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Abstract

This paper revisits the evident puzzling behaviour between the statistical predictability

of bond excess returns and the incapability to use such predictability to generate meaningful

out-of-sample economic benefits for bond investors. We resolve this puzzle by implementing a

Bayesian learning framework, under a dynamic term structure model (DTSM). We develop a

sequential process for investors, who learn the entire predictive density of bond excess returns,

when new information arrives, thus accounting for parameter and model uncertainty. We

find strong evidence of out-of-sample predictability for bond investors who utilize information

coming solely from the yield curve. Most importantly, such statistical evidence is turned into

economically significant utility gains for investors, across prediction horizons. Furthermore, we

find that the predictive power and economic gains decrease with maturity and increase with

the prediction horizon. Our results are more pronounced when no portfolio constraints are

imposed. Finally, we assess the efficiency and economic importance of risk price restrictions

from a forecasting perspective. We find that maximally flexible model outperforms restricted

models both statistically, as well as, economically.
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1 Introduction

Failure of the expectation hypothesis (EH) implies that bond returns are strongly predictable1 (see,

Fama and Bliss (1987), Campbell and Shiller (1991), Cochrane and Piazzesi (2005), Ludvigson and

Ng (2009), among others). In particular, Fama and Bliss (1987) and Campbell and Shiller (1991)

propose forward and yield spreads as predictors and suggest that spreads have predictive power on

excess returns, while Cochrane and Piazzesi (2005) use a linear combination of five forward rates

as predictors and show that they can explain over 30% of bond return variation. More recently,

Ludvigson and Ng (2009) find that predictors extracted from macroeconomic variables are also

important to capture the predictability of bond excess returns. Such evidence, however is purely

statistical.

An even more important and economically justifiable question, is whether such evident statis-

tical predictability can be successfully turned into positive and statistically significant economic

benefits for bond investors. At the moment, the answer to this vital question is negative (see,

Della Corte et al. (2008), Thornton and Valente (2012), Sarno et al. (2016), Gargano et al. (2017)2,

Fulop et al. (2018)). Existing studies argue almost unequivocally, that models which utilize infor-

mation coming solely from the yield curve (e.g. yields, forwards, etc.), are not capable to generate

economic value to investors, out-of-sample. In particular, using a dynamic mean-variance alloca-

tion strategy, Della Corte et al. (2008), Thornton and Valente (2012) and Sarno et al. (2016) find

that statistical significance is not turned into positive portfolio performance, implying that the

evident statistical predictability is not translated into economic gains, when compared to the EH

benchmark. Qualitatively similar conclusions are made by Gargano et al. (2017) and Fulop et al.

(2018) who use alternative estimation approaches for an investor with power utility preferences.

In this paper, we revisit this evident puzzling behaviour.

Dynamic Term Structure Models3 (DTSM), are potentially powerful tools that have shown

1Under the EH bond excess returns are not predictable. Furthermore, for the EH to hold, the market price of risk
should either be zero or constant over time (i.e. weak EH), and as such, time-varying risk premia is an indication
of the EH being violated.

2Gargano et al. (2017) find some statistically significant economic gains for investors at specific (mainly longer)
maturities when macroeconomic factors are used. However, according to Ghysels et al. (2017) and Fulop et al.
(2018), such economic benefits vanish when fully revised macroeconomic information is replaced by real-time data.

3One of the most important classes of DTSMs is the multifactor Affine Term Structure Models (ATSM), char-
acterized by the model of Duffie and Kan (1996), and have been extensively studied by Dai and Singleton (2000).
Other important DTSMs are the affine model with regime shifts of Bansal and Zhou (2002) and the Gaussian
quadratic model of Ahn et al. (2002).
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considerable promise for capturing the dynamic behaviour of the term structure and as such,

have become the main framework in the macroeconomics and empirical finance literature, when

it comes to study a variety of questions about the interactions of asset prices, risk premia and

economic variables4.

Recent research (see, Duffee (2011), Barillas (2011), Thornton and Valente (2012), Adrian et al.

(2013), Joslin et al. (2014), among others), however, suggests that yield only models and DTSMs,

in particular, cannot capture the predictability of bond risk premia, since required information

to predict premia is not spanned5 by the cross section of yields, implying that more (mainly

unspanned) factors are needed. In that respect, Duffee (2011) implements a five-factor yield only

model which is capable to capture the hidden information in the bonds market, while Wright

(2011), Barillas (2011) and Joslin et al. (2014) use measures of macroeconomic activity to predict

bond excess returns.

More recently, Sarno et al. (2016) and Feunou and Fontaine (2017) implement extended ver-

sions of yield only ATSM and argue that their approaches, help ATSM capture the required

predictability of excess returns in the bonds market. A similar conclusion is reached by Bauer

(2017) who estimate an ATSM under alternative risk price restrictions. This is evidence that the

spanning hypothesis holds true, implying that the yield curve itself spans all relevant information

and as such, other risk factors (e.g. macroeconomic variables) are not essential, when it comes to

forecasting future returns. However, these studies, either do not consider out-of-sample economic

performance (as in Duffee (2011), Bauer (2017) and Feunou and Fontaine (2017), etc.), or, when

they consider, they cannot confirm (as in Sarno et al. (2016)), whether statistical predictability is

capable to offer economic benefits to bond investors, compared to the non-predictability (constant

risk premia) EH benchmark.

In this paper, we estimate multifactor ATSMs and attempt to revisit, first, their ability to

capture the predictability of excess returns in the bonds market and, second, their capability to

turn such predictability into meaningful economic value for bond investors, thus addressing the

4See, for example, Duffee (2002) and Cochrane and Piazzesi (2009) for studies on the role of risk premia in interest
rates, or Ang and Piazzesi (2003), and Rudebusch and Wu (2008) for studies on macroeconomic developments and
monetary policy effects on the term structure of interest rates, among many others.

5The spanning hypothesis suggests that the yield curve contains (i.e. spans) all relevant information to forecast
future yields and excess returns. Unspanned (or hidden) factors, are factors that are not explained (spanned) by
the yield curve, while at the same time, are useful for predicting risk premia (see, Cochrane and Piazzesi (2005),
Duffee (2011), Joslin et al. (2014)).
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above mentioned puzzling behaviour between predictability and economic benefits.

We consider bond investors who assess investment opportunities based on historical evidence.

Observing only a sample of such evidence, precludes them from knowing the true parameter values,

thus, making their investment decisions in the presence of parameter uncertainty. Successfully

addressing the above mentioned questions, implies the need to account for parameter uncertainty

as well as model uncertainty. To do so, we propose a Bayesian learning framework6 within a

DTSM. In particular, we develop a sequential process for investors, who revise their beliefs about

parameters and models, when new information arrives. This provides them the entire forecasting

predictive density of bond excess returns, when making portfolio decisions, thus ’informing’ their

asset allocation and maximising their expected utility.

Our framework, allows us to overcome a number of important challenges reported in previous

studies. First, it allows us to successfully handle model choice, which is of paramount impor-

tance when we want to effectively estimate risk premia. Bayesian model choice is carried out by

calculating the marginal likelihood of the posterior distribution. This process usually involves

different models of similar type, such as ATSMs with tight restrictions on the market price of risk

parameters7. Such restrictions are imposed in order to take (full) advantage of the no-arbitrage

condition, meaning, to try to link the cross-sectional and time-series variation of interest rates8

(see, Cochrane and Piazzesi (2009), Duffee (2011), Bauer (2017)). This implies that the unre-

stricted, maximally flexible, specification used extensively in exiting studies, provides the weakest

link between the two sets of dynamics and, as such, does not make any use of the information in

the cross-section of interest rates, creating an extra layer of estimation difficulties. Our framework

successfully overcomes this issue by testing the efficiency and economic importance of alternative

risk price restrictions.

Second, it allows us to integrate out parameter uncertainty9, which is now incorporated in the

6In particular, we adopt the Sequential Monte Carlo (SMC) framework of Chopin (2002) and Del Moral et al.
(2006).

7See, Dai and Singleton (2000), Duffee (2002) and Ang and Piazzesi (2003) for an ad hoc way of imposing
restrictions and Cochrane and Piazzesi (2009), Joslin et al. (2011), Joslin et al. (2014) and Bauer (2017) for a more
systematic way.

8According to Cochrane and Piazzesi (2009), Duffee (2011) and Bauer (2017), this is the only way that allows
us to use information from the cross-section of yields, and be able to effectively identify the time- series dynamics.
If we do not impose no-arbitrage, through tight restrictions, then no information can be inferred from the cross
section.

9Thornton and Valente (2012) report considerable time variation in parameter estimates, which causes a deteri-
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posterior predictive distribution. This allows us to depart from the constant (or rolling window)

conditional variance specification adopted by existing studies (see, Thornton and Valente (2012),

Sarno et al. (2016)), and accommodate uncertainty on both moments, which are now time-varying

and are updated on every time step.

Third, our framework directly produces the entire forecasting distribution, through predictive

densities, when new information arrives. It is capable to accommodate various forecasting tasks

such as forecasting several points and functions, thus assessing the predictive performance of any

model, across predictive horizons. This allows us to analyze the economic benefits of excess return

forecasts, for an investor with power utility preferences and assess the economic importance of the

chosen restrictions, from a forecasting perspective.

Fourth, the sequential learning setup naturally provides sequential inference in a parallel way,

allowing us to overcome the poor mixing and slow convergence properties as well as the inac-

curate Monte Carlo calculations (that could potentially lead to highly autocorrelated samples)

that conventional Bayesian estimation approaches experience10 (see, Ang et al. (2007), Chib and

Ergashev (2009), Ang and Longstaff (2011) and Bauer (2017), among others), making it fast and

convenient to use.

