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Abstract

We propose a new approach to estimating shadow rate term structure models. This

modifies the Joslin, Singleton, and Zhu (2011) factor rotation technique to allow for

the zero lower bound using the Wu and Xia (2016) discrete-time closed-form approxi-

mation of the Black (1995) model. Compared with the standard approach based on the

extended Kalman filter, our approach significantly improves convergence and greatly

reduces the computation time. It has the added advantage of producing more robust

estimates of the lower bound parameter and the path of the shadow rate. We apply

the shadow rate model to recent U.S. data and show that expected inflation and un-

employment gap are important unspanned macro factors that drive term premiums, as

in Joslin, Priebsch, and Singleton (2014).
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1 Introduction

The Gaussian term structure model (GTSM) is routinely used to analyze the behavior

of a wide range of financial markets, notably those for government and corporate bonds. Its

popularity has been enhanced in recent years by a series of innovations that greatly reduce

and, as Adrian, Crump, and Moench (2013) argue, ultimately remove the need for non-linear

optimization methods. These innovations concentrate the likelihood function, helping to deal

with multiple local optima and other difficult problems as well as greatly speeding up the

estimation procedure.

However, the Gaussian model violates the zero lower bound constraint on interest rates.

Although this may not be a problem at historical levels of the interest rate, it is a serious

problem at the near-zero interest rates seen in the developed economies since the onset of

the financial crisis. This confronts the modeler with new numerical challenges.

The Gaussian version of the Black (1995) shadow rate term structure model, which

represents the spot interest rate using the truncated normal distribution, has a great deal

of appeal in this situation. Since this is viable only for models with one or two factors,

rather than the three or more factors that are needed in practice, a popular compromise has

been to work with a tractable pricing function that gives reasonable approximation to the

‘true’ Black prices (Krippner, 2013, Priebsch, 2013, Wu and Xia, 2016). However, the non-

linearities in these models mean that researchers have resorted to the use of the extended

Kalman filter (EKF ) and other unsatisfactory methods that have been superseded by the

new likelihood-concentration methods in the Gaussian setting.

This paper shows that these new methods can be applied to the shadow rate pricing

model, allowing the researcher to estimate the shadow rate model almost as easily and

quickly as the simple GTSM . Specifically, we show that the factor extraction approach of

Joslin et al. (2011), henceforth JSZ, can be readily applied in this context with all of its

well-known computational advantages. It has the added advantage of producing more robust

estimates of the lower bound parameter and the path of the shadow rate than the EKF . In
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the case of a well-known U.S. Treasury bond yield dataset, we typically achieve convergence

in less than 1.5 minutes, compared with over 40 minutes or longer when using the EKF .

Moreover, this apart, the fit and parameter estimates are economically indistinguishable

from those obtained with the EKF . This technique opens the way to research with the

shadow rate model that involves very large numbers of different model estimations, which

we illustrate using a 219 parameter combination search for an optimal macro-finance variant.

The paper is set out as follows. The next section describes the Gaussian shadow rate

framework and shows how this rate is mapped into the policy rate using the approxima-

tion of Wu and Xia (2016). Section 3 shows how this is linearized by the EKF used in

the existing shadow rate literature and how similar linearization methods allow the factor

extraction methods of JSZ to be used in this context, outlining the many advantages of

this methodology. Section 4.1 reports the results of using these various approaches to fit

a three-factor shadow rate model to a well-known dataset for the US Treasury bond mar-

ket. The macro-finance extension of this model, which introduces real activity and inflation

variables as unspanned factor along the lines of JSZ is reported in section 4.2. The final

section concludes and indicates other research problems that can now be tackled using this

approach to estimating shadow rate models.

2 The pricing models

2.1 Black Gaussian shadow rate model

Assume that the observed short rate is specified as in Black (1995):

rt ≡ max(st, r), (1)

where r is the lower bound and the shadow short rate st is driven by the K−dimensional

Gaussian process:

st = δ0 + δδδ′1xt, (2)
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and where the dynamics of the state vector under the physical (P) and risk-neutral measure

(Q) are:

xt = µµµP + ΦPxt−1 + uPt , (3)

xt = µµµQ + ΦQxt−1 + uQt , (4)

respectively, with uPt ,u
Q
t ∼ N(0,Σ) under their respective measure.

We adopt the parametrization scheme proposed by JSZ, i.e. ΦQ is determined by K

roots, which we can collect in a vector λλλQ, µµµQ = [µQ∞, 0, . . .]
′, δ0 = 0 and δδδ1 is a vector of

ones. The physical dynamics, µµµP , ΦP and Σ, are unrestricted. This parametrization plays a

crucial role in our estimation scheme, as in the original JSZ Gaussian model, since it allows

one to estimate the P−parameters by OLS regression.

2.2 The shadow rate pricing approximation

If the short rate is well above the lower bound, it is reasonable to use the standard

Gaussian model, which assumes: rt = st. Let Pn,t is the price of the n−period zero coupon

bond at time t. The 1− period log forward rate at time t is defined as fn,t = log(Pn,t/Pn+1,t).

The n−period zero coupon yield is

yn,t = − 1

n
log(Pn,t) =

1

n

n−1∑
j=0

fj,t (5)

In the Gaussian framework, the log forward rates can be represented as an affine function

fn,t = fG
n,t of the factors:

fG
n,t = af,n + b′f,nxt, n = 0, 1, . . . . (6)
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The coefficients af,n and bf,n follow well-known recursions, derived for example in Cochrane

and Piazzesi (2009) and Wu and Xia (2016) :

b′f,n = δδδ′1
(
ΦQ
)n
, (7)

af,n = δ0 + δδδ′1

(
n−1∑
j=0

(
ΦQ
)j)

µµµQ − 1

2
δδδ′1

(
n−1∑
j=0

(
ΦQ
)j)

ΣΣ′

(
n−1∑
j=0

(
ΦQ
)j)′

δδδ1. (8)

From (5) we obtain yields in the Gaussian system as yGn,t = an+b′nxt, where an = (1/n)
∑n−1

j=0 af,j

and bn = (1/n)
∑n−1

j=0 bf,j. Stacking the yields we can write this system in vector notation

as:

yG
t = a + Bxt. (9)

However, as the short rate approaches the lower bound, the Gaussian model gives a

significant probability mass to negative interest rates, which makes it impractical for many

purposes, such as monetary policy analysis or pricing fixed income derivatives. Shadow rate

models deal with this inconvenience by treating the forward rates fG
n,t of the Gaussian model

as ‘shadow forward rates’ and map them into the Black forward rates fn,t. Unfortunately, (1)

introduces a non-linearity into this system, making it difficult to estimate the model when

there are more than 2 factors. Thus, a popular compromise has been to use a convenient

approximation. Specifically, Wu and Xia (2016) propose the approximation:1

fn,t = f(xt, n; Ψ)

= r +
(
af,n + b′f,nxt − r

)
Φ

(
af,n + b′f,nxt − r

σQn

)
+ σQn φ

(
af,n + b′f,nxt − r

σQn

)
,(10)

where Φ(.) and φ(.) are the cumulative distribution and probability density function of

a standard normal distribution, respectively, σQ
n =

∑n−1
i=0 b′f,iΣbf,i, and Ψ is a vector of

relevant parameters. The derivative of this function with respect to the latent state variables

1See Krippner (2013) for the counterpart in continuous time.
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is available in a convenient closed form:

f ′(xt, n; Ψ) =
df(xt, n; Ψ)

dxt

= Φ

(
af,n + b′f,nxt − r

σQn

)
bf,n. (11)

Similarly, we can write the n−period zero coupon bond yield in terms of the forwards by

substituting (10) into (5) to get:

yn,t = y(xt, n; Ψ) =
1

n

n−1∑
j=0

f(xt, j; Ψ). (12)

This approximation has been adopted by many researchers (e.g. Coroneo and Pastorello,

2017, Lemke and Vladu, 2017). Another method based on a second-order approximation

was proposed by Priebsch (2013). However, to handle the the non-linearities in these mod-

els researchers have used Kalman-filter-based techniques. These have been superseded by

likelihood-concentration methods in estimating the GTSM , which we now show can be used

to estimate shadow rate models.

3 Factor identification and estimation strategies

This section sets out various schemes that mimic the JSZ factor identification and

likelihood-concentration methods currently used in estimating the GTSM . The first em-

ploys a non-linear solution technique and the second employs variants of the linearization

scheme used in the EKF .

