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Abstract

In this paper, we attempt to answer four questions: (i) On average, what do the
proportion of the stochastic volatility and return jumps account for the total return
variations in S&P500 index? In particular, which one has more influence than the
other does on the total return variations? (ii) Is the fitting performance of infinite-
activity jump models better than that of finite-activity jump models both in the spot
and option markets? (iii) When will investors require significantly higher risk premi-
ums? Specifically, were there significant changes in volatility and jump risk premiums
during the time period of the extreme events? (iv) Whether the variance risk pre-
mium has predictive power on S&P500 returns, especially can a portfolio based on the
diffusive variance risk premium (DVRP) gain excess returns? For the first question,
we find that most of return variations are explained by the stochastic volatility, and
the return jump accounts for the higher percentage than the stochastic volatility at
the beginning of financial crises. For the second question, we adopt the dynamic joint
estimation to obtain the stochastic volatility model with double-exponential jumps and
correlated jumps in volatility (SV-DEJ-JV) and the stochastic volatility model with
normal inverse Gaussian jumps (SV-NIG) fit S&P500 returns and options well in differ-
ent criteria. For the third question, the time-varying risk premiums show that both the
volatility and jump risk premiums increase after the financial crisis, which represents
the panic in the post-crisis period causes more expected returns. For the fourth ques-
tion, we find that DVRP has predictive power on S&P500 returns both in-sample and
out-of-sample, with R? statistics of 5.40% and 3.46%, respectively. Finally, we further
investigate the economic significance of the out-of-sample predictability on the basis
of asset allocations with DVRP, and the mean-variance portfolio generates substantial
economic gains of over 166 basis points per annum.
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1. Introduction

In this paper, we focus on how the volatility and jump risks affect the financial market
and we adopt various types of risk models with the proposed estimation method for the
empirical study. We attempt to answer the following questions: (i). On average, what
do the proportions of the stochastic volatility and return jumps account for the total return
variations in S&P 500 index, respectively? Which one has more influence than the other does
on the total return variations? (ii). Is the fitting performance of infinite-activity jump models
better than that of finite-activity jump models both in the spot and option markets? (iii)
When will investors require significantly higher risk premiums than before, during, or after
the financial crisis? Specifically, were there significant changes in volatility risk premiums or
in jump risk premiums, or both? (iv) Does the model-based variance risk premium (VRP)
have predictive power on S&P500 index returns?

For the first question, we attempt to understand the composition of return variations so
that we can find the suitable model for pricing and hedging in the financial market (Ait-
Sahalia (2004); Andersen, Bollerslev, and Diebold (2007); Huang and Tauchen (2005)). In
this paper, we utilize the affine jump-diffusion models and Lévy-type jump models with
stochastic volatility to fit the dynamic of index returns, and thus the return variations con-
sist of two components: stochastic volatility risk and jump risk.! Thus, in order to fit our
models well, there is an important issue that how to set up the proportion of these two com-
ponents in total return variations. Moreover, we also want to investigate which type of jump
models has better fitting performance in the spot market. Further, an appropriate model of
return dynamics is essential for option pricing and risk management, because different model
specifications lead to different option pricing results for equity options. Thus, if one model
fits index returns well, will this model has superior forecasting ability in the option market?

For the second question, Kou, Yu, and Zhong (2016) documents the stochastic volatility
model with double-exponential jump outperforms that with other jump-size specifications.
We further extend their works to compare different jump-types model between infinite-
activity? jump models and finite-activity jump models in capturing the joint dynamics of
index returns and option prices, simultaneously. We attempt to involve broader jump models

with more market information for a comprehensive comparison to know how the jump risk

IFor empirical studies that implement the Heston (1993) model by itself or in combination with different types of Lévy
jumps in returns (see Andersen, Benzoni, and Lund (2002), Bates (1996, 2000, 2006, 2012), Bakshi, Cao, and Chen (1997),
Broadie, Chernov, and Johannes (2007), Carr, Geman, Madan, and Yor (2003), Chernov and Ghysels (2000), Christoffersen,
Jacobs, and Mimouni (2010), Eraker, Johannes, and Polson (2003), Eraker (2004), Huang and Wu (2004), Kou, Yu, and Zhong
(2016), Li, Wells, and Yu (2008, 2011), and Pan (2002))

2The asset pricing studies adds an infinite-activity jumps to a Brownian increment in order to model small or large crashes
(see, e.g., Carr, Geman, Madan, and Yor (2003); Carr and Wu (2004); Kou, Yu, and Zhong (2016); Li, Wells, and Yu (2008,
2011)).



presents in the financial market with respect to the specific models and periods.

To compare the fitness of models and calibrate the models’ parameters, we need the
appropriate estimation method corresponding to the models. The maximum likelihood es-
timation (MLE) is an important method for estimating the model’s parameters. However,
MLE is applicable to computes the log-likelihood function from the observable data having
closed-form density functions. For the model including the latent variables or unobservable
data, many researchers introduced the Bayesian Markov chain Monte Carlo (MCMC) or
particle filter (PF)? algorithms which can estimate model’s parameters with latent variables
numerically.

In this study, we adopt particle filter for the unobserved latent variables including re-
turn jump risk, stochastic volatility risk, and volatility jump risk to fit Bayesian posterior
distribution corresponding to the model. Extending the existing joint estimation method?,
we apply the expectation-maximization (EM) algorithm based on the particle filtering to
estimate models’ parameters with rolling window approach in the spot and option markets.
The main advantages of our new approach, dynamic joint estimation, is that it captures
time-varying risk premiums for volatility and jump risks against time for further analysis of
risk premiums before, during or after the financial crisis.

The third question is about the risk premiums in different financial environments. Daily
option surface has two characteristics which are the term structure and implied volatility
smile. The term structure of implied volatility primarily identifies diffusive volatility risk
premium (Broadie, Chernov, and Johannes (2007)) and the implied volatility smile of cross-
sectional option prices which are primarily due to investors’ fear of large adverse price jumps
identifies jump risk premium (Bakshi, Cao, and Chen (1997); Bates (2000); Pan (2002)).
That is, the jump risk premium is the reward required by a risk-averse investor for being
exposed to risk stemming from jumps in its price (Bollerslev and Todorov (2011); Todorov
(2010)).

We use the time series returns and the index option surfaces to analyze the economic
implications of the volatility and jump risk premiums. In the basis of the dynamic joint
estimation, we investigate the pattern of both jump and volatility risk premiums and observe
the changing structure of the option market in different period time. Then, we can answer

the interesting question: when would the time series of the jump risk premium change to a

3Earlier studies that apply MCMC methods to continuous-time models include Eraker, Johannes, and Polson (2003), Li,
Wells, and Yu (2008, 2011), Johannes,, Polson, and Stroud (2009), and Kou, Yu, and Zhong (2016), among others. Some studies
apply particle filter to track the latent variables and estimate the models’ parameters including Johannes,, Polson, and Stroud
(2009), Christoffersen, Jacobs, and Mimouni (2010), and Ornthanalai (2014).

4Existing joint estimation studies use data that cover short time periods of equity index or small subset of the cross section
of options (see, e.g., Chernov and Ghysels (2000); Pan (2002); Eraker (2004); Bakshi, Carr, and Wu (2008); Bakshi and Wu
(2010); Santa-Clara and Yan (2010); Li, Wells, and Yu (2011)). Empirical studies use data that cover long time periods of equity
index and large subset of the cross section of options (see, e.g., Christoffersen, Jacobs, and Ornthanalai (2012); Ornthanalai
(2014)).



different level, which reflects expectation of the risk of the investors in the option market?

The empirical analysis focus on data sets of the S&P 500 daily returns and weekly call
option contracts from January 1, 2007 to August 31, 2017 for a total of 3827 business days
which covers the 2008-2009 financial crisis and the FKuropean sovereign debt crisis. We
compare the empirical results of nested models as follows. The fundamental model is a
stochastic volatility model in Heston (1993), which can clearly capture volatility clustering
during the financial crisis. Next, we adopt the finite-activity compound Poisson processes
with normal and double-exponential jump sizes, and the time-changed Lévy jump processes
to the stochastic volatility model in order to capture the dramatic changes of index returns.

In summary, our answer to the first question is that most of the return variations are
dominated by the stochastic volatility. In fact, the return jump accounts for the higher
percentage than the stochastic volatility only at the beginning of financial crisis events.
Take the the stochastic volatility with correlated double-exponential jumps model (SV-DEJ-
JV) as an example, the percentage of return jump accounts for the return variation up to
92.35% on September 29, 2008 and 78.73% on October 28, 2008 during the early stages
of a financial crisis. The average percentage of return jump accounts for the total return
variation only 0.76 percent. Based on the stochastic volatility model, we observe that the
variations of index returns caused by significant jump are rare and the stochastic volatility
can interpret not only small variations but also a part of jumps of return variations.

On the other hand, we observe that most of the small jumps of index returns can be
explained by the stochastic volatility. Our empirical study emphasizes the low-frequency
character of jumps in index return. At the beginning of the financial crisis, the dramatic
index shocks are caused by both jump risk and volatility risk, and the jumps lead to more
variations of return than volatility does. However, the return spillovers bring the increase of
stochastic volatility so that it enhances the explanatory power of volatility to the variation
of returns in the financial crisis.

Our empirical finding for the second question indicate that the stochastic volatility with
correlated double-exponential jumps model and the stochastic volatility with normal inverse
Gaussian process jumps model (SV-NIG) perform well in the S&P 500 index return and
option markets. When we choose the log-likelihood function to be the criterion, the finite-
activity jumps model, the SV-DEJ-JV model, has the best fitting performance in both spot
and option markets. If we use the Bayesian information criterion (BIC), which considers
a penalty term for both the number of parameters and sample sizes in the model as the
criterion for model selection, the infinite-activity jumps model, the SV-NIG model, will
represent the best performance. For the further examination, the out-of-sample test reports
that the SV-DEJ-JV model has the best forecasting ability since it has less absolute pricing



error in weekly option prices on average. Our findings indicate the benefit of specifications
with the double-exponential jump components and the correlated jumps in volatility, with
the more richly parameterized model performing relative better both for the in-sample fitness
and for the out-of-sample prediction test.

From the empirical result for the third question, different risk factors such as return
diffusion, return jump, and volatility jump risks drive the return variations and the variations
of return variations. It not only may risk factors command the separate premiums such as
volatility risk and jump risk premiums, but also each premium could be time-vary with the
different time periods (Carr and Wu (2009); Todorov (2010)). In this paper, we characterize
the time-varying risk premia, implied by the large panel of S&P500 index and options, and
the risk premium dynamics directly reflect the hedging behavior of investors in stock market.
Andersen, Fusari, and Todorov (2015b).

We observe an interesting phenomenon to the jump risk premiums that significantly
increase after the large shock period in the financial crisis®. Take the SV-DEJ-JV model as
an example, we find the average annualized jump risk premiums are 0.003% during the large
shock period in the financial crisis. However, after the financial crisis, the average annualized
jump risk premiums significantly rise to 0.019%. These special patterns also appear during
and after the large shock time period in the European debt crisis. These patterns illustrate
that investors reflect the panic of bearing jump risk in the post-crisis period more significant
and request more expected returns.

For the fourth question, we investigate the statistical and economic significance of the
variance risk premium which represents the premium that the investor pay to insure them-
selves against variance risk (Carr and Wu (2009); Bakshi and Kapadia (2003)). We con-
duct additional analysis on both in- and out-of-sample return predictability afforded by the
SV-DEJ-JV model’s® diffusive variance risk premium (DVRP) and examine the economic
significance of the DVRP via an asset allocation experiment. We use the fundamental way
of forming an out-of-sample forecast by running the predictive ordinary least-squares (OLS)
regression on a rolling basis for one year sample. In-sample tests show that DVRP produces

predictive regression with positive the statistically significant adjusted R? (3.55%-5.40%).

5Note that we define two time intervals September 15, 2008 to March 23, 2009 and August 4, 2011 to November 30, 2011
as the large shock periods in the 2008-2009 financial crisis (From August 1, 2007 to June 30, 2009) and the European debt
crisis (From October 1, 2010 to December 30, 2012) according to the £0.03 returns to split these time intervals. We conduct
the empirical analysis in five time intervals: (1) Before the large shock time period in the financial crisis (From August 1, 2007
to September 15, 2008), (2) During the large shock time period in the financial crisis (From September 15, 2008 to March 23,
2009), (3) After the large shock time period in the financial crisis and before the large shock time period in the European debt
crisis (From March 23, 2009 to October 1, 2010), (4) During the large shock time period in the European debt crisis (From
October 1, 2010 to December 30, 2012), (5) After the large shock time period in the European debt crisis (From December 30,
2012 to August 31, 2017).

6We adopt the SV-DEJ-JV model to examine the return predictability based on the variance risk premiums because it has
the best fitting performance in both the spot and option markets



The maximum adjusted R? statistics of 5.40% is at the four-month horizon while the weight-
ing least-squares (WLS) regression is used for the robustness check and is still statistically
significant at the 5% level with adjusted R? of 1.12% for the quarterly horizon. We fur-
ther find that the maximum adjusted R? can achieve 34.96% at four-month horizon for
2008:09-2009:03 sample period (During large shock period in the 2008-2009 financial crisis).
Moreover, the return predictability of DVRP can even be extended to one year (twelve-
month) with adjusted R? of 8.40% that is statistically significant at 5% level in the large
shock period.

