters with respect to the two regimes. The lower and upper tail parameters appear to be 

higher in the high dependence regime than in the low dependence regime that suggests a greater 

dependence during crisis times than during tranquil times between G-SIBs and O-SIIs. As hinted 

by Bekaert et al. (2005) this can be associated with a contagion effect, but in our case it is about 

contagion between institutions and not between markets.  
 
6. Concluding remarks 
In this paper we investigated the spillover effects and the systemic relevance of two 

particularly important groups of financial institutions: global systemically important banks (G-

SIBs) and other systemically important institutions (O-SIIs). These institutions are designated by 

the Financial Stability Board (FSB) at the global level and by the European Banking Authority 

(EBA) at the European level. Because of their size, complexity, and systemic interconnectedness, 

in the case of a default these institutions are more likely to affect financial system (or even to 

drive it to the collapse) and the real economy as a whole, generating negative and expensive 

externalities.  

As we expected, G-SIBs were, on average, the main contributors and the main exposed 

financial institutions to systemic wide distress. However, O-SIIs were more risky in terms of 

individual risk as measured by VaR and it highlights the idea that individual supervision is not 

without shortcomings.  

From a network Granger-relationship perspective there is evidence of an increase in 

interdependence between G-SIBs and O-SIIs especially during 2008-2011, a period associated 

with the subprime crisis and debt crisis in Europe. In addition, spillover effects seem to be more 

pronounced within the group rather than between the groups. 

Overall, our findings document that G-SIBs are more systemic relevant than O-SIIs and 

that there has been an increase in spillover effects between the two, especially during the global 

financial crisis. 
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APPENDIX 

 

 

Table 2. Financial institutions used in systemic risk analysis 

Name Ticker DS Country of origin Activity Type 
Total Assets 
 as of end of 2004 
(mil. USD) 

Total Assets 
 as of end of 2016 
(mil. USD) 

Date of inclusion 

BANK OF CHINA 'A' BCL CHINA Banks G-SIB 513582.27 2764987.10 4 November, 2011 

INDUSTRIAL & COML.BK.OF CHINA 'A' ITL CHINA Banks G-SIB 611410.48 3679954.16 11 November, 2013 

AGRICULTURAL BANK OF CHINA 'A' ABC CHINA Corporate Banks G-SIB NA 2974457.61 6 November, 2014 

CHINA CON.BANK 'H' CCBN CHINA Banks G-SIB 472395.43 3195138.40 3 November, 2015 

BNP PARIBAS BNP FRANCE Banks G-SIB 1113023.40 2242316.65 4 November, 2011 

CREDIT AGRICOLE CRDA FRANCE Corporate Banks G-SIB 1001909.35 1647639.77 4 November, 2011 

SOCIETE GENERALE SGE FRANCE Banks G-SIB 739018.43 1490910.77 4 November, 2011 

COMMERZBANK CBK GERMANY Banks G-SIB 516139.74 516926.87 4 November, 2011 

DEUTSCHE BANK DBK GERMANY Banks G-SIB 1028614.50 1712849.95 4 November, 2011 

UNICREDIT UCG ITALY Banks G-SIB 325656.06 915517.94 4 November, 2011 

MITSUBISHI UFJ FINL.GP. MITF JAPAN Banks G-SIB 960840.15 2617311.16 4 November, 2011 

MIZUHO FINL.GP. MIZH JAPAN Banks G-SIB 1237418.96 1697801.82 4 November, 2011 

SUMITOMO MITSUI FINL.GP. SMFI JAPAN Banks G-SIB 911884.18 1636690.97 4 November, 2011 

ING GROEP INGA NETHERLANDS Banks G-SIB 1065304.88 914708.52 4 November, 2011 

BANCO SANTANDER SAN SPAIN Banks G-SIB 700767.83 1426971.80 4 November, 2011 

BBV.ARGENTARIA BBVA SPAIN Banks G-SIB 376604.89 774701.11 1 November, 2012 

NORDEA BANK NDA SWEDEN Banks G-SIB 330036.32 680854.93 4 November, 2011 

CREDIT SUISSE GROUP N CSGN SWITZERLAND Banks G-SIB 841442.19 813685.97 4 November, 2011 