Fifth, it is more robust and allows us to overcome the undesirable features of challenging target

posteriors (e.g. multimodality and flat surface11 which leads to locally12 identifiable13 models)

and the estimation challenges, that have been reported by existing studies (see, Ang and Piazzesi

(2003), Ang et al. (2007), Chib and Ergashev (2009), Joslin et al. (2011), Duffee and Stanton

oration on the model’s out-of-sample performance.

10Chib and Ergashev (2009) and Bauer (2017) note that the quality of the MCMC output can by substantially
improved if a Gibbs scheme is adopted, where the parameters are updated into blocks, some of them being full
Gibbs steps. However, this framework cannot be used directly to address additional tasks such as model choice and
forecasting.

11Ang and Piazzesi (2003) report that the likelihood surface is very flat in λ0, which determines the mean of long
yields.

12In a locally identifiable model, the likelihood function has a number of different maxima. In a globally identifiable
model, the likelihood function possesses only one global maximum.

13In particular, the likelihood function experiences a large number of inequivalent local maxima with similar
likelihood, and the function around these maxima can be quite flat among many directions in the parameter space.
This is why it is common for numerical search methods, used for the optimization of the likelihood, to end up in
regions of the parameter space that cannot be locally identified. This creates the need of repeatedly generating a
random vector of starting values to maximize the likelihood function, in order to achieve convergence in this highly
non-linear system; and even then, there is no guarantee that the global maximum has been found. However, this
identification issue has been, largely, solved by the canonical setup of Joslin et al. (2011).
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(2012), Hamilton and Wu (2012), Bauer (2017)), due to the large number of parameters to be

estimated, the non-linear relationship (and cross-sectional restrictions) between the parameters

and the yields, the short sample period and the very high persistence of interest rates14.

Our empirical analysis is conducted using a discrete-time Gaussian no-arbitrage ATSM. For

identification and econometric tractability, we adopt the canonical setup of Joslin et al. (2011),

where the vector of unobserved risk factors is rotated, such that state variables are linear combi-

nations of observed yields. Following related literature (see, Cochrane and Piazzesi (2005), Joslin

et al. (2011), Joslin et al. (2014), Bauer (2017)), we estimate different models, based on alterna-

tive, economically plausible, restrictions on the price of risk parameters. To assess the statistical

performance of the models, we allow them to produce out-of-sample forecasts spanning the pe-

riod 1990:2008. We run predictive regressions on non-overlapping (as in Bauer and Hamilton

(2017)) monthly excess bond returns across different predictive horizons and evaluate the out-of-

sample predictability using Campbell and Thompson (2008) out-of-sample R2. To investigate the

economic value of the out-of-sample excess return forecasts generated by alternative models, we

construct a dynamically rebalanced portfolio as in Della Corte et al. (2008) and Thornton and

Valente (2012), for an investor with power utility preferences, and compute standard metrics such

as certainty equivalence returns (CER) (see, Johannes et al. (2014) and Gargano et al. (2017),

among others). We consider three different scenarios for investors. In the first two, short positions

and leveraging are precluded (see, Thornton and Valente (2012), Gargano et al. (2017)). In the

third, no portfolio constraints are imposed (see, Fulop et al. (2018)).

Our results help us infer a host of interesting conclusions. First, we find strong evidence

that investors, who use specific restricted models, can use predictability to improve portfolio

performance and earn economically meaningful utility gains, out-of-sample. The corresponding

CERs are positive and statistical significant, across risk preferences, indicating that such models,

not only provide statistical evidence of out-of-sample predictability, but also provide statistically

significant economic gains to bond investors, relative to the EH benchmark. These findings are

in contrast to existing literature. In particular, our results are in contrast to those reported by

Thornton and Valente (2012), Gargano et al. (2017) and Fulop et al. (2018), who argue that the

statistical evidence of bond return predictability is not turned into economic value for investors,

14It is hard to estimate the unconditional mean and the speed of mean reversion since a very persistent time
series does not revert to its mean very often.
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who utilise information from the yield curve only and, also, in contrast to Sarno et al. (2016) who

find that yield only ATSM models, are not capable to systematically earn any economic premium

for bond investors, out-of-sample.

Second, we find that all models, restricted and unrestricted, produce positive out-of-sample

R2, when compared to the EH-implied risk premia model. This indicates that ATSM outperform

the EH benchmark both in- and out-of-sample, which suggests strong evidence of out-of-sample

bond return predictability, using models that utilise their information content from the yield curve

only. Our results are in contrast to Duffee (2011), Barillas (2011) and Joslin et al. (2014), who

argue that ATSM cannot capture the evident predictability of returns, and, consistent with the

conclusions of Sarno et al. (2016), Bauer (2017) and Feunou and Fontaine (2017), who suggest

that their approaches help ATSM models to capture such predictability.

Third, comparing across models, our results suggest that the maximally flexible model out-

performs restricted models both statistically (highest R2), as well as, economically (highest CER

values). Furthermore, models with fewer restrictions clearly outperform highly restricted models,

provided that the unrestricted parameters are the ones that reflect the fact of risk premia being

earned as compensation to the level (and slope) factor(s).

Fourth, our results suggest that R2 decrease with bond maturity, while CER values increase as

the maturity of the bond increases, reaching their peak values at the five-year maturity. Comparing

across prediction horizons, we find that both out-of-sample R2 and CER values increase with the

horizon, reaching their peak values at horizons of six- and nine-months, suggesting that evidence

against the EH is stronger at longer horizons.

Fifth, allowing for portfolio weights to be unconstrained, our results are even more pronounced,

since CER values increase substantially, especially at shorter maturities. The most profitable

bond is now the two-year maturity bond. This result is in contrast to the results implied by

the constrained weights scenario, where economic performance generally increases with maturity.

This is also in contrast to the equities market15 where constraints on the portfolio weights improve

performance out-of-sample.

Our paper makes several contributions to the extant literature. First, we provide a Bayesian

learning framework within DTSMs, which successfully handles parameter uncertainty and model

15See, Avramov (2003), among others, who suggest that imposing portfolio constraints, considerably reduces
discrepancies among specifications, thus, improving portfolio performance and Johannes et al. (2014) who argue
that out-of-sample returns are much worse when weights are constrained.
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choice. While the use of particle filters in the economics, finance and macro-finance literature16

has increased in recent years, we are unaware of prior research that uses Bayesian learning within a

DTSM. Our framework enables us to work with the joint density of the state variables and model

parameters, and as such, to jointly estimate the cross-section and time-series dynamics, thus

accounting for no-arbitrage, while at the same time, it naturally provides sequential inference in a

parallel way, making it fast and convenient to use. In that respect, compared to existing literature

(see, Thornton and Valente (2012), Adrian et al. (2013) and Sarno et al. (2016)), our framework

directly addresses forecasting since its output provides the entire forecasting distribution (and

estimates of the expectations) at each time step, across prediction horizons.

Second, we revisit the predictive performance of ATSM and assess the statistical and economic

significance that these models imply, in light of the alternative restrictions imposed on the risk

prices. We attempt to overcome the estimation, numerical and uncertainty challenges associated

with these models and explore the benefits of sequential learning when it comes to the predictabil-

ity of bond excess returns. Thus, our paper is related to Cochrane and Piazzesi (2005), Duffee

(2011), Joslin et al. (2014), Bauer (2017), Feunou and Fontaine (2017), however, it complements

their statistical analysis, by, primarily, attempting to assess the financial implications of risk price

restrictions, out of sample.

Third, we address the evident puzzling behaviour between the statistical predictability of bond

excess returns and the failure of the (yield only) models to turn such predictability into economic

benefits for bond investors. Compared to existing studies (see, Thornton and Valente (2012),

Sarno et al. (2016)), we use different modelling assumptions, different estimation methodologies

and different prediction horizons. Furthermore, our work is distinct from Gargano et al. (2017)

and Fulop et al. (2018) in an important respect. These studies base their analysis on predictive

regressions, rather than jointly modelling the cross-section and time-series dynamics, under a term

structure model.

The remainder of this paper is organised as follows. Section 2 describes the modelling frame-

work. Section 3 discusses the sequential learning estimation procedure. Section 4 discusses the

data used and the sample period. Section 5 discusses the alternative restrictions imposed on the

16In economics literature, see, Fernández-Villaverde and Rubio-Ramírez (2007) for the first study in the estimation
of non-linear DSGE models. In finance, see, Johannes et al. (2009), Christoffersen et al. (2010), Johannes et al.
(2014) for the estimation of stochastic volatility models. In macro-finance, see, Gargano et al. (2017), Fulop et al.
(2018) for predictability of bond excess returns.
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risk prices. Section 6 discusses how we empirically evaluate the predictive performance of alterna-

tive models and presents the empirical results on bond return predictability. Section 7 assesses the

economic performance of the alternative models across different predictive horizons and presents

the empirical results. Finally, section 8 concludes the paper.

