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Abstract

In this study, we aim to build better risk models for energy commodities by employing

statistical procedures to identify outliers in the prices for all crude oil and natural

gas futures contracts traded on the CME over the period of December 2003 through

March 2017. Empirical results for crude oil and natural gas futures contracts show

that handling outliers when performing parametric estimation of the data generating

process can have a large impact on the estimation of value at risk. Our research

demonstrates that it is crucial to manage outliers in order to obtain robust risk

metrics.
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1. Introduction

It is well known that many commodity prices exhibit anomalous changes due to

geo-political, weather, and industry specific events. For example, prices of crude oil

changed drastically when on September 16, 2008 the OPEC cartel, which accounts

for almost 50% of the world’s oil, lowered its forecast for oil demand that year due

to slowing economic growth. Similar volatile price behavior was observed on August

3, 2011 when oil settled low as investors continued to worry about weak consumer

spending and sluggish economic growth; and on July 15, 2008 when President Bush

lifted nearly two decades of executive orders banning drilling for crude oil and natural

gas off the country shoreline.

The computation of robust risk metrics for any commodity firm with trading

operations can be extensive. This is because the number of risk factors can be large,

measuring in the thousands. For example, on any given day, natural gas futures

have up to 120 risk factors1 based on each open contract. Other risk factors include

locations in the North American demand/supply centers like New York City Gate

and Dominion South. An additional important feature is the broad number of trans-

actions from exchange traded products to over-the-counter (OTC) and structured

products that are part of a portfolio. Adding that commodity operations span mul-

tiple commodities in cross commodity transactions2, the computational complexity

of risk metrics increases substantially.

Commodity firms like British Petroleum and financial firms like Goldman Sachs,

1At any point of time there are contracts with 10 years of maturity, 12 months per year.
2The exchange and OTC Crack Spread Contracts include two or more risk factors and lines of

business.
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hold commodity portfolios that contain open transactions numbering in the millions.

The quantity of risk factors associated with the company’s portfolios measure in

the hundreds and even thousands. Each of these risk factors has a risk model that

price outliers can influence. Additionally, a portfolio of commodity transactions also

has covariation or correlation to manage. Outliers could cause these diversification

effects of commodity hedges to be incorrectly measured and hence costly for this

firm.

Our motivation for this paper is the lack of research in estimating robust risk met-

rics in presence of outliers for commodity prices. Identifying outliers is not equivalent

to data winsorizing. Vast amount of research in finance winsorizes (and as a result

removes) data points prior to applying any statistical estimation methodology. Out-

lier is a sudden or extraordinary discrete change termed an anomaly in the price

sequence. These price events if not addressed, could lead to erroneous conclusions

or inferences according to Tsay (1988).

Our empirical results using five years of daily settlements for commodity instru-

ments from the CME group, show that a robust estimation (after properly handling

outliers) leads to an increase or decrease of VaR metrics. The increase in VaR oc-

curred in 5% of crude oil contracts and 5.5% for natural gas contracts. These cases

could potentially cause serious problems for a commodity trading firm. The reason

is that the expected loss if VaR is exceeded, could be much larger than anticipated.

These larger losses would require immediate risk capital to be deployed. Margin calls

on exchange traded instruments, or posting of additional capital on over-the-counter

transactions may be required. Additionally the firm may be found in violation of

credit arrangements that could trigger a technical default. The larger than antici-

pated losses may also have an impact on firm’s credit receiving counter parties. The

risk parameters used to calculate credit metrics for counter parties could mean the
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firm has extended more credit to a counterparty than should have been allowed.

Outlier detection algorithms fall within two categories: Bayesian approaches (see

McCulloch and Tsay (1994)), and non-Bayesian approaches (see Chen and Liu (1993)

as one of the most widely used procedures). The detection methodologies and algo-

rithms that we use in this study belong to the non-Bayesian methodologies.

This study proceeds as follows. Section 2 discusses the background of this line of

research and includes a literature review of the leading papers in the area. Section

3 describes the methodology for detecting outliers. Section 4 presents an outlier

analysis for crude oil and natural gas futures contracts, discusses the impact that

outliers have on computing different risk metrics, and illustrates the improvements

after applying the outlier adjustments. Section 5 concludes.

2. Background and Literature Review

The study of outliers in time series starting with Fox (1972) has been very active.

Detecting outliers is known by many terms including anomaly detection, event de-

tection, novelty detection, deviant discovery, change point detection, fault detection,

intrusion detection, and misuse detection according to Gupta, Gao, Aggarwal and

Han (2014). Outlier research has been conducted on many types of data3.

The major advancement in outlier research is the ability to quantitatively classify

3Gupta, Gao, Aggarwal and Han (2014) discuss research in outliers that focused on temporal
forms of data such as credit, financial, medical, judicial, astronomy, web usage, sensor, real and
virtual traffic, and commercial transactions. Chang, Tiao and Chen (1988) review chemical process
articles, and Burman and Otto (1998) study business division data series of retail and wholesale
sales. Marczak and Proietti (2014) investigate industrial production for France, Germany, Spain,
the United Kingdom, and the U.S. for 1991 to 2014 and find that outliers coincided with the
Economic Crisis of 2009. Chen and Liu (1993) argue the outlier adjustment is an indispensable
part of intervention analysis and applying their method allows for a more complete set of, though
fewer, outliers with more robust results.
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types of outliers and their impact on the data generating process (DGP). In his

seminal work, Fox (1972) describes two types of outliers. Type I outlier is a gross

error from a single observation and Type II outlier is an extreme innovation that

affects observations following the event. Tsay (1988) extends the set of outliers to

include level shift or change (LS) and temporary change (TC). A level shift is a step

change in the time series. A temporary change is a temporary or transient level

change in the time series.

Consequently, the Type I and Type II outliers were renamed to additive outliers

(AO) and innovative outliers (IO). Gupta, Gao, Aggarwal and Han (2014) note that

AO and LS are single point events while IO and TC continue to impact the DGP

following the event. Tsay (1988) introduces a variance change outlier (VC) and

Watson, Tight, Clark and Redfern (1991) revisit it. Each of these outlier types

affect the DGP. Figure 1 shows how these innovations impact a time series. AO is

on the top panel illustrated by two up and down single point events. TC is shown on

the second panel where an extreme event continues to impact the DGP for a period

of time. LS is in the third panel and the DGP shifts up after the event and stays

there. IO is on the bottom panel where an extreme event causes temporary large

deviations in the DGP till it slowly disappears.