Goyal and Welch (2008) indicate that, despite significant evidence of in-sample predictive
ability, popular predictor variables fail to predict the excess returns based on the out-of-
sample tests. In this paper, we also examine the out-of-sample return predictability of the
SV-DEJ-JV’s model DVRP. The out-of-smaple R? (OOS R?) is calculated by comparing
the mean-squared errors for predicting excess returns using the predictive model versus the
average historic estimate of the equity premium. We obtain the positive OOS R? statistics
1.49%, 0.39%, 3.46%, 3.28%, and 1.58% at horizons of two, three, four, five, and six months,
respectively, but those results are not statistically significant even at 10% level. However,
the positive OOS R? means that the empirical model outperforms the historical average out-
of-sample in the S&P500 index excess returns. On the period after the large shock (March,
1, 2009 to December 31, 2009), there are statistically significant and positive at one- to
seven-month horizons, and DVRP can produce the maximum predictive regression OOS R?
statistics of 35.00% at the two-month horizon.

In addition, we examine the economic significance of DVRP’s predictive ability via an
asset allocation analysis and find that DVRP generates large utility gains for a mean-variance
investor who allocates between equities and risk-free bills”. When a relative risk aversion
coefficient is three and without short selling constraint and predictive excess returns is at
three-month horizon, a mean-variance investor would be willing to pay 166 basis points in
annualized portfolio management fees at various rebalancing frequencies to have access to
excess return forecasts based on DVRP and this trading strategy generates a Sharpe ratio
of 0.44 per annum at three-month horizon.

This study provides several contributions to the existing literature. Our first contribution
is to find that the return jumps account for a large proportion of the total return variations
in S&P 500 index returns during the early stages of a financial crisis. After these days,
the stochastic volatility becomes the major impact factor to the total return variations. In
fact, we also find that most of the small jumps in index returns which are explained by the

stochastic volatility. Therefore, we only need to focus on capturing the large jumps of index

"We use the S&P500 index futures to be the risky assets and three-month U.S. Treasury bills (T-bills) to be risk-free assets.



returns when we consider the model with the stochastic volatility.

The second contribution is to find that the SV-DEJ-JV model has the better fitting per-
formance in both the spot and option markets owing to the double-exponential distribution
has the monotonicity and heavy-tail feature properties to capture small and large jumps
well (Kou (2002); Kou, Yu, and Zhong (2016)). Moreover, the correlated jumps in volatility
make latent stochastic volatility rapidly track the return variations, that is, it has the better
performance than the models without volatility jumps. With respect to the computational
efficiency, the SV-NIG model has fewer parameters than the SV-DEJ-JV model though they
have similar fitting performances. Therefore, the SV-NIG model has superior performance
based on the Bayesian information criterion.

Our third contribution is to extend the estimation methodology. We use the sequential
importance resampling and the particle filtering to track the latent variables of the models,
such as jump sizes, jump times and stochastic volatility, and these filtered latent variables
are beneficial for our analysis to obtain more implied market information. Then we further
use the rolling windows approach to calibrate the time series of model parameters and risk
premiums of stochastic volatility and return jump risks. In basis of the time varying risk
premiums.

The fourth contribution in this study is to observe that the jump risk premium is in-
creasing after the crisis by dynamic joint estimation, which shows the panic in the post-crisis
period causes more expected returns. Moreover, we find the DVRP has predictive power
on S&P500 index excess returns both in-sample and out-of-sample test. The out-of-sample
validation shows the DVRP has economic significance of stock return predictability after a
large financial shocks and the mean-variance portfolio on the basis of asset allocation with
DVRP can generate certainty equivalent gains over 166 basis point per annum for the last
10 years.

The rest of the paper is organized as follows. Section 2 introduces the models for different
distributions on jump size. Section 3 introduces the particle filtering, smoothing algorithm
and the EM algorithm utilized in our study and discuss model diagnostics to evaluate model
performance. Section 4 presents the in-sample and out-of-sample predictive regression and

the asset allocation analysis for DVRP. Finally, Section 5 concludes this paper.



2. Theoretical framework

2.1. Model specification

Let asset returns, (yt)fzo, denote the logarithm of the equity index returns, S, i.e.,
Yy = In (S;), following the nested versions of a general model with mean-reverting stochastic
volatility. We add the Lévy-type jumps in returns and/or volatility in order to model the
sudden changes induced by rare events. Under the physical probability measure (P), the
general dynamic process of the return and variance are described by the following stochastic
differential equations (SDE):

dyt:<,u——vt ¢J(—z))dt+\/_d t+dyt,
dvy = & (0" — vy) dt + oy /0, dWy, + dJ,,,

(1)

where pi; is the physical time-varying drift term of index returns, measuring the expected
rate of return, v; is the instantaneous variance process of return. Moreover, de’: , and dWE .
are a pair of correlated Brownian motions with correlation coefficient pdt. The p controls the
correlation between the index returns and variance and captures the leverage effect which is
typically found to be negative (Black (1976)). ngt represents the Lévy-type jump of finite
or infinite activity in return process and d.J, represent jumps in volatility. ¥ (u) calculated
from E¥ [eml&t] = e*tw%‘), is a characteristic exponent of the jump component. We can use
the various specifications of distribution of jump components in the above general model,
and it can generate different fitting performance for distinct situations. The basic stochastic
volatility (hereafter SV) model which we restrict the general model’s jump component to
zero, ie., dJ,, = dJ,, = 0, is shown in Heston (1993) who assumed that the variation of
index return follows the square-root process (Cox, Ingersoll, and Ross (1985)).

The SV model has several characteristics for capturing the dynamic process of index
returns: (i) It can avoid the negative variations which is the drawback of the SV model of
Hull and White (1987). (ii) The variation of equity index return have the mean-reverting
property with the physical long-term level mean of variance and the physical rate of mean
reversion coefficient of variance . (iii) The correlated coefficient between variance and returns
servers to control the long-term skewness and captures the leverage effect. (iv) The volatility
variation coefficient serves to control the long-term kurtosis. Thus, this model can capture
several important features of the S&P500 return dynamics and also provide an analytically
tractable method of pricing options in Heston (1993).

Since the SV model belongs to the continuous-time model, it cannot capture the large



return jumps in short-term, ”smile” and “smirkiness” exhibited in cross-sectional option data
(Bakshi, Cao, and Chen (1997); Bates (2000)). Intuitively, the diffusive stochastic volatility
only increases gradually with a sequence of small normally distributed increments, that is,
it cannot measure the rapid shock of returns. In order to modify those problems of the SV
model, we introduce the SV model with a pure jump Lévy process to measure the jump
risk. Because their flexibility in generating desired distributions and jumps and their path
does not have to be continuous, they may help to resolve some known empirical biases of the
Black-Scholes model (Black and Scholes (1973)), such as the realized skewness and excess

kurtosis in the distribution of the index returns.

2.1.1.  Finite-activity lévy jumps

The first jump-diffusion model is the increment of compound Poisson jump process® of
Merton’s jump (hereafter MJ) (Merton (1976)) which assumes that jump size is indepen-
dently drawn from the normal distribution, fy;;(z). Furthermore, Bates (1996, 2000), Bak-
shi, Cao, and Chen (1997), and Pan (2002) developed an affine jump-diffusion model with the
stochastic volatility and Gaussian jumps (hereafter SV-MJ). That is, we set d.J,, = 0, and

assume the total return shocks, d.J*

,.¢» following a compound Poisson process with a constant

. . . NE . .
jump intensity, d.J,, = &, ,dN,, = d (Zni’é y n), where we assume return jump sizes are

normally distributed, len ~N (’yp , (§P)2>, N;Pj , ~ Poisson ()\Edt), so that the compensator

of the return jump is
P . P p L py2
g (=) = A, - (eXp(v +5 (9%) ) —1)-

For this dynamics process, we have observations {y;}1,, latent volatility variables {v;}L_,
jump times {N,, }/_,, jump sizes {fgn}ﬁé and model parameters space © = {u, k%, 6%, o, p,
AP, 6F, )\5}. Thus, the SV-MJ model can capture two important features of equity index
return dynamics, namely stochastic volatility and return jumps, and also provide analytical
tractability for option pricing (see, e.g., Bates (1996); Bakshi, Cao, and Chen (1997); Pan
(2002)).

Duffie, Pan, and Singleton (2000) proposes the stochastic volatility model with correlated
Merton’s price jumps and jumps in volatility (hereafter SV-MJ-JV) model. Correlated jump

in return and volatility help to model rapid increase in volatility that cannot be easily

8The asset pricing studies adds a compound Poisson jump (finite-activity jumps) to a Brownian increment in order to model
large crashes (see, e.g., Andersen, Benzoni, and Lund (2002); Bates (1996, 2000, 2006); Bakshi, Cao, and Chen (1997); Broadie,
Chernov, and Johannes (2007); Chernov and Ghysels (2000); Christoffersen, Jacobs, and Mimouni (2010); Duffie, Pan, and
Singleton (2000); Eraker, Johannes, and Polson (2003); Eraker (2004); Huang and Wu (2004); Kou (2002); Kou, Yu, and Zhong
(2016); Li, Wells, and Yu (2008); Pan (2002); Santa-Clara and Yan (2010); Li, Wells, and Yu (2011))



captured by the square-root process. The SV-MJ-JV model has contemporaneous arrivals,
ie, N,, = N;, = N, which follows a Poisson process with intensity, A, = Ay = A".
The compound Poisson process of volatility jump which jump sizes follow the exponential
distribution and we assume the variance jump sizes, ¥, is exponentially distributed with
mean /i, i.e., & ~ exp (uf). On the other hand, the return jump size are conditional
normal distributed, i.e., £ [ & ~ N (’yP +ps €, (5P)2>, fmy—gv (x), where py is a correlation
coefficient between return jumps and jumps in volatility. The compensator of the return jump

and the average jump amplitude is

exp (1F + 4 (57)°)
L= pypiy

1/)1]51917{]\/ (_Z> = )\5 ) -1

For this dynamics process, we have observations {y;}1,, latent volatility variables {v;}I_,,
return and volatility jump times { Nf }L,, jump sizes {fgn}ﬁo, volatility jump sizes {ﬁfm}ﬁo
and model parameters space © = {u, k¥, 0% 0, p, 7%, 0%, NE b s}

We further consider the model with the increment of compound Poisson jump process of
double-exponential (see Kou (2002)) jumps (hereafter DEJ) which assumes that jump size
is independently drawn from the double-exponential distribution with parameters p®, nF,
and n=F, fpgy (z). This distribution has an important property: the asymmetric leptokurtic
feature. With this feature, the return distribution is skewed to the left, and has a higher
peak and two heavier tails than those of the normal distribution (see Kou (2002)). This
resulting in a potentially better fit for small jumps, and the heavy-tail features also helps fit
both large positive and negative jumps during the crisis period. Furthermore, Kou, Yu, and
Zhong (2016) developed an affine jump-diffusion model with the stochastic volatility and
double-exponential jumps (hereafter SV-DEJ). That is,

P
Ny,t

A =d | D (wemnér + 1= (=) |

n=0
N - 1,  with probability p¥,
"] —1, with probability ¢,

where NE’ , 1s used to depict the number of the return jump which follows a Poisson process

with the intensity )\E. N, is the jump direction, i.e., NV, = 1 means upward jump, N,, = —1



means downward jump, the jump size

e dg &Y, with probability p,
Y &, * with probability ¢¥,

and the compensator of the return jump and average jump amplitude is

P P
QMI;EJ (—i) = Ay - b + 1 -1,

where p* is the return upward probability with 0 < p¥,¢* < 1 and p¥ +¢* = 1, and ¢ o

and &, ;P are exponential random variables with means " and n~F, respectively. For this
dynamics process, we have observations {y; }/_ 0 | latent volatility variables {v;}X 0, return
jump times {Ny,}{_,, upward jump sizes {£;}; }n , downward jump sizes {1 }n 5, and
model parameters space © = {u, k%, 0%, 7, p, 77+P, n- P,pp, )\5}.

Kou, Yu, and Zhong (2016) considered the stochastic volatility with correlated double-
exponential jumps (hereafter SV-DEJ-JV) model. The SV-DEJ-JV model also has contem-
poraneous arrival. The compound Poisson process of the correlated double-exponential jump

1s:
Ng’yt

dJ,, =d Z (Lva=n) (&5 4 ps&on) + Liva=—) (6,0 + &) | -

n=0

N 1,  with probability p*,
" —1, with probability ¢¥,

where the jump size

& &+ ps€y,,  with probability p®,
o fy w +ps&y.,, with probability ¢,

and the compensator of the return jump and average jump amplitude is

P P
Upps_gv (—1) = A, - ! : P + 1 —-1).
- Y L—pypy L—pgtF 1+ F

For this dynamics process, we have observations {y;}1,, latent volatility variables {v;}L_,

return jump times (volatility jump times) {N,,}/_,, upward jump sizes {£;,7 N7, down-

ward jump sizes {f"P},]yPO, volatility jump sizes {gvﬁn}szo and model parameters space

© = {1, k", 0%, 0y, p, ™ T D8N e, p -

. d P
9The notation = mean equal in distribution.
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2.1.2.  Infinite-activity lévy jumps

In this paper, we consider two types of infinite-activity Lévy jumps'®, namely, the
Variance-Gamma (hereafter VG) process and Normal Inverse Gaussian (hereafter NIG) pro-
cess. First, we introduce the increment of the VG process introduced by Madan and Seneta
(1990) and Madan, Carr, and Chang (1998). Carr and Wu (2004) proposed the theoretical
framework and had established Lévy processes as an attractive alternative to Compound
Poisson processes for modelling the asset prices dynamics.