2 The Dynamic Term Structure Model

The model used in our setting belongs to the no-arbitrage class of discrete-time Affine Term

Structure Models (ATSM) (see, Ang and Piazzesi (2003) and Cochrane and Piazzesi (2005)). In

Gaussian ATSM, under the physical probability measure P, a (N × 1) vector of state variables,

Xt, evolves according to a first-order Gaussian Vector Autoregressive (VAR) process,

Xt = µ+ ΦXt−1 + Σεt (1)

where, εt ∼ N(0, IN ), Σ is an (N ×N) lower triangular matrix, µ is a (N × 1) vector and Φ is a

(N ×N) matrix. Under this framework, the one period risk-free interest rate rt17, is assumed to

be an affine function of the state variables,

rt = δ0 + δ′1Xt (2)

where, δ0 is a scalar and δ1 is a (N × 1) vector. Absence of arbitrage implies the existence of a

pricing Kernel, Mt+1, specified as an exponentially affine function of the state vector,

Mt+1 = exp(−rt −
1
2λ
′
tλt − λ′tεt+1) (3)

with, λt being the time-varying market prices of risk, which is also assumed to be affine in the

state vector Xt
18,

λt = λ0 + λ1Xt (4)

17Working with monthly data implies that rt is the 1-month yield.

18This is the ’essentially-affine’ specification introduced in Duffee (2002). Existing studies have proposed alter-
native specifications for the market price of risk, such as the ’completely-affine’ model of Dai and Singleton (2000),
the ’semi-affine’ model of Duarte (2004) and the ’extended-affine’ model of Cheridito et al. (2007). See, Feldhütter
(2016) for a useful comparison of the models.
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where, λ0 is a (N × 1) vector and λ1 is a (N ×N) matrix. If we assume that the pricing kernel,

Mt+1, prices all bonds in the economy and we let, Pnt , denote the time-t price of an n-period

zero-coupon bond, then the price of the bond is computed from, Pn+1
t = Et

(
Mt+1P

n
t+1
)
. Then, it

follows that bond prices are exponential affine functions of the state vector (see, Duffie and Kan

(1996)),

Pnt = exp(An +B′nXt) (5)

with loadings, An being a scalar and Bn a (N × 1) vector, satisfying the following recursions,

An+1 = An +B′n(µ− Σλ0) + 1
2B
′
nΣΣ′Bn − δ0 (6)

Bn+1 = (Φ− Σλ1)′Bn − δ1 (7)

with A1 = −δ0 and B1 = −δ1. This implies that the Q dynamics of the state vector are given by,

Xt = µQ + ΦQXt−1 + ΣεQt (8)

where, µQ = µ− Σλ0, ΦQ = Φ− Σλ1 and εQt ∼ N(0, IN ). The continuously compounded (J × 1)

vector of yields, ynt , is also an affine function of the state vector,

ynt = − logPnt
n

= An,X +B′n,XXt (9)

where, the loading (J × 1) vector, An,X and the loading (J × N) matrix, Bn,X , are calculated

using the above recursions as, An,X = −An/n and Bn,X = −Bn/n.

As discussed earlier, estimation and identification of these type of DTSM models has been

proven to be challenging (see, Ang and Piazzesi (2003), Ang et al. (2007), Chib and Ergashev

(2009), Duffee and Stanton (2012), Hamilton and Wu (2012), Bauer (2017)), especially when

ATSM are expressed in terms of a ’latent’ state vector, which leads to models that are only

’locally’ identifiable.

To overcome this problem, such that all parameters are econometrically identified, additional

normalizing restrictions need to be imposed. We follow the canonical setup of Joslin et al. (2011)

and rotate the vector of unobserved state variables, Xt, such that they are linear combinations
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of the observed yields, and as such, are perfectly priced by the no-arbitrage restrictions. In

particular, we rotate Xt to the first three principal components (PCs) of observed yields, as,

Pt = Wyt = WAn,X + WBn,XXt, where, W denoting an (N × J) matrix that contains the

loadings of the first three PCs of yields, and An,X and Bn,X are given by equations above. This

allows us to re-write the yield equation (9) as a function of the observable risk factors, Pt, as,

ynt = An,P +Bn,PPt (10)

where, the loadings An,P and Bn,P are given below19 (see, Appendix A for the derivation),

An,P = An,X −Bn,x(WBn,x)−1(WAn,x) (11)

Bn,P = Bn,x(WBn,x)−1 (12)

Furthermore, the risk-neutral dynamics of Pt are given as (see, Appendix A for the derivation),

Pt = µQP + ΦQ
PPt−1 + ΣPεQt (13)

where,

µQP = (I − ΦQ
P)(WAn,X) + (WBn,x)µQ (14)

ΦQ
P = (WBn,x)ΦQ(WBn,x)−1 (15)

ΣP = (WBn,x)Σ (16)

Finally, given the new observable state vector Pt, the one period short rate, rt, is given as an

affine function of Pt as,

rt = δ0P + δ′1PPt (17)

19According to Duffee (2011), outside of knife-edge cases, the matrix (WBn,x) is invertible, and as such, Pt

contains the same information as Xt.
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with,

δ0P = δ0 − δ′1(WBn,x)−1(WAn,X) (18)

δ′1P = (WB′n,x)−1δ1 (19)

and the market price of risk specification becomes,

λt = λ0P + λ1PPt (20)

where,

λ0P = λ0 − λ1(WBn,x)−1(WAn,X) (21)

λ1P = λ1(WBn,x)−1 (22)

In our setting, we also follow one of the identification schemes proposed in Joslin et al. (2011)

(see, proposition 1), where the short rate is the sum of the state variables, given as, rt = iXt,

with i being a vector of ones, and the parameters µQ and ΦQ of the state vector’s Q-dynamics,

given as, µQ = [kQ∞, 0, 0] and ΦQ = diag(gQ), where, gQ denotes a (N × 1) vector containing the

real and distinct eigenvalues of ΦQ 20.

At this point, it is important to mention an assumption we make. In our setup, yields are

observed without any measurement error. Doing so, allows us to separate the estimation of the

parameters under the physical measure P, which can be obtained through simple Ordinary Least

Squares (OLS) estimation21, from the ones under the risk-neutral measure Q. However, an N -

dimensional observable state vector, cannot perfectly price J > N yields, and as such, we further

assume that the (J −N) bond yields used in the estimation are observed with i.i.d. measurement

errors such that, ynt = ŷnt + et,n, with et,n ∼ N(0, σ2
eIJ−N ).

One of the main advantages of Joslin et al. (2011) methodology, also adopted in this paper,

is that the rotation to the observable state variables (i.e. PCs), allows for the separation of

20Alternative specifications for the eigenvalues are considered in Joslin et al. (2011), however, real eigenvalues are
found to be empirically adequate.

21According to Joslin et al. (2011),the OLS estimates of parameters µ and Φ are almost identical to those estimated
through the maximum likelihood (ML).
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those parameters governing the risk neutral pricing of yields from those driving the observed risk

factors. This allows the Q parameters to be estimated from time series data only and as such,

been unaffected by the no-arbitrage cross-sectional constraints. This is also directly mapped on

the joint likelihood. Denoting Y = {yt,Pt : t = 0, 1, . . . , T}, we get the conditional on Y0 that the

joint likelihood is given by

f(Y |θ) =
n∏
t=1

f(yt|yt−1; θ) where

f(yt|yt−1; θ) = f(yt|Pt; kQ∞, gQ,Σ, σ2
e)× f(Pt|Pt−1;µ,Φ,Σ) (23)

where, θ = {σ2
e , k

Q
∞, g

Q,Σ, µ,Φ}. The first component captures the cross-sectional dynamics of

the risk factors and the yields (Q-likelihood) and the second component captures the time-series

dynamics of the observed risk factors (P-likelihood). The logarithms of the two terms are expressed

as,

log f(yt|Pt; kQ∞, gQ,Σ, σ2
e) = const− (J −N) log(σ2

e)−
1

2σ2
e

‖yt −An,P −Bn,PPt‖2 (24)

log f(Pt|Pt−1;µ,Φ,Σ) = const− 1
2 log |ΣΣ′| − 1

2‖Σ
−1 (Pt − µ− ΦPt−1) ‖2 (25)

3 Estimation

Recent existing studies (e.g. Joslin et al. (2011), Joslin et al. (2014), among others) estimate the

parameters using a two step Maximum Likelihood Estimation (MLE) process, where they first

estimate the P parameters (i.e. µ and Φ) using standard OLS regressions and at a second stage,

they estimate the remaining Q parameters. The first step also provides some initial estimates for

the sample conditional variance of Pt, Σ, which are used in the second step as starting values for

the population variance in a suitable optimisation routine.

3.1 Specification of priors

In this paper we consider an alternative approach adopting the Bayesian framework. Low informa-

tive priors on each θ component can be assigned although some relevant information is available in

this context (see, Chib and Ergashev (2009)). We first transform all restricted range parameters

so that they have unrestricted range. Specifically, we work in the log-scale of kQ∞ and consider a
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Cholesky factorisation of Σ where again the diagonal elements are transformed to the real line. In

order to preserve the ordering of the eigenvalues gQ we apply a reparameterisation and work with

their increments that are again transformed to the real line. Next, independent Normal distribu-

tions with zero means and large variance are assigned to each component of θ with the exception

of σ2
e where we assign the conjugate Inverse-Gamma prior as in Bauer (2017) with parameters

α0/2 and β0/2.

