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Counterparty Risk Allocation

Abstract

We address the problem of minimizing the risk of an exposure (e.g., cash hold-

ings) to a small number of defaultable counterparties based on spectral risk measures,

in particular the expected shortfall. The resulting risk-minimal allocation turns out

to be economically implausible in a number of ways: When the loss distributions is

discrete, only corner solutions can be optimal, and the risk-minimal allocation does

not depend continuously on the input parameters. With two counterparties, only a

total allocation to one counterparty or a fifty-fifty solution can be optimal. In general,

the risk-minimal allocation is not monotonic in the quantile used for calculating the

expected shortfall. This non-monotonicity also holds for continuous loss distributions.

These results strengthen the doubts on the appropriateness of spectral risk measures

in the target function for economic decision making.

JEL Classification: C 44, D 81, G 11, G 21
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1 Introduction

Counterparty risk is an important issue not only for banks and financial service providers,

but also for non-financial firms. Consider a company conducting business activities with

a number of counterparties in the financial industry (termed “banks” in the following).

Such activities can for instance be simple cash holdings, hedging contracts against foreign

exchange risk, etc. According to these activities, the company has an exposure with

respect to each bank—e.g., the balance of the cash account or the value of the hedging

contract. The company faces the default risk of the counterparties, which would result in

a loss (total or partial) of the respective exposures. The structure of this risk depends on

the allocation of the overall exposure across the counterparties. This paper deals with the

optimal allocation of the counterparty risk exposure.

In the classical sense, the allocation problem is nothing else than a portfolio selection

problem. However, it is widely accepted that a µ-σ analysis, pioneered by Markowitz

(1952), is not suitable for credit-risky portfolios according to the heavily skewed loss dis-

tributions (e.g., Andersson et al., 2001). Instead, tail-based risk measures, in particular

the value-at-risk (VaR) and the expected shortfall (ES, sometimes referred to as the condi-

tional value-at-risk), have found widespread use in theory and practice of credit portfolio

measurement and management. While the VaR can be characterized as the maximum

loss with a given confidence level, the ES is the average loss beyond this level. In timely

coincidence with the evolvement of credit portfolio models in the late 1990s, a number of

papers have studied optimization problems in a µ-V aR or µ-ES space, including Lucas

and Klaassen (1998), Krokhmal et al. (2001), Andersson et al. (2001), Benati (2003), and

Gaivoronski and Pflug (2004). Basically, all these papers study the shape of efficient fron-

tiers or various aspects of the minimization of risk measures either for equity portfolios or

for large credit portfolios.

However, very little has been said about the allocation problem when the number of

defaultable counterparties is small. Compared to a bank loan portfolio with thousands of

obligors, the allocation problem for a company with a few financial counterparties might

be quite different. What is more, recent studies cast some doubts on the appropriateness

of minimizing risk measures such as the expected shortfall for the purpose of optimal

portfolio selection. Brandtner (2013) shows that for any spectral risk measure (including
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the expected shortfall as a special case), an optimization approach tends towards corner

solutions. In a classical Markowitz setup with the presence of a risk-free asset, maximizing

an expected-shortfall-based preference function always leads to a total investment in either

the risk-free asset or the tangential portfolio. As discussed by Brandtner and Kürsten

(2015) in greater detail, such inconsistencies arise with the application of risk measures

for economic decision making, in contrast to their original purpose as a side condition or

constraint for risk-taking, for example in a regulatory context.

In this paper, we discuss the allocation problem for a small number of counterparties

against this background. We start with the case of n � 2 counterparties. This case is

far from being purely academical, since many medium-sized companies are conducting

their financial business with a small number of counterparties, indeed often with two

distinctive relationship banks. So the question how to allocate temporary amounts of cash

or hedging contracts (e.g., for foreign exchange exposure) when two relationship banks

are default-risky is of high practical relevance. In particular the discrete setting when

the loss distribution is singular (the loss given default is deterministic) is different from

large loan or bond portfolios and yields substantially different results. We show that the

discrete setting can be seen as a special case of Brandtner (2013). Discussing his results in

the context of counterparty risk, we conclude that, depending on the actual specification

of the risk measure, the risk-minimal solution is always a corner solution that allocates

the total exposure either completely to one bank (that with lower default probability) or

evenly to both banks.

Extending the discrete setting to n ¡ 2 counterparties, after analyzing efficient frontiers

in the µ-ES space, we focus on risk minimization instead of optimizing a preference

function. In the credit risk literature, risk minimization is often performed subject to

a minimum return as a side constraint, e.g. Rockafellar and Uryasev (2000), Andersson

et al. (2001), Saunders et al. (2007). Some approaches consider an unconstrained risk

minimization, e.g. Iscoe et al. (2012), which has also experienced growing attention in

the equity portfolio selection literature (e.g., Jagannathan and Ma, 2003, and Frahm

and Memmel, 2010). Taking the return dimension into account makes sense when there

is a considerable and quantifiable risk premium, for instance in the case of credit-risky

bonds. In our scope of counterparty risk, return aspects are less important—for example,
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temporary cash accounts often do not earn any return at all. We therefore concentrate on

the risk-minimization problem and characterize its corner solutions in higher dimensions.

As a general result, the exposure share allocated to a single bank is either 100% or does

not exceed 50%. Furthermore, the risk-minimal allocation depends neither monotonically

nor continuously on the chosen confidence level.

We then consider a continuous setting, in which the loss given default is stochastic. In this

setting, the risk-minimal allocation depends continuously on the quantile of the expected

shortfall. While for n � 2 this dependency is also monotonic, monotonicity does not hold

in the general multivariate case. So as a joint conclusion in all settings, minimization of

expected shortfall as a representative of the well-respected class of spectral risk measures

(including coherent risk measures) can lead to economically implausible results. Decision

makers should therefore be alerted to the unwary use of such measures for the optimization

of their counterparty risk portfolio.

The remainder of the paper is organized as follows. Section 2.1 defines the basic setup of

the discrete loss distribution and briefly reviews the expected shortfall. Section 2.2 deals

with the 2-banks case and demonstrates the tendency to corner solutions. Section 2.3

extends the results to the multivariate case, analytically discusses properties of corner

points in higher dimensions, and conducts a numerical study for 5 and 10 counterparties,

respectively. Section 3 covers the setup with continuous loss distributions, again starting

with the 2-banks case (Section 3.1) and proceeding to the multivariate case (Section 3.2).

Section 4 concludes.

2 Discrete Loss Distribution

2.1 Basic Setup

In this subsection, we outline the basic setup in the discrete case, which holds throughout

Section 2. In Section 3, the deterministic loss given default assumed here will be extended

to a stochastic loss given default.

The company has a total exposure, which is normalized to 1, and which has to be allocated

to n ¥ 2 banks. The exposure may arise from simple cash holdings, hedging derivative
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positions, etc. The key task is to allocate the total exposure to the banks, that is, to find

an allocation vector defined as follows.

Definition 1. A vector px1, . . . , xnq is an allocation vector if xi ¥ 0 @i and °n
i�1 xi � 1

holds.

The banks offer payoff rates ri for each allocated exposure unit. In the case of cash

holdings, ri are interest rates; for derivative contracts, �ri can be thought of as fees to be

paid. The banks default with probabilities pi. For the sake of simplicity, we assume that

in the event of a default, the corresponding exposure experiences a total loss.1 Hence, the

profit from a particular exposure xi to Bank i is

Xi �

$'&
'%

ri xi with probability 1� pi,

�xi with probability pi.
(1)

We measure the corresponding loss Li with respect to a target profit of zero, that is,

Li � �Xi.

