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∗IÉSEG School of Management, CNRS-LEM (UMR 9221), 1 Parvis de la Défense, 92044 Paris (France). Email:
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1. Introduction

The standard financial theory suggests that credit and equity markets should be integrated. In-

deed, under the stylized assumptions of the Modigliani-Miller world, individual stock and corpo-

rate debt securities are reasonably close substitutes, thus removing the risk limits to the arbitrage1

of the firm’s capital structure by rational investors who play the equity against a portfolio of cor-

porate debt and credit derivatives (e.g., Kapadia and Pu, 2012). In the process, neither market

should dominate the price discovery of credit risk. However, influential studies have shown that

insider trading may occur in the credit derivatives market and impound the price discovery process

(Acharya and Johnson, 2007; Kryzanowski, Perrakis, and Zhong, 2017). Such breaches to market

efficiency raise the question as to which market attracts informed trading and arbitrage resources.

In this paper, I put forward a structural model of the leverage effect to interpret the dominance

of credit markets in the price discovery process. In this model, the corporate leverage governs

the transmission of price information between the credit and the stock market. When the firm’s

financial leverage is low, the informational content of the credit market is low and produces low-

intensity signals. As a result, credit traders are mostly noise or liquidity traders, and the bulk of the

price discovery process primarily occurs in the stock market, in line with multiple empirical studies

(e.g., Hilscher, Pollet, and Wilson, 2015). Conversely, when the firm’s financial leverage gradually

increases, rational and sophisticated credit investors acquire a gradual advantage in the gathering

and the processing of information related to the firm’s credit quality. As credit traders tend to mo-

nopolize the incorporation of private information into prices, the transmission to the stock market

intensifies due to the effect of the corporate leverage, pushing stock traders to chase the trend and

morph into noise traders without their knowing. Everything happens as if the corporate leverage

made informed trading migrate to the credit market.

My structural model for price transmission via the corporate leverage draws on the following

insight: the economic concept of elasticity provides a way to capture the joint correlation between

the evolution of the firm’s equity market price, on the one hand, and the firm’s credit quality, on the

1See Shleifer and Summers (1990), Shleifer and Vishny (1997) for the literature on the limits to arbitrage.
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other. The first contribution of the paper is to show that the credit-equity elasticity is the adequate

medium to convey one of the critical indicators of the firm’s financial health—the debt-to-equity

ratio. This approach relies on previous works that have already introduced money capital in the

production theory of the firm to solve for the optimal capital structure in a partial equilibrium

setting (see, for example, Vickers (1970) and Turnovsky (1970)).

The concept of elasticity, however, also provides a straightforward modeling framework to

account for the negative correlation between stock prices and their volatilities. At the root of

the constant-elasticity-of-variance (CEV) paradigm of Cox (1996) lies the negative correlation

observed between stock returns and changes in stock volatility.2 A simplified explanation for

these statistical relationships is the “leverage effect,” a term coined by Black (1976) to explain the

empirical relation between stock price returns and changes in volatility.3

The article’s second theoretical contribution, therefore, is to introduce a structural formulation

of the asymmetry of the equity implied volatility surface that fits in the CEV framework under

the guise of the variance-equity elasticity. This approach explicitly involves the firm’s financial

leverage and is valid for a broad scope of companies or market conditions. It provides both a

structural interpretation of the variance-equity iso-elasticity and a practical method for estimating

this parameter, free of the statistical biases inherent to an econometric approach. In doing so, I

provide some theoretic elements of a response to the old question summarized by Figlewski and

Wang (2000): Is the so-called “leverage effect” a real effect of the firm’s financial leverage?

The third theoretical contribution of the article is to show that the CEV approach to the leverage

effect implies the constant elasticity of default probabilities relative to stock prices. In this spirit, a

simple relationship must bind together the credit-equity iso-elasticity and the variance-equity iso-

elasticity. The intuition for this result is that both elasticities are two separate facets of the same

2Researchers have extensively documented this statistical relationship in the case of realized volatility (e.g.,
Christie, 1982; French, Schwert, and Stambaugh, 1987; Duffee, 1995). In parallel, as early as 1987, the asymmetry of
the Black-Scholes volatility surface implied from stock options market prices arose as a robust empirical pattern.

3The conventional explanation proceeds as follows. The decline of the stock price entails an increase in the firm’s
debt-equity ratio, which in turn increases the firm’s riskiness. Since the creditors’ claim on the firm reduces to the debt
face value, the bulk of the variations in the firm’s asset value should concentrate on the equity component. The equity
volatility, either realized or implied from option prices, should thereby rise mechanically.
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fundamental firm metrics, namely the debt-to-asset ratio.

My model offers far-reaching empirical implications. First, the credit-equity iso-elasticity hy-

pothesis brings support to the presence of a long-run equilibrium relationship between a firm’s

credit spreads and equity prices. By capturing the nonlinear effect of the firm’s leverage, this coin-

tegrating vector is distinct from the linear combination of the credit spread and the stock price

already investigated in the literature (e.g., Narayan, Sharma, and Thuraisamy, 2014).

Second, the model provides new testable hypotheses concerning the price discovery process

at work in credit markets. If equity and credit prices are co-integrated, there must be an error-

correction mechanism reflecting arbitrage across equity and credit markets. It becomes then pos-

sible to measure the contributions made by each market to the price discovery process.

Third, as already underscored in the literature (Kapadia and Pu, 2012), exogenous barriers to

arbitrage such as funding constraints and liquidity risks interfere with the co-movements in the

equity and credit markets. This paper hypothesizes that the nonlinear impact of the leverage effect

may be one of the endogenous sources for the lack of integration between the credit and equity

markets.

I use a large dataset of S&P 500 firms and an extended timeframe (2008-2018) to examine the

transmission of pricing information from the stock market to the credit default swap (CDS) mar-

ket. By identifying the genuine price innovations arising in the stock market, I offer an empirical

methodology to identify the non-linear impact of the financial leverage on the information flow

transiting to the credit market. This leveraged transmission mechanism to the CDS market appears

(i) more intense than a linear direct transmission channel, (ii) uniform across firms, (iii) robust to

market conditions.

Most firms in the sample reject the null hypothesis of no (leverage-)cointegration between their

equity and CDS markets. For these firms, I rely on the vector-error correction (VEC) approach of

Gonzalo and Granger (1995) to study the respective contributions of each market to the price

discovery process. The CDS market share appears to be low and below 30% for the vast majority

of firms, consistent with the CDS “sideshow” hypothesis (Hilscher, Pollet, and Wilson, 2015).
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However, a small cluster of highly-leveraged firms exhibits a CDS market share around or above

50%. This new finding provides reliable evidence for the role of the leverage effect in the price

discovery process.

This paper relates to the vast empirical literature that investigates the price discovery process

in credit markets. The conventional view states that credit pricing information primarily flows

from stock markets to credit markets due to lower transaction costs (e.g., Hilscher, Pollet, and

Wilson, 2015). The alternative view underscores the role of private information in the flow of

pricing information from credit markets to stock markets (e.g., Acharya and Johnson, 2007). The

most recent literature suggests that both credit and equity markets should potentially lead and lag

the other market (Marsh and Wagner, 2016; Lee, Naranjo, and Velioglu, 2018). By studying the

endogenous, non-linear impact of the firm’s capital structure, this paper departs from a work of

literature mainly focused on exogenous and linear transmission effects.

The article proceeds as follows. Section 2 reviews the literature related to the leverage effect.

Section 3 briefly expounds the microeconomic foundations for the credit-equity elasticity using a

partial equilibrium approach. Section 4 contains the main theoretical contribution. After introduc-

ing a structural approach to the so-called “leverage effect,” it links the variance-equity iso-elasticity

to the firm’s financial leverage, and finally derives the iso-elasticity of default probabilities relative

to stock prices. Section 5 discusses the economic implications of the theory. Section 6 describes

the data used in the empirical analysis. Section 7 presents empirical evidence on the role of the

financial leverage in the transmission of price information from the equity market to the credit

market. Section 8 concludes the article.

2. Related Literature on the Leveraged Effect

The approach developed in this article relies on the class of CEV stock price processes intro-

duced by Cox (1996). The CEV paradigm has found some empirical support, especially in the

pricing of warrants (Lauterbach and Schultz, 1990). A natural outlet of the CEV framework is

the modeling of corporate hybrid products for which the issuing firm’s financial leverage is a key
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concept. However, only econometric approaches to the estimation of CEV parameters appear in

the CEV literature (Beckers, 1980; De Spiegeleer, Schoutens, and Van Hulle, 2014). Although

researchers have long recognized the strong influence of the firm’s debt-equity ratio (Schroder,

1989), to the best of my knowledge, there is no estimation procedure of the CEV elasticity pa-

rameter that explicitly takes into account the fundamental factors of the firm such as the financial

leverage.

It appears that somewhat limited empirical support has been advanced to substantiate the spe-

cific role of the firm’s financial leverage in the so-called leverage effect. Christie (1982) finds a

significant influence for large firms. Duffee (1995) does not confirm this result for a broader sam-

ple of firms. Figlewski and Wang (2000) find evidence for a “down market effect” highlighting the

part of negative stock returns on realized volatilities. It further underscores the significant asym-

metry in the role of the firm’s financial leverage. French, Schwert, and Stambaugh (1987) dismiss

its causal role in the asymmetric return-volatility relationship, thereby raising the alternate hypoth-

esis of a volatility feedback effect (see, e.g., Bekaert and Wu, 2000; Wu, 2001). More recently,

the question has shifted on the data sampling frequencies used when estimating stock volatilities.

Bollerslev, Litvinova, and Tauchen (2006) find empirical evidence of the leverage effect over in-

traday frequencies. Aı̈t-Sahalia, Fan, and Lin (2013) underscore the asymptotic biases inherent in

traditional volatility estimators used in the context of high-frequency data.

From the implied volatility perspective, Toft and Prucyk (1997) produce strong empirical evi-

dence in support of the leverage effect hypothesis for implied volatilities. They employ a structural

option pricing model derived from Leland’s (1994) structural model of leveraged equity. More

recently, Hibbert, Daigler, and Dupoyet (2008) explore behavioral alternatives to the leverage and

the volatility feedback hypotheses. As noted by Figlewski and Wang (2000), however, practition-

ers routinely invoke the leverage effect to account for the empirically observed skew pattern in the

equity implied volatility surface, even in the case of asset classes such as foreign exchange rates

for which financial leverage is no longer a self-evident concept. In this regard, stochastic volatil-

ity option pricing models, such as the well-known Heston (1993) or SABR (Hagan et al., 2002)
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models, routinely take into account the correlation between the stock price process and its vari-

ance. Nevertheless, to the best of our knowledge, no exogenously-specified option pricing model

explicitly takes into account the firm’s financial leverage per se.

Finally, credit risk also provides a perspective on the leverage effect. From an empirical point

of view, researchers such as Campbell and Taksler (2003) have extensively documented the posi-

tive correlation between corporate bond yields and equity volatility. Along with the rapid growth of

credit derivatives, researchers have underscored similar links between credit default swap (CDS)

spreads, and stock option implied volatilities. Cremers et al. (2008) highlight the explanatory

power of both the levels and the steepness of the equity implied volatility in interpreting the vari-

ations of long-term CDS spreads. Carr and Wu (2010) show empirically that for long maturities

and low strike prices, the credit risk contribution becomes as significant as the stock volatility

contribution in the pricing of out-of-the-money options.