3.2 Markov Chain Monte Carlo scheme

Combining the likelihood provided by (23) and priors , denoted by π(θ), provide the posterior up

to proportionality,

π(θ|Y ) = π(θ)f(y0|P0; kQ∞, gQ,Σ, σ2
e)

n∏
t=1

f(yt|Pt; kQ∞, gQ,Σ, σ2
e)× f(Pt|Pt−1;µ,Φ,Σ). (26)

As the above posterior is not available in closed form, methods such as MCMC can be used to draw

samples from it. The posterior samples that can then be used to calculate expectations of interest

E[g(θ)|Y ] (provided that they exist) such as the posterior mean, variance and percentiles using

Monte Carlo. Note however that the MCMC output is not guaranteed to lead to accurate Monte

Carlo calculations since the corresponding Markov chain may have poor mixing and convergence

properties thus leading to highly autocorrelated samples. It is therefore essential to construct a

suitable MCMC algorithm that does not exhibit such issues. Various studies (see, for example

Chib and Ergashev (2009) and Bauer (2017)), note the substantial improvement to the quality of

the MCMC output if a Gibbs scheme is adopted, where the parameters are updated into blocks,

some of them being full Gibbs steps. For the remaining block, independence samplers maybe

constructed using the MLE and the Hessian. Such an MCMC algorithm is described in Table 3.1.

3.3 Sequential framework

The MCMC scheme in Table 3.1 performs reasonably well and can be used to obtain posterior

summaries from (26). Nevertheless, it cannot be used directly to address additional tasks such as

model choice and forecasting. Bayesian model choice is carried out by calculating Bayes factor or,

equivalently, the model evidence or else marginal likelihood π(Y ) =
∫
θ f(Y |θ)π(θ)dθ. Numerous

methods are available to estimate π(Y ), mainly via Monte Carlo, but they typically require

additional work. In some cases, usually involving different models of similar type such as ATSMs
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Initialise all values of θ. Then at time each iteration of the algorithm

(a) Update σ2
e from its full conditional distribution that can be shown to be the Inverse Gamma

distribution with parameters α+ n and β +
∑
t,n(ynt − ŷnt )2.

(b) Update λt from its full conditional distribution that can be shown to be the Normal
distribution with mean and variance provided from the restricted VAR framework, see for
example Bauer (2017).

(c) Update Σ using an independence sampler based on the MLE and its Hessian obtained
before running the MCMC.

(d) Update (kQ∞, gQ) in a similar manner to (c).

Table 3.1: Markov Chain Monte Carlo scheme for Gaussian Affine Term Structure Models

with restrictions, an alternative approach is to extend this algorithm to a reversible jump MCMC

scheme by constructing moves between models with potentially different number of parameters

(see, Bauer (2017)).

Bayesian forecasting is performed via the posterior predictive distribution.

f(Yt+1|Y0:t) =
∫
f(Yt+1|θ)π(θ|Y0:t)dθ, (27)

where Y0:t = (Y0, Y1 . . . , Yt) such that Y0:T = Y . Note that (27) incorporates parameter uncer-

tainty by integrating θ out according to π(θ|Y0:t). Usually prediction is carried out by expectations

with respect to (27), e.g. E(Yt+1|T0:t). Since (27) is is typically not available in closed form, Monte

Carlo can be used in the presence of samples from π(θ|Y0:t). This process may accommodate var-

ious forecasting tasks; for example forecasting several points, functions thereof and potentially

further ahead in the future. A typical forecasting evaluation exercise requires taking all the con-

secutive times t from the nearest integer of -say T/2- to T − 1. In each of these times, Y0:t serves

as the training sample, and points of Y after t are used to evaluate the forecasts. Hence, carrying

out such a task requires sample samples from (27), and therefore from π(θ|Y0:t), for several times

t. Note that this procedure can be quite laborious, in some cases infeasible, if MCMC alone is to

be used; this implies that algorithms such as the one it Table 3.1 will have to be run for each t

separately.

An alternative approach that can handle both model choice and forecasting assessment tasks is

to use sequential Monte Carlo (see, Chopin (2002) and Del Moral et al. (2006)) to sample from the
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sequence of distributions π(θ|Y0:t) for t = 0, 1, . . . , T . The Iterated Batch Importance Sampling

(IBIS) of Chopin (2002) algorithm, see also Del Moral et al. (2006) for a more general framework,

is provided in Table 3.2. The degeneracy criterion is usually defined through the Effective Sample

Sample with an initial value θi ∼ π(θ) and set ωi ← 1 for i = 1, . . . , Nθ. Then at time each time t
(t = 1, . . . , T )

(a) Compute the incremental weights and the weighted average

ut(θi) = f(Yt|Y0:t−1, θ
i) = f

(
Yt|Yt−1, θ

i)

Lt = 1∑Nθ

i=1 ω
i

Nθ∑
i=1

ωiut(θi).

(b) Update the importance weights ωi ← ωiut(θi),

(c) If some degeneracy criterion is fulfilled, sample θ̃i from the mixture

1∑Nθ

i=1 ω
i

Nθ∑
i=1

ωiKt(θi, ·)

where Kt is a MCMC kernel. Finally set
(
θi, 1

)
←
(
θ̃i, 1

)
.

Table 3.2: IBIS algorithm

Size (ESS) which is equal to (
∑
i ω1)2/

∑
i ω

2
i , and is of the form ESS < αNθ for some α ∈ (0, 1).

Step (c) of the algorithm can be performed in two sub-steps:

1. Resampling: Resample the set of θi’s according to their weights ωi’s, e.g. using multinomial

resampling. This process results in a new set of θi’s where the old θi’s with high weights

tend to appear multiple times, whereas the ones with low weights are likely to be excluded.

2. Jittering: Further replace the set of θi’s by running a MCMC algorithm for a few iterations

starting at each of θi and setting the last sample it provides as θ̃i.

The output of the IBIS algorithm can provide estimates of the expectations E[g(θ)|Y0:t] for all t

using the estimator
∑
i[ωig(θi)]/

∑
i ω

i. Chopin (2004) shows consistency and asymptotic normal-

ity of this estimator as Nθ → ∞ for all appropriately integrable g(·). In the case forecasting the

values of Y at time t+1 using information up to time t, note that propagating the samples θi using

the likelihood (23) will provide samples of Y i
t+1 according to the posterior predictive distribution

of (27). Expectations with respect to (27) of the form E[g(Yt+1)|Y0:t] can therefore be calculated

by
∑
i[ωig(Y i

t+1)]/
∑
i ω

i for all t. Moreover, each Lt, computed in Step (a), is a consistent and
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asymptotically normal estimator of the model evidence f(Yt|Y0:t−1). Hence, the IBIS algorithm for

tasks of model choice and assessment of predictive performance. An additional benefit provided

by sequential Monte Carlo is that it provides an alternative choice when MCMC algorithms have

poor mixing and convergence properties and is general more robust when the target posterior is

challenging, e.g. multimodal. Note that despite the fact that this approach also uses MCMC, it

is substantially more efficient than running the MCMC for each t.

4 Data

Our empirical study is based on a data set that comprises monthly observations of zero-coupon

U.S. Treasury yields with maturities of 1-year, 2-year, 3-year, 4-year, 5-year, 7-year and 10-year,

spanning the period January 1990 to December 2007. Following the related literature (see, Joslin

et al. (2011) and Bauer (2017)), we do not include in our sample the period of the recent financial

crisis. The reason is that after 2008 the interest rates market has experienced a quick downward

move at the short end of the yield curve (zero-lower bound) which has also lasted for a long

period of time. Kim and Singleton (2012) and Bauer and Rudebusch (2016) argue that Gaussian

affine models are not capable to deal with almost zero rates since they generate large negative

risk premiums.

5 Market Price of Risk Restrictions

The market price of risk specification and the associated restrictions related to it, is an important

component of DTSM, especially when it comes to estimation of risk premia. This section discusses

the alternative restrictions used on the market price of risk parameters. Earlier studies (see, Dai

and Singleton (2000), Duffee (2002), Ang and Piazzesi (2003), Kim and Wright (2005)) have,

mainly, focused on imposing zero ad-hoc restrictions on the parameters governing the dynamics

of the risk premia. A common practice used, is to first estimate a maximally flexible model (i.e. a

model with unrestricted risk prices), and in a second step, to re-estimate it by setting to zero those

parameters that have large standard errors. However, the process of imposing such restrictions in

an ad-hoc way has been recently criticised (see, Kim and Singleton (2012), Bauer (2017)), since

it has raised concerns about, first, the joint significance of the constraints, second, the magnitude
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of the associated standard errors22 and, third, the economic meaning (i.e. not motivated by the

economic theory) of the estimated parameters and the resulting state variables.

Only recently, a few studies have investigated more systematic approaches on how to impose

restrictions on the market price of risk parameters. These approaches are mainly based on alter-

native information criteria. In particular, Bauer (2017) propose a Bayesian econometric approach

to select restrictions, by using draws from three alternative model selection samplers23. Empirical

evidence suggests that only one (or one to three) out of twelve parameters of the market price of

risk (essentially affine) specification is non-zero (i.e. unrestricted), which implies that the data

call for tightly restricted models. In particular, this parameter is the one that determines how

the slope factor influences the price of level risk, which shows evidence of level risk been priced

(as well as being time-varying), consistent with Fama and Bliss (1987) and Campbell and Shiller

(1991).

Similar tight restrictions, introduced, partly, by prior empirical analysis, are also imposed by

Cochrane and Piazzesi (2009), whose risk premia specification is the most restricted one, given

that only one parameter in λ0 and one parameter in λ1 are allowed to be non-zero. Furthermore,

the restriction on λ1 reflects the fact of risk premia being earned as compensation to the level

factor only, in line with Duffee (2011) and Bauer (2017). An alternative approach is followed by

Chib and Ergashev (2009), who impose strong prior restrictions such that the yield curve is (on

average) upward sloping24, an assumption that is empirically and economically plausible.

Finally, similar systematic approaches have been used in the macro-finance DTSM literature25.