The whole joint default distribution is known. For any subset I � t1, . . . , nu, let πI

denote the probability that exactly those counterparties i with i P I default and those

with i R I do not default. Without loss of generalization, the banks are ordered so that

p1 ¤ p2 ¤ � � � ¤ pn, that is, Bank 1 is the least risky bank.

Under this setup, the total expected loss for a given allocation vector is

EL �
¸
I

πI �
¸
iPI

xi. (2)

Risk is measured as the expected shortfall at a quantile α, defined as the average loss in

the worst 100α% scenarios (Acerbi and Tasche, 2002a):

Definition 2. If lpαq denotes the upper p1 � αq-quantile of the loss distribution, lpαq :�
inftl : P pL ¡ lq ¤ αu, then the expected shortfall with quantile α is defined as

ESα � 1

α

�
ErL|L ¡ lpαqs � pα� P pL ¡ lpαqqq � lpαq

	
. (3)

1A constant loss given default can be assumed to be 0 without loss of generalization. For any constant

LGD P r0; 1q, the exposure can be multiplied by p1 � LGDq to achieve an equivalent setting with a loss

given default of zero.
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Note that in the case of a continuous loss distribution, P pL ¡ lpαqq � P pL ¥ lpαqq � α, so

Equation (3) simplifies to

ESα � 1

α

�
ErL|L ¡ lpαqs

	
. (4)

This measure is sometimes referred to as the Tail Conditional Expectation (Acerbi and

Tasche, 2002b), while (3) is labelled Conditional Value-at-Risk (Rockafellar and Uryasev,

2002). The latter assures the intuitive interpretation as an average loss in the worst α

scenarios, as both mentioned papers discuss in greater detail. Benati (2003) provides a

simple example.

In the basic setup, the loss distribution is discrete. With an ordering of the potential

losses, l1 ¡ l2 ¡ . . ., the expected shortfall can be calculated as (Rockafellar and Uryasev,

2002)

ESα � 1

α

�
��jpαq̧

j�1

P pL � ljq lj �
�
�α�

jpαq̧

j�1

P pL � ljq
�
 ljpαq�1

�
�� , (5)

where

jpαq � max

$&
%j :

j̧

k�1

P pL � lkq ¤ α

,.
- . (6)

2.2 Two Counterparties

2.2.1 Minimizing Expected Shortfall

We first consider the case of n � 2 counterparties. In this subsection, we study the general

behavior of the expected shortfall, before Subsection 2.2.2 analyzes efficient frontiers in

the µ-ES space. In the 2-banks case, for any allocation vector x2 � 1 � x1 holds, so x1

is the only decision variable. As Bank 1 is not riskier than Bank 2, it is straightforward

that the risk-minimal allocation requires x1 ¥ x2, or, equivalently x1 ¥ 0.5. Imposing this

restriction simplifies the following analysis. The loss distribution is given by

L �

$'''''''&
'''''''%

l1 � 1 with probability π12,

l2 � x1 with probability π1,

l3 � 1� x1 with probability π2,

l4 � 0 with probability 1� π1 � π2 � π12.

(7)

For ease of notation, we skip the set braces in the indices, that is, π12 :� πt1,2u and so on.

Note that π1, the probability that only Bank 1 defaults, is given by π1 � p1 � π12.
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For a quantile α, the expected shortfall is

• if α ¤ π12:

ESα � 1;

• if π12   α ¤ π12 � π1 � p1:

ESα � π12 � pα� π12q � x1
α

;

• if p1   α ¤ π1 � π2 � π12:

ESα � π12 � π1 � x1 � pα� π1q � p1� x1q
α

� α� π1 � p2π1 � π12 � αq � x1
α

;

• if α ¡ π1 � π2 � π12:

ESα � π12 � π1 � x1 � π2 � p1� x1q
α

� π12 � π2 � pπ1 � π2q � x1
α

.

In each case, the expected shortfall is a linear function of x1. It follows

Proposition 1. Given the basic setup with n � 2. In the special cases p1 � p2, α ¤ π12,

or α � 2π1 � π12, any choice x1 P r0.5, 1s minimizes the expected shortfall with quantile

α. In all other cases, the minimum expected shortfall is necessarily a boundary minimum

either at x1 � 0.5 or at x1 � 1.

Proof. • If α ¤ π12, the expected shortfall is constant and the decision maker is

indifferent between any choice of x1.

• If π12   α ¤ π1, the expected shortfall is linearly increasing with x1, so the optimal

choice is x�1 � 0.5.

• If p1   α ¤ π1 � π2 � π12, the sign of the slope depends on the quantile α: It is

positive (meaning an increase of expected shortfall with x1) if α   2π1�π12. Hence,

for α   2π1 � π12, the optimal choice is x�1 � 0.5, while for α ¡ 2π1 � π12, it is

x�1 � 1. If exactly α � 2π1� π12 holds, the decision maker is indifferent between all

choices of x1 with 0.5 ¤ x1 ¤ 1.

• If α ¡ π1 � π2 � π12, the expected shortfall is linearly decreasing with x1, so the

optimal choice is x�1 � 1.
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If the target of the decision maker is a minimization of expected shortfall, the risk-minimal

allocation is always a corner solution—either a fifty-fifty allocation between the two banks

or a total allocation to the bank with the lower default probability. Which solution is

optimal depends on the quantile α, with the cut-off point being α � 2π1 � π12. This has

a severe consequence:

Corollary 1. For n � 2 and p1 � p2, the optimization problem in the basic setup is

ill-posed, as its solution does not depend continuously on the input parameters α, π1, and

π12.

Continuity is the third Hadamard condition on the well-posedness of a problem, which

is violated here. In a similar context, Alexander et al. (2006) have found that also the

minimization of the expected shortfall for a portfolio of derivative contracts can be ill-

posed.

Figure 1 graphically shows the dependency of the expected shortfall on the weight x1

for different quantiles α, based on an exemplary situation with p1 � 1%, p2 � 2%, and

π12 � 0.1%. For very low quantiles α ¤ π12, the α worst scenarios always consist of a total

loss, so the expected shortfall equals 1, independent of the allocation. For π12 ¤ α ¤ p1,

the allocations with x1 � 0 and x1 � 1 imply a total loss in the worst α scenarios, whereas

for other allocations the expected shortfall decreases linearly in x1 to the minimum value

at x1 � 0.5, before increasing linearly again to a value of 1 at x1 � 1. For p1   α ¤
2π1 � π12, the slope of the increasing leg for x1 ¥ 0.5 becomes smaller and reaches 0. For

α ¡ 2π1 � π12, also the slope for x1 ¥ 0.5 becomes negative, so the optimum is reached

at x1 � 1. For α ¥ π1 � π2 � π12, the α worst scenarios cover all potential loss scenarios,

so the expected shortfall is simply a scaled expected loss and is thus linear in x1 over the

whole interval r0; 1s.

[Insert Figure 1 about here]

2.2.2 Portfolio Selection and Efficient Frontiers

In the 2-banks case, Figure 1 is transferred directly into a graph of efficient frontiers in

a µ-ES-space, as the expected portfolio value µ is a linear function of the weight x1.

If we first assume that the payoff rates ri of all banks are identical and without loss of
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generalization zero, the expected portfolio value equals

µ � x1 � p1� p1q � p1� x1q � p1� p2q. (8)

Figure 2 (a) shows the corresponding portfolios in a µ-ES-space. For ES quantiles above

2π1 � π12 (here, 1.9%), only the single portfolio with x1 � 1 is efficient, as µ decreases

and ES increases when the second counterparty enters the portfolio. For quantiles below

this cut-off point, the minimum expected shortfall portfolio is reached for x1 � 0.5, so the

efficient line consists of portfolios with 0.5 ¤ x1 ¤ 1 (indicated in bold in Figure 2).