3. Microeconomic Background

This section lays the economic foundations for the credit-equity elasticity.4 The main quantity

of interest is the elasticity of a firm’s cost of debt available in the market, r, with respect to the

firm’s equity market value, S:

e :=
dr/r
dS/S

. (1)

Following the seminal work by Vickers (1970, 1987), I put forward a neoclassical, static model

of the firm which takes into account money capital. I consider a situation in which, given the

exogenous market rate of interest on the debt, the firm’s management is free to select not only an

optimal level of production but also an optimal mix of debt and equity to finance this production,

by a single set of decisions at the initial time. The comparative static properties of this optimal

capital structure will then allow determining the impact of an exogenous deviation in the cost of

debt on the firm’s equity market value. Let us introduce the following notation.

4In the sequel of the article, I reserve the term elasticity to situations where a change of δ % in a dimensionless
financial quantity x generates a change of eδ% in the quantity xe for a δ close to 0.
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x : n-vector of input factors xi of production used by the firm (physical capital).

w : n-vector of unit factor costs of inputs xi.

f (x) : the firm’s production function. As is conventional in production theory, f is assumed to have

positive partial derivatives fi and a negative definite matrix of second partial derivatives fii

(convexity assumption).

p : unit selling price of the firm which is expected to prevail in all future periods. It is assumed

to be independent of the production plans of the firm (price-taking assumption).

E : book value of firm’s equity.

D : book value of firm’s debt, assumed to be equal to its market value.

r : average market rate of interest on the total debt.

ρ : stockholder’s required rate of return on equity capital. The equity owners being risk-averse,

their capitalization rate ρ is assumed to depend on the debt-equity mix employed in the

firm. Following Turnovsky (1970), we shall assume that ρ is a function of the financial

leverage, ρ (σD/E) , with ρ(0) > 0 and ρ ′ ≥ 0. This functional form enables the equity

owners’ capitalization rate, given a level of the the firms’ business risk, to increase with the

debt-to-equity ratio.

σ : business risk, measured by the standard deviation of the firm’s net operating income.

It is convenient to write the firm’s profit function as:

π(x) := p f (x)−wx. (2)

The expected profit π(x) is the average income stream generated by the firm on a perpetual time

scale. As ρ is the capitalization rate applicable to the owners’ equity, π(x)/ρ will be the market

value of this income stream. Subtracting the financial debt service then yields the profit being

earned for the benefit of the residual owners of the firm:

S :=
π(x)− rD

ρ
, (3)
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which is also the firm’s equity market value.

In their quest for an optimal capital structure, the planning problem faced by the firm’s man-

agement is to select x, D and E so as to maximize the net discounted present value of the firm:

φ(x,D,K;r) :=
π(x)− rD

ρ
−E, (4)

subject to the following money capital budget constraint:

D+E ≥ g(x), (5)

where the function g(x) describes the requirements in money capital to operate the firm and sustain

production.5 Without loss of generality, the money capital budget constraint (5) can be restricted

to an equality, meaning that there is no capital saturation (e.g., Lange, 1936).

Proposition 1 (Credit-equity elasticity). In a partial equilibrium framework, the credit-equity

elasticity of an optimal capital structure is given by the ratio of the expected return on equity over

the cost of total debt:

e =−ρS
rD

. (6)

Proof. See Appendix A.

Equation (6) provides important economic insights into the credit-equity elasticity. It sug-

gests that any credit-equity parametric relationship should: (i) be monotonic, (ii) capture the loose

credit-equity de-correlation when stock prices increase, and (iii) capture the sharp credit-equity

re-correlation when stock prices fall. This relationship should also be convex.

Figure 1 illustrates the credit-equity relationship with scatter plots of 5-year CDS par spreads

against prices of the common stock for General Motors and Microsoft over the period 2011-2018.

5It will be convenient to think of the money capital requirement function g as the sum of: (i) a global investment
of financial capital in the working capital assets (cash, account receivables, inventories, liquidity cushion, etc.), and (ii)
specific investments of financial capital relative to each production factor xi. In the sequel, there is no need to specify
g more precisely. For further discussion of money capital requirements, see Vickers (1970, 1987), Turnovsky (1970),
or Arzac (1975).
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Figure 1. Credit-equity elasticity

This figure plots weekly CDS par spreads (5-year, senior unsecured contract) against weekly closing prices for the
common equity. Time period: October, 2011 to September, 2018. Data source: Thomson Reuters.

(a) General Motors (2011-2018)

15.00 20.00 25.00 30.00 35.00 40.00 45.00
0

100

200

300

400

500

600

Stock price ($)

5-
ye

ar
C

D
S

pa
rs

pr
ea

d
(b

ps
)

(b) Microsoft (2011-2018)

20.00 40.00 60.00 80.00 100.00 120.00
0

50

100

150

200

250

300

Stock price ($)

5-
ye

ar
C

D
S

pa
rs

pr
ea

d
(b

ps
)

The monotonicity and the convexity predicted by Equation (6) are easily recognizable. When the

equity market value rises significantly, the firm’s improved financial health is expected to enhance

its creditworthiness, and default probabilities should tend smoothly towards zero (case of Mi-

crosoft). Conversely, a significant fall in the equity market value is expected to signal greater odds

of financial distress and default probabilities should increase sharply (case of General Motors).

4. The Model

In this section, I build a new model of corporate credit risk which captures the credit-equity

elasticity whose microeconomic foundations are laid out in Section 3.

4.1 Structural framework

I now introduce a simple structural framework to build a new approach to the leverage effect.

The following set of assumptions is standard in simple versions of the structural framework of

corporate default risk (e.g., Merton, 1974; Black and Cox, 1976; Leland, 1994; Leland and Toft,

1996).
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ASSUMPTION 1 (Perfect capital markets). There are no transaction costs and no problems with

indivisibilities of assets or informational asymmetries. Securities short-selling is possible with full

use of the proceeds; borrowing and lending occur at the same rate of interest. Investors act as

price-takers.

ASSUMPTION 2 (Risk-neutral probability measure). Trading in assets takes place continuously

in a dynamically complete financial market.

As in similar studies, assuming a non-stochastic interest rate term structure is warranted by the

negligible effect of stochastic interest rates on structural models (e.g., Leland, 1998).

ASSUMPTION 3 (Risk-free interest rate). A riskless asset paying a known constant interest rate

r f exists.

ASSUMPTION 4 (Firm value dynamics). As in Merton (1974), Black and Cox (1976), Leland

(1994), Leland and Toft (1996), the firm’s value evolves according to a risk-neutral diffusion-type

stochastic process with constant volatility of rate of return:

dVt = µV Vtdt +σV VtdWt , (7)

where µV = r f − δ is the expected return of the firm, δ is the net cash outflow rate from the firm

paid to claim-holders by unit time (dividend pay-outs to stockholders as well as interest payments

to debt-holders), σ2
V

is the instantaneous variance of the return on the firm, and Wt is a Wiener

process.

ASSUMPTION 5 (Capital structure). The firm has issued two types of claims: equity E and an

amount D of debt interest and principal due to be repaid at time horizon T under the form of a

default-risky bond, which is paying interests in the form of a discrete stream of coupons. The rule

of absolute priority governs the distribution of assets to bondholders in case of bankruptcy, which

happens as soon as the firm is unable to make contractual cash payments to its claim-holders.
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In Merton’s zero-coupon bond framework (1974), default can only occur through net-worth

insolvency, when the firm’s assets are exhausted at debt horizon. Consequently, the residual claim

on the firm is seen as a simple European-style call option on the firm’s asset value struck at the debt

face value. As Black and Cox (1976) recognized, however, the risk of cash-flow-based insolvency

may force stockholders to sell assets to meet the firm’s dividend payout policy or its debt servicing

obligations.6 To capture this liquidity risk component of corporate default risk, I make the crucial

economic assumption of a continuous default boundary to let default events occur before the debt

horizon.

ASSUMPTION 6 (Drift to default). As in Black and Cox (1976), Leland (1994), Leland and Toft

(1996), the default may happen before maturity as soon as the firm value falls below a certain

reorganization boundary, under which bondholders get the right to bankrupt or force the reorga-

nization of the firm. The default boundary VB is assumed to be an exogenous constant smaller than

the debt face value DT .

While this structural framework is not simple enough to be solved analytically without addi-

tional assumptions (such as perpetual debt or continuous interest payment as in Leland, 1994),

closed-form solutions will not be needed in the sequel of the article. I now turn to the structural

analysis of the leverage effect.

4.2 Structural approach to the “leverage effect”

As their claim does not protect equity holders against a fall of the firm value below the default

barrier (before potentially rising anew after successful restructuring), the opportunity loss material-

izes for equity holders in a short, down-and-in option on the firm value. Consequently, the levered

equity becomes a down-and-out European-style call option on the firm’s asset value, and the firm’s
6Kim, Ramaswamy, and Sundaresan (1993) argue that the sale of assets to pay debt interests “alters the firm’s

investment policy and hence its future cash-flows,” thereby diminishing the total value of the firm. As an alternative
to the assumption of assets’ perfect liquidity, I will assume that liquidity risk (i.e., the risk to the firm of not meeting
its short-term financial commitments) may force the firm to issue new securities.The issuance of new securities can be
limited to the sale of additional common equity through rights issues to avoid the dilution of existing claim-holders. In
particular, the subsequent discussion precludes reorganization strategies to resolve financial distress through strategic
debt servicing (Mella-Barral and Perraudin, 1997).
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volatility remains linked to the equity instantaneous volatility σ by the traditional relationship:

σS = SvσV V, (8)

where Sv := ∂S/∂V denotes the equity market value differential with respect to the firm value.

Equation (8) is not able to provide any direct insight on the leverage effect since both the equity

value and its sensitivity with respect to the firm’s value move apart when the firm is viable, and

stockholders’ call option is primarily in the money. To gain further insight into the convexity of the

leverage effect, I need to differentiate Equation (8) and to make an assumption on the shape of the

equity volatility. I will remain within a general and parsimonious setting, however, by assuming a

time-homogeneous local volatility surface.

ASSUMPTION 7 (Local volatility). The instantaneous equity volatility is a time-homogeneous

deterministic function of the stochastic stock price process, that is, σ(St , t)≡ σ(St).

Equipped with Assumption 7, it is now possible to differentiate Equation (8) which leads to the

following structural formulation of the leverage effect.

Proposition 2. (a) Under the structural Assumptions 1–7, the logarithmic slope of the equity

local volatility surface is linked to the firm’s financial leverage by the relationship:

∂σ

∂ ln(S)
=−σ · (`− ε`) , (9)

where ` := D/V is the debt-to-asset ratio, and where the adjusting term to the financial

leverage is given by:

ε` :=
SSvv

S2
v
. (10)

(b) Exogenous market conditions, as well as endogenous structural conditions, can ensure that

the adjustment term ε` to the firm’s financial leverage is negligible in front of the debt-to-

asset ratio (ε` � `). In these conditions, the slope of the equity instantaneous volatility

surface is determined at first order by the firm’s financial leverage `.
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Proof. See Appendix B.

The previous result provides the missing link between the logarithmic slope of the local volatil-

ity surface and an adjusted value of the firm’s corporate leverage. Note that the debt-to-asset ratio,

one of the traditional measures of the company’s financial leverage for the financial analysts, is

specified with market values instead of book values. This modeling choice reflects not only the

firm’s tangible assets and working capital but also its intangible assets and growth opportunities.

Limiting oneself to Equation (9) in order to substantiate the role of the firm’s financial leverage

in the so-called leverage effect presents serious shortcomings. The local volatility surface is not

observable and not even model-free, as it depends on the model of the stock price dynamics.

A model-free formulation of the volatility surface—such as the Black-Scholes implied volatility

surface, which is directly observable in the market—would be preferable. I can therefore introduce

the Black-Scholes implied volatility σ̂(K,T ) for a given strike price K and given time to maturity

T , that is, the volatility number to be input in the Black-Scholes-Merton model (Black and Scholes,

1973) in order to match the observed European-style call price C(K,T ) in the options market. I

define the slope of the implied volatility surface (the “skew”) in the log-strike space as:

Σ̂ :=
∂ σ̂(K,T )

∂k
, (11)

where FT is the stock’s forward price at maturity T and k := ln(K/FT ) is the log-moneyness vari-

able.