Joslin et al. (2014) use model selection methodologies and select all possible zero restrictions26

based on different Bayesian information criteria27. Similar restrictions are also tested by Bauer

22According to Kim and Singleton (2012), it is unclear how small the associated standard errors have to be in
order to set a parameter to zero.

23Samplers proposed by Bauer (2017) are the Gibbs Variable Selection, the Stochastic Search Variable Selection
and the Reversible-Jump MCMC.

24Chib and Kang (2009) and Chib and Kang (2012) also use similar prior restrictions to reflect the meaningful
assumption of a positive term premium

25Ad-hoc restrictions, based on setting risk premia parameters to zero, are used in Dewachter and Lyrio (2006),
and Rudebusch and Wu (2008), among others. Furthermore, the route of imposing prior restrictions is followed by
Ang et al. (2007).

26Together with the zero restrictions, Joslin et al. (2014) impose an additional one on the largest eigenvalues, by
assuming equality of them under the risk-neutral and historical measures.

27The three criteria selected are Akaike (1998), Hannan and Quinn (1979) and Schwarz et al. (1978).
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and Rudebusch (2016), however their results are not affected by the choice of restriction and, as

such, they work with the maximally flexible specification only.

In this paper, we follow related literature and try alternative, economically plausible, zero

restrictions for the market price of risk parameters. On our initial specification we allow the risk

prices to be completely unrestricted (i.e. maximally flexible model), in line with Duffee (2011) and

Bauer (2017), and we denote this model as M0. Then, such model is tested against alternative

zero restriction models, proposed in existing studies (see, Cochrane and Piazzesi (2009), Bauer

(2017)), i.e. models with specific factors driving the variation of risk premia28. In particular,

these models are the model with parameters λ0,1, λ1,1 and λ1,2 being unrestricted, denoted by

M1, the model with parameters λ0,1 and λ1,2 being unrestricted, denoted by M2, the model

with parameter λ1,1 and λ1,2 being unrestricted, denoted by M3, the model with only parameter

λ1,2 being unrestricted, denoted by M4, the model with only parameter λ1,1 being unrestricted,

denoted by M5 and the model with parameters λ1,1, λ1,2 and λ2,3 being unrestricted, denoted by

M6. Note that the latter model, M6, allows both the level and slope risks to be priced, instead of

just level risk, as in models, M1 to M5.

A valid question arises on whether the same restrictions are also effective for the forecasting

performance of the model, meaning, whether or not the models selected based on the in-sample pro-

cedure should be used on the out-of-sample forecasting exercise. A thorough analysis is presented

in Duffee (2011) where a number of Gaussian DTSM models, both restricted and unrestricted,

are compared. Empirical tests suggest that the choice of the no-arbitrage restrictions does not

influence the out-of-sample performance of the models, given that they produce forecasts with

indistinguishable differences29.

Despite the importance of restrictions on the forecasting proccess, empirical studies are still

inconclusive. The methodology applied in this paper allows us to test the efficiency and economic

importance of the chosen restrictions, from a forecasting perspective. In particular, we select the

in-sample zero restrictions used in existing studies and attempt to verify which one, if any, can be

effectively used for the out-of-sample exercise.

28Duffee (2010) who impose constraints on Sharpe ratios and Joslin et al. (2014) who study unspanned macro-
finance models, find evidence of two priced factors, i.e. the level and the slope

29This, however, is not in line with evidence of existing studies on monetary policy effects (see, Piazzesi et al.
(2006), Ang and Longstaff (2011), Orphanides and Wei (2012), which suggest that restrictions selected on the in-
sample process may not be economically plausible, around periods of monetary policy shifts, interventions or fragile
economic conditions.
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5.1 Restrictions and Persistence of Interest Rates

Comparison between models is important when it comes to the degree of persistence of risk factors,

since it gives us an indication of the short rate expectations and time-varying risk premia. Table

8.1 displays the persistence among models under the risk neutral (Q) and physical dynamics (P),

measured by the largest eigenvalue of matrices ΦQ
P and ΦP

P .

A direct comparison between models suggests that the degree of persistence under Q is higher

compared to the one under the physical measure P. This difference is informative of time-varying

risk premia (or market price of risk being time-varying) embedded in bond yields and suggests

that market price of risk is potentially an important factor to explain yield variation.

A second important observation comes from the risk-neutral estimates of the largest eigen-

values, which are very similar across models and indifferent of any restrictions imposed. This

implies that Q-persistence is not affected by the no-arbitrage restrictions, which suggests that Q-

distribution parameters are mainly determined by the cross-sectional restrictions on bond yields

rather than the time-series ones implied by the physical measure. This means that any difference

in risk premiums are due to either the loadings of yields onto the pricing factors or to feedback

matrices under P. However, loadings are largely indifferent across models since they are only

affected/determined by the risk neutral parameters. Thus, we expect that the difference is mainly

driven by the feedback matrices under P. In contrast to the Q-persistence, the P eigenvalues

possess important differences among models, which implies that P-persistence is largely influ-

enced by restrictions imposed. In particular, restricted models exhibit higher persistence than the

maximally-flexible model, in all cases but model M4, suggesting that the plausible and empiri-

cally valid restrictions imposed on the market price of risk parameters increase the persistence of

interest rates and bring the Q and P dynamics closer together, thus tightening the gap between

the cross-section and time series and, as such, links their variation.

Comparing across models sheds light to the effect of the selected restrictions when it comes to

the true (P) persistence of the interest rates. The P-persistence of the maximally flexible model

(M0) is low (0.9846), suggesting that short rate expectations are nearly constant, which implies

that any variation in long term rates is due to variation in risk premia. This is an empirically

puzzling observation which indicates that DTSM are not capable to properly predict variation of

long-term rates. However, imposing the zero restrictions as in highly restricted models M3, M4

and M5 increases the associated largest eigenvalue to 0.9929, 0.9923 and 0.9919 respectively and,
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thus, bringing the persistence of the interest rates close to their true values. In fact, low restricted

models, meaning models with one or two free parameters exhibit higher persistence than the

maximally flexible one, while low constrained models (e.g. M1 and M6) exhibit lower persistence

than model M0. This further suggests that restrictions enhance the time variation of short rate

expectations and help to deteriorate the role of risk premia on long rate movements. This is in

line with policy making, given that constant expectation of short rates is economically implausible

since short rates are also driven by central banks’ intervation. This suggests that restrictions

imply a larger role to the expectation component and a smaller role to the risk premia component,

compared to the unrestricted models and as such, the puzzling implausible disadvantage of DTSM

is partly corrected.

Furthermore, table 8.1 reports confidence intervals (CI) among models. We observe that

unrestricted models exhibit larger CIs, which suggests time-series information alone is not enough

to estimate interest rates. Restricted models have tight CIs, since no-arbitrage, through zero

restrictions, makes cross-section information important to explain time series properties of interest

rates.

6 Bond Return Predictability

Failure of the expectation hypothesis implies that bond returns are strongly predictable (see, Fama

and Bliss (1987), Campbell and Shiller (1991), Cochrane and Piazzesi (2005), Ludvigson and Ng

(2009), among others). This is an important stylised fact of the bonds market, and as such, it

should be captured by our modelling framework. A valid and important question however, is

whether all alternative (yield-only) ATSMs tested can capture this return predictability; in other

words whether tight restrictions influence the predictability performance of ATSMs, given the less

flexible specification of the market prices of risk.

In order to investigate the predictability of bond returns across models, we follow existing

literature and run predictive regressions on non-overlapping (as in Bauer and Hamilton (2017))

monthly excess bond returns across different predictive horizons, ranging from one-month to

twelve-months. The main difference among approaches used by previous studies is down to the

predictors used in the regression. In particular, Fama and Bliss (1987) and Campbell and Shiller

(1991) propose forward and yield spreads as predictors and suggest that spreads have predictive

power on excess returns, while Cochrane and Piazzesi (2005) use a linear combination of five
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forward rates as predictors and show that they can explain over 30% of bond return variation.

Furthermore, Joslin et al. (2011) and Adrian et al. (2013) use principal components of yields in

order to predict bond excess returns. Given that we work under a three factor yield only model,

we mainly follow Joslin et al. (2011), Adrian et al. (2013) and Bauer (2017) and use as predictors

the first three PCs of the yield curve, corresponding to the three risk factors.

In line with existing literature, we define the holding period return from buying an n-year

bond at time-t and selling is at time (t+ h) as,

rnt,t+h = pn−ht+h − p
n
t (28)

where, pn−ht+h is the price of the (n − h)-period bond at time (t + h) and pnt is the price of the

n-period bond at time t. Furthermore, we define the continuously compounded excess return of

an n-year bond as the difference between the holding period return of the n-year bond and the

h-period yield as,

rxnt,t+h = −(n− h)yn−ht+h + nynt − hyht (29)

where, the continuously compounded yield ynt has been defined in equation (10). On our empirical

tests, we assume h to range from 1-month to 12-months, and n to be 2, 3, 4, 5, 7 and 10 years.

Similarly, fitted excess returns r̂xnt,t+h are calculated using model implied yields as,

r̂xnt,t+h = −(n− h)ŷn−ht+h + nŷnt − hŷht (30)

= An−h −An +Ah +B′n−hPt+h − (Bn −Bh)′Pt (31)

The regression specification takes the form,

rxnt,t+h = αn + βnPt + ent (32)

where, rxnt,t+h are the h-month holding period returns, in excess of the h-period yield, n is the

maturity of the bond and Pt is the set of the predetermined predictors, chosen to be the first three

PCs of the yield curve. Finally, ent is the error term and αn and βn are the regression coefficients.