[Insert Figure 2 about here]

With identical payoff rates, Bank 1 dominates Bank 2, as the expected portfolio value

is larger while the expected shortfall is smaller. The situation changes when there is a

compensation for default risk—for example, Bank 2 might offer more favorable conditions

than Bank 1. Figure 2 (b) shows the portfolios in a µ-ES-space if Bank 1 pays r1 � 2%

interest on the exposure, while Bank 2 pays r2 � 4%. In this situation (generally speaking,

if the difference in payoff rates, r2�r1, is larger than the difference in default probabilities,

p2 � p1), the maximum expected portfolio value is achieved with x1 � 0. Accordingly,

all portfolios are efficient if the ES quantile exceeds the cut-off point 2π1 � π12, while for

lower quantiles, portfolios are efficient with 0 ¤ x1 ¤ 0.5.

Brandtner (2013) discusses the optimal choice of a portfolio from the efficient frontier

in such a situation. (Actually, our setup with discrete loss distributions can be seen as

a special case of his state-space approach.) If the decision maker applies a hybrid µ-

ES functional to be maximized (as introduced by Acerbi and Simonetti (2002), a convex

combination p1�λqµ�λES, analogously to the preference function µ�λσ2 in classical µ-

σ analysis), then according to the linearity of the functional and the piecewise linear shape

of the efficient frontier, only a corner solution can maximize the preference functional.

Instead of maximizing a preference function (whether a hybrid µ-ES functional or some-

thing different), we will focus on risk minimization in the following (which is actually a

special case with λ � 1). In (equity) portfolio theory, there is growing attention for the

minimum variance portfolio, which has proven superior to other optimized portfolios be-

cause of estimation and calibration issues (e.g., Ledoit and Wolf, 2003, and Jagannathan

and Ma, 2003). Similarly, for the allocation problem discussed in this paper, differences
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in expected returns for different allocation are usually small. Especially when the offered

returns of the different banks exactly offset their default probabilities, any allocation leads

to the same expected portfolio return. Thus, the allocation method can concentrate on

minimizing risk. For the illustration of efficient frontiers, we therefore rely on the sim-

ple assumption of zero payoff rates ri in the following, while the key task is finding the

risk-minimal portfolio.

2.3 Multiple Counterparts

2.3.1 Minimizing Expected Shortfall and Corner Points

In the general case with n ¥ 2 counterparties, the discrete loss distribution is given by

L �

$''''''''''&
''''''''''%

l1 � 1 with probability πI1:�t1,...,nu,

l2 �
°

iPI2
xi with probability πI2 ,

l3 �
°

iPI3
xi with probability πI3 ,

...

l2n � 0 with probability πH,

(9)

where each Ij is a subset of t1, . . . , nu and I1, I2, . . . represent an ordering so that
°

iPIj
xi ¥°

iPIk
xi for j   k.

For a quantile α, the expected shortfall is calculated by means of Equation (5):

α � ESα �
jpαq̧

j�1

�
�πIj �

¸
kPIj

xk

�
�

�
�α�

jpαq̧

j�1

πIj

�
� ¸

kPIjpαq�1

xk. (10)

Obviously, the expected shortfall is locally linear in all of the weights xi—as long as the

ordering of the index sets is maintained. Accordingly, (if the expected shortfall is not

locally constant) a minimum value for the risk measure can only be achieved at a point

px1, . . . , xnq where the ordering of the index sets changes.2

Definition 3. An allocation vector px1, . . . , xnq is called a corner point if either xi � 1

for one i or

@∆x � p∆x1, . . . ,∆xnq � 0 with
ņ

i�1

∆xi � 0

DI, J � t1, . . . , nu, I � J, so that
¸
iPI

xi �
¸
jPJ

xj and
¸
iPI

xi �∆xi �
¸
jPJ

xj �∆xj . (11)

2This argumentation has already been brought forward by Brandtner (2013) in his Proposition 3.3 1.
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In other words, an allocation vector represents such a corner point and hence a candidate

for an optimum, if any zero-sum variation ∆x would change the order of at least one pair

of subsets I, J .3

The local linearity of the expected shortfall yields

Proposition 2. Let α ¡ πI1. An allocation vector which minimizes the expected shortfall

in the basic setup is either a corner point or a convex combination of two corner points.

In the latter case, all respective convex combinations minimize the expected shortfall.

It is important to note that Proposition 2 is not special to the expected shortfall. Acerbi

(2002) introduced the broad class of spectral risk measures as a subset of coherent risk

measures defined by Artzner et al. (1999). In Appendix A we show that for arbitrary

spectral risk measures, risk-minimal allocations are only obtained in corner points.

For n � 2, as discussed in Section 2.2.1, the only two corner points are p1, 0q and p0.5, 0.5q
(with the restriction x1 ¥ x2). The result of Corollary 1 also holds in higher dimensions:

Corollary 2. In general, the optimization problem in the basic setup is ill-posed, as its

solution does not depend continuously on the input parameters.

A similar result has been found by Brandtner (2013), who argues that the optimal portfolio

is discontinuous in the level of risk aversion. One might think of using some kind of

average of different quantiles α to get a smooth solution. However, any weighted average

of expected shortfall measures is again a spectral risk measure, as Adam et al. (2008)

have shown. Thus, according to the extension of Proposition 2 to arbitrary spectral risk

measures in Appendix A, a weighted risk measure cannot heal the ill-posedness of the

problem.

As we know that only corner points represent risk-minimal allocations, it is interesting

to see how they look like in higher dimensions. The following result gives us an iterative

construction method to build corner points in ascending dimensions.

3These corner point must not be confused with the corner portfolios in classical Markowitz theory, as

used in the critical lines algorithm of Markowitz (1956) (see also Sharpe, 1963). A corner portfolio is a

point on the efficient µ-σ line, at which one security enters or leaves the set of securities on that line.
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Proposition 3. Let px1, . . . , xnq be a corner point in dimension n. Let xn�1 �
°

iPI� xi

for an arbitrary subset I� � t1, . . . , nu. Then the vector

px1, . . . , xn, xn�1q
1� xn�1

(12)

is a corner point in dimension n� 1.

Proof. Let ∆xpn�1q � p∆x1, . . . ,∆xn�1q with
°n�1

i�1 ∆xi � 0 be an arbitrary zero-sum

variation in dimension n�1. It has to be shown that there are two subsets I, J � t1, . . . , n�
1u which fulfill the condition of Definition 3. If ∆n�1 � 0, then ∆xpnq � p∆x1, . . . ,∆xnq
is a zero-sum variation in dimension n, so according to the prerequisite there are such

subsets of t1, . . . , nu and thus also of t1, . . . , n � 1u. If ∆n�1 � 0, the subsets I� and

tn� 1u do the job.

It should be noted that this construction rule does not yield points with a descending

ordering of the components. However, any permutation of the components also results in

a corner point. Table 1 shows the corner points up to dimension 4 (modulo permutations).

[Insert Table 1 about here]

But while the list is exhaustive for n ¤ 4, not all corner points can be constructed this

way in higher dimensions, according to the following proposition.

Proposition 4. For dimension n ¥ 5, the number of corner points is infinite.

Proof. For any real-valued h ¥ 0,

p2� h, 2� h, 1� h, 1� h, 1q
7� 4h

is a corner point. To see this, assume that is was not. Let p∆x1, . . . ,∆x5q � 0. Then for all

pairs of subsets I, J for which
°

iPI xi �
°

jPJ xj holds, also
°

iPI xi�∆xi �
°

jPJ xj�∆xj

must hold. The pairs of subsets are t1u and t2u, t3u and t4u, t1u and t3, 5u, t1u and t4, 5u,
t2u and t3, 5u, and t2u and t4, 5u. The condition

°
iPI xi �∆xi �

°
jPJ xj �∆xj for all
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these pairs leads to a system with 7 independent linear equations and 5 variables, which

is not solvable.4 So the assumption is wrong and the point must be a corner point.