The VG process is obtained by evaluating an arithmetic Brownian process at a stochastic
time interval T} (time-changed) with drift 4 and variance o; by an independent gamma
process. That is, ng: . = VW1, + o5/Ties, where €5, is a standard Brownian motion,
independent of T}, and T; follows the gamma distribution, i.e., dJE} ,~N (fyPTt, (U([;Tt>2> and
T, ~ Gamma (Oépdt, 1/ ﬁp). The compensator of the return jumps which is log characteristic

function by setting u = —i is
71@ 41 (UIP)2
Vo (—i) = —at-In |1 — L2 )

Furthermore, Li, Wells, and Yu (2008, 2011) consider the stochastic volatility with the VG
jumps to model the dynamic of index returns and option pricing.

We consider another example of an infinite-activity jump model is the NIG process in-
troduced by Barndorff-Nielsen (1997, 1998). The NIG process is obtained by evaluating
an arithmetic Brownian process at a stochastic time interval (time-changed) T, with drift

362 and variance § by an independent inverse Gaussian process with parameter §, o and 3.
That is, dJPt = pF (5P)2Tt + 0F\/Tie s+ Where T; follows the inverse Gaussian distribution,

Y,
dJ,, ~ N (ﬁP (5HD)2Tt, (5PTt)2>, T, ~ IG (1,(5Pdt (aP)? — (BP)2), and the compensator

of the return jump is

o () =10 (Vo) = (57 =l - (57 17,

Table 1 summarizes the Lévy measures and characteristic functions for selected pure jump

Lévy processes.

10The asset pricing studies add infinite-activity jumps to a Brownian increment in order to model large crashes (see, e.g.,
Carr, Geman, Madan, and Yor (2003); Carr and Wu (2004); Huang and Wu (2004); Kou, Yu, and Zhong (2016); Li, Wells, and
Yu (2008, 2011), Ornthanalai (2014)).
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2.2.  The risk-neutral dynamics and risk premium specification

For the purpose of option pricing, we need to change the return dynamics under the
physical measure to the risk-neutral measure (Q). Thus, we need to consider the change of
probability measure between P and Q for each model. We follow Gerber and Shiu (1994) to
use the Esscher transform (Esscher (1932)) to define the change of the probability measure
and find the equivalent probability measure for continuous and discrete processes in order to
price derivatives. Table 2 summarizes the resulting risk-neutral measure distributions from
the change of the probability measure through the Esscher transform for selected pure Lévy
jump that we present in Table 1.

Under the Q measure, the general dynamic process of the return and variance follow:

1
dyt:(u——vt 2 (- ))dt+\/_d o4 ase,

dvt:ﬁ(@(ﬁ —vt)dt—l—av\/_d 25—|—dJ

(2)

Since we assume the coefficient of the risk premium of the Brownian motion of the return

process, g, we can rewrite p as follows:
p=re—nsve =y (=i) + 4 (—i). (3)

The difference between p and r; is the total equity risk premium, composed of the risk
premium of Brownian motion of the return process and the risk premium of the return
jump process. The price jump risk premium (hereafter PJRP) in index returns is given
by ny = 5 (—i) — ¢9 (—i), where n; governs the compensation demanded by investors for
bearing to the discontinuous component of the return process. On the other hand, since we
assume the risk premium of the Brownian motion of the variation process, 7,, we can rewrite
the variance dynamics (Heston (1993)) under Q as follows:

]P’QIP’
K200 = k0P, KO = kF + 1, and 9% =

(4)

RE 4,

The instantaneous variance risk premium (hereafter VRP) is obtained as follows:
B (dVe) = B (dVy) = (% = 67) wedt + (AT — ) dt. (5)

The equation 5 shows that the VRP can be decomposed into two components'! when we

' The decompensition of the VRP are also discussed in Bollerslev and Todorov (2011), Li and Zinna (2018), Bardgett,
Gourier, and Leippold (2018), Alt-Sahalia, Karaman, and Mancini (2018), Kilic and Shaliastovich (2018), and Fan, Xiao, and
Zhou (2018)
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consider the correlated jumps in volatility model, i.e., SV-MJ-JV and SV-DEJ-JV. The first
component is the diffusive variance risk premium (hereafter DVRP = (IiQ — mp) Uy = 1y XUp),
and the second component is variance jump risk premium (hereafter VIRP=p2\Y — FAF).
Note that under our model specification, all the risk premiums have analysis formulas. We

can further decompose the VJRP of the SV-DEJ-JV model into two parts: the variance

P

P1F) and variance downside

upside jump risk premium (hereafter VUJRP = p@A\2;Q — pF)

jump risk premium (hereafter VDJRP = ¢@A2uQ — ¢PALE).

2.3.  Characteristic functions and option pricing formula

In this paper, we use the options price with the European framework and derive the
characteristic function of each model under Q by the partial integro-differential equation
(PIDE). The probability density function can be computed by the Fourier inversion approach
for option pricing (see Heston (1993); Bates (1996); Bakshi, Cao, and Chen (1997); Bakshi
and Madan (2000); Duffie, Pan, and Singleton (2000)). We define the characteristic function
of the state variable y, (the log-price at the time T') as

® (yy, v, 1, T : ¢) = E" (ewyT’yt, Ut) (6)

where ¢ denotes the imaginary unit and ¢ is the Fourier transform variable. The Feynman-
Kac theorem provides the link between SDEs and partial differential equations (PDEs). It
also assures that the solving the expectation is equivalent to solving the corresponding PDE.

Given the risk-neutral dynamic of the log-price in SV series models discussed in the sec-
tion 2.2, the Feynman-Kac formula yields the following partial integro-differential equation

(PIDE) which can be solved by the characteristic function @ in the equation 6:

0P 1 . L) 0P 0P
o + (7“ — gl Uiy (=) — ngJ(_Z)) Em + 12 (0% —v) 0,
Ea% o2v; 0% oo 0%
2 Oy? 2 Ov? pov "By, 00,

+ / [(I) (yt + Jy? Ut, t> T; U) - (yt7 Ut, ta T; U)] : 77'%] (‘]y) d‘]y

o0

+ / [q) (yta Uy + vat7T; U) - (yta Ut7t7T; U’)] ) 71-gl:{.] (Jy7 Jv) dJdev = 07

[e.e]

where w%(—i) and wgm(—i) are compensators of return jumps and correlated return jumps,
respectively. ng and W%RJ are the Lévy measures for return jump (RJ) and correlated return

jump (CRJ) under Q, respectively.
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In order to compute theoretical options prices using the proposed stock price dynamics
in equations 2, we invert characteristic functions of the transition probability for the stock
price. The solution to characteristic function is founded by exploiting the affine structure of

the modelling framework:

D (yp,ve,t, T : ) = exp (igy, + A(1;¢0) + B(1;0)v, + C(750)yr)

where 7 = T — t and the terminal conditions are A(0;¢) = B(0;¢) = C(0;¢) =. The

solutions of the PIDE in equation 7 can be solved as follows:

A(riu) = 1202 <DT ~ 2w (%)) + 7 (1 = ¥ra(=1) = g (=0)) i9) |

(2

+ TgrRJ +/ gcora(s)ds,
0

1_€h7'

B(riu) =D 15

C(t;u) =0

with

gy = / (exp (i) — 1) - 72, (J,) .

[e.9]

gcrJy = / / (eXP (ibey + B (7'§ </5) Jy) - 1) ) 7TgRJ (Jy, Jv) dJdew

h=/(K® = poyig)? + o3 (i¢ + ¢?),
k@ — poyip + h J— K@ — poyi¢ + h
o2 ’  KQ — poyip— k'

D=

The specifications of gry and gcry (7) considered in this papers are listed in Table 3. Given
that the risk-neutral characteristic function of asset price ®, European-style derivatives can
be valued using the Fourier inversion method as in Heston (1993), Bates (1996), Bakshi,
Cao, and Chen (1997), Bakshi and Madan (2000), and Duffie, Pan, and Singleton (2000).
Then we can develop an analytical expression in terms of ® and obtain call prices by using
the Fourier inversion approach (the fast Fourier transform) with factor e=* (see Carr and

Madan (1999)):

e—ak o e_id)kq) (ytv Ut, t7 T? ¢ —1 (CY + 1))
C(St7K7t7T) - T - Real <A a2+a—¢2+2¢(2a+1) dgb)
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3. Estimation method

The maximum likelihood estimation (hereafter MLE) is an important method for estimat-
ing the model’s parameters. However, if the sample data includes the latent or unobservable
data, we cannot directly use MLE method to estimate parameters because MLE only com-
putes the log-likelihood function from the observable data which have closed-form density
functions. In order to improve this drawback, many researchers introduced the Bayesian
Markov chain Monte Carlo or combined the MLE with Kalman filter or Particle filter meth-
ods (see, e.g., Pitt and Shephard (1999); Pitt (2002); Johannes,, Polson, and Stroud (2009);
Christoffersen, Jacobs, and Mimouni (2010); Li, Wells, and Yu (2008, 2011); Ornthanalai
(2014)) which are numerically based and does not rely on closed-form density function, and
thus we can estimate parameters with latent variables.

In this paper, our models have the unobserved latent variables such as return jump
risk, stochastic volatility risk, and volatility jump risk. Since the stochastic volatility and
jump are unobserved variables, the particle filtering algorithm provides the common and
convenient tool for the analysis of latent factor models though sampling the particles to fit
this model and obtain the Bayesian posterior distribution. However, the particles may lose
some information if a time series of the sample is a longer period of time after resampling
the particles. That is, the resampling will cause the particles to be more monotonous and
the particles cannot track the series of the state variables accurately. In order to modify
those drawbacks, Pitt (2002) and Godsill, Doucet, and West (2004) provide the backward
simulation method to resample the particles in the reverse-time direction conditioning on
future states. Moreover, we combine further the EM algorithm which is an iterative method
to fit complete likelihood function with Bayesian posterior distribution with particle filters

and smoothers (Kimand and Stoffer (2008)) in order to estimate parameters of our models.

3.1.  Parameter estimation with PF and EM algorithms

To simplify our empirical analysis, we consider the first-order Euler discretized version
of the continuous-time model at daily frequency. We transform the equation 1 into the

discrete-time version, and it becomes:

1 )
Ry = (,M - §Ut - 1@ (_Z)> A+ UtAe]zlj,tJrl + ‘]g),tﬂv

(8)
Vi1 =V K (GP - Ut) A+ o/ v A (Peg,tﬂ +v1- p2€3t+1) + ‘]Et-&-l?
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where A is the time length. The return, R; = y;+1 — vy, follows the normal distribution with
mean, (1 — 3v; — ¢F/C) A+ J7, ., and variance, v;. In order to use the particle filtering
method to track the dynamics of the latent variables, we substitute the measure equation
(the second equation of 8) into the state equation (the first equation of 8)) and set A = 1(1

day). Then we get the state equation of associating with the return, Ry, as follows:

1 .
Vg1 = V¢ + K" (GP - Ut) + poy <Rt+1 - (M - §Ut - wg(_l)) - J5t+1)

+ouy/ury/ 1 — p2615,t+1 + J5t+1~

(9)

According to the state equation and measure equation, we can construct the state-space
of stochastic volatility model. Then we can use the particle filtering algorithm to track
the latent variables and estimate the parameters with the EM algorithm. We divided the

estimation process into three steps:

3.1.1. Step 1: Particle filtering algorithm

Given observable return, R;, we sample each random variables with M!'? particles for
each time ¢ from their corresponding distributions. Then we can evaluate the weight 0,
corresponding to v; and latent random variables through the equation 8. The weight is given
by:

- _1 1 . ?
Wer1 o< p (Resa|ve) = (2mvy) 2 exp <——U (Rt+1 - (M B L vy (—Z)> - J?Iit—o—l) ) :

Given the sampling latent random variables and the weight w, at time ¢, the posterior

distribution of stochastic volatility is given by normalizing the weight w;:

i i _ t+1 s
p(vt+1|Rt+1) —(A)tJrl—M—’vi, for i = 1,...,M.
Zj:l Wit

Thus, we can also use the resampling algorithm to resample the state variables with corre-

sponding weight, wy .

3.1.2.  Step 2: Smoothing algorithm

After repeating the iteration for particle filtering from time 0 to 7' — 1, we obtain the

particle series of the state variables. However, the particles may loss some information if a

12We apply a particle filtering algorithm with 300 particles to track the latent variables in this paper.

16



time series of the sample is a longer period of time after resampling the particles. That is,
the resampling will cause the particles to be more monotonous and the particles cannot track
the series of the state variables accurately. In order to modify those drawbacks, Pitt (2002)
and Godsill, Doucet, and West (2004) provide the backward simulation method to resample
the particles in the reverse-time direction conditioning on future states. The weight for the

smoothing process is associated with the equation 9 as follows:

~ _1 1
Wejt+1 X p (vilver, Rir) = (2mA1) 2 exp (—ﬁ (Vi1 — A2)2) ) (10)
1

A = cPy, (1 — ,02) ,
1 )
Ay = v — K" (9]? - Ut) — POy (Rt+1 - (M - §Ut - @Z’E) (_Z)) - J5t+1) - Jf,t+1~

Given the sampling latent random variables and the weight w4 at time ¢, the posterior
i

distribution of stochastic volatility is given by normalizing the weight W1

~i
Wilt+1

M—"/i’ fOf’izl,...,M.
> i1 Wit+1

p (Uﬂviﬂ, Rt+1) = w,?\m =

Thus, we can use the smoothing algorithm to resample the state variables with corresponding

weight WZ\tJrl from time 7" — 1 to 0.