3.1 Fitting errors and factor extraction

If the yield model (12) is fitted without error, then, conditional on the model parameters,

we could in principle invert any K of these relationships to identify the state vector xt. How-

ever, to allow for measurement and mis-specification effects, we augment this specification
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with an additive error un,t to get an empirical model of the observed yield yon,t:

yon,t = y(xt, n; Ψ) + un,t, (13)

where un,t ∼ N(0, σ2
u,n). Stacking (12) gives a system of J nonlinear yield equations:

yo
t = y(xt; Ψ) + ut. (14)

Now, to mimic JSZ, we assume that there are K < J − 1 combinations (or ‘portfolios’) of

yields, given by a J ×K weighting matrix W, that are nevertheless fitted without error:

qt ≡W′yo
t = W′yt (15)

for all t. Substituting (14) into (15) shows that this is equivalent to assuming: W′ut = 0,

which we will refer to as the observability restriction. As in JSZ, we assume that the

observable factors qt are the first K principal components obtained from the covariance

matrix of yields, Cov(yo
t ), so that the weights are given by the corresponding eigenvectors.

Denote by q(xt; Ψ) the function that maps the latent state vector xt to the observable

principal components qt, and the inverse of this function by q−1(xt; Ψ), i.e.:

qt = q(xt; Ψ) = W′y(xt; Ψ)⇐⇒ xt = q−1(qt; Ψ) (16)

Then, substituting xt back into (14) gives our nonlinear econometric model of the cross-

section of J observed yields:

yo
t = y

(
q−1(qt; Ψ); Ψ

)
+ ut. (17)

Hence, our first estimation strategy is to use nonlinear solution technique to recover xt,

conditional on the risk-neutral parameters, using (16) and use it to fit the observed yields

as in (17). Further details regarding estimation are set out in Section 3.4 below. Note that
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when the measurement errors are restricted so that the observability restriction (15) holds,

this estimation technique is equivalent to the iterated extended Kalman filter advocated by

Krippner (2013).

3.2 Approximating the pricing function

Current estimation strategies, in contrast, are based on linearization techniques. If the

pricing function f is continuously differentiable, we can linearize it using a first order Taylor

expansion around any point x̃t−1 and use it to write the forward rate as:

fn,t = f(xt, n; Ψ) (18)

≈ f(x̃t−1, n; Ψ) + f ′(x̃t−1, n; Ψ)(xt − x̃t−1)

where the derivative f ′ is defined in (11). Similarly the yields in (12) can be approximated

as:

yn,t ≈ y(x̃t−1, n; Ψ) + y′(x̃t−1, n; Ψ)(xt − x̃t−1)

= y(x̃t−1, n; Ψ)− y′(x̃t−1, n; Ψ)x̃t−1︸ ︷︷ ︸
an,t−1

+ y′(x̃t−1, n; Ψ)︸ ︷︷ ︸
b′n,t−1

xt. (19)

When we use the Wu and Xia (2016) approximation to the forward rate, the approximation

coefficients are:

b′n,t−1 =
1

n

[
n−1∑
j=0

f ′(x̃t−1, j; Ψ)

]
=

1

n

[
n−1∑
j=0

Φ

(
af,j + b′f,jx̃t−1 − r

σQj

)
b′f,j

]
, (20)

an,t−1 =
1

n

[
n−1∑
j=0

(af,j − r) Φ

(
af,j + b′f,jx̃t−1 − r

σQj

)
+ σQj φ

(
af,j + b′f,jx̃t−1 − r

σQj

)]
.(21)

We give each yield coefficient a t − 1 subscript because it is based on the information set

available at that time. Our second estimation strategy exploits this lag, as we show in

Section 3.4 below. In the limit when r takes a large negative value or when the spot rate is
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very high, φ(.) = 0 and Φ(.) = 1, so this specializes to the Gaussian yield model.

We consider three candidates for the approximation points. The first approximation is

taken with respect to the expectation of the state under the physical measure P : x̃t−1 =

EPt−1xt. We call this the ‘p’ expectation approach, which obviously requires knowledge of the

parameters µµµP and ΦP . This approximation is implicit in the extended Kalman Filter and,

as such, has been adopted by shadow rate modelers. The next approach exploits the high

persistence embedded in interest rates and approximates the state vector using its realization

at previous period, i.e. x̃t−1 = xt−1. We will call this the ‘naive’ approximation and denote

it using an ‘n’. Finally, we propose an approximation around the risk-neutral expectation of

the state vector: x̃t−1 = EQt−1xt, which we call the ‘q’ expectation approach. Since this only

depends on the risk-neutral parameters, and not µµµP and ΦP , this (like the ‘n’ approach), has

the great advantage that it allows us to separate the likelihood function into cross-section

and time-series components, as in JSZ.

3.3 Factor rotation

Stacking the yields in (19) gives a J−dimensional system:

yt = at−1 + Bt−1xt. (22)

If these yields were fitted without error, then, conditional on the model parameters and

information available at time t− 1, we could in principle invert this relationship to find the

(estimate of the) state vector xt. Technically, the row rank of Bt−1 needs to be K for this

to be possible, which is a potential problem in a shadow rate framework because in this

case Bt−1 needs to be inverted in every time period. For example, it is often assumed (e.g.

Hamilton and Wu, 2012) that specific rates are fitted without fitting error. The Wu and

Xia (2016) model of forward rates reveals that it might be problematic. The time series

of the cumulative distribution function Φ
(
(af,n + b′f,nxt − r)/σQn

)
that feature in (10), are

presented in Figure (4). We can see that when the lower bound is estimated high enough
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(about 16 b.p. as in the upper left panel), there were periods when these were zero or near-

zero, especially for short maturities. If we were to select these rates as fitted without error,

we would not be able to invert the system to recover the latent state xt in such periods. In

practice, this problem can occur even if the probabilities are positive but small, since rates

for different maturities are strongly cross-correlated. This problem is greatly alleviated by

our use of principal components, since they are uncorrelated and give a significant weight to

the longer maturity rates. They also make an allowance for measurement error in individual

rates, because they replace the assumption of noiseless rates with the assumption of noiseless

portfolios of rates.

Augmenting (19) with additive errors gives in the matrix notation:

yon,t = an,t−1 + b′n,t−1xt + vn,t, (23)

where vn,t ∼ N(0, σ2
v,n), or in matrix notation:

yo
t = at−1 + Bt−1xt + vt. (24)

Again, to mimic JSZ, we use the observability restriction (15). Substituting (24) into (15)

shows that in this case, this is equivalent to assuming: W′vt = 0. We then substitute (24)

into qt = W′yo
t and, providing that the matrix (W′Bt−1) is full rank, we can recover the

latent vector conditional on the information at time (t− 1):

xt = −(W′Bt−1)
−1W′at−1 + (W′Bt−1)

−1qt. (25)

Putting this back into (24) shows that the yields are conditionally affine in the observable

vector:

yo
t = aq,t−1 + Bq,t−1qt + vq,t, (26)

where aq,t−1 = at−1 −Bt−1(W
′Bt−1)

−1W′at−1 and Bq,t−1 = Bt−1(W
′Bt−1)

−1.

The time-structure of these relationships means that, given the principal components,
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reasonable estimates of a0 and B0 and an initial value x1, we can compute aq,1 and Bq,1,

hence x2, aq,2 and Bq,2... xT , aq,T and Bq,T , and sequentially recover the time series of xt.

Good estimates a0 and B0 are provided for example by Gaussian model estimates a and B

in (9), so that x1 = −(W′B)−1W′a + (W′B)−1q1.

Since the ‘n’ and ‘q’ approximation schemes do not involve the parameters µµµP and ΦP ,

these can be concentrated out of the likelihood function using OLS regression formulae,

leaving only µQ∞, λλλQ, Σ and (possibly) the lower bound parameter r.to be estimated from

the concentrated likelihood function, as in the original JSZ approach.

3.4 The separability of the likelihood function

Let Θ ≡ (µµµP ,ΦP , µQ∞,λλλ
Q,Σ, r,Σv) denote the parameters to be estimated. The condi-

tional likelihood function is:

logL(Θ) =
T∑
t=2

log `(yo
t |yo

t−1; Θ). (27)

The t−period conditional density can be decomposed into the likelihood of observing the

yields given the fitted yield portfolios (g) and the likelihood of observing the latter given the

lagged fitted portfolios (h):

`(yo
t |yo

t−1; Θ) = g(yo
t |qt; Θ)× h(qt|qt−1; Θ). (28)

The main advantage of the factor rotation and factor extraction schemes is that they allow

for the separation of parameters in the conditional likelihood as:

`(yo
t ,qt|qt−1; Θ) = g(yo

t |qt;µ
Q
∞,λλλ

Q,Σ, r,Σv)× h(qt|qt−1;µµµ
P ,ΦP ,Σ), (29)

allowing the latent state vector to be recovered independently of the P−parameters. Condi-

tional upon the risk-neutral parameters and the latent factors, the parameters of the physical

dynamics that maximize the likelihood function can be obtained by OLS estimates of (3).
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They can effectively be concentrated out of the likelihood function and recovered subse-

quently, as in JSZ. As usual, the cross-sectional variance parameters, Σv, can also be

concentrated out of the likelihood function. This leaves us with only K × (K + 1)/2 + 2

parameters in Σ, µQ∞ and r that need to be found numerically, just one more (r) than in

the Gaussian term structure model. The mapping between the observable principal compo-

nents and the latent factors requires an adjustment to the likelihood function through the

application of the change-of-variable technique. Further details on this are provided in the

Appendix.