In higher dimensions, it is “more likely” to find a pair of subsets I, J according to Defi-

nition 3, so that any zero-sum variation changes the order of this pair in the loss distri-

bution. The constructive proof of Proposition 4 gives one example of a (curved) line in

the 5-dimensional unit hypercube5 which only consists of corner points. Of course, there

are many such lines. For n ¥ 6, there will be (infinitely many) non-linear hyperplanes of

corner points. A restriction is given by the following proposition:

Proposition 5. Let px1, . . . , xn) be a corner point with x1 ¥ xi @i. Then either x1 � 1

or x1 ¤ 0.5.

Proof. If 1 ¡ x1 ¡ 0.5, a variation

∆x1 � �
ņ

i�2

∆xi; ∆xi � ϵ � xi for i ¥ 2 (13)

with ϵ sufficiently small so that x1 �∆x1 ¡ 0.5 leaves the ordering of subsets unchanged,

so the point cannot be a corner point.

According to this proposition, apart from the edges of the unit hypercube, all corner

points or hyperplanes of corner points concentrate in the sub-hypercube r0; 0.5sn. As an

economic consequence, if a risk-minimal allocation does not consist of one single bank,

then at most 50% of the total exposure is optimally allocated to one bank.

4Writing the condition as
°

iPIpxi �∆xiq �
°

jPJpxj �∆xjq �
°

iPI ∆xi �
°

jPJ ∆xj � 0 yields

�
�����������������

1 1 1 1 1

1 �1 0 0 0

0 0 1 �1 0

1 0 �1 0 �1

1 0 0 �1 �1

0 1 �1 0 �1

0 1 0 �1 �1

�
�����������������

�
�����������

∆x1

∆x2

∆x3

∆x4

∆x5

�
�����������
� 0,

which is not solvable for ∆x � 0, as the matrix has full rank.

5Actually, the restriction
°n

i�1 xi � 1 defines an pn � 1q-dimensional hyperplane in the n-dimensional

unit hypercube as the domain for allocation vectors.
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2.3.2 Non-Monotonicity of the Risk-Minimal Allocation

While the corner points constitute the domain of possible risk-minimal allocations, it is

yet unclear how the risk-minimal allocation behaves. In this section, we demonstrate that

the risk-minimal allocation is a non-monotonic function of the quantile α of the expected

shortfall.

Lemma 1. In the basic setup, the expected shortfall function with respect to the quantile

α decreases at a (negative) rate

BESα

Bα � ljpαq�1 � ESα

α
. (14)

Proof. For the function gpαq :� α � ESα, it follows immediately from (10) that g1pαq �°
kPIjpαq�1

xk � ljpαq�1. The product rule, g1pαq � ESα � α � ES1α, yields the proposition.

As ljpαq takes only a discrete number of values in the discrete loss distribution, we have

Corollary 3. In the basic setup, the derivative of the expected shortfall with respect to the

quantile α is discontinuous at α � °iPIj
πi for each j, if lj is strictly larger than lj�1. It

jumps by the amount plj�1 � ljq{α.

In the following, we take a look at an example with n � 3 counterparties, where p1 � 1%,

p2 � 2%, and p3 � 3%. The dependency structure is given by joint default probabilities

π123 � 0.02%, π12 � 0.08%, π13 � 0.1%, π23 � 0.2%.6 Figure 3 (a) shows optimal weights

in dependence of the quantile α.

[Insert Figure 3 about here]

At first glance, the behavior is quite counter-intuitive. With very small values of α, an

equally-weighted allocation is optimal (in line with the bivariate case). Above a threshold

at α � 0.26%, the third bank with the largest default probability drops out of the risk-

minimal allocation, which now consists of 50% Bank 1 and 50% Bank 2. However, above

α � 0.54%, Bank 3 shows up again and the risk-minimal allocation is identical to that

6This dependency structure is consistent with the one-factor model of Vasicek (1987) outlined in Section

2.3.3, with homogeneous asset correlations of 0.3.
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with very small quantiles. Finally, when α exceeds a threshold of 2.58%, the risk-minimal

allocation consists of Bank 1 only, also in line with the bivariate case.

The reason for this behavior becomes clearer with a look at efficient frontiers. Figure 3 (b)

shows efficient frontiers for several values of the quantile α.7 For very small values of α

(right-most line), the frontier consists of two linear segments only, with the minimum at

µ � 0.98, corresponding to an equal allocation to all banks. The Min-ES allocations are

indicated by bullet points in Figure 3 (b). With increasing α, the frontier exhibits a kink

at µ � 0.985 (corresponding to the p0.5, 0.5, 0q portfolio). As this kink becomes more

pronounced, with some α (here at α � 0.26%), the efficient frontier contains a vertical

segment, so the Min-ES allocation jumps to p0.5, 0.5, 0q at µ � 0.985. However, the shape

of the efficient frontiers continues to vary with increasing α and reaches again a vertical

segment at α � 0.54%. The Min-ES allocation jumps back to p0.333, 0.333, 0.333q at

µ � 0.98. When α increases further, the upper part of the efficient frontier starts to

change, and at α � 2.54%, there is a vertical segment between the p0.333, 0.333, 0.333q
and the p1, 0, 0q portfolio, so the Min-ES allocation jumps to the latter at µ � 0.99.

Ultimately, the shapes of the efficient frontier and thus the positioning of the Min-ES

allocations can be traced back to the expected shortfall values of the corner portfolios

p1, 0, 0q, p0.5, 0.5, 0q, and p0.333, 0.333, 0.333q.8 These values, depending on the quantile α,

are displayed in Figure 3 (c). Naturally, the expected shortfall decreases with increasing α,

but this decrease takes places with different speeds for different portfolios. Furthermore,

the derivatives of expected shortfall with respect to α are not continuous: Each line

experiences a kink at different levels of α. Accordingly, there may be several intersections

between the lines, so there are different intervals of α for wich different corner portfolios

reach the comparably lowest expected shortfall. These intervals refer to the discontinuous

and non-monotonic behavior of the optimal weights with respect to the quantile.

The example proves

Corollary 4. In the basic setup, the risk-minimal allocation is generally a non-monotonic

function of the quantile α.

7For ease of speaking, we call the whole line “efficient frontier”, although of course allocations below

the minimum-expected-shortfall portfolio are not efficient in a literal sense.

8In the example, the portfolio p0.5, 0.25, 0.25q is never optimal.
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2.3.3 Numerical Analysis for n ¡ 3

The example of the previous subsection refers to n � 3, where only four different corner

points exist. Proposition 4 tells us that for n ¥ 5, there are infinitely many corner points.

In this subsection, we numerically analyze two examples with n � 5 and n � 10 to

see whether the non-monotonic behavior of the risk-minimal allocation also appears in

higher dimensions. For that purpose, we apply the Vasicek (1987) one-factor model to

characterize the dependency structure between the counterparties.9 In a nutshell, the

counterparties are represented by some credit variables Ci, which have a joint standard

normal distribution. A counterparty defaults if Ci   N�1ppiq. The dependencies between

defaults are modelled via dependencies between the credit variables, which are defined by

a correlation structure. In the original one-factor approach of Vasicek (1987), the credit

variables share a common factor M with standard normal distribution:

Ci � ?
ρM �

a
1� ρ ϵi, (15)

where the ϵi are independent identical standard normally distributed. With a constant ρ,

correlations between each pair of two counterparties are homogenous:

CorrpCi, Cjq � Corr
�?

ρM �
a

1� ρ ϵi,
?
ρM �

a
1� ρ ϵj

	
� ρ. (16)

Figure 4 shows optimal weights in dependence of the quantile α for universes of n � 5 and

n � 10 banks within the Vasicek model with homogenous correlations of ρ � 0.3. The

default probabilities are defined in ascending order with pj � j � 1%.