Insert Figure 1 here

Tsay (1988), Chen and Liu (1993) and Fox (1972) argue that IO do not require

adjustment since they impact the system after the outlier event occurs. Chen and

Liu (1993) add that IO are not independent of the model and will decay with time

for a stationary process. However, for a non-stationary process, after the event, there

may be an initial effect followed by a level shift.
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The standard approach for dealing with outliers is to locate and identify the

types of outliers and use intervention models to accommodate for the outlier effects.

A simple way to think about an intervention model is to consider two different

intervention variables - step and pulse response. Outliers can describe the dynamic

pattern of untypical effects and can be captured by means of intervention variables4.

Detailed discussion of the ARMA modeling of outliers can be found in Chen and

Liu (1993), Chang, Tiao and Chen (1988), Muirhead (1986), Fox (1972), Sanchez and

Pena (1997), and Tsay (1988). Fox (1972) and Chang, Tiao and Chen (1988) derived

likelihood ratio statistics for determining AO or IO outliers. Tsay (1988) extends

the outlier test statistics to include LS and TC outliers. Chen and Liu (1993) extend

Chang, Tiao and Chen (1988) to include likelihood ratio statistic for LS and TC

outliers.

In the commodity markets, Ju, Su, Zhou, Wu and Liu (2016) study annual crude

oil prices relationship with CPI, GDP, and unemployment across 18 production and

consumption economies. The study utilized two distance based and one artificial in-

telligence based outlier detection algorithms. Their study focuses on the interaction

of independent variables and annual oil prices. It highlights a higher number of out-

liers found in oil consuming economies since 2008. Our study, using daily data, sheds

additional light on the number and impact of outliers on commodity prices that could

impact the macro economic data studied. Bagnai and Ospina (2018) study outliers

as regime shifts in a multivariate cointegration setting. Their study uses monthly

gasoline and crude oil prices series from the Energy Information Administration and

4In the presence of multiple outliers, a problem known as masked or shadow outliers may occur
(see Chen and Liu (1993), Fox (1972), López-de Lacalle (2016), and Chang, Tiao and Chen (1988)).
This happens when multiple outliers are detected and corrected independently. To account for this,
shadow outliers require a final review of their statistical significance in an ARIMA model.
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International Monetary Fund. It finds a single regime shift in 2008. The regime

(outlier) detection techniques and the t – tests for symmetric elasticities are similar

to Tsay (1988) and Chen and Liu (1993) LS algorithms and statistical tests. The

results of their study expands the knowledge on regimes and interactions of crude

oil and gasoline commodities. Our study, whilst not a multivariate analysis, utilizes

data and techniques that can be applied to business risk decisions.

3. Methodology

In this section, we describe the methodology for detecting outliers. A three stage

algorithm is presented together with the process for managing outliers.

Following Chen and Liu (1993), let Yt be a time series following ARMA process

without drift or trend:

Yt =
θ(B)

ϕ(B)·α(B)
at, t = 1, · · ·, n (1)

where n is the number of observations, B is the back shift operator, θ(B) is a

moving average component, ϕ(B) is an auto regressive component, and α(B) is a

difference component. All of these are polynomials of B. All roots of θ(B) and ϕ(B)

are outside the unit circle and all roots of α(B) are on the unit circle.

The following model describes a time series that is influenced by a nonrepetitive

event:

Y ∗ = Yt + ω· A(B)

G(B)·H(B)
·It(t1), (2)

where Yt follows a general ARMA process defined in Equation (1). Additionally,

It(t1) is an indicator function equal to 1 if an outlier occurs and zero otherwise. The
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magnitude and dynamic impact of outliers on the process are governed by ω and

A(B)/G(B)·H(B).

By imposing a special structure on A(B)/G(B)·H(B), we can classify the outlier

as IO if:
A(B)

G(B) ·H(B)
=

θ(B)

α(B)·ϕ(B)
(3)

This is an outlier in the innovation series at that occurs at time t = t1 and has

a dynamic effect on Y ∗
t . The effect of this outlier on Y ∗

t1+k for k ≥ 0 is equal to

ωΨk where ω is the initial effect and Ψk is the kth coefficient of the polynomial

Ψ(B) =
θ(B)

α(B)·ϕ(B)
= Ψ0 + Ψ1B + Ψ2B

2 + · · · ,. For stationary series the IO will

produce a temporary effect since Ψj’s will decay exponentially to zero.

We classify the outlier as AO if:

A(B)

G(B)·H(B)
= 1 (4)

The outlier only affects Yt1*.

We classify the outlier as TC if:

A(B)

G(B)·H(B)
=

1

(1− δB)
(5)

This is a disturbance that affects Yt*, ∀t ≥ t1 but decays exponentially with rate

δ, 0 < δ < 1 and initial impact ω.

The outlier is clasified as LS if:

A(B)

G(B)·H(B)
=

1

(1−B)
(6)

At time t1 there is a permanent change of size ω.
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Fox (1972), Burman and Otto (1998), Tsay (1988), Muirhead (1986), Watson

(1991), Sanchez and Pena (1997), and Chang, Tiao and Chen (1988) develop algo-

rithms for detecting and correcting outliers. Chen and Liu (1993) extend this early

work for an algorithm to jointly detect outliers and estimate model parameters un-

der a parametric ARIMA models. López-de Lacalle (2016) implements Chen and

Liu (1993)’s algorithm and incorporate aspects of Time Series with ARIMA Noise,

Missing Values, and Outliers (TRAMO) (Maravall (n.d.)) that automatically identi-

fies, selects and corrects for outliers. The benefit of this algorithm is that it satisfies

Tsay (1988)’s comment that a “simple useful method to detect and handle outliers” is

needed. This parametric modeling approach and the algorithms for automatic detec-

tion and adjustment would be classified as unsupervised (see Gupta, Gao, Aggarwal

and Han (2014)).

The general algorithm for detecting and correcting outliers used in this research

is:

Stage 1. Outlier detection is performed estimating ARIMA models and checking

for significant outliers at different times based on t-statistics from the parametric

estimation.

Stage 2. Filter outliers by joint estimation of ARIMA models with results from

Stage 1. Outliers found to be insignificant are dropped from the initial set based on

t-statistics by parameter estimation.