In a maximally-flexible Gaussian DTSM , (i.e. one in which there are no restrictions

across the two sets of dynamics) the mapping between the observed and latent factors is linear

given the observability restriction (15). As JSZ note, the no-arbitrage restrictions used to

estimate the risk-neutral dynamics from the cross-section are irrelevant to the estimation of

the physical dynamics of the observable factors qt in this case. Moreover, as Joslin, Le, and

Singleton (2013) show, this irrelevance proposition carries over to a macro-finance model in

which the macro factors are unspanned (i.e. they do not have an immediate effect on the term

structure, but drive the dynamics of the term structure factors). However, the mapping from

the observed to the latent factors is nonlinear in the shadow rate model, which means that

the irrelevance proposition does not hold. Indeed, we need to use the model of the yields

cross-section of yields in order to extract the underlying latent factors from the principal

components of yields and find their time series dynamics.

3.5 Summary

We can summarize our estimation procedure for ‘q’ and ‘n’ approximation schemes as:

1. Estimate the observable factors qt and the weights W from the first K principal

components of the yields;

2. Conditional on the risk-neutral parameters Ψ, obtain initial estimates of a, B and the

state vector: x1 = −(W′B)−1W′a + (W′B)−1q1;
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3. Use x1 to find a1 and B1 as in (20) and (21);

4. Find x2 using (25): x2 = −(W′B1)
−1W′a1 + (W′B1)

−1q2;

5. Repeat steps (3)-(4) for t = 2, . . . , T ;

6. Find the parameters of the P−dynamics by OLS estimation using the time series of

the latent state vector;

7. This gives the value of the concentrated likelihood (28) conditional on the risk-neutral

parameters Ψ. Quasi-ML estimates of the parameters follow by optimizing this nu-

merically over Ψ.

4 Empirical evaluation of the factor extraction approach

4.1 The yield-only model

4.1.1 Data and model specifications

We estimate the model using Treasury yields constructed by Gurkaynak, Sack, and

Wright (2007).2 We use the same maturities as Wu and Xia (2016), that is 3 and 6 months,

1, 2, 5, 7 and 10 years, but we use longer sample period, from January 1981 to Decem-

ber 2016. We follow Krippner (2013), Christensen and Rudebusch (2015), Coroneo and

Pastorello (2017) and most of the literature on the term structure modelling within the

Gaussian framework by estimating the model using yields rather than the forward rates

fitted by Wu and Xia (2016).

We first estimate three benchmark models. The first (which we denote JSZ) is the

Gaussian model (with at = a and Bt = B) estimated by the PC factor rotation method

proposed by Joslin et al. (2011). The second and third benchmarks are provided by the

2The data is available from: http://www.federalreserve.gov/pubs/feds/2006/200628/feds200628.
xls.
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shadow rate models of yields with the Wu and Xia forward rate approximation estimated by

the EKF , both unrestricted and with the observability restriction W′v = 0 on the fitting

errors, which we denote KFu and KFr, respectively.

We then estimate the shadow rate model by factor rotation, starting with the nonlinear

factor extraction method (17) outlined in Section 3.1, which we denote by FE. Since the

model estimated with factor rotation using the ‘p’ approximation coincides with the KFr

model estimated by the EKF ,we do not consider it separately. Instead, we consider only the

‘n’ and ‘q’ approximations, denoted respectively by FRn and FRq. Although it is common

to initiate the Kalman filter from the unconditional mean of the latent factors, we estimate

all models conditional on the first observation assumed to be generated by the Gaussian

model, i.e.:

yo
1 = a + Bx1 + v1. (30)

We do this because the unconditional mean is not available at the beginning of the iterative

factor rotation procedure for the FRn and FRq methods. This allows us to compare directly

all models not only in terms of the cross-sectional fit, but also the value of the likelihood

function.

The summary of different methods is given in Table 1. We consider 3−factor models.

All models, except JSZ, are estimated both with imposed restriction on the zero lower

bound parameter (r = 0) and with r estimated as a free parameter (r = r̂). The JSZ

parametrization requires the roots of the model λλλQ to be specified as real or complex, distinct

or repeated. We find that with our data sample the model specified in terms of real distinct

roots achieves substantially higher likelihood value for all methods, therefore we report only

the estimates for this case.

4.1.2 Fitting a three factor model

Table 2 shows the fit of the 3 factor model obtained using these various methods of

estimation, reporting the likelihood of the model and the root-mean-square error (RMSE)
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for each maturity. The upper panel shows the results with the lower bound set at zero

(r = 0), while the lower panel treats this as a parameter to be estimated (r = r̂). The first

row shows the fit of the JSZ Gaussian model, which, as we would expect, is not as good as it

is for the shadow rate models over this period. The RMSEs of the residuals in these models

are generally in line with the bid-ask spreads in the Treasury market, although the RMSEs

for the 5−year and 10−year maturities are higher than those for the other maturities. Recall

that model KFu allows all principal components to be measured with an error, while KFr

uses the observability restriction (15). Imposing this restriction improves the cross-sectional

fit of the model (as indicated by the average RMSE) when the lower bound is set at zero,

but with the estimated r parameter, the average RMSE is broadly the same.

Looking at the cross-sectional fit, it is apparent that when the model is estimated us-

ing the Kalman filter without the observability restriction (15) in KFu, there is a marked

improvement in the fit of the 10−year yield, which comes at the price of a deterioration

at the short end. This is particularly pronounced when the lower bound is a free param-

eter. Although this has the effect of boosting the likelihood, this reflects a well-known

problem with the lower bound parameter in the shadow rate model (Christensen and Rude-

busch, 2015, Bauer and Rudebusch, 2016 and Krippner, 2015). As Krippner (2015), puts it:

“shorter-maturity data more below the lower bound parameter will result in greater effective

downweighting of the influence of that data relative to longer maturity data (...) to better

fit the steeper slope in the longer-maturity data.”3 In other words, when the lower bound

is a free parameter, KFu, boosts the likelihood by setting a high value of the lower bound

parameter: 16 b.p. in our data set.4

In order to explore the ‘downweighting’ effect we need to look at the shadow rates, shadow

forwards and the probability weights φ(z) and Φ(z) that the model gives uses in (10). But

3Krippner (2015), p.18.
4Since this is well above the minimum federal funds rate of 4bp seen over this period, it certainly cannot

be regarded as a lower bound. In our sample, the yields are as low as 3bp. These models attribute the
difference between sub-bound observations and the lower bound to a fitting error. The minimum observed
forward rate is actually negative (−0.5bp reached by the 6−month forward rate on July 2014). Indeed, the
recent European experience suggests that the lower bound could be potentially much lower still, with rates
of −40bp persisting in the Euro area and even more negative rates seen at times in Switzerland and Sweden.
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first, we would note that, as Table 2 shows, estimating the model with the FE and ‘q’

approximation methods gives almost identical results to the KFr method, both in terms of

the cross-sectional fit and the likelihood value. The ‘n’ approximation also works reasonably

well, although the goodness of fit statistics are slightly inferior to those of other methods.

All in all, there is little to choose between these approaches in terms of fit, so the choice can

be made in terms of speed of computation, which is an order of magnitude faster for our

rotation approaches, as Section 4.1.5 reveals.