The local volatility slope appearing in Equation (9) is known to be a good predictor of the asym-

metry of the implied volatility surface observed in options markets (see, for example, Gatheral,

2006). More precisely, the local volatility skew is twice as steep as the implied volatility skew

for short times to expiration.7 However, as the following technical result derived by Hagan and

Woodward (1999) via singular perturbation theory shows, a stronger pattern holds thanks to As-

sumption 7 and the assumption of short times to expiration may safely be relaxed.

7Gatheral (2006) formally proves this result, as well as comparable results linking local and implied volatilities
under various modeling assumptions.
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Lemma 1 (Hagan and Woodward, 1999). Under Assumption 7 of a time-homogeneous local

volatility surface, the instantaneous volatility surface σ(·) may be inferred from the volatility sur-

face σ̂(·) implied by the options market through the following affine transformation:

σ̂(K) = σ

(
S0 +K

2

)
, (12)

where K is the option strike price and S0 is the initial equity market price.

Proof. See Appendix C.

An immediate consequence of Lemma 1 is that the local volatility slope appearing in Equa-

tion (9) is twice as steep as the implied volatility skew. As a result, substituting the implied volatil-

ity skew into Equation (9) leads to a structural interpretation of the negative relationship between

implied volatility and strike price.

Proposition 3 (Structural leverage effect). Under structural Assumptions 1–7, the implied volatil-

ity skew is linked to the debt-to-asset ratio:

Σ̂ =−σ

2
· (`− ε`) , (13)

where `= D/V and the adjusting term to the financial leverage is given by Equation (10).

The reader will notice that, on top of the leverage effect, Equation (13) captures a form of

volatility feedback effect, the alternate hypothesis traditionally advanced for the asymmetry of

the implied volatility surface (e.g., Bekaert and Wu, 2000; Wu, 2001).8 In our current structural

framework, it is thus the role of the firm’s financial leverage to dampen or magnify a possible

volatility feedback effect.

8The economic mechanism goes as follows. As an increase in stock market volatility raises expected stock returns
(Campbell and Hentschel, 1992), current stock prices then decline to adjust to these revised expectations. As a result,
an increase in volatility is correlated with negative stock returns, thus raising the value of out-of-the-money stock
options and the implied volatility skew.
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4.3 The variance-equity iso-elasticity

To reflect the leverage effect observed empirically on both realized and implied volatility, it is

standard practice to resort to the broad class of constant-elasticity of variance (CEV) stock price

processes introduced by Cox (1996).

ASSUMPTION 8 (Constant elasticity variance). The stock price process evolves as the solution

to the following stochastic dynamics:

dSt = µStdt +σCEV S
β

2
t dWt , (0≤ β ≤ 2) (14)

where β is a characteristic exponent, σCEV is a positive constant diffusive parameter, and Wt is a

standard Brownian motion.

Notice that we may conveniently omit the drift term µ since it has no qualitative effect on the

dynamics of the process. The CEV framework encompasses a vast spectrum of models ranging

from the Bachelier normal model (β = 0) and the square-root diffusion model (β = 1) of Cox and

Ross (1976) to the Black-Scholes paradigm, which corresponds to the particular case of β = 2.

The CEV framework is entirely consistent with the approach to credit risk developed so far.

Indeed, contrary to the geometric Brownian motion, the CEV diffusion can hit zero with positive

probability as soon as β < 2 (see, for example, Linetsky and Mendoza, 2010), at which time the

firm enters a state of default.9 As a result, the CEV framework is sufficiently rich to enable the

following structural interpretation of the variance-equity iso-elasticity.

Proposition 4 (Variance-equity iso-elasticity). Under Assumptions 1–8, the variance-equity iso-

elasticity is given by β −2 and amounts to twice the firm’s adjusted financial leverage:

|β −2|= 2(`− ε`), (15)

9Owing to their diffusive characteristics, however, short-term default probabilities are small and fail to produce
realistic credit spreads for short expirations (Carr and Linetsky, 2006). This feature renders the CEV dynamics well-
suited to model hybrid products subject to default risk only for medium- to long-term expirations.
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where ` is the debt-to-asset ratio, and ε` is given by Equation (10). At second order, the equity

volatility undergoes intensified impacts from the leverage when equity is a concave claim (ε` < 0),

and reduced impacts from the leverage when equity is a convex claim (ε` > 0). The case of an

un-levered firm (`≡ 0) leads to the Black-Scholes paradigm (β = 2), in which the absence of any

impact from the leverage is synonymous with a constant local volatility function as well as a flat

implied volatility surface.

Proof. See Appendix D.

Equation (15) establishes the role of the variance elasticity as a driving force of the asymmetry

of the implied volatility surface. Moreover, it suggests that the CEV model is the simplest model

nesting the Black-Scholes paradigm to account for the leverage effect. In this spirit, a link must

hold between the variance-equity iso-elasticity and the firm’s financial leverage. It comes as no

surprise that some authors call the CEV characteristic exponent β a leverage coefficient (Das and

Sundaram, 2007), although the authors recognize that “there is no direct interpretation of this pa-

rameter within the Merton framework.” The academic literature devoted to the CEV stock price

process has rarely addressed the practical problem of parameter estimation.10 To the best of my

knowledge, Equation (15) is the first theoretical result to provide an unambiguous structural esti-

mate for the variance-equity iso-elasticity.11

4.4 The credit-equity iso-elasticity

To exploit the approach to the variance-equity elasticity developed in Section 4.3, I now in-

troduce a simple economic model to link credit spreads with equity volatilities for which I need

additional modeling assumptions. First, I allow for a more accurate description of corporate de-

fault risk. In addition to cash-flow-based insolvency risk, which is best modeled by the diffusion
10Beckers (1980) initiates an econometric approach to the variance-equity iso-elasticity estimation. Schroder

(1989) is the first to outline the influence of the firm’s debt-equity ratio. More recently, De Spiegeleer, Schoutens,
and Van Hulle (2014) further elaborate upon it in the context of the modeling of hybrid securities.

11This systematic link with the debt-to-asset ratio comes as no surprise considering the static-tradeoff theory of
capital structure (Myers, 1984), in which firms maximize their value by targeting the debt-to-value ratio. Put differ-
ently, when the firm optimizes its capital structure by substituting equity to debt and vice-versa, the impact on the
equity market value should be commensurate to the `-target.
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of the firm value through a reorganization boundary (see Assumption 6), I consider the possibility

of a “blue-sky” default through a jump to zero of the stock price upon a credit event.12

ASSUMPTION 9 (Jump to default). The stock price jumps to zero upon the default event, meaning

that the instantaneous default probability is well defined.

Second, I slightly reinforce Assumption 2 on the completeness of the financial market. The

purpose is to exhibit optional equity structures liable to replicate the main features of a conventional

default swap instrument,13 and to match the higher moments of the implied volatility surface, such

as the volatility “skew.”

ASSUMPTION 10 (Option continuum). Equity options are continuously tradeable within a sig-

nificant range of exercise prices before the default event.

If the positive correlation between default swap spreads and the levels and slopes of the implied

volatility surface is well known from empiricists (Cremers et al., 2008), theoretical models that

account for this close empirical relationship are still lacking. It is possible, however, to rely on

sensitivity-matching analysis to get a better understanding of the links between default probabilities

and the dynamics of the implied volatility surface. Grounded in the replication of a default swap

instrument by an equity option structure, the following result provides a workable relationship

between the default swap spread and the implied volatility skew.

Lemma 2 (Zimmermann, 2015). Under Assumptions 9–10, the firm’s risk premium on its debt

at a given maturity, r, is linked at first order to the at-the-money implied volatility, σ̂AT M , and the

implied volatility skew, Σ̂, as follows:

r = k · σ̂AT M · |Σ̂|, (16)
12Jumps are essential for capturing the wide spectrum of exogenous drivers of corporate default that do not qualify

as “structural:” natural hazards or disasters, catastrophic events, specific news, systemic financial risks, massive fraud
risk inside the firm, and so on. Moreover, the introduction of jumps is crucial for reflecting credit risk affecting
specific categories of firms, those with few assets in place financed through debt, and whose equity market value
derives primarily from growth opportunities (such as patents, trademarks, and so on). If growth stocks are less risky
than value stocks owing to the costly reversibility of assets in place (Zhang, 2005), jumps in the equity market value
are critical for capturing countercyclical prices of default risk affecting those firms.

13A conventional default swap instrument is a bilateral contract with zero entry cost that provides an insurance
payoff upon a default event to its buyer in return for a quarterly running fee paid to the seller.
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where the constant normalizing factor k is typically independent of the equity volatility and reflects

the expected recovery rate on the debt.

Proof. See Appendix E.

I now combine the insights from Lemma 2 with the variance-equity iso-elasticity of Proposi-

tion 4 to derive the main result of the paper. The next Proposition provides a structural estimate

for the credit-equity iso-elasticity, e, introduced in Section 3.

Proposition 5 (Credit-equity iso-elasticity). Under Assumptions 1–10, the credit-equity iso-elasticity

e is equal to the variance-equity iso-elasticity and amounts to twice the firm’s adjusted financial

leverage:

e = |β −2|= 2(`− ε`), (17)

where ` is the debt-to-asset ratio and ε` is given by Equation (10). At second order, the effect of

the leverage on credit spreads is more pronounced for capital structures whose equity is a concave

claim (ε` < 0) and reduced for capital structures whose equity is a convex claim (ε` > 0). The case

of an un-levered firm (` ≡ 0) is consistent with the Black-Scholes paradigm (β = 2) in which the

perfect de-correlation between credit spreads and stock prices (e = 0) means that the stock price

process cannot reach zero and that the default probability reduces to zero.

Proof. See Appendix F.

5. Model Implications

In this section, I show that the model’s two main results, Propositions 4 and 5, provide new

refutable hypotheses for future empirical research.
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5.1 The credit-equity power relationship

The main implication of Proposition 5 is that over a small period ∆t, the firm’s credit spread,

rt , should follow a power relationship relative to the stock price, St :

rt+∆t = rt ·
(

St

St+∆t

)2(`−ε`)

. (18)

As a power exponent, the firm’s (adjusted) financial leverage thus appears as the measure of the

cost of debt responsiveness to the impulses of equity market value. In other words, the corporate

leverage should intervene in a non-linear way when it comes to dampening or amplifying the

transmission of price information from stock markets to credit markets and vice versa.

Notice how power relationships such as Equation (18) precisely fit the microeconomic require-

ments of Proposition 1. In contrast with alternative parameterizations of credit spreads by stock

prices based on logarithmic or exponential functions, the power function ensures sound boundary

conditions when stock prices fall close to zero or tend to infinity.14 Another comparative advan-

tage lies in the scalability of inputs, which can be multiplied by any factor without altering relevant

empirical aspects.15

5.2 Information transmission between stock and credit markets

Under the form of Equation (18), the credit-equity iso-elasticity hypothesis provides new

testable hypotheses concerning the transmission mechanisms between stock and credit markets.

Taking the logarithm of both sides, it suggests the following transmission mechanism:

(CDS return)t =−2(`− ε`)t× (Stock return)t + εt , (19)

14The superior capability of power parametric functions for data fitting is not an isolated case in the financial
domain. Also known as the family of constant relative risk aversion (CRRA) in the economic literature, the power
family is widely used in economics and other social sciences (e.g., Wakker, 2008; Gabaix, 2009).

15For example, credit risk should be an invariant across the different quoting currencies of the firm’s common stock.
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where εt is a microstructure noise. In this mechanism, the interaction between the firm’s leverage

and the stock (resp. CDS) returns constitutes the signal which primarily matters in predicting CDS

(resp. stock) returns.