3.1.3.  Step 3: Ezxpectation-mazimization algorithm

After particle filtering step and smoothing step, we obtain the state variables for each
model. Now, we combine the EM algorithm with particle filters and smoothers (Kimand
and Stoffer (2008)) to estimate parameters of model. Let U be the set of the parameters of

model, the general complete likelihood function is

T T
L (Y|Ruir,vor, Jyrs Joa) = Fo) - [P0 - TT ATl Toe) - T F(Belvirs I 00)
t=1 t=1 =1
T
. H f('Ut|Ut—17 Rta J?Iit’ Jf,t)
t=1

(11)

There are two steps for the EM algorithm. (i) E-step: Computing the expectation of the

complete log-likelihood function given the observable data (log-return data), latent variables

17



and the k-th estimated parameters, denoted by O (\If|\IJ(k)).

Q (\I’|\I/(k)) =F [(lnﬁ (\I[|R1:T7UO:T7 JP JP ) |y1:T7 \Ij(k))}

y,t) Yt
M
1 . : ‘ (12)
= M Z Int (\P’RIITﬂ U{]:Tv Jgff:T? Jg:]fT) )
j=1

where M is the number of the particles. (ii) M-step: we find the specific parameters by

maximize the equation 12 and obtain the estimated parameters, U**!. That is,

U = arg maxQ (\If]\Ilk) .
v

Repeating above two steps of the EM algorithm until the log-likelihood function converge

and obtain the estimated parameters.

3.2.  Dynamic joint estimation

The joint estimation establishes the connections between the spot market and option
market, and we further extend the implied information based on the model parameters to
dynamic joint estimation. For each date ¢, we use the rolling time-window for four years
historical S&P500 index returns to evaluate the log-likelihood value under P, and jointly
adopt the option prices on the date ¢ to calibrate model parameters and risk premiums. For
example, on August 31, 2017, we do the particle filtering and smoothing to obtain the latent
variables during the period from August 31, 2013, to August 30, 2017, and then estimate
the parameter with the cross-sectional of call options data on August 31, 2017.

Following Hu and Zidek (2002) and Ornthanalai (2014), the weighted joint log-likelihood
for each day:

T + Nt L]E)eturns,t + T + Nt L?ptions,t

LJ oint —
t 2 T 2 N,

for t=1,..T%, (13)

where T3 is the number of days in the rolling windows on each trading date, and N; is
the total number of call options data on each trading date time ¢. 0.5- (7' + N) serves as a
scaling constant and does not impact the parameter estimates.

The log-likelihood for daily S&P500 index returns, LY is related to particle filtering,

returns,t?

smoothing and EM algorithm at time . However, there is an issue about the log likelihood

P

returns.t» When we compare the model performance of the dynamic fitting, the log

function, L

likelihood function of each model has different numbers of parameters. That is, we cannot

131In this paper, we set the rolling time interval, T, to four years.
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directly compare the models with log likelihood function, because they have different a
dimension of the model parameters. Therefore, we change the log likelihood function which

is corresponding to returns. That is,

(R — (1 — Yoy —w5(—0) — JB)°

14
o (14)

1
returnst = Z _§1n 2mue 1)
Note that this log-likelihood function under P in the equation 14 is only used to examine the
performance of the model. When we optimize the joint likelihood function, we still use the
log-likelihood function in the equation 13. Moreover, in order to compute the log-likelihood

for fitting call options, LY we assume that the option pricing errors related to the

options,t?

implied volatility following a normal distribution,
er; =1V, (OFF) = IV, (O0%) ) for j=1,.., N (15)

Assume that the implied volatility error , g,; ~ N (0,02,), where 02, is the variance of the
Black-Scholes implied volatility of the market option price for each day. Thus, the complete
log-likelihood of option price is:

2
1 1V, ( _ [V, (OModel
Lopiionss = _§ln (moei) + Z ( t Oy o) : (16)

where IV} (O?]S) is the Black-Scholes implied volatility of the j-th market-observed call
option price , OFf = C (Sy, Ky j, 715, 11)- 1V; (O}9) is the Black-Scholes implied volatility
of the j-th call options price, O%"del = C (V4|St;, Kt j, 7 4,7 ;) computed using the model,

where the parameters S, j, K, ;, 7, ;, and 7, ; are the underlying S&P500 index, strike, days-to-
expiration, and riskless rate and W, is the parameter vector containing the model risk-neutral

parameter and risk premiums h;; and hg .

4. Empirical analysis

Section 4.1 summarize the S&P500 index returns and options data. Section 4.2 reports
model estimation results under the physical measure (IP) and discusses the decompositions of
return variances and jump risks. Section 4.3 reports model fitting results using dynamic joint
estimation method under the risk-neutral measure (Q) and explores performances of various
models both in-sample and out-of-sample testing. Section 4.4 analyzes the equity jump risk

premium, volatility risk premium (variance risk premium, VRP) and its decomposition.
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4.1.  Data and preliminary analysis

The daily returns and call options for Standard & Poor’s 500 index are obtained from
Datastream. The U.S. 1 year Treasury Zero-Coupon Yield is used as the risk-free rate. The
sample period extends from January 1, 2003, through August 31, 2017, for a total of 3827
business days. The sample period includes two severe episodes of market turmoil which are
the 2008-2009 global financial crisis and the 2011 European sovereign debt crisis. Table 4
provides summary statistics for the daily log returns of S&P500 index prices and log returns.
The daily mean of index returns is about 2.70e-04, and its average historical volatility is
about 1.32e-04. Index returns are left-skewed and leptokurtic as the skewness is negative
-0.33 and the kurtosis is 12.2, suggesting the presence of rare and large movements.

We apply several exclusion filters to construct option data set (see Ait-Sahalia (1998)).
First, we keep options with more than 6 days and less than a half calendar year to expiration
and moneyness between 0.92 and 1.08, because they tend to be more liquid. Second, we only
keep Wednesday options because it is the unlikely day to be a holiday and reduces the
computational burden of the estimation which mentioned in Andersen, Fusari, and Todorov
(2015a), Bates (2000), Christoffersen, Heston, and Jacobs (2009), Pan (2002), Johannes,,
Polson, and Stroud (2009), Ornthanalai (2014), Bardgett, Gourier, and Leippold (2018),
and etc. Third, in order to mitigate the impact of price discreteness on price valuation, we
eliminate call option prices lower than $0.375. We also eliminate call options which fall into
the conditions C; > S, and C; < S, —e "=V [K where C, is the call option, S, is stock price
at time t and K is the strike price, because those contracts have the arbitrary opportunities
(see Bakshi, Cao, and Chen (1997)). Moreover, in order to balance the features of option-
implied volatility and computation efficiency, we take the call options for every 20 strike
prices. These adjustments leave a total of 22,828 S&P500 call options with a daily average
of 41 S&P500 call options.

According to the moneyness, call options can be classified as six categories, (i) deep-out-
of-the-money while moneyness S/K < 0.94, (ii) out-of-the-money while moneyness 0.94 <
S/K <0.97, (iii) at-the-money while moneyness 0.97 < S/K < 1.00 or 1.00 < S/K < 1.03,
(iv) in-the-money while moneyness 1.03 < S/K < 1.06 and (v) deep-in-the-money while
moneyness 1.06 < S/K. According to different maturity, call options can be classified as
six categories, (i) extremely short-term (< 30 days); (ii) short-term (30—60 days); (iii) near-
term (60—90 days); (iv) middle-maturity (90—120 days); (v) long-term (120—150 days); (vi)
extremely long-term (> 150 days). Thus, the moneyness and days-to-expiration classifi-
cations resulted in 36 categories for empirical studies. Table 5 describes sample statistics
properties of the S&P 500 call prices by dividing the call option data into several categories.
From Table 5, Panel A, there is a total numbers of 22,828 call option contracts, with at-the-
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money, out-of-the-money and in-the-money options respectively taking up 40.64%, 31.35%
and 28.01% of total sample. From Table 5, Panel B, call price ranges from $2.48 for ex-
tremely short-term and deep out-of-the-money options to $147.77 for extremely long-term
and deep in-the-money options. Panel C of Table 5 compute average implied volatilities
(IVs) which are implied by Black-Scholes formula. S&P500 IVs range in our sample from
4.75% to 93.01% with an average of 16.1%. The implied volatility term structure in Panel C
reflects volatility smirk and slightly downward sloping on average during the sample period.

Panel A of Figure 1 exhibits the daily S&P500 returns from January 1, 2007 to August 31,
2017. Panel B shows the average weekly IV for at-the-money S&P500 options and the VIX
index. ATM options are those with moneyness between 0.97 and 1.03. During the periods
of market turmoil, ATM IV and VIX become higher levels than before. The bailout of
Lehman Brothers in September 2008 accelerates the crash in S&P500 market with the large
increase in the VIX index. For example, following the bankruptcy of Lehman Brothers in
September 2008, daily returns change from 1.13% on August 22, 2008 to -9.47% on October
15, 2008 and the VIX index suddenly increase more than 80%. The option IV surface displays
several characteristics such as IV level, IV term structure, and IV smirks and smiles. These
provide investors with protection against different movement in returns, such as the negative
skewness of the volatility smile reflects their risk aversion toward such movements.

We separate the option-implied volatility surface into several characteristics including
level, slope, curvature and term structure (TS). Panel C of Figure 1 plots the term structure
of IVs which is the difference between the long- and short-dated ATM IVs. Panel D of
Figure 1 plots the slope between short-term OTM and ITM IVs (label Slope 1). Panel E
of Figure 1 plots the slope between short-term ATM and I'TM IVs (label Slope 2). From
Panel F of Figure 1, the curvature of IVs measures the difference between Slope 2 and Slope
1. Short-dated options are those with rough 30 days to maturity, and long-dated options
are about 180 days to maturity. ATM options have moneyness equal to 0.92. OTM options
have moneyness equal to 1.08. I'TM options have moneyness equal 1.00.

During the large shocks (between September 15, 2008 and March 23, 2009), we find the
curvatures, Slope 1 and Slope 2, are flatter than other time periods from Panels D, E and
F of Figure 1. Besides, the TSs are larger than other time periods in Panel C of Figure 1.
That is, the investors have different risk attitudes to volatilities and jump risks in different
time periods. Interestingly, during the large shock period, the investors mainly hedge the
volatility risk and may change to hedge jump risk after this time period. We further find
that Slope 2 has larger value after the large shock such as financial crisis and European debt
crisis. This economic implication indicates investors change their risk attitude to the upside

jump risk, that is, they expect the upside jumps happen more frequently than before. Hence,
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we need a multifactor stochastic volatility model to capture the dynamic processes of returns
and option surfaces and to examine the associated risk premiums which are embedded in

equity index returns and option surfaces.

4.2.  Estimated parameters

In this subselection, we estimate the model parameters using daily S&P500 index returns
from January 1, 2003 to August 31, 2017. We estimate the parameters of stochastic volatility
model with /without Lévy-type jump using the proposed econometric method discussed in the
section 3 under the physical measures (P) and discuss the decompositions of return variances
and jump risks for the aggregate stock. Table 6 reports the daily estimated parameters and
standard deviation of parameter estimates under P with respect to each model. We also
discuss the choice of the model specification and analyzes how the model performs in the
data under P, depending on which Lévy-type jump is embedded in the stochastic volatility

model.

4.2.1.  Model estimation

Take SV-DEJ-JV as example in the sixth column of Table 6, for the parameters of the
dynamic process of log return, the instantaneous expected rates of daily return u = 0.037%
is also known as trend factor of log returns which presents that the log returns increase year-
by-year and close to the sample volatility mean of 0.027% in Panel B of Table 4. The average
upside exponential jump size is n* = 0.056 in the log asset returns, downside exponential
jump size is n~ = 0.061, upside jump probability p = 0.43 and the jump frequency is A, =
0.033. This means that about 8 (& 0.033 x 252) days jumps once year, that implies about
30 (=~ 1/0.033) days occur once jump and the left-skewed distribution of the return.

For the parameters of the dynamic process of the stochastic volatility, the long-term mean
level is 8 = 0.011% ,mean-reverting speed x = 0.013 tells us that the stochastic volatility
will return to the long-term mean level needing about 3 (=~ 0.013 x 252) days once year if the
current volatility level diverge from the long-term mean level. The volatility of the variance
is 0, = 0.001. The correlation coefficient of Wiener processes of return and volatility is p
= -0.43 which has a significant leverage effect. The average implied-standard-deviation is
16.10% and is close to the sample volatility variance of 18.24% = 1/0.0132 x 252 in Panel B
of Table 4. The average of the jump amplitude of the stochastic volatility is p, = 4.86E-05
and the correlation coefficient between the return jump and the volatility jump is p; = 0.21.

Overall, we observe parameters of the return variance (volatility) equation in Table 6.

Figure 2 show that the latent stochastic volatility variables of all the seven models. These
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models are estimated by the particle filtering (PF), smoothing filtering (SF) and EM algo-
rithms with 300 particles for each time step from the corresponding model using parameters
estimated in Table 6 and the daily S&P500 index returns between January 1, 2003 and
August 31, 2017, respectively. We find that the estimates of p for the seven models range
from -0.424 to -0.464. This means all models exhibit strong negative correlations between
volatility and returns. The models share similar estimates of the volatility of return variance
o, of the volatility processes range from 1.30E-03 to 1.86E-03. The models also share similar
estimates of the long-run mean 6 of the volatility processes range from 9.11E-05 to 1.26E-04.

These seven models also differ from each other. For example, the volatility process of the
SV-DEJ-JV model has the smallest mean-reversion x with 0.013, followed by the SV-DEJ
and SV-NIG model with 0.013, the SV-MJ-JV, model with 0.015, the SV-MJ model with
0.015, the SV-VG model with 0.016, and finally the SV model with 0.017. Clearly, we find
that the model obtains smaller mean-reversion s than others seen from Figure 2 when we
add the correlated jumps in volatility into the model. Moreover, if we add the return jumps
into the model without volatility jumps, the models also have smaller x than the SV model.
In other words, the return jumps can replace some part of return variance. Note that there
are significant volatility clustering effects in the financial crisis period (from August 2007 to
June 2009) and the European sovereign debt crisis period (from January 2010 to December
2012 ) from Figure 2.