In Figures 1 and 2 we plot the fitting errors, defined as the difference between the observed

yields and fitted yields, yo
t − ŷt, with the lower bound set to zero and estimated as a free

parameter, respectively. Since the fit of all models was very similar before 2008, the charts

focus on the period from January 2008 to December 2016, i.e. the period of ultra low interest

rates. First of all, consistent with our results from Table 2, we note that the fitting errors

of the shadow rate models with restricted errors are almost identical, so that the lines of

the KFr, FE, FRn and FRq fitting errors are almost perfectly overlapping. Second, the fit

of the Gaussian JSZ model, although at times quite different from the shadow rate model,

is surprisingly, not much worse during the lower bound period. Third, Figure 2 supports

our view about overfitting the KFu model. If we do not impose the observability restriction

(15), the KFu fitting errors for the 3 and 6 month yield are higher and more volatile than

those obtained from the methods that restrict the measurement errors. Finally, we can see

some persistence in the fitting errors. Admittedly, although it would be desirable to address

this statistical feature in the estimation, we do not deal with this issue as is common in the

literature.5

4.1.3 Shadow rates and the probability of ‘lift-off’

Figure 3 plots the shadow short rates implied by the different approaches for the low

interest rate period 2008−2016. (In the preceding period, when the interest rates are higher,

the estimates of the short rate implied by all models are virtually identical to each other

5For methods to deal with the persistent fitting errors, see Adrian et al. (2013), Goliński and Spencer
(2017) or Hamilton and Wu (2014).
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and close to the actual short rate). For comparison, this also shows the actual 1−month

rate and the estimate from the JSZ Gaussian model. Interestingly, the short rate from

this model does not violate the zero lower bound restriction at any point in time. This is

largely because our sample includes the 3−month rate, which is close to the 1−month rate

and which the model tries to fit closely. Nevertheless, the Gaussian model has the awkward

feature that given a low starting value, the probability of a negative short rate in the near

future is non-negligible.

With r = 0, the shadow short rates implied by different shadow rate estimates are all

very similar to each other, irrespective of whether fitting errors are restricted. When the

lower bound parameter is freely estimated but the observability restriction (15) is applied,

the shadow rate specifications give similar paths to each other for the shadow rate, which

at times (for example in 2009-2010 and 2014-2015) is more negative than when the lower

bound is set to zero.

As noted, however, when the fitting errors are unrestricted, KFu chooses a much higher

value of r than the other methods. Figure 3 shows that the model then implies much lower

values of the shadow spot rate (and the short forward rates), particularly during 2014 and

2015, meaning that the yields at the short end of the curve are ‘downweighted’ and lose

traction. This is due to the effect of the probability density and distribution functions φ(zt)

and Φ(zt) used in the Wu and Xia (2016) forward rate approximation (10). When the shadow

forward rate for any maturity is one or more standard deviations lower than r, these two

functions are small. The fitted forward rate converges upon r which centres in the middle

of the distribution of short maturities. This leads to a small deterioration in their fit but

allows the optimizer to capture the upward slope in the longer maturities, as noted in the

quote that we cited earlier from Krippner (2015).

Figure 4 plots the CDFs, Φ(zt), for the various estimation methods and maturity horizons,

which can be interpreted as the (risk-neutral) probability of rates being above r, i.e. that

‘lift-off’ has occurred at that horizon. We focus on the period 2000-2016, since interest rates

were high enough to keep the CDFs very close to unity for all maturities in earlier years. This
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figure shows that when using KFu with a freely estimated lower bound parameter (Panel

(b)), the CDFs for 3−month, 6−month and even 1−year rates are effectively zero at times

post-crisis. This is not a problem when we assume that some portfolios of yields are fitted

without error (Panel (d)) or when we set the lower bound parameter to zero (Panels (a) and

(c)).

Krippner (2015) argues that when conventionally estimated (using KFu), the three factor

shadow rate model is too flexible to provide a reliable indicator of the shadow rate. As such,

this shadow rate should not be regarded as a policy indicator, contrary to the claims of Wu

and Xia (2016). He goes on to develop a two factor model that fits the data less-well, but

is more robust in this respect. However, restricting the flexibility of the Kalman filter using

the observability restriction (15), in addition to its well-known advantages, factor extraction

also has the effect of stopping the filter from exploiting this flexibility to ‘downweight’ the

short maturities and focus on the fit of the long maturities.

4.1.4 Parameter estimates

While practitioners are likely to be interested in the ability of a method to fit the cross-

section of bond yields, a researcher is more likely to be interested in drawing statistical

inferences about the risk-neutral and the physical parameters. Table 3 shows the Q param-

eter estimates from the JSZ Gaussian model and the shadow rate model estimated by the

Kalman filter-based and factor extraction approaches. The reported standard errors are cal-

culated by using the quasi-maximum likelihood estimator proposed by White (1982), which

is robust to mis-specification.6, 7 The table shows that the effect of imposing the observabil-

ity restriction (15) on the estimates of the risk-neutral parameters is of negligible economic

significance, although in statistical terms these differences can as usual be large relative to

6See Hamilton (1994),p. 145. We found that its standard errors are more conservative in comparison to
those calculated using the inverse of the Hessian matrix or the Jacobian outer product.

7Alternatively, the standard errors could be calculated in a bootstrap exercise. Using the traditional
Kalman filter method to estimate the standard errors for the shadow rate model using simulation methods
would be highly impractical due to the long estimation time, but with the factor rotation method this can
be obtained relatively quickly.
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the minuscule standard errors implied by the ‘tiny’ fitting errors in the cross-section. The

only difference of any note is in the large estimate of r given by KFu, when this parameter

is freely estimated, but as noted in the previous section, this is highly problematic. Impor-

tantly for our analysis, the estimates of the parameters of the model obtained by the factor

rotation method (FRn and FRq) with r = 0, are virtually identical to those obtained by the

Kalman filter (KFr), with small differences at the fourth decimal place.

The estimation method has relatively little effect on the estimates of the physical dynam-

ics. In Section 4.1.6 below, using simulations we document robustness of the P estimates

with respect to different estimation methods. Thus, to conserve the space, in Table 4 we

report only the estimates obtained by the FE method with the estimated lower bound pa-

rameter. The White (1982) standard errors are reported in small font. As commonly found

in the literature, under the physical measure the factor dynamics are slightly less persistent

than under the risk-neutral measure, with the eigenvalues of the ΦP matrix equal to 0.9895,

0.9660 and 0.8062. These estimates, however, can potentially suffer from the small sam-

ple autoregressive bias. In Section 4.2.1 we show how to effectively deal with it within the

shadow rate framework by imposing zero restrictions on the price of risk parameters.

4.1.5 Estimation times

To illustrate the estimation time advantage, Table 5 reports the time (in seconds) needed

to estimate the model with different methods using the JSZ parameters as starting values.

We tried different starting values but we found that these are reliably provided by the

estimates of the Gaussian model, and thus we use them in each estimation. We use zero as

the starting value for the lower bound parameter.8 The estimation time for the FRn and

8All computations are performed on a PC desktop Windows 10 Enterprise 64−bit operating system
with the Intel(R) Core(TM) i5 3.20GHzprocessor with 8 GB RAM using Matlab R2017a. Using the built-
in Matlab Coder, we speed up parts of the computing routine (in particular the function calculating the
normal cumulative density, which is the most time consuming part of the routine) by compiling the program
in Mex files using the code in C programming language.As the numerical optimizers we use Matlab functions
‘fminsearch’ and ‘fminunc’ consecutively. We do not modify their setting, but to ensure that we found the
local maximum we loop the estimation routine until the optimizers do not make further progress, i.e. we
start another round of the optimization using ‘fminsearch’ and ‘fminunc’ with the results from the previous
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FRq factor rotation methods is less than 2 minutes, irrespective of whether the the lower

bound parameter is estimated or imposed. However, the estimation time using the Kalman

filter is much longer. Estimating the the model with unrestricted fitting errors takes about

40 minutes. Restricting the fitting errors reduces the estimation time considerably to about

10− 13 minutes, but this is still much longer than for the factor rotation method.

4.1.6 Estimating the approximation errors

In this section we investigate the effect of using ‘q’ and ‘n’ approximations to estimate

the latent state variables from the yield data, relative to (a) nonlinear extraction and (b)

the ‘p’ approximation used in the EKF . To focus on the effect of the Taylor approximation,

we assume that the PCs are observable. Since the P−dynamics are crucial in determining

a model’s implications for the term premium and the like, we then investigate the extent to

which different approximation schemes affect the P−parameters.

To this end, we perform a Monte Carlo simulation. Using the parameters of the P−dynamics

obtained using the KFr(r = r̂) method as reported in Tables 3 and 4, we simulate 150, 000

paths of the state variables xt, each with 10, 000 observations. We use this very long sample

to eliminate any possible autoregressive bias in subsequent estimates of the P−dynamics.

This allows us to focus on distortions of the dynamics due to the Taylor approximation.