Professional arbitrage of the capital structure aims at bringing stock and CDS prices toward

fundamentals. Such arbitrageurs are mostly hedge funds or private equity firms. They are “highly

specialized investors who combine their knowledge with resources of outside investors to take

large positions” (Shleifer and Vishny, 1997). Primarily concerned by the interaction signal, they

use their knowledge and information to forecast the firm’s adjusted corporate leverage, `− ε`.

Having perfect elasticity demand for the CDS at the price of its substitute stock portfolio, they also

need the resources of outside capital to take vast positions in the CDS market.

By contrast, the uninformed traders do not observe the signal and learn from public prices

only. Lacking expertise about the interaction signal, they turn into noise traders as soon as the

signal intensifies and contains more informational content.

5.3 Price discovery process

At first sight, Equation (19) suggests that both credit and equity markets should potentially

alternate in price leadership, consistent with the most recent literature (e.g., Marsh and Wagner,

2016; Lee, Naranjo, and Velioglu, 2018). More fundamentally, taking the logarithms of both sides

of Equation (18) suggests that there is a long-run equilibrium relationship between the log-price of

credit and the leveraged log-price of equity. If equity and credit prices are co-integrated, there must

be an error-correction mechanism reflecting arbitrage across the equity and credit markets. The

question becomes which of the two co-integrated markets is the first to absorb the new information

and dominates the price discovery process.

6. The Data

For this study, I consider daily closing CDS quotes for the most widely traded, North American

reference entities. To build as much as possible a large and representative CDS universe, I impose
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three requirements. The first constraint is for bid-ask CDS quotes to be available in Thomson

Reuters over an extended 10-year sample period running from September 20, 2008, to November

1, 2018. In particular, the firm must not have undergone any major credit event (corporate default,

merger, or acquisition) leading to an early exit from the dataset over the sample period. The second

constraint is for the corresponding common stocks to continuously trade on the S&P 500 stock

index over the full sampling period. Finally, we ask for the historical leverage ratio to be available

in Thomson Reuters over the full sampling period. For all the reference entities satisfying the

previous three requirements, all the CDS quotes, stock market data, and leverage data are then

consistently retrieved from the Thomson Reuters database.16

The final single name CDS list comprises a total of 204 corporate credits from the S&P 500

index. For consistency, I consider only CDS par spreads corresponding to U.S.-dollar denominated

contracts on the most liquid tenor (5 years), the lowest seniority (senior unsecured debt), and

the same restructuring clause (Modified Restructuring). Thomson Reuters provides end-of-day

prices by collecting daily single-name CDS quotes from over 30 contributors around the world and

applying a rigorous screening procedure to eliminate outliers or doubtful data. Final CDS quotes

are thus composite mid spreads calculated by Thomson Reuters and expressed in basis points. The

timing for the end-of-day composite calculation is in T+1 (5:00 am GMT). As this last update takes

place after the end of trading for U.S. stocks, there is no bias in detecting information flows from

stock markets to credit markets.

To measure the firm’s financial leverage, I use the ratio of total debt book value to enterprise

value:

Short-term Debt+Long-term Debt
Market Capitalization+Total Debt+Minority Interest+Preferred Stock−Cash

. (20)

The sample thus comprises estimates of the debt-to-asset ratio over the period 2008-2018. Notice

that the fluctuations of the firm’s market capitalization on top of the changes in total debt book

16Mayordomo, Peña, and Schwartz (2010) offer an in-depth comparative study of the Thomson Reuters database
and five other public sources of corporate CDS prices.
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Table 1. Descriptive statistics

The table reports summary statistics for firm characteristics (Panel A), overall equity and CDS returns (Panel B), and equity and CDS returns with opposite signs
(Panel C). The sample consists of 204 U.S. firms over the period September 20, 2008, to November 1, 2018, including only trading days with available CDS spread
observations and equity returns. Sample statistics are computed across all observations. Data source: Thomson Reuters.

5th perc. 25th perc. Median Mean 75th perc. 95th perc. SD Observations
Panel A: firm-level statistics 467,330
Firm CDS level (mid-price, bps) 25 45 70 113 120 315 188
Firm leverage (debt to assets) 0.07 0.15 0.23 0.29 0.37 0.69 0.20
Firm size (mkt. cap., $bn) 4.59 11.29 22.29 44.55 48.51 178.32 58.49
Firm debt (book value, $bn) 1.34 3.41 6.73 27.85 13.51 99.11 88.92
Daily observations 974 2,320 2,499 2,291 2,515 2,520 453
Panel B: equity and CDS returns 467,330
Equity daily return (%) −2.82 −0.78 0.05 0.03 0.88 2.76 2.06
CDS daily return (%) −3.36 −0.10 0.00 −0.02 0.06 3.36 4.31
Panel C: opposite-sign equity and CDS returns 206,506
Equity daily return (%) −3.20 −0.91 0.03 −0.04 0.93 2.90 2.25
CDS daily return (%) −4.26 −0.75 −0.01 −0.02 0.21 4.53 4.49

Mean Mean Mean Mean
Firms CDS level (bps) leverage debt ($bn) size ($bn) Observations

Panel D: business sector-level statistics
Basic Materials 15 122 0.25 4.65 15.63 34,630
Consumer Cyclicals 32 160 0.27 9.49 27.72 79,126
Consumer Non-Cyclicals 23 63 0.21 11.13 52.07 56,099
Energy 18 108 0.23 10.82 62.68 40,033
Financials 36 136 0.44 107.49 47.96 74,178
Healthcare 21 61 0.19 11.17 62.96 48,218
Industrials 30 87 0.25 19.01 41.83 69,609
Technology 11 157 0.23 12.97 71.13 26,213
Telecommunications 3 147 0.41 65.74 120.96 5,884
Utilities 15 120 0.48 14.54 17.27 33,340
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value entail daily variations in the leverage data set.

Table 1 provides summary statistics for the CDS levels, the leverage data, and the characteris-

tics of the firms in the sample.

7. Empirical Analysis

In this section, I first provide empirical evidence for the effect of the firm’s financial leverage

in the transmission of price information from the stock market to the credit market.

7.1 Identifying pure stock innovations

I first describe the methodology for identifying true innovations in the stock market due to

information revelation. For each firm, I run a regression of stock percentage changes on a constant,

four lags of CDS percentage changes to absorb any transmission of delayed information from

the credit market, and four stock return lags to capture any autocorrelation in the stock market.

To take the elasticity of CDS returns relative to stock returns into account as predicted by the

model and Equation (19), the specification also includes interactions of the CDS returns (both

contemporaneous and lagged) with the firm’s leverage. This approach starts from the conventional

view that credit pricing information primarily flows from stocks to CDS (e.g., Hilscher, Pollet, and

Wilson, 2015).

Specifically, I estimate the following specification for each firm i:

(Stock return)i,t = αi +
4

∑
k=0

[
βi,k +

β `
i,k

(Leverage)i,t

]
(CDS return)i,t−k

+
4

∑
k=1

γi,k(Stock return)i,t−k + εi,t .

(21)

I view the residuals εi,t from each of these regressions as independent innovations arriving in the

stock market. These innovations are either not relevant or just not appreciated by the credit market

at the time. By contrast, the coefficients βi,0 and β `
i,0 are akin to linear and “leveraged” measures

of the feedback information flowing from the CDS market to the stock market. This approach is
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similar to the one by Acharya and Johnson (2007) who isolate CDS market innovations at time t

by controlling for both stock and CDS returns between t and t− k.

The contemporaneous linear response βi,0 is statistically significant at the 5% level for 22% of

the firms. The contemporaneous leveraged response, β `
i,0, is even more significant at 33%. For the

sake of robustness, I then consider the following aggregated measures:

βi :=
4

∑
k=0

βi,k, β
`
i :=

4

∑
k=0

β
`
i,k, (22)

These measures capture the overall feedback information flowing from the CDS market to the stock

market at the firm level. The aggregated linear response βi remains significant at the 5% level for

only 18% of the firms. However, the level of statistical significance of the aggregated leveraged

response β `
i now rises to at least 49% of the firms. This gap in the level of statistical significance

stands a first hint as to the role of the leverage effect in the feedback price transmission from credit

markets to stock markets.

Table 2 sorts the firms into quintiles based on their aggregated response and examines the

average characteristics for firms within each quintile. Panel A of Table 2 shows that the linear

aggregated response βi can be positive, in stark contrast with structural models of default risk.

Neither the CDS level nor the leverage appears to vary much across quintiles. When combining

p-values within quintiles, only the lowest and the highest quintiles display statistical significance.

By contrast, Panel B of Table 2 shows that the aggregated leveraged response β `
i is negative for

most firms, in line with structural models of credit risk. Moreover, the high degree of combined

statistical significance is almost uniform across quintiles. In this sense, βi and β `
i appear as com-

plementary measures of the feedback transmission channel existing from the CDS market to the

stock market.
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Table 2. Feedback information from CDS to stock markets

In the first stage, we run for each firm i the time-series regression:

(Stock return)i,t = αi +
4

∑
k=0

[
βi,k +

β `
i,k

(Leverage)i,t

]
(CDS return)i,t−k +

4

∑
k=1

γi,k(Stock return)i,t−k + εi,t (21)

p-values are calculated via standard errors corrected for heteroscedasticity and serial correlation (Newey-West, 1987).
In the second stage, firms are ranked into quintiles based on the first-stage estimates of βi = ∑

4
k=0 βi,k (resp. β `

i =

∑
4
k=0 β `

i,k), Q1 being the quintile with the smallest (most negative) estimates and Q5 being the quintile with the largest
estimates. The summary statistics reported for each quintile are the medians (across firms) of the time-series means
of the characteristics for each firm. Within each quintile, p-values across firms are combined via Fisher’s sum of
logarithms method. ∗∗∗, ∗∗ and ∗ denote statistical significance at the 0.1%, 1%, and 5% levels, respectively. Data
source: Thomson Reuters.

Q1 Q2 Q3 Q4 Q5
Panel A: Properties of firms in different β -quintiles
Median βi −0.335 −0.126 −0.022 0.136 0.463
Within-quintile p-value 0.000∗∗∗ 0.011∗∗ 1.000 0.851 0.000∗∗∗

Median CDS level (bps) 102 77 66 69 81
Median firm leverage 0.29 0.19 0.20 0.23 0.36
Panel B: Properties of firms in different β `-quintiles
Median β `

i −1.687 −0.946 −0.523 −0.112 0.364
Within-quintile p-value 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.999 0.014∗∗

Median CDS level (bps) 68 82 96 76 80
Median firm leverage 0.23 0.27 0.26 0.25 0.21

7.2 Evidence of leveraged information

I can now exploit the stock price innovations identified in the previous section to study the in-

formation flow from stock markets to credit markets. To bring to light the leverage effect predicted

by the model and Equation (19), the specification of expected CDS returns includes interactions

of the stock returns (both contemporaneous and lagged) with the firm’s financial leverage. The

specification also contains four lags of CDS percentage changes to purge the credit market of any

residual autocorrelation. Finally, I allow the information flow to vary conditionally to specific

market conditions.

More specifically, I estimate the following panel specification by pooled regression:

(CDS return)t = a+
4

∑
k=0

b`k(Leverage)t(Stock innovation)t−k +
4

∑
k=1

ck(CDS return)t−k + et , (23)
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where the first-stage residuals ε̂i,t provide a proxy for the real stock innovations. The linear com-

bination ∑
4
k=0 b`k offers a measure of the “leveraged” information flowing unconditionally from the

stock market to the credit market. The stock market direction allows to condition specification (23)

by using separate regression coefficients on the positive and negative part of each of the five lagged

stock innovation terms. Similarly, conditioning upon stock innovation intensity enables to obtain

more granular insights into the leveraged information flow.