Stage 3. Iterate over Stages 1 and 2 to determine the adjusted series and the

final outlier effects.

This process for managing outliers will select parametric ARIMA models with

outlier effects based on the minimization of Akaike (AIC) and Bayesian (BIC) infor-

mation criterion statistics (López-de Lacalle (2016)). The algorithm will return the

final outlier set, the regression coefficients, adjusted data series, regression residuals,
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and outlier impacts. Sanchez and Pena (1997) highlight how this iterative process

improves on the determination and overcomes limitations previously mentioned. Our

analysis utilizes the R Analytical software and statistical packages for outliers and

forecasts developed by López-de Lacalle (2016) and Hyndman (2017) for estimating

the initial and final outliers in each time series. Additionally, Fox (1972) specifies

that seasonal components must be filtered and Maruth and Ryan (2007) show that

seasonality must be handled for geometric Brownian motion assumptions. This re-

search utilizes software developed by Hyndman (2017) and Hyndman and Khandakar

(2008) that filters seasonal ARIMA components.

If outliers were found, the completion of the three stages on log returns will result

in parametric specification of the time series, composed of two components as follows:

an ARIMA model specification of the log returns and functional specifications for

outliers that are based on Equations (4) to (6) with a decay rate of 0.7. Only the

ARIMA specification is returned if no outliers are found, and this is the best fit

model of the time series.

In order to illustrate the effects of different types of outliers, consider a model of

the difference in commodity price log returns generated by an ARIMA(1,1,1) process

with drift and an AO outlier at time step t = k. This model will have the following

parametric specification:

OYt = a0 + φ0OYt−1 + θ0et−1 + wtIt + et,

It =

1 if t = k

0 otherwise

(7)

A model of the difference in commodity price log returns generated by an ARIMA(2,1,1)

process with drift that have an LS outlier at time step t = k would be:
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OYt = a0 + φ0OYt−1 + φ1OYt−2 + θ0et−1 + wtIt + et,

It =

1 if t > k

0 otherwise

(8)

As can be seen from the above two examples, outlier intervention analysis does

not remove the outliers. It separates them from the ARIMA model and for the case

of AO a one time shock at time k is included. For the LS, the price shock at time k

has an impact on the DGP for t > k.

4. Analysis

4.1. Outlier Simulation Example

Here we use simulated data to illustrate the steps of the outlier intervention

analysis. In the next section we show results with actual CL and NG daily futures

prices.

We perform a simulation analysis to demonstrate how outliers can impact statis-

tics, bias parameter estimates, and cause issues with non-normality. We simulate a

single random walk without a drift with annualized volatility of 25% for 100 days.

We then introduce outliers of each type in the simulation, which are described in

Table 1. The AO jumps up 0.8 (80%) then back down by the same amount on days

33 and 67 and Panel 1 of Figure 2 displays the pattern. TC are demonstrated with

a jump of 0.1 (10%) that decays 0.7 (70%) each day over days 45 to 65 and this

pattern is shown in Panel 3 of Figure 2. LS are simulated with a jump of 0.1 (10%)

on day 45 and are shown in Panel 2 Figure 2.

Insert Table 1 and Figure 2 here
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The outlier detection methodology discussed above was applied to the five simu-

lated time series. The initial summary statistics and corrected statistics are shown

in Table 2. The mean, standard deviation, and annualized standard deviation are

highlighted before and after the outlier correction. The annualized results show a sig-

nificant difference from the 25% volatility used to simulate the data, and the means

exhibit non-zero values in three cases. The mean of the base or clean data is close to

zero, as is the AO series.5 The arithmetic means for the LS, TC, and IO simulated

data are different from our base at -2.28%, 5.65%, and 0.06%, respectively. The

annualized standard deviations are 25% for the random walk base case, but 180%,

154%, 84%, and 202% for AO, TC, LS and IO, respectively.

Insert Table 2 here

The skewness and excess kurtosis of the simulated outlier data series indicate that

the data may be non-normal. The Jarque-Bera and Shapiro-Wilk tests for normality

were performed and the results are shown in Table 3. All outlier unadjusted data

series reject normality with the exception of the base case.

Insert Table 3 here

The time series outlier correction methodology was applied to the simulated data

series. All data series final model estimates were ARIMA(0,1,0) corresponding to

our base case initial random walk without a mean or trend. The outlier correction

algorithm identified all outliers in each data series at the correct time and default

5The value of -0.04% for each data series is a simulation error in a small sample. AO is not
different from our base case by construction because two AO outliers occur at different times and
are of equal, but opposite, magnitude thereby, offsetting each other in the mean.
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critical value of 3.5. The mean of the adjusted data series and the annualized stan-

dard deviations are all close to the original simulation parameters of zero mean and

25% volatility. The normality tests show that residuals fail to reject normality as

shown in the lower panel of Table 3. IO is the exception to these where the original

volatility is not fully recovered and normality is rejected as well. IO outliers are diffi-

cult to simulate and this example uses a deterministic process based on up and down

movements decaying to zero. Cleaning the outliers produces data that is normal, or

closer to normal, and recovers the underlying DGP.

Figure 2, Panels 1 to 4, shows the results of the correction methodology for each

outlier series. The upper graph in Panel 1 is the original and adjusted data series

that shows the impact on the path of the mean over time for an AO outlier. The

lower graph in Panel 1 shows the AO outlier effects on the mean, which is added to

the adjusted data to recover the original simulated series. Panels 2 and 3 show that

TC and LS outliers are similar in that the mean shifts up then down temporarily for

TC, a transient impact; but for LS the mean shifts up permanently. The lower graphs

in Panels 2 and 3 show the outlier effects for TC and LS. The outlier effects of the

IO in Panel 4 show the decay that results. The resulting ARMA models estimated

by the outlier adjustment algorithm attempts to render the residuals as white noise.

Table 4 reports the model parameter estimates for each outlier type for the base

case of a random walk, ARIMA models of best fit, and the outlier adjusted models.