Next, we discuss the parameters of the finite-activity jump and the infinite-activity jump
models. The estimated return (correlated volatility) jump intensities A\, (= A, = ) for SV-
MJ, SV-MJ-JV, SV-DEJ, and SV-DEJ-JV models suggest that, on average, there are about
2 (= 0.008 x252) to 8 (=~ 0.033 x 252) jumps per year. From Figure 3 shows that there are
a few large return (correlated volatility) jump numbers in both finite-activity and infinite-
activity models. On the other hand, estimated return jump sizes for SV-VG and SV-NIG
suggest that there are many frequent small jumps in returns. From Figure 3 show that there

are many small return jump sizes in infinite-activity models SV-VG and SV-NIG.

4.2.2.  Decompositions of return variance and jump risk

Panel A of Figure 4 show that the SV-MJ model has the largest jump magnitude about
-9.798% on September 29, 2008 during the 2008 financial crisis and -4.727% on August 9,
2011 during European sovereign debt crisis. However, we can find that the SV-MJ model
has difficulty capturing large positive and negative returns simultaneously in Panel A of
Figure 3. This finding is likely due to the jump structure of Merton jump. Because the
jumps in returns tend to have a negative mean seen in Table 6 (see Eraker (2004), Li,

Wells, and Yu (2008)), a normal distribution which is used to model the jump sizes has to
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shift its location position and this result may lead to non-monotone density for negative
jumps and small density for positive jumps. The nonmonotonicity might be problematic in
modeling small jumps and small density for positive jumps might lead difficultly to capture
large negative jump and positive jump simultaneously (see Kou, Yu, and Zhong (2016)).
On the other hand, Panel D of Figure 4 show that the SV-DEJ-JV model can simul-
taneously capture large negative return jump magnitude about -6.957% on September 29,
2008 and large positive return jump magnitude about 8.596% on October 13, 2008 dur-
ing the 2008 financial crisis. This result may come from that the heavy-tail feature of the
double-exponential distribution leads to a better performance than the model with Merton
jumps. Panel E and Panel F Figure 3 show that the SV-VG and the SV-NIG models can
significantly capture the large and small jumps simultaneously. There is an issue for return
variations how much percentage of return variations is caused by return jumps. First, we

set the return y; to follow the discrete-time version of the dynamic process

1
Yr = (,U V1T lﬁ?y) A+ /v Deyy + Jy

where A is the time interval. Thus, y; follow a normal distribution given by

1 2
yr ~ N ((M - 5%) Ajv1 A+ (Jiit - QﬁyA) ) )
Thus, the return mean is
1
E(Qt) =\ 4= §Ut A,
and the return variation is

2
Var (y) = vy 1A+ <J5t - wi]A> .

2
We can divide return variation into two parts v,_;A and (Jin . — @Z)R}A) . Then, we can

calculate how much the percentage of return jump account for the total return variation
PJV; and the mean of PJV;, MPJV. That is,

(72, —w5,a)

PR
vl + (5, - w5 A)

PJV, = t=1,..,T

Panel D of Table 6 show that all the M PJV of models are smaller than 1.34. Moreover,
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Panel A of Figure 4 show that the PJV; of the SV-DEJ-JV model up to 92.35% on September
29, 2008 and 78.73% on October 28, 2008 during the early stages of a financial crisis. After
these dates, the PJV; of the SV-DEJ-JV model approximately declined by 100 percent into
zero percent. That is, most of the return variations are caused by the stochastic volatility

and return jumps only affect at the beginning period of the 2008 financial crisis.

4.2.8.  Performances in modelling the spot returns

In this section, we examine the performance of the seven models in capturing the phys-
ical dynamics of the S&P500 index returns. In order to check the goodness of fit of the
models under the P measure, we calculate the standardized residuals for return €, ; based
on estimated models parameters in Table 6 and follow Li, Wells, and Yu (2008) and Kou,
Yu, and Zhong (2016) to use the Kolmogorov-Smirnov (KS) test of the hypothesis to exam-
ine whether the standardized residuals of a fitted returns dynamic model follow a standard

normal distribution. That is,

Y1 — Yp — pA — J}
E?tJJrl = \/Ut_A = NN(07 1) :

We use the Kolmogorov-Smirnov (KS) test to diagnosis whether the p- the value of the
KS test statistics is significant or not. If the p-value of the KS test statistics is significantly
more than 0.05 under the 95% credible interval, we do not reject the null hypothesis. That
is, the standardized residuals follow a standard normal distribution.

Table 7 reports that the KS test statistics of the seven models. Clearly, the p-value of
the KS test statistics of all seven models are significant (more than 5%). In other words,
the standardized residuals of all seven models follow a standard normal distribution. We
focus on the p-value of the seven models to analyze the difference between the models. We
find that the p-value of the models which have the return jump are higher than the SV
model with 0.0521. We also find that the p-value of the compound Poisson jump processes
with Meton jump SV-MJ with 0.0867 is less than the infinity-activity models SV-VG and
SV-NIG with p-value 0.1047 and 0.1069. However, when we consider the volatility jump,
the fitting performances of the compound Poisson jump models are better than the infinity-
activity models, the SV-DEJ-JV model especially has the best fitting performance with
p-value 0.2772.

It is possible to increase the log-likelihood by adding parameters of the model when we
fit the model to the data. This result may lead to the overfitting with the complex model
we selected. Thus, we use the Akaike information criterion (AIC) and Bayesian information

criterion (BIC) for model selection to solve this problem by introducing a penalty term for
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the number of parameters in the model. Note that the penalty term in BIC is large than in
AIC, because BIC considers the penalty with both the number of parameters and the sample
size. From Table 6, we find that the SV-DEJ-JV model has the highest log likelihood value
with 13,013.01, followed by the SV-DEJ model with 12,960.12, and the SV-MJ-JV model
with 12,925.38. This ranking result is consistent with AIC and BIC.

4.3.  Option pricing performance

In this subselection, we estimate the model parameters using daily S&P500 index returns
from January 1, 2003 to August 31, 2017 and options data from January 1, 2007 to August
31, 2017. We use the joint estimation and the rolling time-window method to estimate the
parameters under the risk-neutral measures (Q) discussed in section 3.2. We also discuss the
choice of the model specification and analyzes how the model performs in the data under the
Q measures, depending on which Lévy-type jump is embedded in the stochastic volatility

model.

4.8.1.  Dynamic joint estimation

Table 8 reports the results of dynamic joint estimation discussed in subsection for each
model. The sample period is rolling from January 1, 2003 to August 31, 2017 for the
daily S&P500 index returns and January 1, 2007 to August 31, 2017 for the weekly cross-
sectional S&P500 call options data. The average parameters are reported first, followed by
its standard errors in parentheses. Panel A of Table 8 reports the average parameters of
stochastic volatility dynamic process of each model, the parameters are estimated on daily
S&P500 index returns over the past four years of each trading date. Panel B and C of
Table 8 report the average parameters of return and volatility jump dynamic process of each
model. Panel D of Table 8 reports parameters of volatility and jump risk premiums of each
model, the parameters are calibrated jointly through the S&P500 call option prices. The
last three rows of Table 8 summarizes the joint log-likelihood values (L(Joint)) discussed in
the subsection, the Akaike information criterion values (AIC) and the Bayesian information
criterion values (BIC) for each model. The bold font represents the top three log-likelihood
function values of seven models, the last three AIC values of seven models, and the last three
BIC values of even models.

We summarize the empirical findings from Table 8 as follows. We look at the joint
log-likelihood values L(Joint) of fitting S&P500 index returns and call options data simul-
taneously, the SV-DEJ-JV model has the best performance with 2714.56, following by the
SV-NIG model with 2712.22, and then the SV-DEJ model with 2704.85. When we use the
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AIC for model selection to solve this problem by introducing a penalty term for the number
of parameters in the model, we find that the SV-DEJ-JV model still has the best perfor-
mance with -5413.13, following by the SV-NIG model with -5404.43, and then the SV-DEJ
model with -5387.69. On the other hand, when we use the BIC for model selection to solve
this problem by introducing a penalty term for the number of parameters with sample size in
the model, we find that the SV-NIG model become the best performance with -5361.18, fol-
lowing by the SV-DEJ-JV model with -5356.91, and then the SV-DEJ model with -5340.12.
Interestingly, this sorting result of the BIC is different to the Panel D of Table 6 estimated
only under the P measure. That is, the SV-DEJ-JV and SV-NIG models are the best models
when we jointly estimate the parameters with S&P500 index returns and call options data
under the different criteria.

Next, we compare the applicability of different pricing models with their option pricing
error. As mentioned in Bakshi, Cao, and Chen (1997), a complex model which contains
more parameters will generally lead to better in sample fitting than simple model. However,
it may bring the poor results in the out-of-sample testing. Therefore, it is important to
analyze the model which should perform better than other models in both in-sample and

out-of-sample testing.

4.3.2.  In-sample pricing performance

After the model parameters are calibrated by minimizing the sum of squared errors of

implied volatility, the in-sample average absolute pricing errors can be represented as follows:

1 &
A o BS Model _
€t in—sample — E : |Ot,j - Ot,j , t= 17 ) T7 (17)
my < 1
]:

where m; is the number of options data at time ¢ in the market, IV, (Off ) is the Black-Scholes

IV of the j-th market-observed call option price, OE]-S = C (S, Kij,115,7,) at time t,
IV, (O%"del) is the Black-Scholes I'V of the j-th call option price, Ofﬁ"del =C(0¢Stj, Kij,7e5,T15)
computed using the specific model at time ¢, where the parameters S ;, K; j, ¢ ;, ¢ ; are the
underlying S&P500 index, strike, days-to-expiration, risk-less rate, and ©, is the parameter
vector containing the model risk-neutral parameter and risk premiums at time t¢.

Panel A (B) of Table 9 reports the in-sample average RMSE of the IV (in-sample absolute
pricing errors) for each model. First, we force on the type of Merton’s jumps, the ranking of
the models is consistent with our prior, the SV-MJ-JV model outperforms the SV-MJ model
and finally the SV model. In Panel A (B) of Table 9, SV-MJ-JV model produces an average
RMSE of the IV of 13.55%(3.30) versus 13.84%(3.46) by the SV-MJ model. Second, in the
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type of double-exponential jumps, the ranking of the models is also consistent with our prior,
the SV-DEJ-JV model outperforms the SV-DEJ model and finally the SV model. In Panel
A(B) of Table 9, SV-DEJ-JV model produces an average RMSE of the IV of 12.43%(3.11)
versus 12.95%(3.19) by the SV-DEJ model. Third, in the type of the infinite-activity jumps,
the SV-VG model does not outperform all others. For example, in the Panel A of Table 9, the
SV-VG model produces an average RMSE of the implied volatility(absolute pricing errors)
of 13.51%(3.49) versus 12.98%(3.48) by the SV-NIG model. Overall, the SV-DEJ-JV model
outperforms all others, following by the SV-DEJ, and finally the SV-NIG model.

Panel C of Table 9 reports Diebold-Mariano (DM) pairwise statistics for weekly RIVRMSE.
The DM statistics measure the difference between the squared pricing error of the Bench-
mark model X and the Test model Y. Note that a positive and significant value for DM
statistic means that X has a larger RIVRMSE than Y. Looking at the first row of Panel C
of Table 9 reveals that all test statistics are positive and significant at 5% level for a one-
sided test, suggesting that all jump models significantly outperform the SV model. Looking
at the pairwise tests under column SV-DEJ-JV, the SV-DEJ-JV model outperforms other
models all positive statistics and significant level at 5%. Moreover, the pairwise test statistic
under column SV-NIG and row SV-DEJ-JV shows that the SV-NIG model underperforms
the SV-DEJ-JV model, i.e., the test statistic is -4.41. Overall, we find strong evidence that
among the jump models, the SV-DEJ-JV model has a significant difference to other models

and the smallest squared in-sample pricing errors.

4.83.3.  QOut-of-sample pricing performance

To examine out-of-sample cross-sectional pricing performance for each model. The out-

of-sample average absolute pricing errors can be represented as follows:
1
A o BS Model o
Et—&-lput—of—sample - m E ‘Ot—i—l,j - Ot+1,j ) t= 07 EREE) T — 17 (18)
t
J=1

where IV, (O?fu) is the Black-Scholes IV of the j-th market-observed call options price
0P8 ; = C(Siyr, Ki1j, reqj, Tegry) at time ¢+ 1, IV (Oﬁ‘i‘fj‘?l) is the Black-Scholes IV
of the j-th call options price OY\5%! = C'(O©4[Si11,j, Kit1,5, 'es1,j5 Te41,5), computed using the
specific model at time ¢ + 1.

Panel A (B) of Table 10 reports the out-of-sample average RMSE of the IV (out-of-sample
absolute pricing errors) for each model. First, we force on the type of Merton’s jumps, the
ranking of the models is consistent with our prior, the SV-MJ-JV model outperforms the

SV-MJ model and finally the SV model. In Panel A (B) of Table 10, SV-MJ-JV model
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produces an average RMSE of the IV of 16,94% (4.31) versus 17.43% (4.46) by the SV-
MJ model. Second, in the type of double-exponential jumps, the ranking of the models is
also consistent with our prior, the SV-DEJ-JV model outperforms the SV-DEJ model and
finally the SV model. In Panel A (B) of Table 10, SV-DEJ-JV model produces an average
RMSE of the IV of 16.72% (4.22) versus 16.79% (4.24) by the SV-DEJ model. Third, in
the type of the infinite-activity jumps, the SV-VG model does not outperform all others.
For example, in the Panel A of Table 10, the SV-VG model produces an average RMSE
of the implied volatility(absolute pricing errors) of 17.40% (4.52) versus 16.81% (4.43) by
the SV-NIG model. Overall, the SV-DEJ-JV model outperforms all others, following by the
SV-DEJ, and finally the SV-NIG model, and this ranking result is the same to in-sample
testing.