We consider each sample path s of the state vector x
(s)
t to be its ‘true’ value and use

the model Q−parameters to construct the model implied cross-section of forward rates and

yields y
(s)
t using the WX formula (10). Importantly, since there is no measurement or other

cross-sectional error, the observability restriction holds and a researcher could infer the ‘true’

value of the latent factors x
(s)
t in any simulation from any 3 of these yields or portfolios of

yields as suggested in (16) using the nonlinear function inverse. So, x
(s)
t is the natural

benchmark to use in this exercise.

Next, from each panel of fitted WX yields y
(s)
t we recover the ‘estimated’ state vector

round as the starting values. We repeat this process until there is no progress in the value of the likelihood
function. We found that the maximum value of the likelihood function found with this loop routine is
typically much higher than a single round optimization.
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using the sequential factor rotation technique summarized in Section 3.5, using the ‘p’, ‘q’ and

‘n’ approximation schemes. We use the sameQ−parameters and the identification matrix W

in all simulations. Thus, we obtain 150, 000 paths of the estimated state vectors x
(s)
p,t , x

(s)
q,t and

x
(s)
n,t. These would all coincide with x

(s)
t in an affine model under the observability assumption,

so the differences between estimated and true values reflect the degree of nonlinearity and

the ability of the various linearization schemes to handle it.

First, we want to quantify the size of distortions in the state variables introduced by

the different Taylor approximation schemes. As such, in Table 6 we report the distribution

statistics of the bias and RMSE calculated for each approximation scheme as

bias
(s)
i =

1

10, 000

10,000∑
t=1

(
x
(s)
i,t − x

(s)
t

)
(31)

and

RMSE
(s)
i =

(
1

10, 000

10,000∑
t=1

(
x
(s)
i,t − x

(s)
t

)
·
(
x
(s)
i,t − x

(s)
t

))1/2

, (32)

where in the second equation the dot symbol (·) denotes element by element multiplication

and i ∈ {p, q, n} denotes the approximation scheme. In particular, we report the mean and

median of the distortion bias and RMSE as well as the first and 99th percentile of the

distribution, which give us the idea about possible extreme distortions. Since the factors

have different magnitude, to make the statistics comparable, before calculating the bias and

RMSE, we normalize the recovered factors by dividing by the standard deviations of the

state variable x
(s)
t for each simulation.

As is any Monte Carlo simulation, the presence of outliers in the simulated latent factor

shocks can lead to large distortions in their subsequent estimates. The table suggests that

the distortions are small and similar for all three linearization schemes. Generally, as should

be expected, the ‘p’ approximation scheme generates smaller deviations than the other ap-

proximation schemes. However, surprisingly, despite the goodness of fit statistics discussed

earlier, the ‘n’ approximation scheme does very well in this exercise, almost as well as the ‘p’
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approximation scheme of the EKF . The most noticeable distortions are for the third latent

factor, which is the smallest and least persistent and thus the least precisely estimated. Still,

the median bias for the third factor is only about 2%. The variation in the estimates of the

third factor as measured by the RMSE, however, can be quite substantial. The median of

the RMSE varies from 15% for the ‘p’ approximation to 26% for the ‘q’ approximation.

Next, we compare the estimates of the P−dynamics obtained from different approxima-

tion methods to the estimates obtained from the ‘true’ state vector.

That is, for each simulation and each approximation scheme, we calculate the OLS

estimates of µ̂i
P(s) and Φ̂

P(s)
i from the P−dynamics calculated from the state vectors

x
(s)
i,t = µPi + ΦPi x

(s)
i,t−1 + u

(s)P
i,t . (33)

and see how they deviate from the baseline values obtained from from the true vectors:9

x
(s)
t = µP + ΦPx

(s)
t−1 + u

(s)P
t . (34)

Table 7 reports the mean and standard deviation of the differences of the parameters

obtained using the estimated series x
(s)
i,t and the true series x

(s)
t . Again, the ‘n’ approximation

scheme does almost as well as the ‘p’ approximation scheme. Nevertheless, these distortions

are all small compared to the parameter standard errors and there is little to choose between

them. However, the P−dynamics are unrestricted and as such likely to be over-fitted. This

issue is investigated in the next section.

Finally, we examine the total effect of approximation distortions on the yield term pre-

mium, which is often the object of most interest to an econometrician modelling the term

structure of interest rates. As such, we calculate the bias and RMSE of the deviations of

the 1, 5 and 10 year term premium calculated based on the factors obtained from different

9Alternatively, we could compare the deviations of the parameters estimates obtained by different approx-
imation schemes from the ‘true’ parameters used in the simulations. We believe, however, that for practical
purposes more relevant is the comparison to the sample estimates obtained by using the original simulated
factors. The alternative comparison does not change the relative classification of the approximations and is
available from the authors upon request.
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approximations and the resulting estimates of the P−dynamics from the term premium cal-

culated using the original (simulated) factors and the corresponding P−parameters for each

simulation. The results are presented in Table 8. It is evident that all three approxima-

tion methods perform well, with the ‘p’ and ‘n’ approximations performing almost equally

and the ‘q’ approximations slightly worse. The median RMSEs for the deviations in the

10−year term premium for the ‘p’, ‘n’ and ‘q’ approximations are 6, 8 and 12 basis points,

respectively. In practice, the lines of the four term premia overlap almost exactly.

4.2 The macro-finance model

Encouraged by these results, we decided to explore the implications of the shadow rate

model for monetary policy, developing a macro-finance model, by adding observable macro

target variables to the model. To stay as close as possible to the Gaussian benchmark in

Joslin et al. (2014), we employ similar macroeconomic variables, to account for economic

growth and expected inflation. We use a 3−month moving average of the Chicago Fed

National Activity Index as the growth measure and the survey of consumers conducted by

the University of Michigan as the expected inflation measure.10 For interest rates, we use

the same set of yields as in the previous section.

Following Joslin et al. (2014), we assume that these macro variables are unspanned, only

affecting the term structure with a lag through the P−dynamics. This means the structure of

the risk-neutral dynamics (4) remains the same, specified in terms of the K latent variables,

while the physical dynamics involve the K latent variables (xt) that span the term structure

as well as a vector of macroeconomic or other ‘unspanned’ variables (mt) that do not.

Although the macro variables do not affect the term structure contemporaneously, they can

influence interest rates expectations under the P−measure and hence the term premium.

Following Joslin et al. (2014), we assume that the spanned and unspanned factors can be

specified jointly as a V AR(1).

10The data is available on the website of the Federal Reserve Bank of St. Louis: https://fred.stlouisfed.org.
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In order to allow a direct comparison with the results in JPS for the Gaussian model,

we follow Lemke and Vladu (2017) and rotate the latent factors xt to get ‘shadow principal

components’, qs
t :

qs
t = W′ys

t = W′(ay + Byxt), (35)

where ys
t are ‘shadow yields’ (i.e. yields that would prevail in the absence of the zero

lower bound), and have a Gaussian distribution. Importantly, unlike the observed principal

components of interest rates in the Gaussian model of JSZ, the shadow principal components

are specific to the model of the Q−dynamics, meaning that the P−dynamics cannot be

estimated separately as they can in JSZ.

The joint system of the P−dynamics can then be written as: qs
t

mt

 =

 µµµPq

µµµPm

+

 ΦPqq ΦPqm

ΦPmq ΦPmm

 qs
t−1

mt−1

+

 uPq,t

uPm,t

 . (36)

The Q−dynamics (4) can also be written in this format as:

 qs
t

mt

 =

 µµµQq

02

+

 ΦQqq 03,2

02,3 02,2

 qs
t−1

mt−1

+

 uQq,t

02

 , (37)

where: ΦQqq = W′BΦQ(B′W)−1 and µµµQq = W′(I−BΦQqq(B
′W)−1W′)ay+W′BµµµQ. Although

the theoretical structure of the risk-neutral dynamics is the same as in (4), the introduction

of extra observable factors into (36) can shift the empirical covariance matrix Σ, which is

common to both risk-neutral and physical dynamics:

Σq = Var(uPq,t) = Var(uQq,t) = W′BΣ(B′W)−1, (38)

Modelling the dynamics of the macro variables jointly with the shadow principal com-

ponents allows the results to be compared directly with those of Joslin et al. (2014) for the

Gaussian model. It is also consistent with the argument of Wu and Xia (2016) and Wu and
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Zhang (2016) that estimates of the shadow rate st rather than the constrained policy rate

rt, indicate the policy thrust that the authorities desire and indeed try to achieve using un-

conventional monetary policies at the ZLB. These authors neglect the constraint (38) and

use the shadow rate in their factor augmented vector autoregression model (FAV AR). This

rate is the sum of the latent factors in our framework, but we use all three shadow factors

in the FAV AR, on the argument that the whole yield curve becomes a monetary policy

instrument at the ZLB. Once the lower bound is reached, unconventional monetary policies

were used to lower longer term yields through forward interest rate guidance, reflected in

the expectations component of the term structure, and open market operations, reflected in

the risk premium (Gagnon, Raskin, Remache, and Sack, 2011).