What is of high importance is to access the predictability of our modeling framework under
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the alterntive restrictions. To do so we calculate model implied R2, using the following predictive

regression,

rxnt,t+h = αn + βnEt[r̂xnt,t+h] + ent (33)

where, in this case realized bond excess returns are regressed on model implied expected excess

returns given by,

Et[r̂xnt,t+h] = −(n− h)ŷn−ht+h|t + nŷnt − hŷht (34)

= An−h −An +Ah +B′n−hPt+h|t − (Bn −Bh)′Pt (35)

It is important to mention at this point that most existing studies have tested predictability

of bond excess returns using a horizon of one year. However, according to Bauer and Hamilton

(2017) overlapping bond returns create further estimation issues when predictors are persistent.

Therefore, in our predictability analysis we consider a monthly horizon and as such excess returns

are non-overlapping monthly returns.

We measure the predictive accuracy of the bond excess return forecasts relative to an empirical

benchmark. We follow related literature and assume the benchmark to be the EH which implies

the historical mean being the optimal forecast of bond excess returns, given as,

rxnt+1 = 1
t

t∑
j=1

rxnt (36)

In particular we forecast from the EH, that projects excess returns on a constant. Following

Campbell and Thompson (2008), we compute the out-of-sample R2 of our models relative to the

EH model, as below,

R2
os = 1−

∑t
s=t0(rxns+1 − r̂x

n
s+1)2∑t

s=t0(rxns+1 − rxns+1)2 (37)

Positive values of this statistic implies that the forecast outperforms the historical average forecast

and suggests evidence of time-varying return predictability.

Table 8.2 shows results for the R2
os across models, at the 1-month prediction horizon. We find

that in all cases R2
os are positive when compared to the EH benchmark and therefore, all models,

restricted and unrestricted, outperform the EH-implied risk premia in- and out-of-sample. These
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results suggest strong evidence of out-of-sample bond return predictability using information from

the yield curve only.

Our findings are stronger than previous studies (see, Sarno et al. (2016), Fulop et al. (2018))

who find some statistical evidence (mainly depending on maturity and prediction horizon) of out-

of-sample bond return predictability, for models that only utilize information from the yield curve.

This suggests that our methodology through the joint modelling of the P and Q dynamics together

with the sequential learning estimation procedure, help models, which utilize information from

the yield curve only, to generate accurate forecasts, improving their predictive accuracy across

maturities and prediction horizons.

Furthermore, our results show that R2
os decrease with bond maturity. Looking across models,

the highest R2
os are found at the 2-year maturity bond, while the lowest at the 10-year matu-

rity. In particular, for the maximally flexible model M0, R2
os decreases from 0.28 (0.20), and

highly significant, at 2-year (3-year) maturity to 0.09 (0.03), and insignificant, at 7-year (10-year)

maturity. Similarly, for risk price restricted model M1, R2
os substantially deteriorates in value,

from 0.26 (0.18), and highly significant, at 2-year (3-year) maturity, down to 0.09 (0.05) for the

longer maturity bonds, 7-year (10-year). Qualitatively similar results are observed for all models,

regardless the restrictions imposed.

Comparing R2
os across models sheds light to the effect of risk price restrictions on the predictive

accuracy of bond excess return forecasts relative to the EH benchmark. The highest R2
os are found

for the maximally flexible model M0 and for restricted models M1 and M6. In particular, for the

2-year (5-year) bond, the R2
os is 0.28 (0.16) for model M0 and 0.26 (0.14) and 0.26 (0.16) for

models M1 and M6 respectively. This suggests that models with fewer restrictions (or more free

parameters) outperform highly restricted models with only one free parameter (e.g. M4, M5).

Furthermore, small differences among models M1 and M6, when compared to maximally flexible

model M0 indicate that two or three free parameters are enough to explain the predictability of

excess return forecasts in the bonds market, provided that these parameters are the ones which

reflect the fact of risk premia being earned as compensation to the level factor only, as in M1, or

to both the level and slope factors as in model M6.

We now extend our analysis on the direction of alternative prediction horizons, departing from

the case of one-month horizon, followed by Gargano et al. (2017) and Fulop et al. (2018). Table 8.3

displays the results for the R2
os, for horizons ranging from 1-month to 12-months, across different
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model specifications. All forecasts across models are more accurate than the EH benchmark at all

different horizons tested. Our results also suggest that in all cases, R2
os increase with the prediction

horizon reaching their peak values at horizons of 6-months and 9-months. In particular, for the

maximally flexible model M1, for a 2-year (5-year) maturity bond, R2
os increases from 0.28 (0.16)

at 1-month horizon to 0.63 (0.62) and 0.59 (0.66) at 6-month and 9-month horizons respectively.

Furthermore, for restricted models M1 and M6 the increase is qualitatively similar, with R2
os for a

2-year (5-year) bond increasing from 0.26 (0.14) to 0.60 (0.59) at 1-month and 6-month horizons

and from 0.26 (0.16) to 0.61 (0.60) respectively.

Comparing across alternative models, sheds light to the effect of price restrictions when it

comes to the forecasting ability of the models across predictive horizons. Similar to the 1-month

horizon case, our results indicate that maximally flexible modelM0 and restricted modelsM1 and

M6 outperform alternative models. In particular for a 2-year maturity bond, the corresponding

R2
os is 0.63 (0.59) at 6-month (9-month) horizon for modelM0 and 0.61 (0.59) for modelM6, while

for a 5-year maturity bond, R2
os for model M0 is 0.62 (0.66) at 6-month (9-month) horizon and

for model M6 is 0.60 (0.65). This indicates that model M6 outperforms all models (and is similar

to model M0), across horizons and maturities, suggesting that slope factor is vital when it comes

to predictability of excess bond returns across maturities, especially at longer horizons.

7 Economic Performance of Excess Return Forecasts

While statistical significance is important when it comes to predictability of excess returns in the

bonds market, what is arguably of paramount importance for bond investors, is to be able to use

such predictability, to generate economically significant portfolio benefits, out-of-sample. In this

section, we concentrate on the economic value exercise and attempt to revisit the evident puzzling

behaviour between statistical predictability and significant economic benefits for investors. Fur-

thermore, we attempt to assess and compare the performance of asset allocations based on the

maximally flexible model versus the ones that impose restrictions on the price of risk specification.

In that respect, our approach is different than Thornton and Valente (2012) and Sarno et al.

(2016), who test the economic significance for an investor with mean-variance preferences30, and

conclude that statistical significance is not turned into better economic performance when com-

30In fact, Sarno et al. (2016), also uses an approximation of the power utility solution. Furthermore, they allow
for the variance to be constant (or rolling window) and in sample, in line with Thornton and Valente (2012)
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pared to the EH benchmark. It is more in line with Gargano et al. (2017) and Fulop et al. (2018)

who arrive to similar conclusions for models which utilize information coming solely from the yield

curve (e.g. yields, forwards, etc.).

We consider a Bayesian investor with power utility preferences,

U(Wt+h) = U(wnt , rxnt+h) =
W 1−γ
p,t+h

1− γ (38)

where, Wp,t+h is the h-period portfolio value and γ is the coefficient of relative risk aversion. If

we let wnt be a (k× 1)-vector of portfolio weights on the k risky bonds and (1−wnt ) be the weight

of the riskless bond, then the portfolio value h periods ahead is given as,

Wp,t+h = (1− wnt ) exp(rft ) + wnt (exp(rft ) + rxnt,t+h) (39)

with, rft being the risk-free rate. Such an investor maximises her expected utility over h-periods

in the future,

maxEt[U(Wt+h)|x1:t] (40)

with, x1:t = {rxn1:t,P1:t|t} being a time series of returns and predictors. Then, the expected utility

is computed as,

Et[U(Wt+h)|x1:t] =
∫
U(Wt+h)p(Wt+h|x1:t)dWt+h =

∫
U(wnt , rxnt+h)p(rxnt+h|x1:t)drxnt+h (41)

where, the predictive density is calculated as in equation (27).

At every time step, t, the investor evaluates the entire predictive density of bond excess returns

and solves the asset allocation problem by computing the optimum portfolio weights by,

ŵnt = arg max 1
M

M∑
j=1

{
[(1− wnt ) exp(rft ) + wnt (exp(rft ) + rxnt,t+h)]1−γ

1− γ

}
(42)

with M being the number of particles from the predictive density of excess returns.

To compute the economic value generated by alternative models, we use the resulting optimum

weights to compute the certainty equivalence returns (CER) as in Johannes et al. (2014) and

Gargano et al. (2017). In particular, for each model, we define the CER as the value that equates
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the average utility of each model against the average utility of the EH benchmark.

We consider, three different scenarios for investors. First, we follow Thornton and Valente

(2012) and restrict portfolio weights to range in the interval [−1, 2], imposing a maximum leverage

of 100%, such that extreme investments are prevented. Second, we restrict portfolio weights to

the interval [0, 1], such that short selling is not allowed, as in Gargano et al. (2017). At a third

scenario, we do not impose any restrictions to investors and allow for portfolio weights to be free

of constraints31, thus allowing extreme investments, as in Fulop et al. (2018). In line with the

values used in existing studies, we set the coefficient of risk aversion to be either 3, 5 or 10, across

scenarios. The statistical significance of the results is based on the one-sided Diebold-Mariano

test applied to the out-of-sample period.