UBS GROUP UBSG SWITZERLAND 
Investment Management  
& Fund Operators G-SIB 1343550.63 921468.00 4 November, 2011 

BARCLAYS BARC UNITED KINGDOM Banks G-SIB 964977.09 1698624.26 4 November, 2011 

HSBC HDG.  HSBA UNITED KINGDOM Banks G-SIB 1227024.51 2702048.62 4 November, 2011 

LLOYDS BANKING GROUP LLOY UNITED KINGDOM Banks G-SIB 517233.81 1146419.75 4 November, 2011 

ROYAL BANK OF SCTL.GP. RBS UNITED KINGDOM Banks G-SIB 1078422.05 1120773.64 4 November, 2011 
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STANDARD CHARTERED STAN UNITED KINGDOM Banks G-SIB 136174.71 736187.03 1 November, 2012 

BANK OF AMERICA BAC UNITED STATES Banks G-SIB 1110457.00 2168476.00 4 November, 2011 

BANK OF NEW YORK MELLON BK UNITED STATES 
Investment Management  
& Fund Operators G-SIB 94529.00 333469.00 4 November, 2011 

CITIGROUP C UNITED STATES Banks G-SIB 1484101.00 1742387.00 4 November, 2011 

GOLDMAN SACHS GP. GS UNITED STATES 
Investment Banking  
& Brokerage Services G-SIB 530753.00 854615.00 4 November, 2011 

JP MORGAN CHASE & CO. JPM UNITED STATES Banks G-SIB 1157248.00 2490972.00 4 November, 2011 

MORGAN STANLEY MS UNITED STATES 
Investment Banking  
& Brokerage Services G-SIB 775410.00 814949.00 4 November, 2011 

STATE STREET STT UNITED STATES 
Investment Management  
& Fund Operators G-SIB 94040.00 242488.00 4 November, 2011 

WELLS FARGO & CO WFC UNITED STATES Banks G-SIB 427849.00 1930115.00 4 November, 2011 

ERSTE GROUP BANK ERS AUSTRIA Banks O-SII 171430.01 225213.86 25 April, 2016 

RAIFFEISEN BANK INTL. RAI AUSTRIA Banks O-SII 35496.58 120972.08 25 April, 2016 

KBC GROUP KB BELGIUM Banks O-SII 306522.07 295552.92 25 April, 2016 

CB CENTRAL COOP.BANK CBC BULGARIA Corporate Banks O-SII NA 2871.78 15 March, 2017 

CB FIRST INVESTMENT BANK CBF BULGARIA Corporate Banks O-SII NA 5032.33 15 March, 2017 

ZAGREBACKA BANKA SER A ZAA CROATIA Corporate Banks O-SII NA 18204.12 25 April, 2016 

PRIVREDNA BANKA PRI CROATIA Banks O-SII NA 11675.05 25 April, 2016 

BANK OF CYPRUS  BCH CYPRUS Banks O-SII NA 23519.90 25 April, 2016 

HELLENIC BANK HEL CYPRUS Corporate Banks O-SII NA 7611.11 25 April, 2016 

KOMERCNI BANKA KOM CZECH REPUBLIC Banks O-SII 17234.96 36941.83 25 April, 2016 

DANSKE BANK DAB DENMARK Banks O-SII 307707.03 505637.61 25 April, 2016 

SYDBANK SYD DENMARK Banks O-SII 12920.15 21286.55 25 April, 2016 

JYSKE BANK JYS DENMARK Banks O-SII 20624.99 85173.35 25 April, 2016 

NATIONAL BK.OF GREECE ETE GREECE Banks O-SII 65031.48 79534.46 25 April, 2016 

ALPHA BANK PIST GREECE Banks O-SII 40482.84 65350.10 25 April, 2016 

OTP BANK OTP HUNGARY Banks O-SII 19932.16 39419.65 25 April, 2016 

FHB SHARE FHB HUNGARY 
Retail  
& Mortgage Banks O-SII 1993.03 2058.10 25 April, 2016 