Table 3 reports estimates for the specification (23). The main finding here is that the overall

flow of leveraged information from stock to credit markets is highly significant at the 0.1% thresh-

old. The measure has the awaited negative sign predicted by structural models of credit risk. Its

value (−0.462) is significantly higher than the flow of direct, unleveraged information (−0.310).

Moreover, this finding is robust when conditioning upon the stock market direction. Column (B)

shows that both the responses to positive and negative lagged innovations keep negative signs and

the same magnitudes. The finding is also robust to the intensity of the stock information flow.

The distribution of stock innovations being symmetrical, the lowest and highest deciles correspond

to stock volatility above 67% per annum. When conditioning upon these extreme innovations,

column (C) reveals that aggregated responses still keep negative signs and the same magnitudes.

To investigate the firm conditions in which leveraged information typically flows from stock to

credit markets, I also estimate specification (23) conditionally upon different credit conditions:

(CDS return)t = a+
4

∑
k=0

[
b`k +b`,Dk (Dummy)t

]
(Leverage)t× (Stock innovation)t−k

+
4

∑
k=1

ck(CDS return)t−k + et ,

(24)

where the first-stage residuals ε̂i,t proxy the real stock innovations. I interpret the linear combi-

nation ∑
4
k=0 bk (resp. ∑

4
k=0 bD

k ) as a measure of the unconditional (resp. conditional) leveraged

information flow from the stock market to the credit market. To investigate the role of the firm’s

credit quality, I first condition by the credit spread level. I build three dummy variables to allocate

the CDS level variation between the top quintile of the CDS distribution (above 142 basis points,
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Table 3. Leveraged information from stock to CDS markets

This table reports OLS panel estimates and t-statistics for the coefficients of the following pooled regression:

(CDS return)t = a+
4

∑
k=0

[
bk +b`k(Leverage)t +b`,Dk (Leverage)t(Dummy)t

]
(Stock innovation)t−k +

4

∑
k=1

ck(CDS return)t−k + et (23)

The first column reports the baseline model (no leverage, no dummy). Column (A) reports unconditional estimates (no dummy). Column (B) reports estimates
conditioned on positive stock innovations (ε̂ > 0) and negative stock innovations (ε̂ < 0). Column (C) reports estimates conditioned on positive stock innovations
in the top decile and negative stock innovations in the lowest decile. Column (D) reports estimates conditioned on CDS levels in the lowest quintile Q1 (< 40
bps), medium quintiles, and the top quintile Q5 (> 142 bps), respectively. Column (E) reports estimates conditioned on the leverage in the lowest quintile Q1
(< 0.14), medium quintiles, and the top quintile Q5 (> 0.41), respectively. t-statistics in parentheses are calculated via firm-clustered standard errors corrected for
heteroscedasticity and serial correlation. ∗∗∗, ∗∗ and ∗ denote statistical significance at the 0.1%, 1%, and 5% levels, respectively. Data source: Thomson Reuters.

Baseline model (A) (B) (C) (D) (E)
a −0.0001 −0.0001∗ −0.0003∗∗∗ −0.0004∗∗∗ −0.0001∗ −0.0001

(−1.61) (−2.11) (−4.11) (−3.38) (−2.04) (−1.69)
∑

4
k=0 bk −0.310∗∗∗

(−50.22)
∑

4
k=0 b`k −0.462∗∗∗

(−34.86)
∑

4
k=0 b`,ε̂>0

k −0.397∗∗∗ −0.437∗∗∗

(−24.73) (−8.30)
∑

4
k=0 b`,ε̂>0, top

k −0.358∗∗∗

(−17.23)
∑

4
k=0 b`,ε̂<0

k −0.511∗∗∗ −0.796∗∗∗

(−33.12) (−15.40)
∑

4
k=0 b`,ε̂<0, lowest

k −0.498∗∗∗

(−24.95)
∑

4
k=0 b`,Q1

k 2.424∗∗∗ −2.816∗∗∗

(19.19) (−14.39)

∑
4
k=0 b

`,Q2,3,4
k −0.444∗∗∗ −0.341∗∗∗

(−30.48) (−23.97)
∑

4
k=0 b`,Q5

k −0.747∗∗∗ −1.215∗∗∗

(−22.90) (−32.74)
∑

4
k=0 ck 0.039∗∗∗ 0.045∗∗∗ 0.044∗∗∗ 0.044∗∗∗ 0.044∗∗∗ 0.043∗∗∗

(9.48) (16.45) (16.25) (16.26 (16.15) (15.67)
Obs. 455,690 455,690 455,690 455,690 455,690 455,690
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corresponding approximately to a credit rating equal to or lower than A3/A-), the intermediary

three quintiles (between 142 and 40 basis points), and the lowest quintile (below 40 basis points),

respectively. Similarly, I probe the role of the firm’s level of indebtedness by setting three dummy

variables to allocate the leverage variation between the top quintile of the leverage distribution

(above 0.41), the three intermediary quintiles (between 0.14 and 0.41), and the lowest quintile

(below 0.14).

Table 3 reports estimates for the specification (24). Column (D) shows that the conditioned

flow measure becomes positive when conditioning by low CDS levels. This unexplained positive

response could signal either a low degree of informed trading in the CDS market or the absence of

substantive information concerning credit risk. In other words, top CDS levels seem to impound

a very substantial part of the leveraged price transmission. This finding could suggest a regime of

informed revision of CDS quotes under conditions of financial stress.

Table 3 reveals a similar phenomenon when conditioning by top levels of indebtedness. The

(unconditioned) response of column (A) increases from −0.462 to −1.215 in column (E), more

than threefold an increase in intensity. Highly leveraged firms seem to produce even more in-

formed revisions of CDS quotes instead of mechanical price transmission, once again suggesting

the occurring of insider trading (Acharya and Johnson, 2007).

7.3 Leveraged information at the firm level

The pooled regression described above forces all firms to have the same dynamic properties,

except as captured by market-conditioning dummy variables. I now estimate separate dynamics

for each firm by allowing for firm fixed effects. To compare the intensity of the leveraged, non-

linear information flow with the direct transmission of information, I also include five lags of

unleveraged stock innovations. This alternative specification allows testing for differences among

nested models at the firm level by running a likelihood ratio (LR) test. The LR test statistic then

measures whether the inclusion of leveraged regressors significantly improves the goodness of fit

of the regression model.
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Specifically, I estimate the following specification for each firm i:

(CDS return)i,t = ai +
4

∑
k=0

[
bi,k +b`i,k(Leverage)i,t

]
× (Stock innovation)i,t−k

+
4

∑
k=1

ci,k(CDS return)i,t−k + ei,t

(25)

where the first-stage residuals ε̂i,t provide a proxy for the real stock innovations.

Table 4 reports estimates for the specification (25). Panel A shows the summary statistics for

the estimated linear responses bi. The mean is −0.017 and statistically insignificant, consistent

with the findings of previous studies (Acharya and Johnson, 2007). By contrast, the mean of

the leveraged response b`i is −1.303 and significant, thereby validating the non-linear role of the

leverage. As a robustness check, I also run for each firm an LR test of the null hypothesis H0 :

b`i,k = 0 (0 6 k 6 4). This procedure provides a collection of independent LR test statistics and p-

values. I then use Fisher’s combined probability test to fusion these p-values and to assess whether

the inclusion of leveraged predictor variables improves the model’s goodness of fit. Panel A reveals

that this combined LR p-value is highly significant.

Panel B sorts the firms into quintiles based on their aggregated leveraged response and examine

the median firm characteristics of each. The combined LR p-value turns out to be highly significant

for four quintiles out of five. Moreover, there is a uniform distribution of firm characteristics

across quintiles. These observations suggest that a specific category of firms does not impound the

leveraged flow of information from stock to CDS markets.

7.4 Contributions to price discovery

I now study the contribution of each market to the price discovery process. Taking the loga-

rithms of both sides of Equation (18) suggests that the CDS price and the leveraged stock price

should be co-integrated. This feature suggests adopting the classical vector error-correction model

(VECM) approach to price discovery formalized by Gonzalo and Granger (1995).

In a first stage, I test at the level of each firm i the co-integration of the two price series by
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Table 4. Leveraged information: two-stage cross-sectional estimation

In the first stage, I run for each firm i the time-series regression:

(CDS return)i,t = ai +
4

∑
k=0

[
bi,k +b`i,k(Leverage)i,t

]
(Stock innovation)i,t−k +

4

∑
k=1

ci,k(CDS return)i,t−k + ei,t . (25)

LR measures rejection of the null hypothesis H0 : b`i,k = 0 (0 6 k 6 4) by the likelihood ratio test. In the second
stage, firms are ranked into quintiles based on the first-stage estimates of b`i = ∑

4
k=0 b`i,k, Q1 being the quintile with

the smallest (most negative) estimates and Q5 being the quintile with the largest estimates. The summary statistics
reported for each quintile are the medians (across firms) of the time-series means of the characteristics for each firm.
Within each quintile, p-values across firms are combined via Fisher’s sum of logarithms method. ∗∗∗, ∗∗ and ∗ denote
statistical significance at the 0.1%, 1%, and 5% levels, respectively. Data source: Thomson Reuters.

Panel A: Univariate properties of b and b`

Average bi −0.017 Average b`i −1.303
t-statistic (−0.14) t-statistic (−1.74)

LR (p-value) 0.000∗∗∗

Min −3.277 Min −142.903
Max 18.000 Max 16.520

Q1 Q2 Q3 Q4 Q5
Panel B: Properties of firms in different b`-quintiles
Median b`i −3.216 −0.930 −0.128 0.372 1.679
LR (p-value) 0.000∗∗∗ 0.000∗∗∗ 0.094 0.002∗∗∗ 0.000∗∗∗

Median CDS level (bps) 59 77 129 97 74
Median firm leverage 0.22 0.22 0.32 0.29 0.20
Median firm size ($bn) 24.06 22.62 17.04 21.19 32.47
Median firm debt ($bn) 7.04 5.90 5.95 7.41 6.54

examining whether the residuals of the following regression are stationary:

(lnCDS)i,t = αi +β
`
i × (Leverage)i,t× (lnStock)i,t +ηi,t . (26)

The augmented Dickey-Fuller (ADF) test statistic enables to reject the null hypothesis of co-

integration by invalidating the presence of a unit root in the residuals η̂i,t .

In a second stage, for those firms which are co-integrated, I measure the contribution of each
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market to the price discovery process by estimating the following VECM:

(CDS return)i,t = λ1η̂i,t−1 +
4

∑
k=1

b1,k(Leverage)i,t(Stock return)i,t−k +
4

∑
k=1

c1,k(CDS return)i,t−k +ui,t ,

(Stock return)i,t = λ2η̂i,t−1 +
4

∑
k=1

b2,k(Stock return)i,t−k +
4

∑
k=1

c2,k
(CDS return)i,t−k

(Leverage)i,t
+ vi,t ,

(27)

where the first-stage residuals η̂i,t provide error-correcting terms, the lagged stock and CDS returns

capture market imperfections, and ui,t and vi,t are i.i.d. disturbances. If the stock market is con-

tributing significantly to the price discovery process, then λ1 should be negative and statistically

significant as the CDS market adjusts to incorporate information discovered in the stock market.

Conversely, if the CDS market dominates the price discovery process, λ2 should be positive and

statistically significant. Error-correcting adjustments must occur in either the stock market or the

CDS market or in both to maintain the long-run equilibrium relationship between the two series.

The market which reflects new information most rapidly is the one dominating the price discovery

process.

Comparing the error-correction coefficients λ1 and λ2 allows estimating the information share

of each market through their relative speed of adjustment to the long-run equilibrium relationship.