The base case represents a common mean adjusted DGP risk model for all outlier

types that have the mean and trend parameters restricted to zero and no ARMA pa-

rameters corresponding to an ARIMA(0,1,0). The ARIMA models are presented for

comparison and have no restrictions on the mean and drift terms, or any additional

ARMA components. As a result, they can have time varying means. The models for

TC, LS, and IO outlier types are represented by an auto regressive, AR(1) and spec-
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ifications for TC, LS, and IO also have a moving average, MA(1) term. Outliers are

ignored in these models since the parametric estimations are for best fit models of the

time series based on minimization of the AIC and BIC statistics. The ARIMA best

fit estimation improves the fit as seen by lower root mean squared errors (RMSE)

when compared to the parametric models of the contaminated simulated data. The

AIC and BIC statistics shown are the values for the selected best fit models. The

outlier adjusted models are the results of the three stage algorithm. All models ex-

hibit improved fits as shown by the more negative AIC and BIC statistics and lower

RMSE compared to the base random walk model. The estimated models recover

the original simulation parameters for AO, TC, and LS. As mentioned earlier, all of

these models have only outlier specification with no ARIMA components. The IO

example has an AR(1) and MA(1) component along with the outlier parameters for

the IO and the decay component. A similar case was described by Chen and Liu

(1993) for a stationary process where the IO occurs and then decays to zero.

Insert Table 4 here

To illustrate the results in Table 4, we present in the Appendix the estimated

models for AO, TC, LS and IO.

4.2. Analysis of Crude Oil and Natural Gas Futures Prices

The data for this analysis is from the CME Group daily settlements for commod-

ity instruments6 and the contracts are monthly for each commodity. The specific

CME instruments are outright futures contracts for NYMEX natural gas (NG) and

WTI crude oil (CL). The data starts on 12/31/2003 and ends on 3/20/2017. The

6CME (2017a), CME (2017b)
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CME Group lists CL futures contracts nine forward years with monthly listing for

the current year and following five years. Year 6 and out are listed for the June

and December contracts. Additional months are added annually when the Decem-

ber contract expires to keep nine years of the combination of monthly and biannual

contracts listed. NG is listed monthly for the current year plus the following twelve

calendar years with a new year added when the December contract expires for the

current year.

There are 198 CL contracts and 276 NG contracts active during the studied time

period 2007 to 2017. CL contracts start in January 2007 where the first observation is

12/07/2005 and extend until December 2025 where the last observation is 3/20/2017.

NG contracts start in January 2007 where the first observation is 12/31/2003 and

extend until December 2029 where the last observation is 3/20/2017. There are

196,301 observations cumulative across all CL contracts and 376,429 across all NG

contracts. The minimum number of observations is 79 for CL and 75 for NG and

occur for the longest dated active contract in each commodity with trade commencing

in late 2016. The maximum number of observations for a contract is 2,213 for CL

and 2,232 for NG and the maximum for CL occurs for the December 2016 contract.

These are all open, active contracts for years 2017 to 2020 for NG. The observations

per contract are a function of the listing specifications quoted above, and the supply

and demand for futures.

Table 5 shows summary statistics for all CL and NG contracts.

Insert Table 5 here

The original data has the following summary statistics. The average annualized

mean return across all CL contracts is -7% and -22% for NG. The range for CL is

-45% to 45% and -105% to 32% for NG. For CL, the January 2022 contract has
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the largest decline in value and the June 2008 contract has the largest increase in

value. For NG, the September 2009 contract has the largest loss and the July 2008

contract has the largest gain. The average annualized standard deviation of all CL

contracts is 24% with a range from 15% to 38%. The June 2025 and April 2009

are the two contracts on each end of the range. The average annualized standard

deviation of all NG contracts is 17% with a range from 9% to 34%. The January 2027

and November 2009 are the two contracts on each end of the range. Overall, both

commodity futures exhibit skewness and excess kurtosis. The range for skewness is

-1.4 to 0.9 for CL and -1.8 to 1.1 for NG.

The robust estimation with outlier adjustment methodology described in Sec-

tion 3 was applied to the historical daily CL and NG prices. Table 5, bottom panel

shows results for the outlier adjusted series. The outlier adjusted data series has the

following summary statistics. The average annualized mean return across all crude

oil contracts is -0.7% and -53% for natural gas. The range for crude oil is -73% to

50% and -848% to 52% for natural gas. The changes in the mean return summary

statistics is difficult to explain, but for natural gas, if the last active contract year

2029 is omitted, the average becomes -0.0005 and the range -0.0014 to 0.0014. The

summary data seems to have anomalies. The average annualized standard deviation

of all crude oil contracts is 22% with a range from 13% to 37%. The average an-

nualized standard deviation of all natural gas contracts is 15% with a range from

7% to 31%. The annualized volatility decreased by over 1.5 standard deviations,

and is as high as 2.7 standard deviations for the October 2009 natural gas contract.

The range for skewness is -1.0 to 0.3 for crude oil and -0.58 to 1.2 for natural gas.

The range for excess kurtosis is -0.6 to 8.0 for crude oil and 0.03 to 9.64 for natural

gas. Both skewness and excess kurtosis decreased for both commodities, which is

indicative that the residuals are close to white noise.
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Normality tests include the Jarque Bera and Shapiro Wilk tests at the 0.001

confidence level. Table 6 summarizes these tests. Before correcting for outliers (see

the Contaminated Data result), there are 31 (42) of 198 CL futures contracts that

failed to reject normality based on the Jarque Bera (Shapiro Wild) test, or 16% (21%)

of the contracts. All NG futures rejected the normality assumption. This could be

viewed as an issue, but as shown in the experiment above, this could be corrected

by adjusting for outliers. For the Outlier Adjusted Series in the table, there are 45

(47) of 198 CL futures contracts that failed to reject normality based on the Jarque

Bera (Shapiro Wild) tests, or 23% (24%) of the contracts. This is an increase of

45% (12%) based on the Jarque Bera (Shapiro Wilk) tests. NG, after correcting for

outliers, has 22 (31) contracts that failed to reject normality or 8% (11%) with the

Jarque Bera (Shapiro Wilk) tests. Improvements in these normality test statistics

are consistent with López-de Lacalle (2016) results for consumer price indexes.