BANK OF IRELAND GROUP BIRG IRELAND Banks O-SII 130895.10 131917.86 25 April, 2016 

AIB GROUP A5G IRELAND Banks O-SII 125497.25 100476.77 25 April, 2016 

PERMANENT TSB GHG. IL0A IRELAND Corporate Banks O-SII 56952.79 25172.79 15 March, 2017 

BANCA MONTE DEI PASCHI BMPS ITALY Banks O-SII 158235.55 162290.97 25 April, 2016 
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INTESA SANPAOLO ISP ITALY Banks O-SII 335974.04 773081.25 25 April, 2016 

SIAULIU BANKAS SUB LITHUANIA Corporate Banks O-SII NA 2014.66 25 April, 2016 

BANK OF VALLETTA BOV MALTA Corporate Banks O-SII NA 11537.89 25 April, 2016 

HSBC BANK MALTA HSB MALTA Corporate Banks O-SII NA 7886.86 25 April, 2016 

DNB DNB NORWAY Banks O-SII 100881.95 304867.77 25 April, 2016 

HANDLOWY PHY POLAND Corporate Banks O-SII 8552.28 11254.48 15 March, 2017 

ING BANK SLASKI ING POLAND Corporate Banks O-SII 8843.15 29314.29 15 March, 2017 

MBANK MBK POLAND Banks O-SII 8102.45 33305.42 15 March, 2017 

BANK ZACHODNI WBK BZW POLAND Banks O-SII 6876.73 37146.63 15 March, 2017 

PKO BANK PKB POLAND Corporate Banks O-SII 22503.90 70958.52 15 March, 2017 

BANK POLSKA KASA OPIEKI PKA POLAND Banks O-SII 15021.47 43309.06 15 March, 2017 

GETIN NOBLE BANK GNB POLAND Corporate Banks O-SII NA 16545.34 15 March, 2017 

BANK BGZ BNP PARIBAS BGZ POLAND Banks O-SII NA 17946.35 15 March, 2017 

BANCO BPI BPI PORTUGAL Banks O-SII 29490.57 40975.03 25 April, 2016 

BANCO COMR.PORTUGUES 'R' BCP PORTUGAL Banks O-SII 88154.42 73716.48 25 April, 2016 

BANCO POPULAR ESPANOL  POP SPAIN Banks O-SII 76893.07 154859.68 25 April, 2016 

BANCO DE SABADELL BSAB SPAIN Banks O-SII 51742.01 222765.76 25 April, 2016 

SWEDBANK 'A' SWED SWEDEN Banks O-SII 135530.31 249361.00 25 April, 2016 

SVENSKA HANDBKN.'A' SVK SWEDEN Banks O-SII 179176.81 304068.26 25 April, 2016 

SEB 'A' SEA SWEDEN Banks O-SII 211181.32 303223.06 25 April, 2016 
This tables exhibits the financial institutions used in systemic risk analysis. Ticker DS stands for to the ticker from Datastream and Date of inclusion refers to the 
first time when the financial institution was included in G-SIBs or O-SIIs list. So far, there were six updates of G-SIBs list and one update of O-SIIS list. NA 
stands for non available information. 
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Table 3. Rank of G-SIBs and O-SIIs by VaR, ∆CoVaR and MES 