Following the literature on credit price discovery (e.g., Narayan, Sharma, and Thuraisamy, 2014),

I use the Gonzalo and Granger (GG, 2015) measure for the CDS market share:

SCDS :=
λ̂2

λ̂2− λ̂1
, (28)

provided that λ̂1 6= λ̂2. Notice that 0 6 SCDS 6 1 as soon as λ̂1 and λ̂2 have the expected negative

and positive sign, respectively. If λ̂1 = 0, there is no evidence of price discovery in the stock market

(SCDS = 1). If λ̂2 = 0 there is no evidence of price discovery in the CDS market (SCDS = 0).

Table 5 reports the contributions to the price discovery process made by the equity and credit

markets for the firms that reject the null hypothesis of no cointegration at the 5% threshold. Panel
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Table 5. CDS and equity market shares in the price discovery process

In the first stage, for the firms whose ADF test statistic rejects at the 5% level the null of a unit root in the residuals of
the regression:

(lnCDS)i,t = αi +β
`
i × (Leverage)i,t × (lnStock)i,t +ηi,t , (26)

the following VECM is estimated:

(CDS return)i,t = λ1η̂i,t−1 +
4

∑
k=1

b1,k(Leverage)i,t(Stock return)i,t−k +
4

∑
k=1

c1,k(CDS return)i,t−k +ui,t ,

(Stock return)i,t = λ2η̂i,t−1 +
4

∑
k=1

b2,k(Stock return)i,t−k +
4

∑
k=1

c2,k
(CDS return)i,t−k

(Leverage)i,t
+ vi,t .

(27)

In the second stage, firms whose λ̂1 is significant at the 5% level are ranked into quintiles based on the first-stage
estimate of the GG measure SStock of stock market contribution to price discovery (Panel B). Firms whose λ̂2 is signifi-
cant at the 5% level are ranked into quintiles based on the first-stage estimate of the GG measure SCDS of CDS market
contribution to price discovery (Panel C). The summary statistics reported for each quintile are the averages (across
firms) of the time-series means of the characteristics for each firm. Data source: Thomson Reuters.

Co-integration threshold
1% 5% 10%

Panel A: co-integrated firms
Number of firms 99 159 188
Percentage of firms 48.5 77.9 92.2

Q1 Q2 Q3 Q4 Q5 Total
Panel B: price discovery in the stock market
Average stock market share, SStock (%) 58.1 74.4 87.2 98.7 100.0 83.5
Number of firms 24 24 24 24 23 119
Average CDS level (bps) 146 100 83 91 111 106
Average firm leverage 0.33 0.32 0.27 0.24 0.30 0.29

Q1 Q2 Q3 Q4 Q5 Total
Panel C: price discovery in the CDS market
Average CDS market share, SCDS (%) 5.4 30.9 38.6 44.4 67.1 34.7
Number of firms 5 5 5 5 3 23
Average CDS level (bps) 119 70 100 95 211 111
Average firm leverage 0.33 0.30 0.44 0.18 0.56 0.34

A shows that nearly 80% of the firms in the sample are co-integrated and qualify for the VECM

stage. Only 16 firms out of 204 do not hint at co-integration at all, while 29 firms barely miss the

5% rejection threshold.

Panel B reports the properties of co-integrated firms whose error-correcting coefficient λ̂1 is

statistically significant at least at the 5% level. With a stock market share well above 50%, roughly

two thirds of the firms in the sample exhibit a high degree of price discovery in the stock market.

This result is consistent with the CDS “sideshow” hypothesis (Hilsher, Pollet, and Wilson, 2015)
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for which informed traders favor the stock market to the CDS market because of transaction costs.

Panel C reports the firms whose CDS market provides an alternative forum for price discovery.

In this case, the error-correcting coefficient λ̂2 must be significant at the 5% level at least. Confined

to the highest quintile, Panel C reveals strong evidence for the role of the leverage effect in the price

discovery process. With a market share above 60%, the top quintile contains highly-leveraged

firms with CDS levels above 200 basis points, a level corresponding to a credit rating lower than

Baa2/BBB.

8. Conclusions

In this article, I show that a parsimonious structural framework is sufficient to build a theoretical

model to connect the firm’s financial leverage and the variance-equity elasticity. This elasticity

amounts to twice the debt-to-assets ratio—a standard measure of the corporate leverage. This key

feature enables to put the so-called “leverage effect” into a credit risk perspective, thus giving

its full meaning to a four-decade-old term (Black, 1976). It provides a non-linear mechanism of

information transmission between the equity and credit markets.

An empirical analysis over a large dataset of S&P 500 firms and an extended timeframe (2008-

2018) highlights the nonlinear role of the corporate leverage in the transmission of price informa-

tion between stock and CDS markets. The study shows that such activity is intense and robust to

market conditions. It affects all firms uniformly, irrespective of their level of indebtedness or their

CDS spread quoted in the market.

In line with previous studies, two-thirds of the firms in the sample see their price discovery

process widely dominated by the equity market, with stocks impounding more than 70% of the

process. However, I find a significant portion of highly-leveraged firms for which half of the

discovery process or more is occurring in the CDS market. The leverage effect could explain some

of the pricing discrepancies observed between stock and CDS markets. These mispricings were

usually attributed to some CDS market inefficiencies such as illiquidity or opaqueness by the recent

literature. By contrast, the leverage effect provides an economic rationale to the limits of capital
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structure arbitrage.

Appendix A. Proof of Proposition 1

The firm’s structural planning problem can be rewritten as the maximization of the following

Lagrangian expression:

L (x,D,E,λ ;r) :=
π(x)− rD

ρ
−E +λ [D+E−g(x)] , (A1)

where λ is the Lagrange multiplier. Differentiating with respect to x, D, E, and λ respectively

results in the following set of first order conditions for the optimum:

∂L

∂x
=

π
′(x)
ρ
−λg′(x)≡ 0, (A2)

∂L

∂D
=
−rρ− [π(x)− rD]ρ ′σ/E

ρ2 +λ ≡ 0, (A3)

∂L

∂E
=− [π(x)− rD]ρ ′σD/E2

ρ2 −1+λ ≡ 0, (A4)

∂L

∂λ
= D+E−g(x)≡ 0. (A5)

Assuming the existence of such an optimal financial structure, we can now examine the com-

parative statics of the solution. Let x∗(r), D∗(r) and E∗(r) the decision variables that maximize

the firm’s net present value where r is the exogenous parameter of interest. The value function

satisfies:

φ
∗(r) := φ(x∗,D∗,E∗,λ ∗;r) = max

x,D,E
φ(x,D,E;r). (A6)

The envelope theorem provides provides the response of changes in the firm’s net present value to

changes to the given cost of debt in a straightforward way:

dφ∗(r)
dr

=
∂L

∂ r

∣∣∣
x∗,D∗,E∗

=−D∗(r)
ρ

. (A7)
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Since the objective function φ is the difference between the equity market value S and the equity

book value E, the response in the firm’s equity market value to a deviation in the cost of debt is

then given by:
dS∗(r)

dr
=−D∗(r)

ρ
+

dE∗(r)
dr

. (A8)

In the specific case of a newly setup firm, the amount of book equity raised depends crucially

on the cost of debt available in the market on firm’s inception. Depending on on the firm regarding

debt and equity as complementary of substitute forms of finance, the derivative of the optimally

chosen book equity, E∗, may be either positive (substitutes) or negative (complements). Equa-

tion (A8) highlights the dependence of the equity market value sensitivity to r on this optimal

debt-equity mix.

In the more general case of an already-setup, non-restructuring firm operating on a going con-

cern basis, the amount of book equity becomes a fixed constraint. As a given parameter of the

model, E loses any sensitivity to the market cost of debt, and the term dE∗/dr cancels from the

right hand side of Equation (A8). Multiplying both sides by the ratio r/S, we obtain the expression

for the credit-equity elasticity given by Equation (6).

Appendix B. Proof of Proposition 2

(a) The firm’s business risk, σV , being a constant independent from the capital structure (As-

sumption 4), Equation (8) can be differentiated with respect to the equity market value to get:

∂σ

∂S
=

∂

∂S

(
SvσV

V
S

)
=

∂Sv

∂S
×σV

V
S
+SvσV ×

S−V
S2 . (B1)

Using the chain rule ∂S = ∂V/Sv yields:

S
∂σ

∂S
=

Svv

Sv
σV V −SvσV

D
S
. (B2)
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The unknown asset volatility σV = σS/(SvV ) is given by Equation (8) and can now be eliminated

to find:

S
∂σ

∂S
= σ

SSvv

S2
v
−σ

D
V
, (B3)

which yields Equation (9) in a straightforward way.

(b) For a reorganization boundary close to the debt face value (VB ↑ DT ), the debt becomes a

quasi-sure claim and loses any sensitivity to the firm value (Dv ↓ 0). At the same time, the equity

becomes a levered position on the firm whose sensitivity with respect to the firm’s value increases

toward unity (Sv ↑ 1), and more importantly, the convexity of the equity’s profile vanishes (Svv ↓

0+). In other words, if debt covenants (such as positive net-worth agreements) were restrictive

enough to protect the debt face value, the corrective term to the leverage in Equation (9) would

fully vanish (ε` ↓ 0+).

It is unrealistic, however, to assume all debt to be safety-covenant protected to the degree that

the continuous reorganization barrier approaches the debt face value. Nevertheless, an exhaustive

sensitivity analysis of barrier options shows that comparable results hold in a wide range of cir-

cumstances, whether they be exogenous or endogenous. For example, when exogenous market

conditions lead to a re-leveraging of the firm (V ↓VB), the probability of hitting the reorganization

boundary is going to absorb all the equity time value, thus leading to Sv ↑ 1 and Svv ↓ 0+. As a

result, the corrective term ε` will vanish as well. Similarly, endogenous conditions such as a debt

refinancing process with an extension of the debt horizon (T ↑ ∞), or a significant increase in the

firm’s riskiness (σV ↑ ∞), will lead to similar results for ε`.

More generally, Table 6 reports values for ε` computed with one of the simplest closed-form

model nested in my structural framework. Leland’s (1994) structural model presents the advan-

tage of allowing for an endogenous setting of the bankruptcy boundary VB and generating not only

convex but concave profiles for equity, while providing an analytic solution for the equity value

function at the same time. To allow for comparison, numerical assumptions are those from Toft

and Prucyk (1997). The maximal bankruptcy boundary corresponds to the case of debt protected

by strict net-worth covenants. In this case, V max
B

exceeds the debt principal and equity is therefore
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a concave function which leads to small, negative values for ε`. For a large range of bankruptcy

boundaries around the critical boundary V ∗
B

(linear equity), equity remains a quasi-linear function

of the firm’s asset value, thus ensuring the lowest values for ε` compared to the corporate leverage.

Finally, the minimal bankruptcy boundary V min
B

corresponds to the case of an endogenous bound-

ary. In this optimal configuration for equity holders, it takes low asset values and deep states of

financial distress for the equity convexity to produce values of ε` of the same magnitude as the

corporate leverage.

Table 6. Numerical magnitude of the financial leverage adjustment ε`

This table reports the numerical magnitude of ε` in Leland’s (1994) structural model as a function of the firm’s asset
value V for 5 different bankruptcy boundaries: (a) endogenous bankruptcy (V min

B
= 39.25), (b) convex equity (VB =

55.00), (c) linear equity (V ∗
B
= 65.00), (d) concave equity (VB = 85.00), (e) strict net-worth covenant (V max

B
= 111.11).

The size of ε` compared to the corresponding corporate leverage ` is also reported. Pricing assumptions are those of
Toft and Prucyk (1997): annual debt interest charge C = 8, corporate tax rate τ = 0.35, bankruptcy costs α = 0.1,
payout rate δ = 0.082, r = 0.08 per annum, σV = 0.20.