Insert Table 6 here

The outliers detection algorithm runs in stages. The first stage is to determine

the initial set of outliers. Here we used the R tsoutliers package with the auto.arima

method to locate potential outliers based on t-test of each potential outlier. The

lower section of Table 6 shows that there are 13,481 potential outliers for CL and

15,079 for NG. This is almost 7% of the data for CL and slightly more than 4%

for NG. These numbers are well within common Extreme Value Theory observation

data reserves of 5% to 15% of the data. Stages 2 and 3 determine the final set of

outliers based on outlier t-statistics and model specification tests. There are 1,357

outliers for CL and 3,071 outliers for NG. This represents 0.7% of the data for CL

and 0.8% for NG. The final outlier set was reduced almost 90% for CL from the initial

candidates and almost 80% for NG. This highlights the need for outlier analysis and
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is consistent with Chen and Liu (1993)’s statement of fewer but more meaningful set

of outliers.

Table 7 presents a summary of outliers by type. The algorithm initially identifies

4,575 AO for CL and 6,054 for NG. However, the final set of AO is reduced by 85%

for CL and 76% for NG. Interestingly, IO are not detected in the first stage but the

final set includes 310 IO for CL and 618 IO for NG. The biggest reduction in number

of outliers is for LS, 99% for CL and 98% for NG; the next is TC, 92% reduction

for CL and 83% reduction for NG. It is clear from the summary results that the

algorithm effectively identifies a set of outliers that have an impact on the DGP.

Insert Table 7 here

It has been shown that outliers impact forecast error and risk metrics as well as

distributional characteristics of commodity time series data. The process for manag-

ing outliers is based on model selection that minimizes the AIC and BIC statistics.

Table 8 shows summary statistics for the AIC and BIC model specification improve-

ments from the outlier adjusted models (OAM) and best fit ARIMA (BFA) models

with no outlier adjustments. The base case is a random walk model. The BFA is

superior in 229(127) of 276 NG contracts based on the AIC (BIC) statistic, repre-

senting an 83% (46%) of the total NG contracts. The OAM is superior in 258 (253)

contacts using the AIC (BIC) statistics, representing 94% (92%) of the contracts.

Similar results are found for CL contracts. Based on AIC (BIC), 91% (70%) of

contracts exhibited improvement for BFA. The OAM model specification fits shows

99% improvement based on AIC and 94% for BIC. The percentage change medians

of the AIC (BIC) statistic for NG is 3.1% (1.3%) for OAM and 2.1% (1.4%) for CL.

The contracts where the model selection criteria did not exhibit model improved fits
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corresponds to contracts where the risk metrics and residual variance increased after

processing the outliers.

Insert Table 8 here

Figures 3 and 4 show the outliers by types for each commodity contract month.

Futures monthly contract abbreviations used are as follows: January=F, Febru-

ary=G, March=H, April=J, May=K, June=M, July=N, August=Q, September=U,

October=V, November=X, and December=Z.

Insert Figures 3 and 4 here

The types and number of outliers vary across commodity contracts. Figures 5

through 8 show the initial and final outlier types and adjusted series for each contract

along with outlier effects. The CL contracts are February 2015 and November 2020

and for NG are June 2012 and May 2022. The outlier adjustment, as observed by

the outlier effects panel, generates a data series that adjusts the mean of the DGP

removing the effect from the residuals, which is in the original and adjusted series

panel for these contracts.

Insert Figures 5 to 8 here

The resulting parametric specifications from the outlier adjustment process for

all contracts is too numerous to discuss. We present in the Appendix in more detail

the November 2020 CL and the May 2022 NG contracts.

4.3. Computation of VaR

In the previous section we showed that the adjustment for outliers reduced the

DGP residual variation. To analyze the impact of this on the forecast error and
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address the cost implication, modified VaR risk metrics were calculated based on

Cornish-Fischer approximations (see Favre and Galeano (2002)). Table 10 shows

the average percentage change in each risk measure as well as the range of each.

CL VaR and CVaR decreased on average of 8.6% and 8.9%, respectively with NG

decreasing on average of 14.4% and 16.7%, respectively. The risk metrics of some

contracts increased. Table 11 shows that 8 to 15 out of 198 contracts risk increased

after outlier adjustment for CL and 15 to 17 out of 276 for NG. Each risk measure

is stand alone for a long position in each contract based on one million barrels of CL

and 1 Bcf (billion cubic feet which is equivalent to 1,000,000 mmBTU) of NG.

Insert Tables 10 and 11 here

These changes in risk metrics indicate that outlier adjustment is relevant. To get

a holistic appraisal of the impact, a VaR (ES) / Volatility Elasticity is reported in

Table 12. This elasticity is the percentage change in each risk measure divided by

the percentage change in residual volatility. Table 12 shows that on average for CL

the elasticity is 0.90% to 0.94%, or for a 1% change in volatility, risk decrease by

0.009 to 0.0094. NG elasticity for a 1% change in volatility is 1.2% to 1.3%.

Insert Table 12 here

We have shown that for a majority of commodity portfolios composed of 1 million

barrels of CL or 1 Bcf NG the risk metrics decrease. This decrease translates into

less risk capital needed to manage the overall risk of the portfolio. These savings

include the reduced cost of hedging and the stress tests improvements. The benefits

are evident, but there is an issue that arises from the change in the distributional

characteristics of the at risk portfolio for a firm after managing outliers. The lower

residual variance that is used to calculate the clean risk metrics are based on a
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distribution that has tails with less weights than the distributions estimated from the

contaminated data. Backtests for the risk metrics based on the clean distributional

parameters could show that the risk metrics are inadequate in that the VaR is not

exceeded in the predicted number of times each year. For example, the daily VaR

for a normally distributed portfolio returns should be exceeded 12 times per year or

1 in 22 days. This would be a problem for regulators, compliance and controls, and

auditors (both internal and external).

There are several instances where the clean risk metrics exceeded the contami-

nated risk metrics. This occurred for 5% of CL contracts and 5.5% for NG contracts.

These cases could potentially cause serious problems for a firm. Backtests will also

suffer showing that the VaR is exceeded, instead of not, more than the predicted

number of times per year. This will imply an inadequate risk metric. The backtest

issue will not be seen with clean VaR decreasing because the back test is a one tailed

test in most implementations. The distributional characteristics also change, but

here the tails are larger than originally estimated with the contaminated data. As a

result, the expected loss if VaR is exceeded could be much larger than anticipated.

These larger losses would require immediate risk capital to be deployed, such as a

margin call on exchange traded instruments, posting additional capital on over –

the – counter transactions, or being in violation of credit arrangements resulting in

technical default. There are credit impacts for a firm that extends credit to coun-

terparties. These risk parameters are used to calculate credit metrics for counter

parties and the clean parameters could mean the firm has extended more credit to a

counterparty than should have been allowed.