Ranked by Name Type VaR Name Type ∆CoVaR Name Type MES 

1 PERMANENT TSB GHG. O-SII 5.98 DEUTSCHE BANK G-SIB 1.16 RAIFFEISEN BANK INTERNATIONAL O-SII 2.97 

2 AIB GROUP O-SII 5.51 BBV.ARGENTARIA G-SIB 1.08 SOCIETE GENERALE G-SIB 2.87 

3 ALPHA BANK O-SII 5.28 NORDEA BANK G-SIB 1.06 COMMERZBANK G-SIB 2.76 

4 GETIN NOBLE BANK O-SII 4.49 BNP PARIBAS G-SIB 1.06 BANK OF IRELAND GROUP O-SII 2.75 

5 SIAULIU BANKAS O-SII 4.16 SVENSKA HANDBKN.'A' O-SII 1.05 CREDIT AGRICOLE G-SIB 2.70 

6 
RAIFFEISEN BANK 
INTERNATIONAL O-SII 4.13 SOCIETE GENERALE G-SIB 1.05 UNICREDIT G-SIB 2.69 

7 BANK OF IRELAND GROUP O-SII 3.89 UBS GROUP G-SIB 1.04 DEUTSCHE BANK G-SIB 2.67 

8 BANK OF CYPRUS O-SII 3.78 HSBC HDG. G-SIB 1.02 ING GROEP G-SIB 2.60 

9 BANCO COMR.PORTUGUES 'R' O-SII 3.75 BANCO SANTANDER G-SIB 1.01 ROYAL BANK OF SCTL.GP. G-SIB 2.56 

10 BANCA MONTE DEI PASCHI O-SII 3.75 GOLDMAN SACHS GP. G-SIB 1.00 INTESA SANPAOLO O-SII 2.54 

11 CB FIRST INVESTMENT BANK O-SII 3.64 CREDIT SUISSE GROUP N G-SIB 0.99 BNP PARIBAS G-SIB 2.52 

12 MBANK O-SII 3.63 ING GROEP G-SIB 0.97 BARCLAYS G-SIB 2.52 

13 OTP BANK O-SII 3.63 INTESA SANPAOLO O-SII 0.96 BANCA MONTE DEI PASCHI O-SII 2.49 

14 UNICREDIT G-SIB 3.60 CREDIT AGRICOLE G-SIB 0.93 BANCO DE SABADELL O-SII 2.46 

15 BANCO DE SABADELL O-SII 3.58 ERSTE GROUP BANK O-SII 0.92 BANCO POPULAR ESPANOL O-SII 2.43 

16 ZAGREBACKA BANKA SER A O-SII 3.50 JP MORGAN CHASE & CO. G-SIB 0.91 BANCO SANTANDER G-SIB 2.41 

17 COMMERZBANK G-SIB 3.48 UNICREDIT G-SIB 0.88 PERMANENT TSB GHG. O-SII 2.40 

18 HELLENIC BANK O-SII 3.45 DNB O-SII 0.87 ERSTE GROUP BANK O-SII 2.38 

19 BANK POLSKA KASA OPIEKI O-SII 3.42 SYDBANK O-SII 0.84 BBV.ARGENTARIA G-SIB 2.33 

20 CB CENTRAL COOP.BANK O-SII 3.41 SEB 'A' O-SII 0.81 MORGAN STANLEY G-SIB 2.31 

21 BANK ZACHODNI WBK O-SII 3.37 MORGAN STANLEY G-SIB 0.80 BANCO COMR.PORTUGUES 'R' O-SII 2.29 

22 BANCO POPULAR ESPANOL O-SII 3.34 BANK OF NEW YORK MELLON G-SIB 0.80 KBC GROUP O-SII 2.29 

23 PRIVREDNA BANKA O-SII 3.33 OTP BANK O-SII 0.80 ALPHA BANK O-SII 2.26 

24 SOCIETE GENERALE G-SIB 3.32 SWEDBANK 'A' O-SII 0.80 CREDIT SUISSE GROUP N G-SIB 2.24 

25 PKO BANK POLSKI O-SII 3.32 BARCLAYS G-SIB 0.79 GETIN NOBLE BANK O-SII 2.24 

26 INTESA SANPAOLO O-SII 3.30 STANDARD CHARTERED G-SIB 0.77 BANK OF AMERICA G-SIB 2.21 

27 ROYAL BANK OF SCTL.GP. G-SIB 3.30 BANCO POPULAR ESPANOL O-SII 0.76 SEB 'A' O-SII 2.21 

28 ERSTE GROUP BANK O-SII 3.30 DANSKE BANK O-SII 0.75 CITIGROUP G-SIB 2.16 
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29 BANCO BPI O-SII 3.30 KBC GROUP O-SII 0.74 UBS GROUP G-SIB 2.15 