[Insert Figure 4 about here]

For n � 5, a similar non-monotonic behavior of the weight functions as with n � 3 can be

observed. Most pronounced is the jump when the quantile approaches � 3%, where the

risk-minimal allocation suddenly consists of Bank 1 only.

For n � 10, the weight functions remain non-monotonic, although this behavior is less

pronounced, as the jumps from one corner solution to another one are rather small. (Note

that the seeming “flickering” of the weight function represents the actual behavior of jumps

between similar, yet different corner points and is not a result of numerical instability.)

9See Saunders et al. (2007) for an overview of factor models for credit risk optimization.
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However, as in the n � 5 case, there is a sudden huge jump to the polar solution with

x1 � 1 when the quantile approaches � 3%.

3 Continuous Loss Distributions

3.1 Two Counterparties

In this section, we introduce a more general loss distribution, which is no longer discrete.

Instead of the total loss given default paradigm, the percentage loss given default is now

uniformly distributed between 0 and 1. Thus, conditional on the default of only Bank j,

the actual loss will be uniformly distributed between 0 and xj :

P pL ¤ l| only Bank j defaultsq � min

#
l

xj
; 1

+
. (17)

The losses given default for different banks are assumed to be independent. We will refer

to this setup as the “continuous setup” in the following.

In the 2-banks case, the loss given default of both banks, as a sum of two independent

uniform distributions, follows a (symmetric) trapezoidal distribution with density (Kotz

and van Dorp, 2004):

fTrr0;1�x1;x1;1spxq �

$''''&
''''%

x
x1 p1�x1q

for 0 ¤ x ¤ 1� x1,

1
x1

for 1� x1 ¤ x ¤ x1,

1�x
x1 p1�x1q

for x1 ¤ x ¤ 1.

(18)

(Following our previous assumption that p1 ¤ p2, x1 ¥ 0.5 and hence 1 � x1 ¤ x1.)

Integrating this density gives the (conditional) probability function

P pL ¤ l| both banks defaultq �

$''''&
''''%

l2

2x1 p1�x1q
for 0 ¤ l ¤ 1� x1,

1
2 � 2 l�1

2x1
for 1� x1 ¤ l ¤ x1,

1� p1�lq2

2x1 p1�x1q
for x1 ¤ l ¤ 1.

(19)

The total unconditional loss distribution is obtained by the law of total probability:

FLplq � P pL ¤ lq � π12 P pL ¤ l| both banks defaultq
� π1 P pL ¤ l| only Bank 1 defaultsq
� π2 P pL ¤ l| only Bank 2 defaultsq
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�

$''''&
''''%

π12 � l2

2x1 p1�x1q
� π1 � l

x1
� π2 � l

1�x1
for 0 ¤ l ¤ 1� x1,

π12 �
�
1
2 � 2 l�1

2x1

	
� π1 � l

x1
� π2 for 1� x1 ¤ l ¤ x1,

π12 �
�
� p1�lq2

2x1 p1�x1q

	
� π1 � π2 for x1 ¤ l ¤ 1.

(20)

With this distribution function, the expected shortfall for a quantile α can be calculated

by integrating the extreme losses with quantiles 1�α to 1 of the loss distribution (Acerbi

and Tasche, 2002a):

ESα � 1

α

» 1

1�α
F�1
L pqq dq, (21)

where F�1
L pqq � suptx P R : FLpxq ¤ qu is the generalized inverse of FL.

10

In Appendix B, we derive an explicit solution for the expected shortfall as a function of

the quantile α and the weight x1. Figure 5 shows the resulting efficient frontiers in the

µ-ES-space for several values of the quantile α for the same parameters as used for the

discrete case in Section 2.2.1 (π12 � 0.1%, π1 � 0.9%, π2 � 1.9%). In contrast to the

discrete distribution, the efficient frontiers are now smooth. What is more, they reach

their minimum no longer in a corner point, but at a value x1 P r0.5; 1s which depends

continuously and monotonically on the quantile α.

[Insert Figure 5 about here]

The following proposition summarizes the behavior of the 2-banks case.

Proposition 6. In the continuous setup with n � 2 banks:

1. For very small quantiles α ¤ π12{2, the risk-minimal allocation is achieved with

x�1 � 0.5.

2. For quantiles with π12{2   α   π12 � π1 � π2, the optimal weight x�1 grows continu-

ously and monotonically with the quantile α from 0.5 to 1.11

3. For very large quantiles α ¥ π12 � π1 � π2, the efficient frontier is a straight line

with a corner minimum at x�1 � 1.

10Note that for α   π12�π1�π2, the actual inverse F
�1
L pαq is well defined, whereas for α ¥ π12�π1�π2,

for the generalized inverse F�1
L pαq � 0 holds.

11The polar solution with x1 � 1 is reached for a quantile α   π12 � π1 � π2, as in the basic setup with

the discrete loss distribution.
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Proof. See Appendix C.

The behavior of the risk-minimal allocation demonstrated in Figure 5 and Proposition 6

are well in line with economic intuition. This gives some hope that the implausible results

of Section 2 are special to the discrete basic setup. However, as we will show in the

next subsection, the property of monotonicity gets lost in the multivariate case of the

continuous setup.

3.2 Multiple Counterparts

In general, the loss distribution conditional on a default of all banks in set I, i1, . . . , inI ,

is obtained by a convolution of the respective single loss distributions, which are assumed

to be uniformly distributed on r0;xij s:

L|exactly all banks in I default � U r0;xi1s�U r0;xi2s�� � ��U r0;xinI
s �æ

iPI

U r0;xis. (22)

So the total loss distribution becomes

FLplq � P pL ¤ lq �
¸

I�t1,...,nu

πI FÆ
iPI Ur0;xisplq. (23)

We demonstrate the behavior numerically for the case with n � 3, with the same param-

eters as in the basic setup with discrete loss distributions in Section 2.3.2. Figure 6 shows

efficient frontiers and optimal weights in dependence of α.

[Insert Figure 6 about here]

While the continuity of the risk-minimal allocation dependent on the quantile carries

over from the 2-banks case, monotonicity of the weights no longer holds. Similar to the

multivariate discrete distribution, the weights in the risk-minimal allocation vary non-

monotonically with the quantile α.

With regard to the convergence behavior, the results from the 2-banks case only hold

under additional conditions. For small values of the quantile (α Ñ 0), the risk-minimal

allocation becomes equally weighted (x�i � 1{n @i) if the probability of a joint default of

all banks, πt1,...,nu, it not zero. This is however only a sufficient, not a necessary condition.

As furthermore for larger sizes n of the counterparty portfolio joint probabilities become
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extremely tiny, the convergence might take place for extremely small values of α, which

are practically irrelevant.

For large values of the quantile (α Ñ 1), the risk-minimal allocation becomes the corner

solution (x�1 � 1) if the sum of all default probabilities,
°n

i�1 pi, is lower than 1. This

is also only a sufficient, not a necessary condition, which might nonetheless be violated

when the number of counterparties becomes large. Analogously to small values of α, the

convergence might take place for large values of α, beyond 10%, which are not used in

practice.

We therefore refrain from formulating stricter convergence conditions, but record

Proposition 7. In the continuous setup with n ¡ 2 banks, the risk-minimal weight vector

px�1 , . . . , x�nq is a continuous, but not necessarily monotonic function of the quantile α.

Proof. The possible non-monotonicity is demonstrated in Figure 6.

Due to the convexity of expected shortfall (Föllmer and Schied, 2002), the efficient frontier

for a given quantile is convex, so there are no separate local minima. We need to rule out

that the efficient frontier has a vertical straight line segment, as possible in the discrete

case: In these cases, any combination on the line segment is risk-minimal, and with a

variation of the quantile, the minimum jumps from one end of the line segment to the other.