We can explore these impacts in more detail by reviewing the contracts for CL and

NG that exhibit the maximum increase in the Gaussian and Modified Gaussian VaRs

(GVaR and MGVaR). These contracts are the 2008M and 2008V CL for GVaR and
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MGVaR, whereas for NG, the contracts are the 2007N and 2010J. The value of the

2008M CL portfolio is $121MM with a GVaR of $2.93M and $2.7MM for the 2008V

portfolio with a MGVaR of $4.18MM. Note: MM stands for millions and M stands

for thousands. The clean GVaR for 2008M increased by 4.23% and the MGVaR

increased by 7.47% for 2008V. This equates to a VaR as a percentage of MTM value

for 2008M of 2.27% based on contaminated data and 2.36% based on clean data.

Similarly, for 2008V, the MGVaR as a percentage of MTM value is 2.35% based on

contaminated data and 2.53% based on clean data. The GVaR and MGVaR are

threshold risk metrics and the expected loss, if these thresholds are exceeded, is the

Conditional VaR (CVaR) and Modified Conditional VaR (MCVaR). This is $784M

CVaR over GVaR for 2008M based on contaminated data and $899M using clean

data for an additional expected loss of $115K or 3.93% higher. The MCVaR was

$576M greater than the MGVaR for 2008V based on contaminated data and $989M

using clean data for an additional expected loss of $413M or 14.53% higher.

Similar results are seen with the two NG contracts of 2007N and 2010J. The value

of the 2007N portfolio is $6.9MM with a GVaR of $178M, and $3.8MM for the 2010J

portfolio with a MGVaR of $110M. The 2007N clean GVaR increased by 4.80% and

the MCVaR increased for 2010J by 4.74%. This equates to a VaR as a percentage

of MTM value for 2007N of 2.57% based on contaminated data and 2.70% based

on clean data. Similarly, for 2010J, the MGVaR as a percentage of MTM value is

2.77% based on contaminated data and 2.88% based on clean data. The CVaR is

expected to exceed the GVaR for 2007N by $47M based on contaminated data and

$56M using clean data for an additional expected loss of $9,800 or 5.51% higher.

The MCVaR was $26M greater than the MGVaR for 2010J based on contaminated

data and $32M using clean data for an additional expected loss of $6,200 or 5.88%

higher.
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The above examples of risk increasing after outlier adjustment show that a firm

could potentially be faced with a catastrophic risk event that was completely masked

by the outliers. The contaminated risk metrics will understate the risk and the

actual loses will be greater than expected. The backtests that use the wrong VaR

could indicate failures of the risk metrics. Also, contractual covenants, governance,

compliance, and other controls may be violated putting the firm at a substantial

financial risk.

5. Conclusion

We show that detecting outliers is an important step in identifying the true DGP

from a risk measurement point of view. The algorithm was able to address common

issues with outliers of masking/shadowing as seen by the substantial reduction in

each contact’s set of final outliers from the initial set. The analysis demonstrated

that risk could be separated between the DGP and outlier impacts. We showed that

managing outliers can improve normality tests, which is similar to López-de Lacalle

(2016) results.

The analysis showed that risk metrics like VaR can be inaccurately reported,

which could impact hedging cost and hedging decisions from the changes in the 2nd,

3rd, and 4th moments of the DGP. The analysis of residual variance or forecast error

was similar to Tsay (1988) findings where the 95th percentile decreased by 50% in

his research. Our research is the first step towards demonstrating the following four

issues in commodity risk management in the presence of outliers: biased statement

of risk, additional cost to hedge the risk, inappropriate and inadequate hedges and

misstatement of risk associated with extreme events. Without making such adjust-

ments, a firm may be reporting flawed risk metrics and not maintaining adequate risk
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capital. As a result, a firm may be placing itself unknowingly at precarious financial

risk.

6. Appendix

6.1. Outlier Simulation Estimated Models for AO, TC, LS and IO

To illustrate the results in Table 4, we present the estimated models for AO, TC,

LS and IO. The parametric model estimates from Table 4 specify an outlier adjusted

estimated model for AO based on Equations (1) through (6) as:

OYt = .7893 I33AO − .7912 I67AO + et,

I33,67AO =

1 if t=33, 67

0 otherwise

(9)

The equation estimated for TC using Equations (1) through (6) and replacing
1

(1− .7B)
It

with wt is:

OYt = −.6983 wt + et,

wt =


1 if t=45

.7wt−1 if t ≥ 45

0 otherwise

(10)

The equation for LS using Equations (1) through (6) and setting It =
1

(1−B)
It is:

OYt = 0.1010 It + et,

It =

1 if t ≥ 45

0 otherwise

(11)
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Using Equations (1) through (6) and rewriting
1

(1 + 1.2813B + 0.4575B2)
It as wIO

t

and
1

(1− .7B)
It as wTC

t , we obtain the model for IO:

OYt = −1.2813 OYt−1 − 0.4575 OYt−2 + .2356 wIO
t − .1771 wTC

t + et,

wIO
t =


1 if t=46

−1.2813wIO
t−1 − 0.4575wIO

t−2 if t ≥ 47

0 otherwise

and

wTC
t =


1 if t=47

.7wTC
t−1 if t ≥ 47

0 otherwise

(12)

6.2. November 2020 CL and the May 2022 NG contracts

The resulting parametric specifications from the outlier adjustment process for all

contracts is too numerous to discuss. We present in more detail the November 2020

CL and the May 2022 NG contracts. The resulting ARIMA and outlier parametric

specifications based on outlier t-statistics and minimizing information criteria for CL

are:

OYt = −.001− 0.4907 OYt−1 − 0.0718 I
(179)
AO + 0.0437

1

(1− .7B)
I
(176)
TC

+ 0.4704 et−1 + 0.1277 et−2 + et,

(13)
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and for NG are:

OYt = −0.0007 + 0.1465 OYt−1 + 0.0292 I
(6)
AO + 0.0358 I

(76)
AO + 0.0983 I

(229)
AO

+ 0.0364 I
(323
AO + 0.053 I

(659)
AO + 0.0308 I

(1010)
AO − 0.0394 I

(1031)
AO + 0.045 I

(1047)
AO

+ 0.0303 I
(1679)
AO − 0.1652

1

(1− .7B)
I
(165)
TC − 0.0390

1

(1− .7B)
I
(173)
TC

(14)

+ 0.0251
1

(1− .7B)
I
(181)
TC − 0235

1

(1− .7B)
I
(201)
TC + 0.0323

1

(1− .7B)
I
(846)
TC

+ 0.0260
1

(1− .7B)
I
(1052)
TC − 0.0237

1

(1− .7B)
I1257TC − 0.0351(1 + 0.1465B) I

(231)
IO

+ 0.0340(1 + 0.1465B) I
(644)
IO + 0.0584(1 + 0.1465B) I

(657)
IO + et,

The indicator parameter is I
(k)
x where x is AO, TC, IO, or LS, and k is the time

step of the event where the value is 1 and 0 otherwise.
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Table 1: Hypothetical example Gaussian simulation inputs.