30 FHB SHARE O-SII 3.28 STATE STREET G-SIB 0.74 STANDARD CHARTERED G-SIB 2.12 

31 CREDIT AGRICOLE G-SIB 3.17 BANK OF AMERICA G-SIB 0.74 NORDEA BANK G-SIB 2.09 

32 HANDLOWY O-SII 3.13 
RAIFFEISEN BANK 
INTERNATIONAL O-SII 0.73 MBANK O-SII 2.08 

33 BARCLAYS G-SIB 3.12 WELLS FARGO & CO G-SIB 0.71 PKO BANK POLSKI O-SII 2.08 

34 DEUTSCHE BANK G-SIB 3.10 JYSKE BANK O-SII 0.71 OTP BANK O-SII 2.07 

35 ING GROEP G-SIB 3.07 PKO BANK POLSKI O-SII 0.70 LLOYDS BANKING GROUP G-SIB 2.03 

36 KBC GROUP O-SII 3.03 BANK ZACHODNI WBK O-SII 0.70 SWEDBANK 'A' O-SII 2.01 

37 NATIONAL BK.OF GREECE O-SII 2.98 LLOYDS BANKING GROUP G-SIB 0.67 DNB O-SII 2.00 

38 DNB O-SII 2.96 CITIGROUP G-SIB 0.67 AIB GROUP O-SII 2.00 

39 KOMERCNI BANKA O-SII 2.94 KOMERCNI BANKA O-SII 0.65 STATE STREET G-SIB 1.99 

40 ING BANK SLASKI O-SII 2.89 COMMERZBANK G-SIB 0.63 NATIONAL BK.OF GREECE O-SII 1.95 

41 BANCO SANTANDER G-SIB 2.88 BANK POLSKA KASA OPIEKI O-SII 0.61 GOLDMAN SACHS GP. G-SIB 1.92 

42 BNP PARIBAS G-SIB 2.88 MBANK O-SII 0.61 SVENSKA HANDBKN.'A' O-SII 1.90 

43 CREDIT SUISSE GROUP N G-SIB 2.86 HANDLOWY O-SII 0.59 BANK POLSKA KASA OPIEKI O-SII 1.83 

44 SWEDBANK 'A' O-SII 2.85 BANCO BPI O-SII 0.59 BANK OF NEW YORK MELLON G-SIB 1.82 

45 MITSUBISHI UFJ FINL.GP. G-SIB 2.84 ING BANK SLASKI O-SII 0.54 BANCO BPI O-SII 1.80 

46 STANDARD CHARTERED G-SIB 2.84 ROYAL BANK OF SCTL.GP. G-SIB 0.54 JP MORGAN CHASE & CO. G-SIB 1.79 

47 BBV.ARGENTARIA G-SIB 2.83 NATIONAL BK.OF GREECE O-SII 0.53 FHB SHARE O-SII 1.78 

48 SEB 'A' O-SII 2.82 BANCO COMR.PORTUGUES 'R' O-SII 0.52 DANSKE BANK O-SII 1.68 

49 MORGAN STANLEY G-SIB 2.82 CHINA CONSTRUCTION BANK G-SIB 0.50 HSBC HDG. G-SIB 1.66 

50 SUMITOMO MITSUI FINL.GP. G-SIB 2.81 BANCO DE SABADELL O-SII 0.48 WELLS FARGO & CO G-SIB 1.61 

51 LLOYDS BANKING GROUP G-SIB 2.81 FHB SHARE O-SII 0.44 JYSKE BANK O-SII 1.61 

52 MIZUHO FINL.GP. G-SIB 2.75 GETIN NOBLE BANK O-SII 0.43 BANK ZACHODNI WBK O-SII 1.60 

53 BANK BGZ BNP PARIBAS O-SII 2.74 SIAULIU BANKAS O-SII 0.32 HANDLOWY O-SII 1.59 

54 NORDEA BANK G-SIB 2.72 ZAGREBACKA BANKA SER A O-SII 0.29 SYDBANK O-SII 1.56 