A term structure model is able to use the physical factor dynamics (36) to decompose

a forward rate (or the value implied by the risk-neutral dynamics) into an interest rate

expectation and a residual, which is a measure of the risk premium, throwing light on the

way that unconventional monetary policies affected the yield curve. The existing literature

uses the Gaussian DTSM to make this decomposition, without respecting the ZLB, but

our model can allow for the effect of this constraint on the decomposition, as we show in

Section 4.2.2.

4.2.1 The 219 model selection search

In contrast to the risk-neutral dynamic system (4), which has 4 parameters excluding

Σ (3 roots and the level parameter µQ∞), the system of the physical dynamics (36) has 30

time-series parameters. Moreover, as Cochrane and Piazzesi (2009) note, the risk-neutral

dynamics are estimated with much greater precision than the physical dynamics, since the

cross-sectional errors are ‘tiny’ compared to the forecasting errors in (36). Indeed, we find

that most of the parameters in the latter are insignificant. Bauer (2018) argues that this

problem of weak identification can be resolved by writing the parameters of the P−dynamics
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in terms of those of the Q−dynamics using:

µµµPq = µµµQq + l0, ΦPqq = ΦQqq + L1, (39)

and testing zero restrictions on the risk-adjustment parameters l0 and L1, as well as ΦPqm

which is a matrix of zeros under the risk-neutral measure.

Exploiting the overwhelming time advantage of the factor rotation method, we follow

Joslin et al. (2014) and search for the best macro finance model in terms of standard model

selection criteria. Following Joslin et al. (2014), we estimate all possible combinations of zero

restrictions on these parameters. Additionally, as in Joslin et al. (2014), we also consider

restricting the largest eigenvalue of the FAV AR response matrix under the P−measure to

be equal the largest root under the risk-neutral measure. This restriction is designed to

correct the small-sample bias in autoregressive models.11 Thus, in total we estimate 219

models with different combinations of restrictions (18 risk-adjustment parameters and the

eigenvalue restriction).

Although in our sample the ‘q’ approximation generally gives higher likelihood value,

Taking advantage of the speed in estimation with the factor rotation approach, we estimate

the macro-finance model using both the n and ‘q’ approximation schemes. Although the

factor rotation method brings a dramatic improvement in speed, it would not be feasible

to estimate this number of models on a single personal computer and we perform this task

using parallel computing.12 Both factor rotation methods produced nearly identical results.

The model selection led to the same set of zero restrictions in the risk premium and

very similar parameter estimates for both factor rotation methods. In particular, the BIC

and HQIC information criteria lead to the selection of the same model, with 9 zero risk-

adjustment restrictions and the eigenvalue restriction. As is well-known, the AIC generally

leads to a much less parsimonious model; in our case it suggests 5 risk-adjustment restrictions

11Alternative approaches to correcting the autoregressive bias have been proposed by Bauer, Rudebusch,
and Wu (2012), Jardet, Monfort, and Pegoraro (2013), and Joslin et al. (2011).

12The estimation of the macro-finance models were performed using Data Analysis Cluster at the Alcuin
Research Resource Centre, University of York.
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and a marginal rejection of the maximum eigenvalue restriction. Since the AIC, as opposed

to BIC and HQIC, is not a consistent model selection criterion, we rely on the model

suggested by the other two information criteria,

To eliminate any distortions due to the linearization, using selected risk-adjustment re-

strictions the inputs from the ‘q’ and ‘n’ results, we re-estimate the model using the nonlinear

factor extraction technique, which we consider to be optimal and call MFEopt. The esti-

mates of the risk-adjustment parameters are reported in Table 9. The price of level risk,

which is reflected in the risk-adjustment in the first row of this table, is influenced by all

factors except expected inflation. The macro factors are statistically significant influences

upon the price of slope risk in the second row (often interpreted as reflecting the stance of

conventional monetary policy), while the second and third shadow principal components are

not. Also, we find that the shadow level factor is significant in the price of curvature risk in

the third row. The positive sign of the GRO coefficient in the first row implies that price of

level risk is cyclical. On the other hand, the price of slope risk behaves in a countercyclical

fashion, since it declines with both growth and inflation expectations.

Our results for the shadow rate model differ from the Gaussian model results reported in

Table 2 of Joslin et al. (2014) in several ways. In particular, in Joslin et al. (2014) expected

inflation has a positive effect on the price of level risk and no effect on the price of slope

risk, while in our Table 9 it has no effect on the price of level risk but a negative effect on

the price of slope risk. This difference appears to be due to the effect of the longer data

sample rather than the use of a shadow rate model, because when we run the model selection

exercise using the Gaussian model on our longer data sample we find a similar sign pattern.

Indeed, the only difference between the two models for this sample is that the curvature

factor is significant in pricing curvature risk in the Gaussian model. We conclude that the

difference between our results and those reported in Joslin et al. (2014) is largely due to the

difference in the data sample.
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4.2.2 The term premium

Table 10 reports the estimates of the parameters of the P−dynamics for our optimal

macro-finance model (MFEopt). By construction, the coefficients in the top right 3 × 2

block, showing the effect of the macro variables on the principal components are the same as

the risk adjustments shown in Table 9. The unrestricted coefficients in the final two columns

are all statistically significant, which indicate that the macro variables contain incremental

information for predicting the term structure factors. On the other hand, the first and third

principal components are statistically significant in predicting expected inflation, while the

second principal component has a significant effect on the growth factor.

Given any estimates of the parameters of the P−dynamics, such as those shown in Table

10, we can decompose the 10−year yield into components representing expectations and risk

premia. The expectations component represents the so-called risk-neutral yield that would

obtain in a risk-neutral world governed by the physical rather than the risk-neutral dynamics.

Specifically, following Bauer et al. (2012) we first find the risk-neutral shadow forward rates

fG
n,t by using these parameters to compute the coefficients af and bf using (6) and hence the

risk-neutral yields using (20 - 21). The risk premium for any model and maturity follows by

subtracting the risk-neutral yield from the fitted yield.

To the best of our knowledge, we are the first to estimate the term premium for a shadow

rate macro-finance rate model. The estimate of the 10−year yield term premium implied

by our optimal macro-finance model is plotted as MFEopt in Figure 5, alongside the the

10−year yield, the vertical distance being the risk-neutral yield. For comparison, MFE

shows the term premium implied by unrestricted shadow rate macro-finance model and FE

shows the premium from the shadow rate yield-only model, with the parameters reported in

the last row of Table 3. Finally, JPSopt shows the premium from a Gaussian macro-finance

model with the same zero restrictions that are selected for the shadow rate model. Although

the model selection procedure for the Gaussian model suggested one restriction less than for

model MFEopt we show this to emphasize the difference implied by the affine framework,

ceteris paribus.
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Panel (a) of Figure 5 shows these various estimates of the term premium for the whole

sample period. There is a marked difference between the restricted and unrestricted model

specifications over the first part of this sample. This was a time of relatively high interest

rates, which is why the term premiums implied by the restricted Gaussian and shadow rate

models JPSopt and MFEopt are very similar. However, in the 1980s and early 1990s and

some other times, they are well below the term premiums computed from the unrestricted

shadow rate models MFE and FE. The differences become more complex as interest rates

fall towards the ZLB. For this reason, Panel (b) focuses the picture on the period January

2008 to December 2016. Taken literally, the Gaussian model JPSopt implies that the average

expected short rate is negative over the 10−year horizon, even in 2016 after the federal

funds rate ‘lifts off’ from the range 0− 25 basis point. This means that the Gaussian term

premium is unrealistically high, often exceeding the 10−year rate. In this low interest rate

environment, the term premium implied by the unrestricted shadow rate yield-only model

FE is generally more volatile than other estimates of the term premium and it is frequently

the lowest, reaching zero in the middle of 2016. Adding the macro variables (in MFE) helps

to stabilize the term premium somewhat, although this remains very low, especially in 2012

and 2016. However, excluding insignificant risk adjustment parameters to get MFEopt gives

a more realistic term premium. It is about 4% at the beginning of 2009 when the federal

funds rate reached its lower bound and gradually fell to about 1.5% in the middle of 2010. It

moved up to 2.5% late in 2010, as the second phase of quantitative easing began, and since

easing back in late 2011 it has remained relatively stable, ranging between 0.8% and 2%.