Bankruptcy boundary
V min

B
= 39.25 VB = 55.00 V ∗

B
= 65.00 VB = 85.00 V max

B
= 111.11

V ` ε` ε`/` ε` ε`/` ε` ε`/` ε` ε`/` ε` ε`/`

40 0.71 0.49 0.69 - - - - - - - -
60 0.63 0.28 0.44 0.06 0.09 - - - - - -
80 0.56 0.18 0.32 0.09 0.16 0 0 - - - -
100 0.50 0.12 0.24 0.07 0.14 0 0 -0.08 (0.15) - -
120 0.45 0.08 0.18 0.05 0.11 0 0 -0.10 (0.23) -0.07 (0.15)
140 0.42 0.06 0.14 0.04 0.09 0 0 -0.10 (0.24) -0.15 (0.36)
160 0.38 0.05 0.13 0.03 0.08 0 0 -0.09 (0.23) -0.17 (0.45)
180 0.36 0.04 0.11 0.02 0.07 0 0 -0.07 (0.21) -0.17 (0.47)
200 0.33 0.03 0.09 0.02 0.06 0 0 -0.06 (0.19) -0.16 (0.48)

Appendix C. Proof of Lemma 1

In the sequel, I simplify the argument of Hagan and Woodward (1999) to prove Equation (12)

by singular perturbation theory. I make the assumption of a separable local volatility surface:

σ(St , t) ≡ α(t)σ(St). For the sake of notational simplicity, I will assume zero interest rates. The

stock pays no dividends, which implies a zero drift under the risk-neutral probability measure
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associated with the money market account. The stock price diffuses according to the dynamics:

dSt = α(t)σ(St)StdWt . (C1)

The undiscounted risk-neutral value C(S, t) = E{(ST −K)+|S} of a European-style call option

with strike K and time to maturity T evolves according to the Black-Scholes-Merton partial differ-

ential equation (PDE):
∂C
∂ t

+
1
2

σ
2(S)S2 ∂ 2C

∂S2 = 0, (C2)

subject to appropriate boundary and terminal conditions.

• Re-scaling procedure. Denoting f : x 7−→ xσ(x) and ε := f (K)� 1, I introduce the follow-

ing change of variables:

τ :=
∫ T

t
α

2(u)du, x :=
S−K

ε
, (C3)

in order to re-scale the call value as C̃(τ,x) :=C(t,S)/ε. The new PDE in the variables (τ,x)

verified by the re-scaled call value is as follows:

−∂C̃
∂τ

+
1
2

f 2(K + εx)
f 2(K)

∂ 2C̃
∂x2 = 0. (C4)

Expanding in power series of ε , we note that:

f 2(K + xε) = f 2(K)

(
1+2

f ′(K)

f (K)
xε

)
+O(ε2). (C5)

Substituting in Equation (C4), the PDE can now be written at first order in ε:

∂C̃
∂τ
− 1

2
∂ 2C̃
∂x2 = νxε

∂ 2C̃
∂x2 +O(ε2), (C6)

where ν := f ′(K)/ f (K). Expanding the re-scaled price C̃ in power series of ε as C̃0+εC̃1+

39



O(ε2), we are led to solve the following system of PDEs at first order in ε:


∂C̃0

∂τ
− 1

2
∂ 2C̃0

∂x2 = 0, C̃0(0,x) = x+,

∂C̃1

∂τ
− 1

2
∂ 2C̃1

∂x2 = νx
∂ 2C̃0

∂x2 , C̃1(0,x) = 0.

(C7)

• Solving the re-scaled problem. Standard techniques apply to solve the first heat-like PDE.

The solution for C̃0 is given by:

C̃0(τ,x) = xN
(

x√
τ

)
+

√
τ

2π
e−x2/2τ , (C8)

as it can be checked by means of the following elementary calculations:

∂C̃0

∂x
= N

(
x√
τ

)
,

∂ 2C̃0

∂x2 =
e−x2/2τ

√
2πτ

,
∂C̃0

∂τ
=

e−x2/2τ

2
√

2πτ
. (C9)

In the same way, the solution for C̃1 is given by:

C̃1(τ,x) = νxτ
e−x2/2τ

2
√

2πτ
, (C10)

as it can be checked by means of the following elementary calculations:

∂C̃1

∂τ
=

(νxτ +νx3)e−x2/2τ

4τ
√

2πτ
,

∂ 2C̃1

∂x2 =
(−3νxτ +νx3)e−x2/2τ

2τ
√

2πτ
. (C11)

Moreover, we notice that:

C̃1(τ,x) = τνx
∂C̃0

∂τ
. (C12)

Substituting Equation (C12) in the re-scaled price expansion of C̃, we obtain the solution for

the re-scaled price at first order in ε:

C̃(τ,x) = C̃0(τ,x)+ ετνx
∂C̃0

∂τ
+O(ε2) = C̃0 (

τ + ετνx+O(ε2),x
)
. (C13)
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• Solving for the option price in the physical space. The unscaled call price may then be

deduced as follows:

C(t,S) = εC̃(τ,x) = εC̃0(τ(1+ ενx)+O(ε2),x) = C̃0 (
ε

2
τ(1+ ενx)+O(ε4),εx

)
. (C14)

Noting that εx = S−K, we obtain the option price with respect to physical variables:

C(t,S)≈ C̃0(τ∗,S−K), (C15)

where τ∗ ' ε2τ (1+ν(S−K)) . We also note that ε = f (K) may be developed around the

midpoint (K +S)/2 for spot prices close to the call strike K:

f 2(K) = f 2
(

K +S
2

)(
1+

f ′
(K+S

2

)
f
(K+S

2

) (K−S)

)
+o(K−S), (C16)

which gives at leading order:

τ
∗ = τ f 2

(
K +S

2

)
+O(K−S). (C17)

• The Black-Scholes-Merton case. The preceding whole line of reasoning may be applied

to the pure Black-Scholes model, which means performing the same calculations for the

following stock price dynamics:

dSt = σ̂K StdWt , (C18)

where σ̂K is the constant Black-Scholes implied volatility at strike K and expiry T . In this

specific case we note that f is the identity function while τ = σ̂2
K
(T −t), ν = 1/K and ε = K.

Applying Equation (C15) with the previous parameters, the Black-Scholes price is then given

by C̃0(τ∗
BS
,S−K) where we have at leading order:

τ
∗
BS
' σ̂

2
K
(T − t)

(
K +S

2

)2

+O(K−S). (C19)
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• Linking local volatility with implied volatility. As the option price observed in the market is

both given by the local volatility model (C15) and the Black-Scholes model, we can write:

C̃0(τ∗,S−K) = C̃0(τ∗
BS
,S−K). (C20)

As C̃0 is strictly increasing in the re-scaled time to maturity variable τ , we thus obtain τ∗ =

τ∗
BS
. Substituting Equations (C17) and (C19) in this last relationship, we get at leading order

the following relationship which is valid for stock prices in the vicinity of the strike price:

σ̂
2
K
(T − t)' σ

2
(

K +S
2

)∫ T

t
α

2(u)du. (C21)

This is Equation (12) in the case α ≡ 1.

Appendix D. Proof of Proposition 4

In the CEV framework, the instantaneous variance of stocks returns is vt = σ2
CEV

Sβ−2
t and its

percentage change is as follows:

dvt

vt
=

(β −2)σ2
CEV

Sβ−3
t dSt

σ2
CEV

Sβ−2
t

= (β −2)
dSt

St
. (D1)

The parameter β−2 appears to tie the percentage changes in the variance to the percentage changes

in the share price. It is thus recognized as the variance-equity isoelasticity.

The CEV diffusion coefficient, σCEV , has the dimension of S1−β/2
t /

√
t. We account for this fact

by introducing an effective log-normal volatility σ0 with the standard dimension of 1/
√

t, and by

positing:

σCEV = σ0S1−β/2
0 . (D2)
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The CEV local volatility is then given by:

√
vt = σ0

(
St

S0

) β

2−1

, (D3)

which provides the logarithmic slope of the CEV local volatility surface:

∂
√

vt

∂ ln(S)
=

β −2
2
√

vt . (D4)

Since the CEV local volatility is time-homogeneous, the implied volatility skew, Σ̂CEV , is easily

obtained as half of the logarithmic slope of the CEV local volatility (see Lemma 1) given by

Equation (D4). As a result:

Σ̂CEV =
β −2

4
√

vt . (D5)

It is then possible to equate the structural implied volatility skew (13) with the CEV implied volatil-

ity skew (D5) to obtain Equation (15).17

Appendix E. Proof of Lemma 2

A natural option structure matching the moments of default swap instrument is the credit risk

reversal (Ilinski, 2003), built from long out-of-the-money put options and short at-the-money call

options. The long out-of-the-money put option is intended to replicate the default swap payoff on

the occurrence of a credit event, that is, upon a jump to zero of the stock price. Simultaneously,

the at-the-money call option is intended to provide the exposure to the third moment of the implied

volatility surface. A specific choice for the geometry of the credit risk reversal structure offers no

entry cost and as little convexity as possible between the two option exercise prices.18 This last

17To get the final connection between the CEV framework and the firm’s financial leverage, it could be tempting
to equate Equations (9) and (D4) for local volatility, in order to obtain a straightforward link between the CEV char-
acteristic exponent β and the debt-to-asset ratio `. As already explained, however, the local volatility surface is not
model-free and its logarithmic slope has no reason to be a market invariant across models. I therefore need to resort to
a stronger market invariant observed for stock options, namely the typical asymmetry of the implied volatility surface
when quoted in the Black-Scholes-Merton model (1973).

18It is still possible to use more complex structures, such as combinations of risk reversal or put spreads, to match
the higher-order sensitivities of the default swap instrument more closely.
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feature ensures an approximate static replication of the default swap instrument.19

To match the first two moments of a binary default swap, let us show that once the put strike,

Kp, has been chosen arbitrarily, the call strike, Kc, and the put (resp. call) quantity np (resp. nc)

should be chosen as follows: 
Kc = F2

T /Kp,

np = FT/Kp,

nc =−1.

(E1)

Hedging the structure with forward contracts, I can assume no dividends, no carrying costs as well

as no implied volatility skew for the sake of simplicity. The Black-Scholes formulae can be used

to calculate the upfront cost of the credit risk reversal as follows:

npP−C = [npKpN(d1)−npFT N(d2)−FT N(d1)−KcN(d2)]e−rT

= [(npKp−FT )N(d1)− (npFT −Kc)N(d2)]e−rT

= 0,

(E2)

where d1 = ln(FT/Kc)/(σ
√

T )+σ
√

T/2 and d2 = d1−σ
√

T . Similarly, the convexity γ of the

credit risk reversal is zero since:20

γc

γp
=

N′(d1)

N′(d2)
= exp

(
−

ln(FT/Kc)+ ln(Kp/FT )

2

)
= exp

(
2lnnp

2

)
= np. (E3)

The expected payoff of the delta-hedged credit risk reversal upon a default event appears to be

tightly constrained by its geometry. In case of jump to zero of the stock price, the delta-hedged

credit risk reversal pays off the put notional npKp minus its initial delta δFT in cash:

JtD = FT −δFT = (1−npδp +δc)FT , (E4)

where δp (resp. δc) is the initial hedge ratio of the put (resp. call). Denoting δ 0
p (resp. δ 0

c ) the delta

19A binary default swap instrument is an instrument making a single payment of 1$ in case of a default event.
20The Black-Scholes convexity is γp = γc = N′(d1)/(S0σ

√
T ) where N′(x) = exp(−x2/2)/

√
2π.
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of the put (resp. call) option struck at FT , the call-put parity yields δ 0
c −δ 0

p = 1. With a strike Kp

sufficiently close to FT , we have npδ 0
c −δ 0

c ' 1. Substituting into Equation (E5) yields:

JtD' [np(δ
0
p −δp)− (δ 0

c −δc)]FT . (E5)

Recall that the sensitivity of the delta is then given by ∂δ/∂K = −γFT/K in the Black-Scholes

model. Applying this general result for Kp and Kc sufficiently close to FT , a first-order Taylor

expansion yields:

δ
0
p −δp ≈−FT γ p ln(FT/Kp)

(
resp. δ

0
c −δc ≈−FT γc ln(FT/Kc)

)
, (E6)

where γ p (resp. γc) is the average gamma between FT and Kp (resp. Kc). Substituting into Equa-

tion (E5), the expected loss amount upon default turns out to depend explicitly on the log-distance

between the strikes:

JtD' γF2
T ln(Kc/Kp) , (E7)

where γ = npγ p = γc is the average convexity between the strikes.