Outlier AO TC LS IO
Up Event 0.8 0.7 0.1 0.7
Down Event -0.8 -0.7
Decay Factor 0.7 0.8
Time Period (Days) Affected 33,67 45,65 45,100 45,65

We simulate a single random walk without a drift with annualized volatility of
25% for 100 days. We then introduce outliers of each type in the simulation.
The AO jumps up 0.8 then back down by the same amount on days 33 and 67.
TC are demonstrated with a jump of 0.1 that decays 0.7 each day over days
45 to 65. LS are simulated with a jump of 0.1 on day 45. The decay factor
will exponentially decay to zero from the event over the time period.
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Table 2: Summary statistics of simulated 100 day returns for base (GBM), AO, IO,
TC, and LS examples.

Statistic Base AO TC LS IO

Observations 100 100 100 100 100
Minimum (%) -3.54 -79.12 -67.80 -3.54 -69.59
Median (%) 0.01 0.01 -0.24 8.34 0.01
Arithmetic Mean (%) 0.05 0.05 -2.28 5.65 0.06
Geometric Mean (%) 0.04 -0.94 -3.05 5.52 -0.96
Maximum (%) 3.91 78.93 3.79 13.91 69.93
Standard Deviation (%) 1.59 11.34 9.69 5.29 12.00
Skewness 0.195 -0.037 -4.943 -0.233 -0.165
Kurtosis -0.294 45.07 26.394 -1.591 19.866
Annualized Standard Deviation (%) 25.24 180.02 153.82 83.98 201.61

Outlier Adjusted Series

Arithmetic Mean (%) 0.052 0.054 0.048 -0.005 0.689
Standard Deviation (%) 1.584 1.594 1.591 1.590 6.430
Annualized Standard Deviation (%) 25.138 25.296 25.259 25.236 102.080
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Table 3: Normality tests for simulated prices.

Base AO TC LS IO

Unadjusted Data Series
Jarque Beta Statistic 0.995 8,463.588 3,309.870 11.460 1,644.787

(0.60820) (0.00000)* (0.00000)* (0.00325) (0.00000)*

Shapiro Wilk Statistic 0.992 0.261 0.397 0.869 0.455
(0.79073) (0.00000)* (0.00000)* (0.00000)* (0.00000)*

Outlier Adjusted Series
Jarque Beta Statistic 0.995 0.913 0.977 1.085 6592.081

(0.60820) (0.63346) (0.61359) (0.58140) (0.00000)*

Shapiro Wilk Statistic 0.992 0.991 0.992 0.991 0.589
(0.79073) (0.78066) (0.82752) (0.71050) (0.00000)*

Entries are the estimated normality test statistics and their p-values in parentheses.
* denotes significance at the 1% level that indicates rejection of normal hypothesis.
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Table 4: Estimated models for base case of random walk, ARIMA best fit, and outlier
adjusted models.

Model Statistic Base AO TC LS IO
Random Walk

RMSE 0.01584 0.11286 0.09905 0.07723 0.12641
Log-L 272.655 76.263 89.315 114.202 64.928
df 1.00 1.00 1.00 1.00 1.00
AIC -543.31 -150.52 -176.63 -226.40 -127.86
BIC -540.70 -147.92 -174.03 -223.80 -125.25

ARIMA
Best
Fit
Model

φ0 0.6770 -0.1551 -0.7608
(0.00000) (0.44951) (0.00000)

φ1 -0.5338
(0.00064)

θ0 -0.4043
(0.05176)

θ1 0.4011
(0.05096)

RMSE 0.01584 0.11286 0.07267 0.01982 0.08135
Log-L 272.655 76.263 120.490 249.447 109.071
df 1.00 1.00 2.00 5.00 2.00
AIC -543.31 -150.52 -236.98 -488.89 -214.14
BIC -540.70 -147.92 -231.77 -475.92 -208.93

continued
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Table 4: (Continued)

Model Statistic Base AO TC LS IO
Outlier
Ad-
justed
Model

φ0 -1.2813
(0.00000)

φ1 -0.4575
(0.00000)

I0 0.7893* -0.6983** 0.1010** 0.2356 ***

(0.00000) (0.00000) (0.00000) (0.00000)
t-Statistic 50.036 -61.760 47.738 8.931
I1 -0.7912* -0.1771

(0.00000) (0.00000)
t-Statistic -50.152 -8.525
RMSE 0.01584 0.01594 0.01591 0.01590 0.06430
Log-L 272.655 273.039 272.681 272.770 133.584
df 1.00 3.00 2.00 2.00 5.00
AIC -543.31 -540.08 -541.36 -541.54 -257.17
BIC -540.70 -532.26 -536.15 -536.33 -244.14

The random walk is the base case with zero mean, no drift DGP, ARIMA is the esti-

mated model of each outlier data series, and Outlier Adjusted is the final model estimated.

φi is an autoregressive parameter and θ0 is a moving average parameter. The entries report

the estimated model summary statistics. The P-values of the estimates are in parenthesis.

Ii designates an indicator function that is 1 or 0 at that time step for AO, TC, and LS,

while for IO this is a decay factor for all time steps after the event. * is for times steps

33 and 67, ** is the indicator function starting at time step 45, and *** is the indicator

function change at time step 46. t-Statistic is the calculated t-statistic for the outlier.
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Table 5: Summary statistic comparison of log returns of the contaminated and outlier
adjusted CL and NG commodity contracts.