However, the piecewise linearity stems from the fact that portfolios on the line segment

are comonotonic in the discrete case. In the continuous setting, this is not possible, since

the loss given default distributions are uncorrelated. So for any portfolios X, Y with

ESαpXq � ESαpY q,

ESα

�
X � Y

2



  ESαpXq

2
� ESαpXq

2
� ESαpXq

with a strict inequality. So the minimum expected shortfall is unique, and it is continuous

in α.

The non-monotonicity of the risk-minimal allocation remains as a severe drawback also

in the continuous setup. Although the allocation is now continuous in α, it is econom-

ically not very plausible why, dependent on the chosen quantile of the expected short-

fall, an optimal allocation should move from an evenly weighted vector to an allocation

p50%, 30%, 20%q and then back to a nearly-evenly weighted solution. Although not ill-
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posed in the Hadamard sense, minimizing the expected shortfall thus remains to be a

formulation of the allocation problem which is hardly appropriate.

4 Conclusion

In this paper, we have shown a number of drawbacks when the expected shortfall is

minimized in order to reach an optimal allocation of an exposure to a (small) number of

counterparties. When loss given default is modelled as a discrete value, the optimization

problem turns out to be ill-posed, as its solution neither depends continuously on the

quantile used to calculate the expected shortfall nor on the default probabilities as input

parameters. Instead, optimal allocations jump between particular corner points, and these

jumps are not monotonic in the quantile α. (It happens that the optimal allocation jumps

from point X1 to X2 at a certain α and then jumps back to X1 at another value for α.)

This behavior is most pronounced when the number of counterparties is small. We have

shown that for n ¥ 5 counterparties, there are infinitely many corner points, but still the

optimal allocation is neither continuous nor monotonic.

When loss given default is modelled as a continuous distribution, also the risk-minimal

allocation becomes continuous in α. While for n � 2, the risk-minimal allocation is also

monotonic and thus in line with economic intuition, monotonicity is lost for n ¥ 3. So the

general behavior of the solution to the allocation problem depends on the modelling of the

loss given default (discrete vs. continuous), but neither setup yields plausible results. This

finding is not special to the expected shortfall but holds for the entire class of spectral risk

measures.

So far, the paper can be considered “destructive”, as it shows what a decision maker

should not do. In this regard, the paper joins Brandtner and Kürsten (2015) in calling for

attention when regulatory risk measures are used as a target function for decision making.

Minimizing the expected shortfall or any other spectral risk measure is not necessarily a

good idea when a portfolio with low “economic risk” is desired. The question is, what

should be done instead? The tendency to corner solution can be traced back to the

comonotic additivity of spectral risk measures in general and the expected shortfall in

particular (Brandtner, 2013). So this property—meaningful in a regulatory context—is a

source of implausibility in risk minimization. An alternative class of coherent risk measures
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which are not comonotic additive are expectiles, which have been recently proposed for the

purpose of risk measurement (e.g., Bellini and Di Bernardino, 2017). However, coherent

risk measures in general (to be more precise, all positive homogenous and translation-

invariant risk measures) are not consistent with classical expected utility theory under risk

aversion (e.g., Brandtner and Kürsten, 2015). Loosely spoken, a doubled risky position

calls for a doubled capital requirement from a regulatory perspective, but it does not

double (dis)utility. These results could induce a renaissance of the classical variance for

risk minimization also in the context of highly-skewed credit portfolio distributions.
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Appendix

A Spectral Risk Measures and Corner Solutions

The theoretical results of Section 2.3.1 obtained for the expected shortfall are not special

for this particular risk measure. Instead, they hold for the whole class of spectral risk

measures, which have been introduced by Acerbi (2002):

Definition 4. For a portfolio distribution X, a spectral risk measure is given by

ρpXq � �
» 1

0
F�1
X pqqϕpqq dq, (24)

where ϕ, the so-called risk spectrum, is a non-increasing density function, and F�1 is the

generalized inverse of the distribution FX .

The main result of Proposition 2 also holds for arbitrary spectral risk measures:

Proposition 8. Let α ¡ πI1. An allocation vector which minimizes a spectral risk measure

in the basic setup is either a corner point or a convex combination of two corner points.

In the latter case, all respective convex combinations minimize the risk measure.

Proof. For a loss l, the portfolio value is x � 1 � l. Given the discrete loss distribution

(9), the portfolio value for a quantile q is

F�1
X pqq �

¸
iPIj

p1� liq for

j�1̧

k�1

πIj�1   q ¤
j̧

k�1

πIj , (25)

given the ordering of the index sets with
°

iPIj
li ¥

°
iPIk

li for j   k as defined in Section

2.3.1. Accordingly,

ρpXq � �
¸
j

» Qj

Qj�1

¸
iPIj

p1� liqϕpqq dq � �
¸
j

¸
iPIj

xi

» Qj

Qj�1

ϕpqq dq, (26)

with

Qj �
j̧

k�1

πIj . (27)

The risk measure is linear in all of the xi, hence, as in the case of the expected shortfall

discussed in Section 2.3.1, only corner solutions can minimize the value of ρ.
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As Brandtner (2013) discusses in more detail, the reason for this result lies in the linearity

of spectral risk measures. Portfolios with an identical ordering in the loss distribution

(9) are comonotonic in the sense of Dhaene et al. (2002); accordingly, any spectral risk

measure is linear for those portfolios.

B Expected Shortfall in the Continuous Setup with n � 2

Let x1 ¥ 0.5. The loss distribution is given by

L �

$'''''''&
'''''''%

l1 � Trr0; 1� x1;x1; 1s with probability π12,

l2 � U r0;x1s with probability π1,

l3 � U r0; 1� x1s with probability π2,

l4 � 0 with probability 1� π1 � π2 � π12,

(28)

where U ra; bs denotes the uniform distribution between a and b and Trr0; 1� x1;x1; 1s is
the trapezoidal distribution with density given in (18).

The expected shortfall is the conditional expectation in the α worst cases. First we can

note that for very large quantiles α ¥ π12 � π1 � π2, all potential losses lie within the tail

and the expected shortfall is simply a scaled expected loss:

ESα � EL

α
� π12 � π1 x1 � π2 p1� x1q

2α
. (29)

Otherwise, the α worst cases are losses beyond a level v so that P pL ¥ vq � α. Actually,

v is the value-at-risk with quantile α. (Note that the distribution is continuous.) If

v ¤ 1� x1, the conditional loss distribution is given by

L|L ¥ v �

$''''&
''''%

l̃1 � Trvr0; 1� x1;x1; 1s w. prob. π12 �
�
1� FTrr0;1�x1;x1;1spvq

	
,

l̃2 � U rv;x1s w. prob. π1 �
�
1� v

x1

	
,

l̃3 � U rv; 1� x1s w. prob. π2 �
�
1� v

1�x1

	
.

(30)

Here, Trvr0; 1� x1;x1; 1s denotes a trapezoidal distribution which is truncated at point v.