55 BANK OF CHINA G-SIB 2.64 MITSUBISHI UFJ FINL.GP. G-SIB 0.27 KOMERCNI BANKA O-SII 1.49 

56 UBS GROUP G-SIB 2.58 PRIVREDNA BANKA O-SII 0.27 ING BANK SLASKI O-SII 1.31 

57 
AGRICULTURAL BANK OF 
CHINA G-SIB 2.55 BANK OF CYPRUS O-SII 0.27 BANK BGZ BNP PARIBAS O-SII 1.25 

58 SVENSKA HANDBKN.'A' O-SII 2.52 CB FIRST INVESTMENT BANK O-SII 0.26 BANK OF CYPRUS O-SII 1.25 
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59 CHINA CONSTRUCTION BANK G-SIB 2.51 
INDUSTRIAL AND COMMERCIAL 
BANK OF CHINA G-SIB 0.25 CB FIRST INVESTMENT BANK O-SII 1.20 

60 BANK OF AMERICA G-SIB 2.50 MIZUHO FINL.GP. G-SIB 0.23 HELLENIC BANK O-SII 1.15 

61 DANSKE BANK O-SII 2.50 SUMITOMO MITSUI FINL.GP. G-SIB 0.21 CHINA CONSTRUCTION BANK G-SIB 1.14 

62 STATE STREET G-SIB 2.46 CB CENTRAL COOP.BANK O-SII 0.20 SUMITOMO MITSUI FINL.GP. G-SIB 0.92 

63 CITIGROUP G-SIB 2.44 BANK BGZ BNP PARIBAS O-SII 0.19 MITSUBISHI UFJ FINL.GP. G-SIB 0.90 

64 GOLDMAN SACHS GP. G-SIB 2.43 AGRICULTURAL BANK OF CHINA G-SIB 0.17 CB CENTRAL COOP.BANK O-SII 0.90 

65 JYSKE BANK O-SII 2.38 BANCA MONTE DEI PASCHI O-SII 0.17 MIZUHO FINL.GP. G-SIB 0.90 

66 SYDBANK O-SII 2.36 BANK OF VALLETTA O-SII 0.13 PRIVREDNA BANKA O-SII 0.82 

67 BANK OF NEW YORK MELLON G-SIB 2.24 HSBC BANK MALTA O-SII 0.13 SIAULIU BANKAS O-SII 0.73 

68 
INDUSTRIAL AND 
COMMERCIAL BANK OF CHINA G-SIB 2.23 BANK OF CHINA G-SIB 0.12 ZAGREBACKA BANKA SER A O-SII 0.69 

69 JP MORGAN CHASE & CO. G-SIB 2.15 HELLENIC BANK O-SII 0.01 BANK OF CHINA G-SIB 0.52 

70 WELLS FARGO & CO G-SIB 2.01 ALPHA BANK O-SII 0.01 AGRICULTURAL BANK OF CHINA G-SIB 0.48 

71 HSBC HDG. G-SIB 1.97 AIB GROUP O-SII 0.01 BANK OF VALLETTA O-SII 0.45 

72 BANK OF VALLETTA O-SII 1.84 BANK OF IRELAND GROUP O-SII 0.01 
INDUSTRIAL AND COMMERCIAL BANK 
OF CHINA G-SIB 0.44 

73 HSBC BANK MALTA O-SII 1.83 PERMANENT TSB GHG. O-SII 0.00 HSBC BANK MALTA O-SII 0.39 
The table presents the rank of G-SIBs and O-SIIS by VaR, ∆CoVaR and MES based on median daily values. All risk measures are expressed in percentage. 
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Figure 1. Network graph for 2004-2007 period 

 

 

Figure 2. Network graph for 2008 - 2011 period 