Table 8.4 shows evidence in favour of positive out-of-sample economic benefits for bond in-

vestors. In particular, it shows the results for the annualized certainty equivalence returns (CER),

across different coefficients of relative risk aversion (e.g. γ = 3, 5 and 10). Panel A presents the

case of the first scenario, where weights are restricted to [−1, 2]. Positive values indicate that

the models perform better than the EH benchmark. We find that in many cases, and in specific

models, corresponding CERs are positive and statistically significant, indicating that these models

not only provide statistical evidence of out-of-sample predictability, but also provide statistically

significant economic gains to bond investors, relative to the EH benchmark. This result is evident

across risk aversion coefficients. These findings are in contrast to previous literature (Thornton

and Valente (2012), Sarno et al. (2016), Fulop et al. (2018)) which suggests that regardless of

the model used, or the maturity considered, bond investors, who utilise information from the

yield curve only, are not able to systematically earn any economic premium out-of-sample, when

compared to the EH benchmark.

Furthermore, our results show that CERs increase with bond maturity, reaching their peak

values at the 5-year maturity, which suggests that as maturity increases the economic performance

improves. In particular, for model M0, when the coefficient of risk aversion is 3, CER value is

9 basis points (bps) and significant at 5-year maturity deteriorating to one third (3 bps) of its

value for a 2-year maturity bond. This evidence is consistent across models, since results are

qualitatively similar.

31(Footnote: As mentioned in Gargano et al. (2017), Johannes et al. (2014) argue that under this scenario the
expected utility is not allowed to become unbounded)
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Comparing across different models sheds light to the effect of the price risk restrictions on

the ability of the models to produce positive and statistically significant economic gains for bond

investors. The highest CER values are found for the maximally flexible model (M0) which seems

to outperform models with risk price restrictions. In particular, CERs for M0 are positive and

statistically significant and range from 3 bps to 9 bps. The maximally flexible model is then

followed by restricted models M1 (CERs ranging between 2 and 5 bps and only significant at

2-year maturity), M2 (ranging between 1 and 4 bps and marginally significant) and M6 (ranging

from 2 bps to 6 bps and marginally significant). The results suggest that models with fewer

restrictions (e.g. M1, M2, M6) or with unrestricted constant risk premia components, clearly

outperform models with only one or two free parameters (e.g. M3, M4, M5). The later fail to

provide positive economic value to investors, which also suggests that the closest the link between

the P and Q dynamics, or in other words, the closest we are to the no-arbitrage condition, the

less capable the model is to provide statistically significant economic gains, compared to the EH

model.

Finally, an interesting conclusion is made when comparing across different models. In par-

ticular, when looking at short maturity bonds (mainly at 2-year maturity), model M6 seems to

produce quantitatively similar CER values with the maximally flexible model, and higher values

compared to restricted models M1 and M2. Given that model M6 is the only restricted model

that allows both the level and the slope risks to be priced (models M1 and M2 allow for the level

risk only), this might be an indication that slope risk is an important, probably vital, factor when

it comes to economic benefits for bond investors. This conclusion (about the importance of slope

risk) is along the direction of the, statistically evident, predictability of excess returns in the bonds

market, as suggested by Fama and Bliss (1987), Campbell and Shiller (1991) and more recently

by Joslin et al. (2014).

We now analyse asset allocation using the scenario of no portfolio constraints. Panel B presents

CER values from the second scenario, where portfolio weights are allowed to be unconstrained.

Our results in this case, are even more pronounced compared to the constrained scenario of

panel A, since the CER values increase substantially, especially for the short maturity bonds. In

most cases and across models and risk preferences, CERs are positive and statistical significant,

suggesting economic gains to bond investors, relative to the EH benchmark. In particular, when

the risk aversion coefficient is 3 for the maximally flexible model, M0, the CER value for the
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2-year maturity bond substantially increases from 3 bps to 42 bps, while for the 5-year bond, the

increase is smaller but still noticeable, moving from 9 bps to 27 bps. Similar improvements on

the magnitude of CERs are observed for models with risk price restrictions. For example, for

modelM1, CER increases from 2 to 34 bps for the 2-year maturity bond, and from 5 bps (and not

significant) to 20 bps (and significant) for the 5-year maturity. Furthermore, risk price restricted

model, M6, which allows both the level and slope risks to be priced, also experiences comparable

improvements, with CERs increasing from 2 (6) bps to 34 (23) bps for a 2-year (5-year) maturity

bond. These results suggest that models, which offer positive and statistically significant economic

gains out-of-sample, do even more so, when portfolio weights are not subject to constraints.

Comparing across models, our results are qualitatively similar to the constrained scenario case,

meaning that the maximally flexible model, still outperforms the models with risk price restric-

tions. Furthermore, models with fewer restrictions (e.g. M1, M6) clearly outperform models,

where all but one, out of the risk price parameters are restricted (e.g. M4, M5). Furthermore,

similar to the first scenario, models M1 and M6 provide quantitatively similar CER values, sug-

gesting that slope is an important factor on enhancing the economic performance of bond excess

return forecasts.

Finally, under the unconstrained scenario, CERs experience higher values at shorter maturities

(e.g. 2-year bond) compared to longer maturities (5-year bond), which suggests that the most

profitable maturity is now the 2-year maturity of the bond. This result is in contrast to the results

implied by the constrained weights scenario, where economic performance generally increases with

maturity. This is also in contrast to the equities market where constraints on the portfolio weights

improve performance out-of-sample, in line with Gargano et al. (2017) conclusions.

We now extend our analysis on the direction of alternative prediction horizons. In particular,

we depart from the 1-month prediction horizon, adopted by Gargano et al. (2017) and Fulop et al.

(2018) and repeat the out-of-sample economic performance analysis for horizons ranging from

1-month to 12-months.

Table 8.5 displays the results for the annualized CER values, for coefficient of relative risk

aversion, γ = 3, across different prediction horizons. Panel A presents the case of the first

scenario, where portfolio weights are restricted to [-1,2] and panel B presents CER values for the

case where weights are unrestricted. We find that, in all cases (models), CER values increase with

the prediction horizon, suggesting that evidence against the EH is stronger over longer horizons.
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In particular, as prediction horizon increases, the models not only continue to perform well and

produce positive and statistically significant CERs, but also CER values are comparably higher

in magnitude than in the 1-month horizon case. Furthermore, CERs reach their peak values at

horizons of 6-months and 9-months, deteriorating in magnitude at the 12-month horizon. This

result is consistent across models. For example, for the maximally flexible model, the CER value

for a 2-year maturity bond increases (actually triples) from 3 bps at 1-month horizon to 9 bps

at 6- and 9-month horizons and for a 7-year maturity bond, CERs increase from 9 bps (and

not significant) at 1-month prediction horizon to 27 bps (and significant) at 9-month horizon.

Furthermore, for the restricted models M1 (M6), CER values for a short-maturity bond increase

from 2 (3) bps at 1-month horizon to 9 (9) bps at 9-month horizon and for 7-year maturity bonds,

CERs increase from 6 (6) bps at 1-month horizon to 27 (28) bps at 9-month horizon.

These findings are in contrast to Sarno et al. (2016), who find that their economic value mea-

sure, theta, decreases with the prediction horizon and, somehow, in line with Gargano et al. (2017)

who suggest that at the 3-month horizon, CER values continue to be positive (and significant) for

some models (mainly the macro ones), but are substantially smaller at the 12-month horizon32.

Comparing across models sheds light to the effect of risk-price restrictions when it comes

to economic gains performance across different prediction horizons. Our results suggest that as

horizon increases, the outperformance (especially at longer maturities) of the maximally flexible

model compared to the restricted models vanishes, since differences in CER values are comparably,

almost, zero in magnitude. For example, for a 5-year (7-year) maturity bond, CER values are 21

(24) and 21 (25) bps for models M0 and M6 respectively, at the 6-month horizon and 21 (27) and

21 (28) bps at 9-month horizon.

Turning into the second scenario, where no portfolio constraints are imposed, panel B displays

CER values across all alternative models. Our results are in line with the analysis of previous

section, meaning that, if we do not impose any restrictions on portfolio weights, CERs substan-

tially increase, especially for short maturity bonds. Not only that, but the differences at longer

horizons are even larger, indicating that as horizon increases, positive CER values become higher

and statistical significant, suggesting higher (out-of-sample) economic gains for bond investors

compared to the EH model. In particular, for the maximally flexible model, M0, the CER value

32According to Gargano et al. (2017), this is an indication of the presence of a fast moving predictable component
that deteriorates in magnitude at long enough (i.e. 12-month) horizons.
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for the 2-year maturity bond substantially increases from 9 (9) bps to 90 (74) bps at 6-month

(9-month) horizon, while for the 5-year maturity bond increases from 21 (21) bps to 57 (58) bps.

Similar improvements, are observed across models with risk price restrictions, such as for model

M1, where CER values for a 2-year bond increase from 10 (9) to 85 (81) bps and for model M6,

where CER values increase from 10 (9) to 85 (76) bps at prediction horizon of 6-month (9-month).

Qualitatively similar results are found for alternative risk aversion coefficients (γ=5, 10), as shown

in tables 8.6 and 8.7.

Comparing across alternative models, the maximally flexible model seems to slightly outper-

form restricted model M1, and it also possess similar quantitative characteristics with model M6,

which allows both the level and slope factors to be priced, suggesting that slope risk is vital when

it comes to the economic value of bond excess return forecasts, especially at longer prediction

horizons. In particular, for a 2-year maturity bond the corresponding CER values are 90 (74) bps

at the 6-month (9-month) horizon for model M0 and 85 (76) bps for model M6, while for a 5-year

bond, CERs are respectively 57 (58) and 56 (60) bps. This indicates that the investment on the

2-year bond is the most profitable across models and maturities, and in particular at the 6-month

prediction horizon.