5 Conclusion

This paper shows how the factor rotation method of Joslin et al. (2011) can be applied

to the shadow rate pricing model, allowing the researcher to estimate the shadow rate term

structure model almost as easily and quickly as the simple Gaussian term structure model.

We find that restricting the flexibility of the standard Kalman shadow rate estimator, by
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adopting the JSZ assumption that the principle components are measured without error,

has the has the added advantage of producing more plausible estimates of the lower bound

parameter and the path of the shadow rate. This arguably provides a more reliable indicator

of the thrust of monetary policy.

This technique opens the way to research with the shadow rate model that require large

numbers of different datasets or models to be analyzed. We illustrate this by estimating

the macro-finance variant that involves searching over large numbers of different parame-

ter combinations. The traditional filtering approach makes such exercises infeasible. Other

applications that involve the estimation of large numbers of alternatives include policy simu-

lations such as those of Bauer and Rudebusch (2014) and international bond market models

such as those of Egorov, Li, and Ng (2011), which involve potentially many different combi-

nations of common and idiosyncratic factors.
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Appendix: The likelihood function

We maximize the joint log likelihood conditional in (27). The t−period conditional den-

sity can be written as in (28). As explained in Section 3.4, under the ’q’ and ’n’ approximation

schemes but also when using the nonlinear factor extraction technique, with the exception

of the Σ matrix, the g and h parts of the likelihood will have disjoint sets of parameters. In

the following, to keep the notation simple, we suppress the conditioning set of parameters in

the likelihood function.

The part of the likelihood function with the risk-neutral parameters g has the standard

form:

g(yo
t |qt) = −J −K

2
(1 + log(2π))− J −K

2
log σ2

v , (A-1)

where σ2
v is the (homoscedastic) variance of measurement errors vn,t in (23), calculated as:

σ2
v =

1

(T − 1)× (J −K)

T∑
t=2

J∑
j=1

v̂t,j. (A-2)

The dynamics of qt are generally nonlinear, and thus qt needs to be rotated to the latent

state vector xt or a linear transformation of it. Hence, h, the part of the likelihood that

describes the time series of the latent factor dynamics, needs to be adjusted accordingly.

Recall the relation between qt and xt from (26). The yields-only model examined in Section

4.1 we estimate with respect to the P−dynamics for the latent state vector as in the JSZ

parametrization. To write down the P−likelihood in terms of the probability density function

of xt, we apply the change-of-variable technique:13

h(qt|qt−1) = hx(xt|xt−1)× |det (Jt)|−1 , (A-3)

13See Greene (2011), Appendix B.
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where Jt is the Jacobian term resulting from the change of variables and is given by:

Jt=

[
∂qt

∂x1,t
, · · · , ∂qt

∂xK,t

]
= W′Bt−1. (A-4)

The logarithm of the P−likelihood is then:

log h(qt|qt−1) = log hx(xt|xt−1)− log |det (Jt)|

= −K
2

log (2π)− 1

2
log (det (ΣΣ′))

−1

2

(
xt − µµµP −ΦPxt−1

)′
(ΣΣ′)

−1 (
xt − µµµP −ΦPxt−1

)
(A-5)

− log |det (Jt)| . (A-6)

In our application of macro-finance model in Section 4.2, where we apply further a linear

rotation of the state vector xt to the shadow principal components qs
t as in (35). Applying

the change-of-variable technique once more, we can write the log likelihood in terms of qs
t :

log h(qt|qt−1) = log hqs(q
s
t |qs

t−1)− log |det (Jt)|+ log |det (J)| , (A-7)

where

J =

[
∂qs

t

∂x1,t
, · · · , ∂qs

t

∂xK,t

]
= W′B. (A-8)

Adding macro variables does not add any further complication. In particular, define zt =

[qs′
t ,m

′
t]
′. Then, the part of the likelihood that describes the time series of the latent factor

dynamics is:

log h(qt,mt|qt−1,mt−1) = log hz(zt|zt−1)− log |det (Jt)|+ log |det (J)| , (A-9)

where the dynamic system for zt is given in (36).
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Tables

Model Specification

JSZ Gaussian model estimated using observable principal components
KFu Shadow rate model estimated by extended Kalman filter, unrestricted errors
KFr Shadow rate model estimated by extended Kalman filter, restricted errors
FE Shadow rate model estimated by nonlinear factor extraction
FRn Shadow rate model estimated by factor rotation using ‘n’ approximation
FRq Shadow rate model estimated by factor rotation using ‘q’ approximation

Table 1. Summary of the model specification.

Yields Root-mean-square error, K = 3
Model 3m 6m 1y 2y 5y 7y 10y Av.RMSE Log-lik.

JSZ 4.69 4.26 4.88 3.09 6.31 2.48 5.97 4.53 15,725.55
r = 0

KFu 4.85 4.18 4.83 3.14 5.89 2.52 5.56 4.42 15,932.07
KFr 4.48 4.14 4.55 2.93 5.97 2.37 5.69 4.31 15,920.08
FE 4.48 4.15 4.53 2.94 5.95 2.37 5.67 4.30 15,924.60
FRn 4.50 4.16 4.56 2.94 5.98 2.37 5.69 4.31 15,910.64
FRq 4.47 4.14 4.54 2.93 5.98 2.37 5.69 4.30 15,926.94

r = r̂
KFu 4.99 4.31 4.52 3.32 5.25 2.32 4.97 4.24 16,077.33
KFr 4.44 4.12 4.50 2.95 5.88 2.34 5.59 4.26 15,953.00
FE 4.43 4.14 4.47 2.96 5.83 2.33 5.56 4.25 15,959.15
FRn 4.47 4.15 4.52 2.96 5.91 2.34 5.62 4.28 15,929.50
FRq 4.44 4.13 4.51 2.95 5.90 2.35 5.61 4.27 15,948.02

Table 2. Statistics of fit for different estimation methods. The table reports the root mean-
square-error (RMSE) for each yield, the cross-sectional average RMSE and the value of the
log-likelihood function at the estimated maximum. The sample period is January 1981 to
December 2016.
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Yields Parameter estimates

Model λQ1 λQ2 λQ2 µQ
∞ × 100 r × 10, 000

JSZ 0.9973
0.00010

0.9663
0.0039

0.8741
0.0061

0.0379
0.0004

-

r = 0
KFu 0.9978

0.0003
0.9652
0.0020

0.8607
0.0253

0.0325
0.0023

0
−

KFr 0.9977
0.0009

0.9654
0.0064

0.8574
0.0442

0.0328
0.0056

0
−

FE 0.9978
0.0001

0.9652
0.0004

0.8578
0.0016

0.0326
0.0005

0
−

FRn 0.9978
0.0001

0.9653
0.0004

0.8589
0.0016

0.0326
0.0005

0
−

FRq 0.9978
0.0001

0.9653
0.0004

0.8567
0.0016

0.0329
0.0005

0
−

r = r̂
KFu 0.9979

0.0003
0.9642
0.0021

0.8667
0.0249

0.0314
0.0019

16.02
0.69

KFr 0.9978
0.0003

0.9649
0.0019

0.8562
0.0223

0.0317
0.0020

9.03
0.91

FE 0.9978
0.0001

0.9648
0.0004

0.8585
0.0018

0.0317
0.0005

7.54
0.30

FRn 0.9978
0.0001

0.9650
0.0005

0.8591
0.0020

0.0318
0.0005

6.40
0.31

FRq 0.9978
0.0001

0.9652
0.0004

0.8569
0.0018

0.0318
0.0005

6.81
0.30

Table 3. Maximum likelihood estimates of the risk-neutral dynamics for the model esti-
mated by different estimation methods. Standard errors are reported in small font. The
sample period is January 1981 to December 2016.

µµµP ΦP Σ

0.0005
0.0005

0.9933
0.0094

0.0257
0.0109

0.0265
0.0216

0.0044
0.0002

−0.0023
0.0011

0.0347
0.0208

1.0041
0.0267

0.0963
0.0519

−0.0036
0.0006

0.0074
0.0010

0.0034
0.0011

−0.0696
0.0226

−0.0771
0.0313

0.7643
0.0507

0.0004
0.0006

−0.0071
0.0012

0.0049
0.0006

Table 4. Maximum likelihood estimates of the P−dynamics for the model estimated by
the nonliner factor extraction and estimated lower bound parameter, FE(r = r̂). Standard
errors are reported in small font. The sample period is January 1981 to December 2016.
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model time (in seconds)

r = 0
KFu 2,061
KFr 635
FE 351
FRn 91
FRq 98

r̂ = r̂
KFu 2,832
KFr 787
FE 802
FRn 71
FRq 106

Table 5. Estimation time for different methods in seconds. The sample period is January
1981 to December 2016.