Panel C of Table 10 reports Diebold-Mariano (DM) pairwise statistics for weekly RIVRMSE.
Looking at the first row of Panel C of Table 10 reveals that the SV-DEJ-JV model signif-
icantly outperforms the SV model at 5% level and the SV-DEJ model and the SV-MJ-JV
model are significantly outperform the SV model at 10% level. Moreover, the pairwise test
statistic under column SV-NIG and row SV-VG shows that the SV-NIG model performs the
SV-VG model, i.e., the test statistic is 1.54 at significant level 10%. Overall, we find slight
evidence that among the jump models, the SV-DEJ-JV model has the difference to other

models and the smallest squared out-of-sample pricing errors.

4.4.  Time-varying risk premia

In this subsection, we turn to analyze the dynamic properties of risk premiums. The
model in equations 1 and 2 features four main instantaneous risk premiums: A price diffusive
risk premium (PDRP), a price jump risk premium (PJRP), a diffusive variance risk premium

(DVRP), and variance jump risk premium (VJRP). which are defined as

PDRP, = 5, x v, PJRP, = ¢% (=i) — ¢ (—i),
DVRP, = n, x v;, VJRP, = pu2X\¢ — PP

vov)

(19)

where the PDRP; and DVRP; are the linear function of the latent variable, v;, with the
equity and volatility risk premium coefficients (Heston (1993)). PJRP; and VJRP, are the
difference of compensations of price and volatility jump risk between P and Q, respectively.
In the Table 2, our estimation emphasizes that the separation between the jump size and

jump intensity'* where the usual practice in the empirical option pricing literature that

MDu and Luo (2018) evidence that the differentiation between jump size and jump intensity risk premium follows their
distinct impacts on the term structure of option-implied volatility skew.
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focuses on the jump size premium by constrainting, \¥ = A2 (Pan (2002), Eraker (2004),
Broadie, Chernov, and Johannes (2007), Ait-Sahalia, Karaman, and Mancini (2018)).

In this paper, we mainly focus on discussing the economic implications of the time-varying
PJRP and VRP where PDRP had discussed in a few papers (Bollerslev and Todorov (2011);
Ait-Sahalia, Karaman, and Mancini (2018)). PJRP and VRP are the compensations of risks
required by the investors for being exposed to unexpected changes in the jump and the
variance risks. The VRP is defined as the wedge between the expectations of the variances
of asset returns under the risk-neutral and physical measures which have been interpreted
as an indicator of the representative agent’s time-varying risk aversion (Todorov (2010);
Bollerslev, Gibson and Zhou (2011)), parameter uncertainty (Bollerslev, Tauchen and Zhou
(2009)), or economic uncertainty (Drechsler and Yaron (2011); Drechsler (2013)). Under the
correlated jump models, we can further decompose VRP into the DVRP and the VJRP.

Using the dynamic joint estimation under PP and Q, we receive the different estimated
risk premia coefficient in the Panel D of Table 8. We can recognize that the estimated VRP
coefficients are all mean positive values and statistical significance, but jump risk premium
coefficients are all mean negative values and not all statistical significance. Panel A of Table
11 reports the PJRPs for each model. The mean and skewness values of PJRP are all
positive and kurtosis is all quite large. Therefore, the risk-neutral mean of compensation
of the price jump is lower than the objective mean, ¢F (—i) > % (—i). This economic
implication indicates that investors require positive expected return causing by price jump
risk (Bollerslev and Todorov (2011)). By dynamic analysis, we obtain the time series of
PJRPs in Figure 6. Table 12 take the mean values of each time intervals for PJRP;s in
the Figure 6 with red lines. We find that the average PJRP of the SV-DEJ-JV model is
significantly increasing from 0.003% to 0.019% during and after the large shock time period
in the financial crisis. This special pattern also appears in during and after the large shock
time period in the European debt crisis. These patterns illustrate that investors reflect
the panic of bearing jump risk in the post-crisis period more significant and request more
expected returns.

Next, we discuss the changing of the time series of PJRP; estimated by stochastic volatil-
ity with the different jump-types. From Panels A, B, C and D of Figure 6, we find that the
PJRP;s of the finite-activity models increase significantly after the large shock time period in
the financial crisis, but the PJRP;s of SV-DEJ and SV-DEJ-JV models are still having this
dramatic change during and after the European debt crisis. This estimated result may come
from the nature of double-exponential jump, i.e., monotonic decreasing property. Based on
this feature, we can connect this result with the characteristic of short-term IV surfaces in

Figure 1. As discussed in 4.1, the characteristics of IV surface represent different investors’
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reflection to volatility and jump risks. The investors may tend to hedge the volatility risk
during the large shock time periods. However, this mentality may decrease after these time
periods and is gradually being replaced by the reaction of a panic of bearing jump risk. That
is, the slope of the term structure of IVs will decline, but the curvature of IVs will rise.

In section 4.1, we further discuss the pattern of Slope 1 and Slope 2 representing the
investors’ attitude that might be attributed to the downside and upside jump risks, re-
spectively. Due to the monotonic structure of the double-exponential jump (label DEJ)
(?Kou2016)), the models can capture the large negative and positive jump under P and also
fit the OTM and ATM short-term IV under Q. In contrast to the DEJ, the normal distri-
bution with negative mean does not have a monotone structure. It focuses on capture the
large negative jump and tuning the downside jump risk premium, that is, it only emphasis
on fitting the OTM short-term IV. In Panel D of Figure 1, Slope 1 significantly rise after
the large shock time period in the financial crisis but slightly rise after the large shock time
period in the European debt crisis. In Panel E of Figure 1, Slope 2 significantly rise after
the large shock time period in both the financial crisis and European debt crisis. This fea-
ture may cause the PJRPs of the SV-DEJ and SV-DEJ-JV models to increase significantly
after the large shock time periods in both the financial crisis and the European debt crisis.
However, the PJRP; of Merton’s jump can significantly increase after the financial crisis but
not after the European debt crisis in Panels A and B of Figure 6. In the Panels E and F of
Figure 6, we find that the PJRP;s are relatively smaller than the finite-activity jump mod-
els. This estimated result might be attributed to the properties of the infinite-activity jump
models which emphasize on fitting the small jumps. Since we find that the return variations
is mainly explained by the stochastic volatility, small jump risk premiums are replaced by
the volatility risk premium and thus the PJRP; is relatively smaller.

Panel B of Table 11 reports the DVRP for each model resulting from the model estima-
tion. We find that the mean values range from 0.006% to 0.149%. This reflects that the
speed of mean reversion and the mean-reversion level of the variance are both smaller under
the risk-neutral measure, i.e., k¥ — k% > 0 and 0¥ — 6% > 0 in equation 4. That is, the
investors consider that the return variations will reverse quickly to the long-term mean and
do not continue to happen the large shocks. However, the minimum of the DVRP of each
model is all negative'® range from -0.831% to -0.042%. To better understand this result,
we study the time series of the DVRPs. Panels of Figure 5 plots that the DVRPs fluctuate
between positive and negative values and is generally large than zero, the exception occurs
on September 15, 2008 to March 23, 2009 during the financial crisis and August 4, 2011 to
November 11, 2011 during the European debt crisis when the DVRP takes extreme negative

15 The negative sign of the variance risk premium is discuss in Bakshi and Kapadia (2003), Carr and Wu (2009).
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values. The dynamic pattern of the DVRP in all Panels of Figure 5 are consisted with the
estimates resulting from nonparametric models and plot the sign and shape of the DVRP
consistent across different models. All DVRPs display the great variability and the dramatic
decrease of DVRPs takes place simultaneously around Lehman Brothers’ bankruptcy. These
negative spikes might be attributed to the term structure of IV surface in Panel D of Figure
1. Average negative values of the DVRPs are consistent with the fact that investors in the
market regard diffusion variance risk as unfavorable and therefore willing to pay a premium
to hedge against a market crash increase after extreme events happening.

Take the SV-DEJ-JV model as an example, the annualized average DVRP is approximate
to -0.029% and 0.003% during the large shock time period in the financial crisis and the
European debt crisis, respectively. This is essentially due to the dramatic increase in the
instantaneous volatility in Figure 2 and the properties of the IV surface in Figure 1. Before
August 2007 (mid-2007), the DVRP stays around zero until Lehman Brothers’ bankruptcy
(September 2007) in Figure 5. It reaches its peak of about -0.174% meaning that investors
are willing to pay 0.174% of their notional per year to be hedged against variance fluctuations
during the financial crisis, followed by a recovery period, bringing the DVRP up to 0.460%.
The European debt crisis prompts a second drop to -0.039%, followed by a second recovery
period, bringing the DVRP up to 0.324%. In the large shock time period, we obtain different
economic implications that the speed of mean reversion and the mean-reversion level of the
variance are both larger under the risk-neutral measure (Broadie, Chernov, and Johannes
(2007)). That is, the investors expect that the return variations will not rapidly return to the
long-term mean and may continue to happen the large shocks. The signs and magnitudes
of the VRP suggest that investors are willing to pay a premium for an asset that pays off
when the variance is high. After these time periods (2) and (4), the DVRPs in the time
intervals (3) and (5) become to all positive and larger than last time period, respectively;
for example, the DVRP of the SV-DEJ-JV model change from -0.029% in the time interval
(2) to 0.114% in the time interval (3) in the Panel A of Table 12. These facts indicate that
investors are particularly averse to price fluctuations during periods of market turmoil.

Panel C of Table 11 report the estimated VJRPs of the SV-MJ-JV and SV-DEJ-JV
models. This risk premium is estimated to be positive but small'®. This estimated result
might be attributed to the trajectory of latent variables of volatility jump risk using particle
filter, smoothing filter, and EM algorithm to track. Moreover, we further investigate that
the VJRP of the SV-DEJ-JV model can be decomposed into VUJRP and VDJRP where
VUJRP is estimated to be negative -2.06E-06, and VDJRP is estimated to be positive 2.72E-

16Eraker, Johannes, and Polson (2003) and Eraker (2004) set uf, = }LUQ because it does not substantially change our estimates
of risk premia based on the model in the equation 1 and 2.
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06. That is, the investors are willing to hedge the variance downside jump risk and to take

the variance upside jump risk.

4.5.  Return predictability
4.5.1.  In-sample predictions

Bollerslev, Tauchen and Zhou (2009), using the difference between risk-neutral and real-
ized return expectations of the forward aggregate market variances as proxy for the VRP,
find that the VRP has a significant in-sample predictive power of future market returns in
short run (quarterly horizon (3 months) to semi-annual horizon (six-months)). This pre-
dictability tapers off for longer horizons beyond 6 months. This finding is robust and has
been confirmed in subsequent papers!”. More generally, as we work in an affine framework
and the diffusion VRP in equation 19 is a linear function of the state variable, i.e., stochas-
tic volatility v;, we investigate the predictive power of the diffusion variance risk premium
(DVRP) of the SV-DEJ-JV model which has the best fitting performance in both spot and
option markets discussed in section 4.2 and section 4.3 on the S&P500 excess returns. All

in-sample predictive regressions presented in this section have the following form,

Teirh = Bo(h) 4+ B1(h) DV RP, + wyyip, (20)

where 7,45, is the S&P500 log excess return from the first day of next month ¢ + 1 to the
last day of month ¢ + h, depending on the horizon h. The horizon range from h=1 to h=18.
We perform the predictive analysis at weekly frequency. The weekly DVRP, is estimated
using the processes discussed in section 3. For statistical inference on the slope coefficient
p1(h) in the overlapping multi-period regression, we use the regular heteroskedasticity and
autocorrelation robust Newey and West (1987) t-statistic with a lag length equal to two times
the return horizon, 2h'8, to correct for auto-correlation introduced by overlapping data.
The results of in-sample ordinary least squares (OLS) regression are summarized in
Table 13, which reports the estimated parameters for all regressions, including univariate
regression using a single explanatory variable DVRP and weekly observations. In Panel A

of Table 13 and Figure 10, when using the DVRP as the sole explanatory variable and for

17See also Drechsler and Yaron (2011), Drechsler (2013), Bollerslev, Marrone, Xu and Zhou (2014), Bollerslev, Todorov,
and Xu (2015), Bandi and Reno (2016),Carr and Wu (2016), Bardgett, Gourier, and Leippold (2018), Buss, Schoenleber,
and Vilkov (2018), Kilic and Shaliastovich (2018), Fan, Xiao, and Zhou (2018), and Li and Zinna (2018). Moreover, these
findings are distinctly different from the longer-run multiyear return predictability patterns, in which the predictability is
typically associated with popular predictor variables such as dividend yields, price-to-earnings (P/E) ratio, the default spread,
or consumption-wealth ratios (see Fama and French (1988), Campbell and Shiller (1988), and Ang and Bekaert (2007), among
others.).

18This setup is consistent with the approach of Bollerslev, Todorov, and Xu (2015).
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2007:01 to 2017:08 sample period, it is highly statistically significant for horizons of up to 4
months, with a maximum adjusted R? 5.40%'°. Panel A of Figure 10 show that the adjusted
R? displays a tent-shaped pattern: it ranges from 2.79% at the one-month horizon to 5.40%
at four-month and then decreases at longer maturities. As we see from Table 13, the OLS
estimate of 1 in equation 20 is positive, confirming the usual results: the larger the DVRP
(in absolute value), the larger future returns on average, and highly statistically significant
for the forecasting horizons ranging from one to five months. For the longer horizons, the
DVRP has weak explanatory power and the coefficient 3, is even smaller than 0.2 which is
approximate one-third of the ; of the quarterly horizon.