CL NG
Contracts 198 Min Max Contracts 276 Min Max
Observations 196,301 79 2,213 Observations 376,429 75 2,232

Average Range Average Range
Original Data

Annualized
Mean(%) -7.06 -44.89 45.22

Annualized
Mean(%) -22.70

-
104.81 32.21

Median(%) -0.14 0.17 Median(%) -0.09 0.07
Annualized
StDev(%) 23.78 15.42 38.43

Annualized
StDev(%) 16.77 8.83 33.92

Skewness -1.40 0.91 Skewness -1.751 1.123
Kurtosis -0.56 11.10 Kurtosis 1.009 22.773

Outlier Adjusted Series
Annualized
Mean(%) -0.68 -72.74 49.93

Annualized
Mean(%) -52.58 -847.9 52.32

Median(%) -0.06 0.18 Median(%) -2.28 0.12
Annualized
StDev(%) 22.27 13.02 36.92

Annualized
StDev(%) 15.13 7.19 31.19

Skewness -1.03 0.32 Skewness -0.58 1.02
Kurtosis -0.56 7.97 Kurtosis 0.03 9.64
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Table 6: Analysis of the number and percentage of futures contracts that failed to
reject normality.

% of Contracts
Contracts Jarque Bera Shapiro Wilk Jarque Bera Shapiro Wilk

Contaminated Data
CL 198 31 42 16% 21%
NG 276 0 0 0% 0%

Outlier Adjusted Series
CL 198 45 47 23% 24%
NG 276 22 31 8% 11%

Initial % Total Final % Total % Change
CL 13,481 6.87% 1,357 0.69% -89.93%
NG 15,079 4.01% 3,071 0.82% -79.63%
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Table 7: Summary of initial and final outliers by type.

AO IO LS TC Total
CL Initial 4,575 0 4,827 4,079 13,481

Final 703 310 33 311 1,357
Change -85% -99% -92% -90%

NG Initial 6,054 0 3,435 5,590 15,079
Final 1,465 618 62 926 3,071

Change -76% -98% -83% -80%
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Table 8: Model specification improvement comparing AIC and BIC statistics for random walk, ARIMA best
fit, and outlier adjusted models.

Percentage Change

ARIMA Best Fit Outlier Adjusted ARIMA Best Fit Outlier Adjusted

Natural Gas
AIC # Models Improved 229 258 82.97% 93.48%

Median Change -5.24 -265.16 0.07% 3.05%
BIC # Models Improved 127 253 46.02% 91.67%

Median Change 1.36 -183.67 -0.02% 1.27%

Crude Oil
AIC # Models Improved 180 196 90.91% 98.99%

Median Change -3.18 -110.82 0.08% 2.11%
BIC # Models Improved 138 186 69.70% 93.94%

Median Change -6.26 -83.41 0.09% 1.40%
These statistics are derived from the estimated models of 276 NG contracts and 198 CL contracts.



Table 9: Annualized statistics for NG 2017.J contract for simulation benchmark anal-
ysis.

Mean Standard Deviation Skewness Kurtosis
Original (Contaminated) Data -11.1911 16.7462 -0.4692 6.9828

Cleaned data series Data 0.0047 14.7110 0.0075 1.6180

Table 10: Percentage change in value at risk and expected shortfall metrics.

Risk Metric Average Min Max
Crude Oil

Gaussian VaR -8.66% -27.19% 2022.CLF 4.23% 2008.CLM
Modified VaR -8.91% -40.39% 2015.CLG 7.47% 2008.CLV
Gaussian
CVaR -8.58% -26.83% 2022.CLF 3.10% 2008.CLM
Modified CVaR -8.66% -26.64% 2022.CLF 12.08% 2008.CLV

Natural Gas
Gaussian VaR -15.00% -48.94% 2029.NGZ 4.80% 2007.NGN
Modified VaR -16.85% -65.43% 2029.NGX 6.26% 2022.NGK
Gaussian
CVaR -14.37% -47.04% 2029.NGZ 4.37% 2007.NGN
Modified CVaR -14.98% -56.55% 2029.NGX 4.74% 2010.NGJ
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Table 11: Analysis of risk metrics that increased after outlier adjustments.

Risk Metric Risk Change > 0 Percentage Change
Crude Oil

Gaussian VaR 9 4.55%
Modified VaR 10 5.05%
Gaussian CVaR 15 7.58%
Modified CVaR 8 4.04%
Total Contracts 198

Natural Gas
Gaussian VaR 15 5.43%
Modified VaR 17 6.16%
Gaussian CVaR 15 5.43%
Modified CVaR 15 5.43%
Total Contracts 276
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Table 12: Percentage change in VaR/volatility elasticity.

Risk Metric Average Min Max
Crude Oil

Gaussian VaR 0.899 -5.374 2008.CLJ 1.730 2020.CLX
Modified VaR 0.928 -5.462 2008.CLJ 2.860 2015.CLF
Gaussian
CVaR 0.921 -4.041 2008.CLJ 1.587 2020.CLX
Modified CVaR 0.940 -4.178 2008.CLJ 1.865 2015.CLJ

Natural Gas
Gaussian VaR 1.259 -4.182 2029.NGZ 4.362 2007.NGN
Modified VaR 1.326 -4.285 2029.NGX 6.398 2022.NGK
Gaussian
CVaR 1.209 -3.163 2029.NGZ 3.697 2007.NGN
Modified CVaR 1.203 -3.564 2029.NGX 4.012 2010.NGJ

Figure 1: Example of outlier types.
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Figure 2: Outlier and effects examples for AO, LS, TC, and IO.

Panel 1 Additive Outlier Example Panel 2 Level Shift Outlier Example

Panel 3 Temporary Change Outlier Example Panel 4 Innovative Outlier Example
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Figure 3: Crude oil outliers identified by contract and type.

Panel 1 Initial Outliers
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Panel 2 Final Outliers
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Figure 4: Natural gas outliers identified by contract and type.

Panel 1 Initial Outliers
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Panel 2 Final Outliers
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Figure 5: Crude oil February 2015 outliers: contaminated, adjusted, and outlier effects
series.
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Figure 6: Crude oil November 2020 outliers: contaminated, adjusted, and outlier
effects series.
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Figure 7: Natural gas June 2012 outliers: contaminated, adjusted, and outlier effects
series.
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Figure 8: Natural gas June 2022 outliers: contaminated, adjusted, and outlier effects
series.
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