FTrr0;1�x1;x1;1s is the distribution function of the (original) trapezoidal distribution. For

v ¤ 1� x1,

FTrr0;1�x1;x1;1spvq �
» v

0

x

x1 p1� x1q dx �
v2

2x1 p1� x1q . (31)
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The value-at-risk is given by

π12

�
1� v2

2x1 p1� x1q

�
� π1

�
1� v

x1



� π2

�
1� v

1� x1



� α

ô π12 v
2

2
� pπ1 p1� x1q � π2 x1qv � x1 p1� x1q pπ12 � π1 � π2 � αq � 0

ô v � a�
a

a2 � b (32)

with

a � �π1 p1� x1q � π2 x1
π12

; b � 2x1 p1� x1q pπ12 � π1 � π2 � αq
π12

. (33)

With this v, the expected shortfall can be calculated as

α � ESα � π12 � p1� FTrr0;1�x1;x1;1spvqq � Erl̃1s

� π1 �
�
1� v

x1



� Erl̃2s � π2 �

�
1� v

1� x1



� Erl̃3s

� π12 �
» 1

v
x � fTrr0;1�x1;x1;1spxq dx

� π1 �
�
1� v

x1



� x1 � v

2
� π2 �

�
1� v

1� x1



� 1� x1 � v

2

� π12 �
�» 1�x1

v

x2

x1 p1� x1qdx�
» x1

1�x1

x

x1
dx�

» 1

x1

x p1� xq
x1 p1� x1qdx

�

� π1
2
�
�
x1 � v2

x1

�
� π2

2
�
�
1� x1 � v2

1� x1

�

� π12 �
�
p1� x1q3 � v3

3x1 p1� x1q � 2x1 � 1

2x1
� 1� 3x21 � 2x31

6x1 p1� x1q

�

� π1
2
�
�
x1 � v2

x1

�
� π2

2
�
�
1� x1 � v2

1� x1

�

� π12 �
�
1

2
� v3

3x1 p1� x1q

�
� π1

2
�
�
x1 � v2

x1

�
� π2

2
�
�
1� x1 � v2

1� x1

�
. (34)

However, this is only true if v ¤ 1 � x1. If v ¡ 1 � x1, there is no sole default of Bank 2

within the α worst scenarios (as this would induce a maximum loss of 1 � x1). So if

1� x1   v ¤ x1,

L|L ¥ v �

$'&
'%

l̃1 � Trvr0; 1� x1;x1; 1s w. prob. π12 �
�
1� FTrr0;1�x1;x1;1spvq

	
,

l̃2 � U rv;x1s w. prob. π1 �
�
1� v

x1

	
.

(35)

For v ¤ x1,

FTrr0;1�x1;x1;1spvq �
» 1�x1

0

x

x1 p1� x1q dx�
» v

1�x1

1

x1
dx
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� 1� x1
2x1

� v � p1� x1q
x1

� 1

2
� 2 v � 1

2x1
. (36)

Now, the value-at-risk is given by12

π12

�
1

2
� 2 v � 1

2x1



� π1

�
1� v

x1



� α

ô v � x1 pπ12 � 2π1 � 2αq � π12
2 pπ12 � π1q . (37)

The expected shortfall can be calculated as

α � ESα � π12 � p1� FTrr0;1�x1;x1;1spvqq � Erl̃1s � π1 �
�
1� v

x1



� Erl̃2s

� π12 �
�» x1

v

x

x1
dx�

» 1

x1

x p1� xq
x1 p1� x1q dx

�
� π1

2
�
�
x1 � v2

x1

�

� π12 �
�
x21 � v2

2x1
� 1� 3x21 � 2x31

6x1 p1� x1q

�
� π1

2
�
�
x1 � v2

x1

�

� π12 �
�

1� x31
6x1 p1� x1q �

v2

2x1

�
� π1

2
�
�
x1 � v2

x1

�

� π12
6

�
�
1� x1 � 1� 3 v2

x1

�
� π1

2
�
�
x1 � v2

x1

�
. (38)

Finally, for v ¡ x1, within the α worst scenarios always both banks default. We have

FTrr0;1�x1;x1;1spvq �
» 1�x1

0

x

x1 p1� x1q dx�
» x1

1�x1

1

x1
dx�

» v

x1

1� x

x1 p1� x1q dx

� 1� x1
2x1

� x1 � p1� x1q
x1

� p1� vq2 � p1� x1q2
2x1 p1� x1q

� 1� p1� vq2
2x1p1� x1q . (39)

In this case, the value-at-risk is given by

π12

�
�1�

�
1� p1� vq2

2x1p1� x1q

��� α

12The condition v P r1� x1;x1s is equivalent to

v ¤ x1 ô α ¥
π12

2

�
1

x1
� 1




and

v ¥ 1� x1 ô α ¤
3π12 � 4π1

2
�

π12 � 2π1

2x1
.
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ùñ v � 1�
c

2x1 p1� x1q α

π12
. (40)

The expected shortfall can be calculated as

α � ESα � π12 �
�
1� FTrr0;1�x1;x1;1spvq

	
� Erl̃1s (41)

� π12 �
» 1

v

x p1� xq
x1 p1� x1q dx

� π12 � 1� 3 v2 � 2 v3

6x1 p1� x1q .

C Proof of Proposition 6

(*) We first show that for any given α, a choice of x1 with 1 � x1 ¤ vαpx1q ¤ x1 never

minimizes the expected shortfall, where

vαpx1q � x1 pπ12 � 2π1 � 2αq � π12
2 pπ12 � π1q

is the value-at-risk according to (37). To see this, we calculate the derivative of αESα

given by (38) with respect to x1:

BαESαpx1q
Bx1 � B

Bx1

�
�π12

6

�
1� x1 � 1� 3 v2αpx1q

x1

�
� π1

2

�
x1 � v2αpx1q

x1

���

� π12
6

�
1� 6 vαpx1q v1px1q

x1
� 1� 3 v2αpx1q

x21

�
� π1

2

�
1� 2 vαpx1q v1px1q

x1
� v2αpx1q

x21

�

� π12
6

�
1� 3 vαpx1q pπ12 � 2π1 � 2αq

x1 pπ12 � π1q � 1� 3 v2αpx1q
x21

�

� π1
2

�
1� vαpx1q pπ12 � 2π1 � 2αq

x1 pπ12 � π1q � v2αpx1q
x21

�

� π12
6

� π1
2
� vαpx1q pπ12 � 2π1 � 2αq

2x1
� 3 v2αpx1q pπ1 � π12q � π12

6x21

� π12
6

� π1
2
� pπ12 � 2π1 � 2αq2

4 pπ1 � π12q � π12 pπ12 � 2π1 � 2αq
4x1 pπ1 � π12q

� px1 pπ12 � 2π1 � 2αq � π12q2
8 pπ12 � π1qx21

� π12
6x21

�
�
4 pπ12 � 3π1q pπ12 � π1q � 3 pπ12 � 2π1 � 2αq2�x21 � 3π2

12 � 4π12 pπ12 � π1q
24 pπ12 � π1qx21

.

For this derivative to become zero,

x21 �
4π12 pπ12 � π1q � 3π2

12

4 pπ12 � 3π1q pπ12 � π1q � 3 pπ12 � 2π1 � 2αq2 �
π2
12 � 4π12 π1

π2
12 � 4π12 π1 � 12α pπ12 � 2π1 � αq

(42)

28



must hold. However, this x1 violates the condition 1� x1   vαpx1q   x1: The first part,

1� x1   vαpx1q, is equivalent to

x1 ¡ π12
π12 � 2α

,

which is violated by (42) if α ¤ π12{2. The second part, vαpx1q   x1, is equivalent to

x1 ¡ π12 � 2π1
3π12 � 4π1 � 2α

,

which is violated by (42) if α ¥ π12{2. These violations become evident by simple algebra.

(**) We now prove Proposition 6.1. Let α ¤ π12{2. Then, for x1 ¥ 0.5,

α ¤ π12
2

�
�
π12 � 2π1
2 � 0.5 � π12 � 2π1

2x1



� 3π12 � 4π1

2
� π12 � 2π1

2x1
,

so vαpx1q ¥ 1 � x1 according to Footnote 12. With (*), the minimum expected shortfall

must thus be reached for x1 ¤ vαpx1q. In this case,

αESαpx1q � π12
6

� 1� 3 vαpx1q2 � 2 vαpx1q3
x1 p1� x1q .