Figure 7 presents results on the relation between the different horizon excess returns
and the SV-DEJ-JV model’s DVRP. The SV-DEJ-JV model’s DVRP is estimated from
the implied volatility surface of the S&P500 index options discussed in the section 3. We
plot the pairwise combinations for horizons of one, three, six, and 12 (one-year) months
(Panel A to D). The dash line represents the regression fit to all the observations with slope
coefficient and R? reported in the plot legend. The solid line represents the regression fit to
the blue observations with slope coefficient and R? reported in the plot legend. The blue
observations are the dots that the absolute values of the DVRP are greater than or equal
to 0.01%. The orange observations are the dots that the absolute values of the DVRP are
smaller than 0.01%. The date is weekly from January 2007 to August 2017. In the Panel D
of Figure 7, the orange dots (the absolute of DVRP is small or equal to 0.01) do not have the
predictability from the annualized excess return -0.6% to 0.4%. This result shows that the
large of small DVRPs are noise and may not have predictability to excess return. Therefore,
we set the filter which DVRP is large than 0.01% to run our regression.

In Panel C of Table 13 and Figure 10, for 2008:09 to 2009:03 sample period (Large shock
period during the 2008-2009 financial crisis), DVRP has the ) estimate (2.179) with the
largest adjusted R? statistics of 34.96%. Moreover, the return predictability of DVRP can
be extended to one year (12 months) in this period. In Panel D of Table 13 and Figure 10,
DVRP has the 3; estimate (0.24) with the largest adjusted R? statistics of 1.28% for 2009:07
to 2017:08 sample period (The period after the 2008-2009 financial crisis). Although the
economic significance is smaller than 2008:09 to 2009:03 period, it still can achieve the
statistical significance levels as 5% for 4 months horizon. Overall, these results report that
the DVRP is a powerful predictive factor for excess return which particularly has return
predictability concentrate in the large fluctuation during the Great Recession (Bad time)
(see Cujean and Hasler (2017)).

9These results are similar to the findings in Bollerslev, Tauchen and Zhou (2009), Bollerslev, Marrone, Xu and Zhou (2014),
Bardgett, Gourier, and Leippold (2018), and Buss, Schoenleber, and Vilkov (2018), who demonstrate that the variance risk
premium can predict market excess returns for a horizon of up to three or four months and then goes down.
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Figure 8 analyzes the relation between the different horizon excess returns and the SV-
DEJ-JV model’s DVRP and particularly focus on analyzing the economic meaning during
the financial crisis. We plot the pairwise combinations for horizons of three, four, five,
and six months (Panel A to D). The red solid line represents the regression fit to the red
crosses with slope coefficient and R? reported in the plot legend. The yellow squares are
the observations from August 1, 2007 to September 15, 2008 (Before the large shock time
period in the financial crisis). The red crosses are the observations from September 15, 2008
to March 23, 2009 (During the large shock time period in the financial crisis). The purple
triangles are the observations from March 23, 2009 to October 1, 2010 (After the large shock
time period in the financial crisis and before the large shock time period in the European
debt crisis). The remaining observations are blue observations. We can find that DVRP
have the significant predictability power during the large shock period in the financial crisis
(red crosses).

Johnson (2018) argues that the predictive slope of the VRP is insignificant with weighted
least squares (WLS) if we test on the original sample of Bollerslev, Tauchen and Zhou (2009),
1990-2007. He claims that the return predictability of VRP is driven by several extreme
events with high volatility, such as the financial crisis and the European debt crisis. To
check for the possibility that using WLS may alter the results, in addition to OLS, I also
consider WLS. Table 14 summarizes the WLS regression coefficient, p-values, and adjusted
R? for the different horizons and time periods. In Panel A of Table 14, we WLS slope
is not much different in magnitude, although it is slightly smaller. Overall, the regression
coefficient is statistically significant with smaller p-value with adjusted R? 1.12% than the
OLS regression. These results are consistent with Johnson (2018) that the level of significance
of the VRP predictive regressions is not largely affected by using WLS. Moreover,we also
run a predictive regression for subsamples. Panel C of Table 14 reports that 2008:09-2009:03
sample period has the largest adjusted R? of 24.71% with estimates 3, of 2.17 which is also
slightly smaller than OLS regression, but it still has the high and statistically significant
during this period. Overall, the predictive power of the DVRP depends on the relationship
between returns and variance innovations.

In sum, similar to earlier studies, we find evidence of short-run equity return predictability
when conditioning on the DVRP. Moreover, we also show that the return predictability of
DVRP mainly concentrate during the high fluctuation period in the financial crisis. The

results are largely unchanged when we use the WLS to test the regression results.
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4.5.2. Out-of-sample predictions

We use the traditional approach to providing out-of-sample (OOS) forecast® of time t+h
excess returns consists of two stages. First, we run a predictive regression 20 using pass k
months of historical data (from time ¢t — k — 1 to t). Then, we use the coefficient estimated
at time ¢ to forecast S&P500 excess return for horizon h, 73 41p. For out-of-sample predictive

regression, we calculate a return forecast as
Pueen = Bo(h) + Bi(h)DV RP,, (21)

where B\o and 51 are OLS estimates from regression 20.
Next, we follow Goyal and Welch (2008) and Campbell and Thompson (2008) to use
OO0S R? to evaluate the OOS predictive performance. The OOS R? is defined as

MSE, 1 &

MSE}, = — Z (Tt,t+h - 7"\t,t+h)2 )

2 — J—
00S Rj =1 - {ret 7

(22)
1 T 2
and MSEy, = T Z (Ttath — Teatn)
t=1

where T is the number of observations in the post-training sample period. MSE,, is the
mean-squared forecast error of the predictive regression, and MSEy,, is the benchmark mean-
squared forecast error using the average excess return 7 ., from the beginning of the sample
through month ¢ that we follow Goyal and Welch (2008) and Campbell and Thompson (2008)
to use the market’s historical average excess returns as an equity premium forecast. If the
OO0S R? is positive, then the predictive regression has lower average mean-squared prediction
error than the historical average return. We follow Pyun (2018) to use Giacomini and White
(2006)’s Wald statistic to test the significance of the predictor. The Wald statistic is given

as

T T
W="T (T—l > ALtH) 0! (T‘l > ALH) : (23)
t=1 t=1

_ ~ ~ —— 2
where ALt—i—l = (Tt,t+h — Tt,t—&-h)g — (Tt,t—l-h _Tt,t+h)2 and Q 1 — %Zf:l (ALt_;,_l — AL) .
Asymptotically, this Wald statistic follows a Chi-square distribution with degrees of free-
dom equal to the difference in the number of predictors.

Each of the OOS R? values is computed by comparing the performance using the historical

208ee also Dangl and Halling (2012), Henkel (2011), Johannes, Polson, and Stroud (2014), Pettenuzzo, Timmermann, and
Valkanov (2014), Rapach, Ringgenberg, and Zhou (2016), Pyun (2018), Fan, Xiao, and Zhou (2018), and Johnson (2018).
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average as the predictor. We use the rolling window of the past one year of data to compute
the historical mean as a benchmark. Table 15 reports the OOS R? and Wald statistic, along
with p-values, for the different horizons and time periods. As shown in Goyal and Welch
(2008), many variables can significantly predict market return in-sample tests, but most of
them perform poorly in the out-of-sample tests. Panel A of Table 15 and Figure 10 show
that the OOS R? are positive at two- to six-month horizons and the maximum OOS R?
of 3.46% achieved at three-month horizon. Despite having the positive OOS R?, none of
the predictions of the traditional approach is statistically significant, even at the 10% level.
Panel B of Table 15 and Figure 10 show that OOS R? are all negative and not significant
in 2008:09-2009:03 sample period. This means that it is hard to use the DVRP to predict
the excess returns during the large shock period in the financial crisis, because there are
many unknown events that the investors in options market did not expect to happen even
though in-sample test in section 4.5.1 has significant economical meanings. On the other
hand, Panel C of Table 15 and Figure 10 show that OOS R? are positive at one- to seven-
month horizons and the maximum OOS R? of 35.00% achieved at two-month horizon in the
time interval after the large shock time period: 2009:03 to 2009:12. This means that the
investors in options market were starting to hedging and use the suitable approach to face

the fluctuation in the spot market after the large shock period in the financial crisis.

4.5.8.  Fvaluating economic significance — Asset allocation

Campbell and Thompson (2008) argue that even very small positive Goyal and Welch
(2008)’s?! OOS R? explanatory power can signal an economically meaningful degree of re-
turn predictability in terms of increased annual portfolio returns for a mean-variance in-
vestor. Therefore, we follow Campbell and Thompson (2008), Rapach, Ringgenberg, and
Zhou (2016), and Rapach, Strauss, and Zhou (2010) to measure the economic value of DVRP
of the SV-DEJ-JV model return predictive ability from an asset allocation perspective. We
consider a mean-variance investor who allocates his or her wealth between risky S&P500
index futures and risk-free three-month Treasury bills (T-bills). using a predictive regression
forecast of excess stock returns. At the end of month ¢, the investor optimally allocates
the following share of his or her portfolio to equities during the subsequent month. The
optimal weights w; are determined by predicting the future stock return using the predictive
regressions:

Ttith

Wy = —2—
52
¢ Ot t+h

(24)

21Goyal and Welch (2008) argue that the historical average excess stock return forecasts future excess stock better than
regressions of excess returns on predictor variables.
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where ( is the investor’s coefficient of relative risk aversion. 7, and Ezt 4, are the forecast of
excess return and return variance h-month ahead. We use Johnson (2017)’s term structure
of VIX? from option data?, VIXt +n» as a forward-looking measure of the excess return
variance, because it reflects investor’s expectation of return variations in the future. The
remaining proportion 1 - w; is invested in the risk-free asset. Following Campbell and
Thompson (2008) Rapach, Ringgenberg, and Zhou (2016) and Fan, Xiao, and Zhou (2018),
we consider two scenarios. In the first scenario without short-sale restriction, we restrict the
portfolio weight w; to lie within the range of -0.5 and 1.5, which produces better-behaved
portfolio weights given the well-known sensitivity of mean-variance optimal weights to return
forecast. In the second scenario with short-sale restriction, we impose a constraint for the
portfolio weight to be larger than zero and smaller than 1.5. We also follow Pyun (2018) who
had a concern that the weights might rely too much on VRP-based forecasts during periods
when returns and variance innovations are unrelated. Therefore, we consider an alternative

strategy, the weight invested in the risky asset becomes

tt+h \/_+ tt+h 1 _ﬁ?, (25)
C tt+h tt—l—h

where p? is the estimated correlation between index return and variance innovation using
the estimated method in section 3. To distinguish this strategy formed on the conditional
value of the correlation from the basic trading strategy, we call this the conditional trading
strategy and the first one as the unconditional trading strategy.

The certain equivalent return (CER) for investor who allocates assets using equation 24
or equation 25 is computed as

CE =R, —g\//E;"(R) (26)

where R, and Var (R,) are the sample mean and variance of the portfolio returns, respec-
tively. We also compute the CER for the investor when he or she uses the prevailing mean
as excess return forecast and VIX? term structure as variance forecast. The CER gain is
then the difference between the CER for the investor when he or she uses the predictive
regression forecast to guide asset allocation and the CER when he or she uses the prevailing
mean benchmark forecast. We annualize the CER gain so that it can be interpreted as the
annual portfolio management fee that the investor would be willing to pay to have access to

the predictive regression forecast in place of the prevailing mean forecast. In this way, we

22The VIX term structure date can be available download from Travis L. Johnson’s webpage at http://travislakejohnson.
com/data.html.

23The historical mean is assumed to be the best predictor of future returns.
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measure the direct economic value of return predictability. To analyze the economic value
of return predictability at longer horizons, we follow Rapach, Ringgenberg, and Zhou (2016)
to assume that the investor rebalances at the same frequency as the forecast horizon.

The results of OOS annualized CER and CER gains for the entire 2008:01-2017:08 forecast
evaluation period are reported in Table 16. In Panel A of Table 16, we report the CER
and CER gains of the unconditional trading strategies based on DVRP when there are
with /without short-selling constraint on the portfolio weight. The predictive regressions of
DVRP are able to generate positive CER gains from quarterly horizons (three-month) to
the annual horizon (twelve-month) with a relative risk aversion coefficient ( = 3, 4, and
5 under the without short selling constraint. The performance of DVRP clearly stands
out. DVRP almost always generate higher CER gains than buy-and-hold?* trading strategy,
suggesting that the DVRP measure has economic value for a risk-averse investor. For the
unconditional trading strategy, the gains in CER are extremely smaller and negative when
an investor uses the buy-and-hold trading strategy, but increase substantially when using
the DVRP to construct the trading strategy. DVRP achieves the highest CER gains at
three-month to nine-month with different levels of risk aversion. When ( is equal to 3 and
without selling short constraint, DVRP provides the highest CER gain of 166 basis points at
the quarterly horizon. As reported in Rapach, Ringgenberg, and Zhou (2016), most of the
popular predictors generate negative CER gains. The performance of DVRP is comparable
to that of short interest documented in Rapach, Ringgenberg, and Zhou (2016) from three-
month to twelve-month under the without short selling constraint. At one year horizon,
the CER gains of DVRP are still considerably larger than that of the buy-and-hold trading
strategy which is negative at all horizons and the levels of risk aversion. On the other hand,
we also report the CER gains when the portfolio weights are updated with short-selling
constraints. The overall result is not similar to without short-selling constraints, DVRP
generates smaller CER gains of 18, -59, and -84 basis points for ( = 3, 4, and 5 at the
quarterly horizon.