In the presence of an implied volatility skew σp > σAT M > σc, the upfront premium of the credit

risk reversal has to be adjusted for the put (resp. call) implied volatility σp (resp. σc). At first order,

the adjustment to the premium is:

RR' (σp−σAT M)×npνp− (σAT M −σc)×νc, (E8)

where νp (resp. νc) is the put (resp. call) sensitivity to volatility21 calculated at σAT M . Using the

fact that npνp = npσAT M γpF2
T T = σAT M γcF2

T T = νc, the annualized premium is:

RR
T
' (σp−σc)σAT M γF2

T . (E9)

21The Black-scholes sensitivity to the implied volatility σ is given by σγF2
T T .
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Finally, the fair spread of a binary default swap instrument may be assimilated to the annualized

premium to be paid for protection against the expected loss amount. Dividing Equations (E7) and

(E9), the fair spread is given by:

σAT M ·
σp−σc

ln(Kc/Kp)
, (E10)

which is Equation (16).

Appendix F. Proof of Proposition 5

Recall from Equation (D3) that the CEV local variance of stock returns can be written as:

vt = σ
2
0

(
S0

St

)2−β

. (F1)

Inserting the CEV formulation of the implied volatility skew given by Equation (D5) into the left-

hand-side of Equation (F1) yields:

4
|β −2|

×
√

vt×|Σ̂CEV |= σ
2
0

(
S0

St

)2−β

. (F2)

Assuming that the best proxy for the instantaneous volatility
√

vt is the at-the-money implied

volatility, σ̂AT M , the left-hand side of Equation (F2) can now be connected to the company’s risk

premium rt on its debt appearing in the economic model linking credit spreads with implied volatil-

ities derived in Lemma 2. As a consequence, the volatility leverage effect is found to imply the

constant elasticity of debt risk premia relative to stock prices:

rt = const ·
(

S0

St

)2−β

, (F3)

where the constant is homogeneous to the log-normal variance σ2
0 .

46



References

Acharya, V.V. and Johnson, T.C. (2007) Insider Trading in Credit Derivatives, Journal of Financial
Economics 84, 110–141.

Aı̈t-Sahalia, Y., Fan, J. and Lin, Y. (2013) The Leverage Effect Puzzle: Disentangling Sources of
Bias at High Frequency, Journal of Financial Economics 109, 224–249.

Arzac, E.Y. (1975) Structural Planning Under Controllable Business Risk, Journal of Fi-
nance 30, 1229–1237.

Beckers, S. (1980) The Constant Elasticity of Variance Model and Its Implications For Option Pric-
ing, Journal of Finance 35, 661–673.

Bekaert, G. and Wu, G. (2000) Asymmetric Volatility and Risk in Equity Markets, Review of Finan-
cial Studies 13, 1–42.

Black, F. (1976) Studies of Stock Price Volatility Changes. In: Proceedings of the Meetings of the
American Statistical Association, Business and Economics Statistics Section, pp. 177–181.

Black, F. and Cox, J.C. (1976) Valuing Corporate Securities: Some Effects of Bonds Indenture
Provisions, Journal of Finance 31, 351–367.

Black, F. and Scholes, M. (1973) The Pricing of Options and Corporate Liabilities, Journal of
Political Economy 3, 637–654.

Bollerslev, T., Litvinova, J. and Tauchen, G. (2006) Leverage and Volatility Feedback Effects in
High-Frequency Data, Journal of Financial Econometrics 4, 353–384.

Campbell, J. and Hentschel, L. (1992) No News is Good News: An Asymmetric Model of Changing
Volatility in Stock Returns, Journal of Financial Economics 31, 281–318.

Campbell, J. and Taksler, G. (2003) Equity Volatility and Corporate Bond Yields, Journal of Fi-
nance 58, 2321–2349.

Carr, P. and Linetsky, V. (2006) A Jump to Default Extended CEV Model: An Application of Bessel
Processes, Finance and Stochastics 10, 303–330.

Carr, P. and Wu, L. (2010) Stock Options and Credit Default Swaps: A Joint Framework for Valua-
tion and Estimation, Journal of Financial Econometrics 8, 409–449.

Christie, A. (1982) The Stochastic Behavior of Common Stock Variances: Value, Leverage, and
Interest Rate Effects, Journal of Financial Economics 10: 407–432.

Cox, J.C. and Ross, S.A. (1976) The Valuation of Options for Alternative Stochastic Processes,
Journal of Financial Economics 3, 145–166.

47



Cox, J.C. (1996) The Constant Elasticity of Variance Option Pricing Model, Journal of Portfolio
Management, 23, 15–17.

Cremers, M., Driessen, J., Maenhout, P. and Weinbaum, D. (2008) Individual Stock-Option Prices
and Credit Spreads, Journal of Banking and Finance 32, 2706–2715.

Das, S.R. and Sundaram, R.K. (2007) An Integrated Model for Hybrid Securities, Management
Science 53, 1439–1451.

Duffee, G.R. (1995) Stock Returns and Volatility A Firm-Level Analysis, Journal of Financial
Economics 37, 399–420.

De Spiegeleer, J., Schoutens, W. and Van Hulle, C. (2014) The Handbook of Hybrid Securities. John
Wiley & Sons Ltd, Chichester.

Figlewski, S. and Wang, X. (2000) Is the ‘Leverage Effect’ a Leverage Effect? Technical report,
NYU Stern School of Business and City University of Hong Kong.

French, K.R., Schwert, G.W. and Stambaugh, R.F. (1987) Expected Stock Returns and Volatility,
Journal of Financial Economics 19, 3–29.

Gabaix, X. (2009) Power Laws in Economics and Finance, Annual Review of Economics 1, 255–
293.

Gatheral, J. (2006) The Volatility Surface: A Practitioner’s Guide. John Wiley & Sons Ltd, Hobo-
ken.

Gonzalo, J., and Granger, C. (1995) Estimation of Common Long-memory Components in Cointe-
grated Systems, Journal of Business and Economic Statistics 13, 27—35.

Hagan, P.S. and Woodward, D.E. (1999) Equivalent Black Volatilities, Applied Mathematical Fi-
nance 6, 147–157.

Hagan, P.S., Kumar, D., Lesniewski, A.S. and Woodward, D.E. (2002) Managing Smile Risk,
Wilmott 84–108.

Heston, S. (1993) A Closed-Form Solution for Options with Stochastic Volatility, with Application
to Bond and Currency Options, Review of Financial Studies 6, 327–343.

Hibbert, A.M., Daigler, R.T. and Dupoyet, B. (2008) A Behavioral Explanation for the Negative
Asymmetric Return–Volatility Relation, Journal of Banking and Finance 32, 2254–2266.

Hilscher, J., Pollet, J.M., Wilson, M. (2015). Are Credit Default Swaps a Sideshow? Evidence that
Information Flows from Equity to CDS Markets. Journal of Financial and Quantitative Analy-
sis 50, 543–567.

Ilinski, K. (2003) Pricing Credit from Equity Options, Working paper, JPMorgan Chase.

48



Kapadia, N. and Pu, X. (2012) Limited arbitrage between equity and credit markets, Journal of
Financial Economics 105, 542–564.

Kim, J., Ramaswamy, K. and Sundaresan, S. (1993) Does Default Risk in Coupons Affect the
Valuation of Corporate Bonds?: A Contingent Claims Model, Financial Management 22, 117–
131.

Lange, O. (1936) The Place of Interest in the Theory of Production, Review of Economic Stud-
ies 3, 159–192.

Lee J., Naranjo, A. and Velioglu, V. (2018) When do CDS Spreads Lead? Rating Events, Private
Entities, and Firm-specific Information Flows, Journal of Financial Economics 130, 556–578.

Leland, H.E. (1994) Corporate debt Value, Bond Covenants, and Optimal Capital Structure, Journal
of Finance 49, 1213–1252.

Leland, H.E. (1998) Agency Costs, Risk Management, and Capital Structure, Journal of Fi-
nance 53, 1213–1252.

Leland, H.E. and Toft, K.B. (1996) Optimal Capital Structure, Endogenous Bankruptcy, and the
Term Structure of Credit Spreads, Journal of Finance 51, 987–1019.

Lauterbach, B. and Schultz, P. (1990) Pricing Warrants: An Empirical Study of the Black-Scholes
Model and Its Alternatives, Journal of Finance 45, 1181–1209.

Linetsky, V. and Mendoza, R. (2010) Constant Elasticity of Variance (CEV) Diffusion Model, in:
R. Cont (ed.), Encyclopedia of Quantitative Finance, John Wiley & Sons.

Marsh, I.W. and Wagner W. (2016) News-Specific Price Discovery in Credit Default Swap Markets,
Financial Management 45, 315–340.

Mayordomo, S., Peña, J.I. and Schwartz E. (2010) Are all Credit Default Swap Databases Equal?,
NBER Working Paper 16590.

Mella-Barral, P. and Perraudin W. (1997) Strategic Debt Service, Journal of Finance 52, 531–556.

Merton, R.C. (1974) On the Pricing of Corporate Debt: The Risk Structure of Interest Rates, Journal
of Finance 29, 449–470.

Myers, S.C. (1984) The Capital Structure Puzzle, Journal of Finance 39, 575–592.

Narayan, P.K., Sharma, S.S., and K.S. Thuraisamy. (2014). An analysis of price discovery from
panel data models of CDS and equity returns. Journal of Banking & Finance 41, 167–177.

Newey, W.K., and K.D. West. (1987). A Simple, Positive Semi-Definite, Heteroskedasticity and
Autocorrelation Consistent Covariance Matrix. Econometrica 55, 703–708.

49



Schroder, S. (1989) Computing the Constant Elasticity of Variance Option Pricing Formula, Journal
of Finance 44, 211–219.

Shleifer, A., and Summers, L. (1990) The Noise Trader Approach to Finance, Journal of Economic
Perspectives 4, 19–33.

Shleifer, A., and Vishny, R.W. (1997) The Limits of Arbitrage, Journal of Finance 52, 35–55.

Toft, K.B. and Prucyk, B. (1997) Options on Leveraged Equity: Theory and Empirical Tests, Journal
of Finance 53, 1151–1180.

Turnovsky, S.J. (1970) Financial Structure and the Theory of Production, Journal of Fi-
nance 25, 1061–1080.

Vickers, D. (1970) The Cost of Capital and the Structure of the Firm, Journal of Finance 25, 35–46.

Vickers, D. (1987) Money capital in the theory of the firm: A preliminary analysis, Cambridge
University Press, New York.

Wakker, P.P. (2008) Explaining the Characteristics of the Power (CRRA) Utility Family, Health
Economics 17, 1329–1344.

Wu, G. (2001) The Determinants of Asymmetric Volatility, Review of Financial Studies 14, 837–
859.

Zimmermann, P. (2015) Revisiting the Credit-Equity Power Relationship, Journal of Fixed In-
come 24, 77–87.

Zhang, L. (2005) The Value Premium, Journal of Finance 60, 67–103.

50