For any fixed v (independent of x1),

B
Bx1

1� 3 v2 � 2 v3

6x1 p1� x1q � p1� 3 v2 � 2 v3q p1� 2x1q
x21 p1� x1q2 ,

which becomes zero at x1 � 0.5. As furthermore

Bvαpx1q
Bx1 � B

Bx1

�
1�

c
2x1 p1� x1q α

π12

�
�
c

α

π12
� 2x1 � 1a

x1 p1� x1q
¥ 0

for x1 ¥ 0.5 and
B
Bv

1� 3 v2 � 2 v3

6x1 p1� x1q � π12 v pv � 1q
x1 p1� x1q ¤ 0

for v ¤ 1, the minimum expected shortfall is necessarily achieved at x1 � 0.5.

(***) We now prove the monotonicity claimed in Proposition 6.2. For α ¡ π12{2, an

optimal x�1 must fulfill 1� x�1 ¡ vαpx�1q according to (*). Obviously, the minimum value-

at-risk, vαpx�1q, decreases with α: Bvαpx�1q{Bα ¤ 0. Furthermore, the expected shortfall

increases with the value-at-risk. For the monotonicity of the optimal weight x�1 with

respect to the quantile α to hold, it is therefore sufficient to show that for a fixed level v,

the optimal x�1 which minimizes αESα according to (34) decreases with v. To see this,

note that

B
Bx1 π12 �

�
1

2
� v3

3x1 p1� x1q

�
� π1

2
�
�
x1 � v2

x1

�
� π2

2
�
�
1� x1 � v2

1� x1

�
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� π12
p1� 2x1q v3
x21 p1� x1q2 �

π1
2
�
�
1� v2

x21

�
� π2

2
�
�
1� v2

p1� x1q2
�

�: Φpx1, vq.

The optimum weight x�1 is implicitly defined by Φpx�1pvq, vq � 0. According to the implicit

function theorem,

Bx�1
Bv � �

�
BΦpx�1pvq, vq

Bx�1

��1

� BΦpx
�
1pvq, vq
Bv .

We have
BΦpx�1pvq, vq

Bv � π12
p1� 2x1q v2
x21 p1� x21q

� π1
v

x21
� π2

v

p1� x1q2 ¤ 0,

as x1 ¥ 0.5 and π1 ¤ π2, and

BΦpx�1pvq, vq
Bx�1

� π12 v
3 �

¥0hkkkkkkkikkkkkkkj
2x21 p1� x1q2�

¤0hkkkkikkkkj
p1� 2x1q �

¤0hkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkj
p2x1 p1� x1q2 � 2x21 p1� x1qq

9x41 p1� x1q4

�π1 v2

x31
� π2

v2

p1� x1q3looooooooooooomooooooooooooon
¤0

¤ 0.

It follows Bx�1{Bv ¤ 0.

(****) The continuity stated in Proposition 6.2 follows from the proof of Proposition (7),

which also holds in two dimensions.

(*****) Finally, for α ¥ π1 � π2 � π12, the worst α scenarios always cover any possible

loss, so the expected shortfall is merely a scaled expected loss:

αES � EL � π1 x1 � π2 p1� x1q � π12
2

.

This proves Proposition 6.3.
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Figure 1. Expected shortfall for counterparty risk with two counterparties for different values of the

quantile α. The default probabilities are p1 � 1%, p2 � 2%, and π12 � 0.1%. The x-axis represents

the weight of the first counterparty. For quantiles up to 1.90%, expected shortfall reaches its minimum

exactly at x1 � 0.5. For larger quantiles, expected shortfall is monotonically decreasing, so the minimum

is achieved for x1 � 1.
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(b) compensation for default risk

Figure 2. Efficient frontiers in the µ-ES space for n � 2 counterparties. The default probabilities are

(as in Figure 1) p1 � 1%, p2 � 2%, and π12 � 0.1%. The left graph shows efficient frontiers when there

is no compensation for default risk (r1 � r2 � 0). This graph is basically a transpose of Figure 1: For

quantiles up to 1.90%, expected shortfall reaches its minimum at x1 � 0.5, while both ES and µ increase

for larger values of x1, resulting in efficient portfolios (marked with bold lines). For larger quantiles, only

the portfolio with x1 � 1 is efficient (marked with a bold dot), as µ decreases but ES increases for smaller

values of x1. The right graph shows efficient frontiers when there is a compensation for default risk: The

risky Bank 2 pays interest r2 � 4π0, while Bank 1 only pays r1 � 2π0. In this case, for larger quantiles,

all portfolios are efficient, as with increasing x1 expected shortfall decreases (as in the left graph), but now

the expected return also decreases because of the lower interest rate paid by Bank 1.
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(c) expected shortfall for corner portfolios

Figure 3. Illustration of the 3-banks case. Parameters are p1 � 1%, p2 � 2%, and p3 � 3%, π123 � 0.02%,

π12 � 0.08%, π13 � 0.1%, π23 � 0.2%. Subfigure (a) shows the risk-minimal allocation with respect to

the quantile α (Banks 1 and 3). Obviously, the allocation is non-monotonic. Subfigure (b) shows efficient

frontiers in the µ-ES space for several values of α. Subfigure (c) shows the expected shortfall with respect

to α for three corner portfolios, which are candidates for risk-minimal allocations.
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(b) n � 10

Figure 4. Risk-minimal allocations in higher dimensions (n � 5 and n � 10) in dependence of the

quantile α. The bank default probabilities are given by pj � j%. Dependencies between the banks are

modelled with the Vasicek (1987) one-factor model with homogeneous correlations of 0.3. For both cases,

a non-monotonic behavior of the risk-minimal allocation is observed.
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Figure 5. Efficient frontiers and risk-minimal portfolios in the µ-ES space in the continuous setup for two

counterparties. Parameters are p1 � 1%, p2 � 2%, and π12 � 0.1%, with loss given defaults independent

uniformly distributed between 0 and 1. The thin lines show efficient frontiers for several values of the

quantile α. The bold line marks the location of the risk-minimal portfolio, with respect to α.
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Figure 6. Illustration of the continuous setup with n � 3 counterparties. Parameters are p1 � 1%,

p2 � 2%, and p3 � 3%, π123 � 0.02%, π12 � 0.08%, π13 � 0.1%, π23 � 0.2%, with loss given defaults

independent uniformly distributed between 0 and 1. Subfigure (a) shows efficient frontiers (thin lines) and

risk-minimal portfolios (bold line) in the µ-ES space. Subfigure (b) shows the weights of the risk-minimal

allocation in dependence of the quantile α.
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n � 2 n � 3 n � 4

1
2

1
2

1
3

1
3

1
3

1
4

1
4

1
4

1
4

1
5

1
5

1
5

2
5

1
6

1
6

1
6

1
2

1
4

1
4

1
2

1
6

1
6

1
3

1
3

1
7

1
7

2
7

3
7

1
8

1
8

1
4

1
2

0 1 0 1
2

1
2 0 1

3
1
3

1
3

0 1
4

1
4

1
2

0 0 1 0 0 1
2

1
2

0 0 0 1

Table 1. Corner points in dimensions 2, 3, 4. The table illustrates the construction of corner points

according to Proposition 2. For example, from p1{3, 1{3, 1{3q in dimension 3 one can construct the points

p1{3,1{3,1{3,1{3q
4{3

, p1{3,1{3,1{3,2{3q
5{3

, and p1{3,1{3,1{3,3{3q
6{3

in dimension 4. Note that this construction method yields

only points with xi ¥ xj for i ¡ j. Any point with permutated components of a corner point is also a corner

point. With the restriction xi ¤ xj for i ¡ j, the corner points suitable for a solution are actually the

points from the table in reversed order of the components.
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