In Panel B of Table 16, we report the CER and CER gains of conditional trading strate-
gies. Although the predictive regressions of DVRP are not able to generate all positive CER
gains through the different horizons and risk-aversion coefficients, it generates the higher
CER gain than the unconditional trading strategy when the horizon is short-term. For
example, when the risk-aversion coefficient is equal to 4 and horizon is three-month, the
CER gains are 159 basis points for the conditional trading strategy which is larger than 82
basis points for the unconditional trading strategy. However, the performances are slightly

worse for the conditional trading strategies compared to the unconditional trading strategies

24The investor holds the fixed weight on the market portfolio and this trading strategy serves as a benchmark.
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when the horizons are more than three-month. As discussed, this is presumably because
the correlation between the return and variance innovations may be a temporal relationship.
These results also indicate that predictions under unconditional trading strategy could be
misleading during short-term periods when returns and variance innovations are unrelated.

Table 17 reports OOS annualized SRs and SR gains for the entire 2008:01-2017:08 forecast
evaluation period, which allow us to compare portfolio performance independently of relative
risk aversion. In Panel A of Table 17, the SRs for the portfolio based on the benchmark
buy-and-hold trading strategy range from 0.20 to 0.22 at the various horizons when the risk-
aversion coefficient is equal to 3. DVRP produces SRs that range from 0.35 to 0.50. Clearly,
the SRs of DVRP are approximately two times larger than the buy-and-hold trading strategy.
From Table 17, we can find that the SRs and SRs gain of DVRP are always greater than
those for the buy-and-hold trading strategy through the different horizons and risk-aversion

coefficients.

5. Conclusion

In this paper, we attempt to answer four questions: (i) On average, what do the pro-
portion of the stochastic volatility and return jumps account for the total return variations
in S&P500 index? In particular, which one has more influence than the other does on the
total return variations? (ii) Is the fitting performance of infinite-activity jump models better
than that of finite-activity jump models both in the spot and option markets? (iii) When
will investors require significantly higher risk premiums? Specifically, were there significant
changes in volatility and jump risk premiums during the time period of the extreme events?
(iv) Does the model-based variance risk premium have predictive power on S&P500 returns?

For the first question, we find that most of the return variations are explained by the
stochastic volatility. In fact, the return jump accounts for the higher percentage than the
stochastic volatility at the beginning of the crises. To answer the second question, we adopt
the EM algorithm with the particle filter and dynamic joint estimation to obtain the stochas-
tic volatility model with double-exponential jumps and correlated jumps in volatility and the
stochastic volatility model with normal inverse Gaussian jumps fit S&P500 index returns and
options well in different criterion. For the third question, we observe that the time-varying
volatility and jump risk premiums have different changing behaviours during the crises. In
particular, the jump risk premiums significantly increase after each crisis periods, that is, the
panic of bearing jump risk in the post-crisis period causes investors to require more expected
returns. Finally, for the fourth question, we find that DVRP has predictive power both
in-sample and out-of-sample, with adjusted R? statistics of 5.40% and 3.46%, respectively.
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We further investigate the economic significance of the out-of-sample predictability on the
basis of asset allocations with DVRP, and the mean-variance portfolio generates substantial
economic gains of over 166 basis points and a Sharpe ratio of 0.44 per annum at three-month

horizon.
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Panel (B): Three-month horizon
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Fig. 7. The relation between the different horizon excess returns and the SV-DEJ-JV model’s
DVRP

Figure 7 presents results on the relation between the different horizon excess returns and the SV-DEJ-JV model’s DVRP. We
compute the time-series of the different horizon S&P500 index returns in excess of the risk-free rate. The SV-DEJ-JV model’s
DVRP is estimated from the implied volatility surface of the S&P500 index options discussed in the section 3. We plot the
pairwise combinations for horizons of one, three, six, and 12 (one-year) months (Panel A to D). The dash line represents the
regression fit to all the observations with slope coefficient and R-squared reported in the plot legend. The solid line represents
the regression fit to the blue observations with slope coefficient and R-squared reported in the plot legend. The blue observations
are the dots that the absolute values of the DVRP are greater than or equal to 0.01%. The orange observations are the dots
that the absolute values of the DVRP are smaller than 0.01%. The date is weekly from January 2007 to August 2017.
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Panel (A): Three-month horizon
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Fig. 8. The relation between the different horizon excess returns and the SV-DEJ-JV model’s
DVRP before, during and after the large shock time period in the financial crisis

Figure 8 presents results on the relation between the different horizon excess returns and the SV-DEJ-JV model’s DVRP. We
compute the time-series of the different horizon S&P500 index returns in excess of the risk-free rate. The SV-DEJ-JV model’s
DVRP is estimated from the implied volatility surface of the S&P500 index options discussed in the section 3. We plot the
pairwise combinations for horizons of three, four, five, and six months (Panel A to D). The dash line represents the regression fit
to the observations that the absolute values of the DVRP are greater than or equal to 0.01 with slope coefficient and R-squared
reported in the plot legend. The red solid line represents the regression fit to the red crosses with slope coefficient and R-squared
reported in the plot legend. The yellow squares are the observations from the August 1, 2007 to September 15, 2008 (Before
the large shock time period in the financial crisis). The red crosses are the observations from September 15, 2008 to March
23, 2009 (During the large shock time period in the financial crisis). The purple triangles are the observations from March 23,
2009 to October 1, 2010 (After the large shock time period in the financial crisis and before the large shock time period in the
European debt crisis). The remaining observations are blue observations. The date is weekly from January 2007 to August

2017.
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Panel (A): Total Time Period Panel (B): During the 2008-2009 Financial Crisis
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Fig. 9. In-sample R-squared and f; of predictive regression of the SV-DEJ-JV model’s
DVRP.

This figure shows that the slope coefficient and adjusted R2s from in-sample regressions of the scaled h-period returns on
the SV-DEJ-JV model’s DVRP with the different time periods. All of the regressions are based on weekly observations from
January 2007 to August 2017.
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Panel (A): Total time period Panel (B): Large shock period during the 2008-2009 financial crisis
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Fig. 10. Out-of-sample R-squared and ; of predictive regression of the SV-DEJ-JV model’s
DVRP.

This figure shows that the slope coefficient and adjusted R%s from out-of-sample regressions of the scaled h-period returns on
the SV-DEJ-JV model’s DVRP with the different time periods. All of the regressions are based on weekly observations from
January 2007 to August 2017.
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Table 4: Descriptive statistics and option characteristics
Panel A and Panel B report the descriptive statistics of S&P500 index prices and returns from January 2003 — August 2017.

Panel C and Panel D report the statistics of the curvature of ATM IV surface and the term structure of short-dated IV surface

from January 2007 — August 2017.

Mean Std.Dev. Skewness Kurtosis Minimum Maximum Returns>3% Returns<-3%

Panel A: S&P500 index prices

1.457E403 4.210E+02 6.809E-01 -5.863E-01 6.765E402 2.481E+403 NA NA
Panel B: S&P500 returns

1.997E-04 1.260E-02 -3.439E-01 1.108E+-01 -9.469E-02 1.096E-01 3.900E+01 5.300E+4-01
Panel C: The term structure of short-dated IV surface

1.096E-02 1.011E-03 -3.133E-00 1.893E+02 -2.498E-01 1.597E-01 NA NA
Panel D: The slope between short-term ATM and I'TM IVs

-2.581E-01 4.74TE+01 8.744E-01 2.180E+4-00 -1.562E4-00 1.698E4-00 NA NA
Panel E: The slope between short-term OTM and ITM IVs

6.408E-01 9.700E-01 1.819E+00 6.452E+00 -1.670E+4-00 6.953E4-00 NA NA
Panel F: The curvature of short-term ATM IV

6.409E-01 9.409E-01 1.819E-00 6.453E+00 -1.670E-00 6.953E-00 NA NA

Table 5: S&P500 call options
Note that we use the European call options for Standard & Poor’s 500 index (S&P500). The data are obtained from Datastream
with the sample period from each Wednesday during January 1, 2007 to August 31, 2017. The call options with 6 to 180 days-

to-expiration, 0.92 to 1.08 moneyness (S/K), call prices more than $0.375 and nonarbitrary opportunities are reserved. After

filtering sample, there are a total number of 22828 available observations for call options.

The sample is divided into 36

categories, i.e., 6 types of days-to-expiration (extremely short-term for < 30 days; short-term 30-60 days; near-term 60-90

days; middle-maturity 90-120 days; long-term 120-150 days; extremely long-term >150 days) and 6 types of moneyness (S/K)

(deep-out-of-the-money for; out-of-the-money for; at-the-money for; in-the-money for and deep-in-the-money for). The table

lists the sample properties of S&P500 call options like the average call option price and average implied volatility for each

categories.

Panel A: Number of call options

Moneyness Days-to-Expiration

(S/K) <30 30-60 60-90 90-120 120-150 > 150 Subtotal

< 0.94 243 715 792 632 161 84 2,627
0.94—-0.97 835 1,254 1,166 877 270 127 4,529
0.97—1.00 1,208 1,217 1,135 866 269 136 4,831
1.00—1.03 1,131 1,123 1,050 797 239 106 4,446
1.03—1.06 917 1046 985 761 233 131 4073

1.06 < 439 607 609 470 144 53 2322
Subtotal 4773 5962 5737 4403 1316 637 22828
Panel B: Average of Call option prices

<30 30-60 60-90 90-120 120-150 > 150 Subtotal

< 0.94 2.48 3.48 5.62 8.33 15.38 19.73 6.44
0.94—-0.97 3.57 7.48 13.00 18.32 24.05 32.80 11.98
0.97—1.00 10.93 22.18 31.73 39.70 48.43 55.45 27.15
1.00—1.03 38.30 50.97 60.68 70.17 75.17 86.08 55.62
1.03—1.06 76.03 87.33 96.21 105.15 109.16 114.56 92.39

1.06 < 107.97 118.57 127.50 136.04 138.02 147.77 124.31
Subtotal 37.13 45.51 50.85 58.05 64.80 71.16 48.82
Panel C: Average implied volatility

<30 30-60 60-90 90-120 120-150 > 150 Subtotal

< 0.94 0.200 0.141 0.130 0.127 0.145 0.144 0.140
0.94—-0.97 0.156 0.135 0.137 0.135 0.141 0.155 0.140
0.97—1.00 0.142 0.147 0.150 0.148 0.161 0.159 0.148
1.00—1.03 0.168 0.166 0.165 0.162 0.171 0.183 0.166
1.03—1.06 0.206 0.185 0.182 0.175 0.183 0.188 0.187

1.06 < 0.200 0.156 0.142 0.168 0.206 0.248 0.176
Subtotal 0.176 0.159 0.157 0.153 0.163 0.169 0.161
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Table 14: In-sample return predictability with weighted least squares (WLS) regressions at
different horizons.

The table 14 reports the estimated regression coefficient 31 and adjusted R? of the predictability
WLS regressions from one to eighteen-month excess return on the S&P500 index. The regression
takes the form of 7y 4yp /Ot 14n = Po(h) + Bi(h) - (DVRP: / Gy yqn) + Ut gtn, Where 7y 4pp is the h-
month ahead S&P500 excess return from ¢ to t + h, DVRP; is the predictor variable at time ¢, and
Ot,t+n is the forecast of return variance h-month ahead. We use the VIX term structure for 1, 3, 6,
9, and 12 months as a forward-looking measure of the excess return variance. We use the Newey-
West standard errors to correct for auto-correlation introduced by overlapping data. The p-value of
Newey-West test for significance of estimated regression coefficients accounting for the overlapping
in the regressions are reported in the parenthesis. The standard errors are corrected by Newey-West
with 2h lags. Panel A reports the return predictability regression for the total time period ranging
from January 2007 to August 2017. Panel B reports the return predictability regression for the
time period during the financial crisis ranging from August 2007 to June 2009. Panel C reports the
return predictability regression for the large shock time period during the financial crisis ranging
from September 2008 to March 2009. Panel D reports the return predictability regression for the
time period after the financial crisis ranging from July 2009 to August 2017. The adjusted R2, adj
R?, is reported in percent.

Panel A: Total time period: 2007:01-2017:08.

Horizon 1 3 6 9 12
51 0.820 0.619** 0.268 0.123 0.052
(p—value) 0.241 0.036 0.426 0.383 0.338
Adj R? (%) 0.352 1.123 0.155 0.179 -0.021
Panel B: During the 2008-2009 financial crisis: 2007:08-2009:06.
Horizon 1 3 6 9 12
51 1.718* 1.497* 0.634 0.091 -0.066
(p—value) 0.094 0.072 0.455 0.894 0.903
Adj R? (%) 1.173 1.924 -0.993 -2.267 -2.266
Panel C: Large shock period during the 2008—-2009 financial crisis: 2008:09-2009:03
Horizon 1 3 6 9 12
Jost 2.048* 2.169** 1.454* 0.709** 0.331**
(p—value) 0.067 0.000 0.007 0.028 0.020
Adj R? (%) 2.553 24.710 18.906 17.901 11.859
Panel D: After the 2008-2009 financial crisis: 2009:07-2017:08
Horizon 1 3 6 9 12
b1 0.026 0.117 -0.102 -0.013 0.010
(p—value) 0.939 0.422 0.344 0.878 0.807
Adj R? (%) -0.364 -0.167 0.023 -0.372 -0.382

, **, and * are the statistical significance levels as 1%, 5%, 10%, respectively.
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