1% 99% Median Mean
x1 x2 x3 x1 x2 x3 x1 x2 x3 x1 x2 x3

‘p’ approximation
Bias 0.0007 0.0028 0.0043 0.0012 0.0079 0.0334 0.0009 0.0050 0.0149 0.0009 0.0050 0.0156

RMSE 0.0055 0.0267 0.0808 0.0110 0.0653 0.3803 0.0075 0.0398 0.1491 0.0077 0.0408 0.1608

‘q’ approximation
Bias 0.0009 0.0021 0.0087 0.0016 0.0066 0.0476 0.0012 0.0039 0.0238 0.0012 0.0040 0.0245

RMSE 0.0069 0.0326 0.1295 0.0158 0.0927 0.8003 0.0103 0.0532 0.2575 0.0104 0.0548 0.2854

‘n’ approximation
Bias 0.0008 0.0024 0.0061 0.0015 0.0072 0.0399 0.0011 0.0044 0.0186 0.0011 0.0045 0.0194

RMSE 0.0063 0.0303 0.0997 0.0126 0.0730 0.4000 0.0088 0.0450 0.1780 0.0089 0.0461 0.1883

Table 6. Statistics of the distortions of the factors due to different approximations. Using
the parameters obtained from the FE model, we simulate 150, 000 samples of the state vector
xt, each path consisting of 10, 000 time series observations. Based on these vectors we find
the yields as given by the WX formula. Then, we apply different linearization schemes to
recover the state vector from those yields by the factor rotation. For each simulation we
calculate the bias and RMSE of the estimated normalized factors. The table reports the
statistics of these biases and RMSEs obtained across 100, 000 simulations.
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µ1 µ2 µ3 φ1,1 φ1,2 φ1,3 φ2,1 φ2,2 φ2,3 φ3,1 φ3,2 φ3,3

‘p’ approximation
Mean 0.0000 -0.0002 0.0008 -0.0005 0.0058 -0.0214 -0.0012 0.0066 -0.0275 -0.0037 0.0117 -0.0469

Std.dev. 0.0000 0.0001 0.0006 0.0011 0.0032 0.0167 0.0017 0.0043 0.0237 0.0035 0.0086 0.0457

‘q’ approximation
Mean 0.0000 -0.0006 0.0023 -0.0035 0.0155 -0.0599 -0.0056 0.0194 -0.0807 -0.0130 0.0369 -0.1492

Std.dev. 0.0001 0.0002 0.0013 0.0022 0.0064 0.0356 0.0034 0.0083 0.0496 0.0070 0.0164 0.0948

‘n’ approximation
Mean 0.0000 -0.0004 0.0011 -0.0012 0.0086 -0.0291 -0.0021 0.0102 -0.0379 -0.0059 0.0199 -0.0671

Std.dev. 0.0000 0.0001 0.0006 0.0012 0.0036 0.0173 0.0019 0.0047 0.0243 0.0039 0.0095 0.0466

Table 7. Statistics of the distortions of the P−dynamics due to different approximations.
For each simulation (please see notes to Table 6) we calculate the V AR(1) dynamics obtained
from the original (simulated) factors and from those obtained by factor rotation. The table
reports the statistics of these mean and standard deviations of the differences between the
estimates of the parameters obtained from the factors estimated by factor rotation and the
parameters obtained from the estimation of the original (simulated) factors.

1% 99% Median Mean
1y 5y 10y 1y 5y 10y 1y 5y 10y 1y 5y 10y

‘p’ approximation
Bias 1 1 2 2 3 3 2 2 3 2 2 3

RMSE 3 3 3 22 20 17 6 7 6 7 7 7
‘q’ approximation
Bias 2 2 2 8 5 6 4 3 4 4 3 4

RMSE 5 6 5 31 28 23 13 13 12 14 14 12
‘n’ approximation
Bias 0 1 2 4 3 4 2 2 3 2 2 3

RMSE 4 4 4 23 21 18 8 9 8 9 9 8

Table 8. Statistics of the distortions of the term premium due to different approximations.
For each simulation (please see notes to Table 6), based on the factors recovered from different
approximation schemes and corresponding estimated dynamics, we calculate the bias and
RMSE between the 1, 5 and 10−year yield term premium implied by different approximation
schemes and the term premium implied by the ‘true’ parameters and original (simulated)
factors. The reported values are in basis points.
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const PCs
1 PCs

2 PCs
3 GRO INF

PCs
1 0 −0.0112

0.0024
−0.1057

0.0287
0.3330
0.0647

0.0022
0.0006

0

PCs
2 0 0.0175

0.0006
0 0 −0.0007

0.0002
−0.0007

0.0001

PCs
3 0.0008

0.0001
−0.0054

0.0001
0 0 0 0

Table 9. Maximum likelihood estimates of the risk adjustments (l0 and L1 in (39)) for our
preferred model with unspanned macro-risk, MFEopt. Standard errors are reported in small
font. The sample period is January 1981 to December 2016.

µµµP ΦP

const PCs
1 PCs

2 PCs
3 GRO INF

PCs
1 0.0006

0.0000
0.9939
0.0024

−0.0096
0.0287

−0.0094
0.0647

0.0022
0.0006

0

PCs
2 −0.0004

0.0000
0.0102
0.0006

0.9549
0.0001

0.3195
0.0003

−0.0007
0.0002

−0.0007
0.0001

PCs
3 0.0012

0.0001
−0.0021

0.0000
0.0058
0.0001

0.8584
0.0000

0 0

GRO 0.0962
0.0500

0.1699
0.1173

2.1723
0.8824

−0.3880
3.5024

0.9349
0.0156

−0.0541
0.0170

INF 0.4626
0.0757

0.7732
0.1771

−1.5913
1.3232

9.9862
5.2880

0.0252
0.0234

0.8078
0.0258

Table 10. Maximum likelihood estimates of the P−dynamics for our preferred model with
unspanned macro-risk, MFEopt. Standard errors are reported in small font. The sample
period is January 1981 to December 2016.
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Figure 1. Fitting errors for models with r = 0. The figure shows the difference between
the observed 0.25, 0.5, 1, 2, 5 and 10−year yields and their fitted counterparts for particular
models. The shadow rate models are estimated with the imposed restriction r = 0. The
estimation sample is January 1981 to December 2016.
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Figure 2. Fitting errors for models with r = r̂. The figure shows the difference between
the observed 0.25, 0.5, 1, 2, 5 and 10−year yields and their fitted counterparts for particular
models. The lower bound parameter in the shadow rate models is freely estimated. The
estimation sample is January 1981 to December 2016.
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Figure 3. Short rate and shadow short rate implied by different models. Panel (a) presents
the shadow short rates with the imposed restriction r = 0, while in Panel (b) the lower
bound is estimated by the shadow rate models. The observed 1−month rate and the fitted
short rate from the Joslin et al. (2011) models are plotted for comparison.
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Figure 4. Cumulative density functions Φ(zt) used in the Wu and Xia (2016) forward
rate approximation for different maturities. The CDFs for the model with unrestricted
measurement errors with the lower bound parameter set to zero and estimated freely are
presented in Panels (a) and (b), respectively, while the CDFs for the model with imposed
observability restriction and with the lower bound parameter set to zero and estimated freely
are presented in Panels (c) and (d), respectively.
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Figure 5. 10−year term premium generated by different models. The JPSopt model and
MFEopt models are macro-finance models and they use the same set of restrictions on the
price of risk and the maximum eigenvalue restriction. The FE model is a yield-only model
and does not impose any restrictions. Similarly, the MFE is a shadow rate macro-finance
model estimated without any restrictions. The 10−year yield is plotted as a reference.
Panel (a) shows the term premium estimates for the whole sample period, January 1981 to
December 2016, while Panel (b) focuses on the period from January 2008 onwards.

45


	Introduction
	The pricing models
	Black Gaussian shadow rate model
	The shadow rate pricing approximation

	Factor identification and estimation strategies
	Fitting errors and factor extraction
	Approximating the pricing function
	Factor rotation
	The separability of the likelihood function
	Summary

	Empirical evaluation of the factor extraction approach
	The yield-only model
	Data and model specifications
	Fitting a three factor model
	Shadow rates and the probability of `lift-off'
	Parameter estimates
	Estimation times
	Estimating the approximation errors

	The macro-finance model
	The 219 model selection search
	The term premium


	Conclusion
	Appendix:  The likelihood function