8 Conclusion

In this paper we revisit the puzzling behaviour between the statistical predictability of bond excess

returns and the failure to translate such predictability into economic gains for bond investors.

Furthermore, we revisit the ability of yield-only ATSM to capture the predictability of excess

returns in the bonds market. We implement a generic, efficient and computationally fast sequential

learning framework under DTSM. We account for model uncertainty, parameter uncertainty and

forecasting performance, which are important issues when it comes to predictability of bond

excess returns. We compare the performance of the alternative ATSM restricted models against

the expectation hypothesis benchmark and evaluate the out-of-sample statistical and economic

accuracy of bond excess return forecasts.

We find strong evidence that investors, who use specific restricted models, can use predictabil-

ity to improve portfolio performance and earn economically meaningful utility gains, out-of-

sample. Furthermore, we find that all ATSM models, restricted and unrestricted, produce positive

out-of-sample R2, when compared to the EH-implied risk premia model, which suggests strong
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evidence of out-of-sample bond return predictability, using models that utilise their information

content from the yield curve only. Finally, comparing across risk price specifications, we find that

maximally flexible model outperforms restricted models both statistically (highest R2), as well as,

economically (highest CER values).
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Appendix A

The rotation of the state vector Xt to the first three PCs of yileds, given by, Pt = Wyt =

WAn,X +WBn,XXt, implies that the state vector can be expressed as,

Xt = (WBn,x)−1(Pt −WAn,X) = (WBn,x)−1Pt − (WBn,x)−1(WAn,X) (43)

So, the Q dynamics of the state vector, Xt = µQ + ΦQXt−1 + ΣεQt can now be written as,

(WBn,x)−1Pt − (WBn,x)−1(WAn,X) = µQ + ΦQ
(
(WBn,x)−1Pt−1 − (WBn,x)−1(WAn,X)

)
+ ΣεQt

(44)

⇒ (WBn,x)−1Pt = µQ + (WBn,x)−1(WAn,X)− ΦQ(WBn,x)−1(WAn,X) + ΦQ(WBn,x)−1Pt−1 + ΣεQt

(45)

which means that,

⇒ Pt =
(
(WBn,x)µQ + (WAn,X)− (WBn,x)ΦQ(WBn,x)−1(WAn,X)

)
(46)

+ (WBn,x)ΦQ(WBn,x)−1Pt−1 (47)

+ (WBn,x)ΣεQt (48)

and therefore,

Pt = µQP + ΦQ
PPt−1 + ΣPεQt (49)

with,

µQP = (I − ΦQ
P)(WAn,X) + (WBn,x)µQ (50)

ΦQ
P = (WBn,x)ΦQ(WBn,x)−1 (51)

ΣP = (WBn,x)Σ (52)
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In the special case of µQ = [kQ∞, 0, 0] and ΦQ = diag(g), with g denoting a (N×1) vector consisting

of real and distinct eigenvalues, results are similar to Joslin et al. (2011) (see, proposition 2).

Given the state vector of equation (43), the continuously compounded equation of yields (see,

equation (9)) is written as,

yt = An,X +Bn,x
(
(WBn,x)−1Pt − (WBn,x)−1(WAn,X)

)
(53)

= An,X +Bn,x(WBn,x)−1Pt −Bn,x(WBn,x)−1(WAn,X) (54)

=
(
An,X −Bn,x(WBn,x)−1(WAn,X)

)
+Bn,x(WBn,x)−1Pt (55)

which gives,

ynt = An,P +Bn,PPt (56)

with, loadings An,P and Bn,P given as,

An,P = An,X −Bn,x(WBn,x)−1(WAn,x) (57)

Bn,P = Bn,x(WBn,x)−1 (58)

Similarly, for the short rate equation rt,

rt = δ0 + δ1
(
(WBn,x)−1Pt − (WBn,x)−1(WAn,X)

)
(59)

=
(
δ0 − δ1(WBn,x)−1(WAn,X)

)
+ δ1(WBn,x)−1Pt (60)

which gives,

rt = δ0P + δ′1PPt (61)

with,

δ0P = δ0 − δ′1(WBn,x)−1(WAn,X) (62)

δ′1P = (WB′n,x)−1δ1 (63)
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Table 8.1: Persistence of interest rates across models.

Model \ Q P

M0 0.9988 0.9846
[0.9981,0.9994] [0.9630,0.9988]

M1 0.9987 0.9781
[0.9980,0.9994] [0.9719,0.9899]

M2 0.9987 0.9893
[0.9977,0.9995] [0.9881,0.9944]

M3 0.9987 0.9929
[0.9981,0.9995] [0.9873,0.9987]

M4 0.9987 0.9923
[0.9980,0.9994] [0.9871,0.9981]

M5 0.9987 0.9919
[0.9979,0.9994] [0.9868,0.9983]

M6 0.9988 0.979
[0.9982,0.9995] [0.9678,0.9961]

This table reports the persistence of risk factors under the risk neutral (Q) and physical (P) dynamics.
Persistence is measured by the largest eigenvalue of the feedback matrices ΦQ

P and ΦP
P respectively. The

seven models used are ATSM with alternative risk price restrictions. In particular, the maximally flexible
model, M0 (no restrictions) and restricted models with some unrestricted parameters, as in, M1 (λ0,1,
λ1,1 and λ1,2 unrestricted), M2 (λ0,1 and λ1,2 unrestricted), M3 (λ1,1 and λ1,2 unrestricted), M4 (λ1,2
unrestricted), M5 (λ1,1 unrestricted) and M6 (λ1,1, λ1,2 and λ2,3 unrestricted). Confidence intervals are
reported in brackets.
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Table 8.2: Out-of-sample statistical performance of Bond excess return forecasts: 1-month prediction horizon.

Model \ 2Y 3Y 4Y 5Y 7Y 10Y

M0 0.28*** 0.20** 0.16** 0.16** 0.09 0.03
(-2.99) (2.18) (1.74) (1.71) (1.05) (0.23)

M1 0.26*** 0.18** 0.14** 0.14** 0.09 0.05
(3.13) (2.38) (1.90) (1.91) (1.30) (0.60)

M2 0.16*** 0.10** 0.07 0.09* 0.05 0.04
(2.54) (1.80) (1.26) (1.51) (0.78) (0.55)

M3 0.10*** 0.07*** 0.04* 0.05** 0.02 0.04
(3.49) (2.62) (1.69) (2.09) (0.80) (1.17)

M4 0.11*** 0.08** 0.06* 0.07** 0.04 0.06*
(2.75) (2.21) (1.60) (2.00) (1.08) (1.41)

M5 0.10** 0.06 0.03 0.04 0.00 0.01
(1.87) (1.24) (0.83) (0.94) (0.14) (0.32)

M6 0.26*** 0.19** 0.15** 0.16** 0.11 0.05
(3.07) (2.35) (1.88) (1.87) (1.30) (0.49)

This table reports out-of-sample R2 across alternative models, at 1-month prediction horizon. The seven
forecasting models used are ATSM with alternative risk price restrictions. R2 values are generated using the
out-of-sample R2 measure of Campbell and Thompson (2008). In particular, out-of-sample R2 measures
the predictive accuracy of bond excess return forecasts relative to the EH benchmark. The EH implies
the historical mean being the optimal forecast of excess returns. Positive values of this statistic imply
that the forecast outperforms the historical mean forecast and suggests evidence of time-varying return
predictability. Statistical significance is measured using a one-sided Diebold-Mariano statistic. * denotes
significance at 10%, ** significance at 5% and *** significance at 1% level. The in-sample period is January
1990 to December 2003, and the out-of-sample period is January 2004 to December 2007.
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Table 8.3: Out-of-sample statistical performance of Bond excess return forecasts: multiple prediction horizons.

(h\n− h) 2Y 3Y 4Y 5Y 7Y 10Y

M0

1m 0.28*** 0.20** 0.16** 0.16** 0.09 0.03
3m 0.49*** 0.42*** 0.37*** 0.35*** 0.26** 0.10
6m 0.63*** 0.62*** 0.63*** 0.62*** 0.54*** 0.32*
9m 0.59*** 0.60*** 0.64*** 0.66*** 0.63*** 0.46**
12m 0.50*** 0.46*** 0.48*** 0.51*** 0.53*** 0.42**

M1

1m 0.26*** 0.18** 0.14** 0.14** 0.09 0.05
3m 0.44*** 0.35*** 0.29*** 0.27*** 0.21** 0.13
6m 0.60*** 0.56*** 0.55*** 0.54*** 0.50*** 0.39**
9m 0.60*** 0.57*** 0.59*** 0.59*** 0.60*** 0.56
12m 0.53*** 0.45*** 0.44*** 0.44*** 0.47** 0.49**

M2

1m 0.16*** 0.10** 0.07 0.09* 0.05 0.04
3m 0.23*** 0.17** 0.13* 0.12 0.10 0.09
6m 0.34*** 0.28*** 0.26** 0.26** 0.27** 0.26*
9m 0.32*** 0.26*** 0.25** 0.23** 0.28** 0.31**
12m 0.26*** 0.13 0.11 0.07 0.12 0.17

M3

1m 0.10*** 0.07*** 0.04* 0.05** 0.02 0.04
3m 0.12*** 0.08** 0.05 0.04 0.04 0.07
6m 0.18*** 0.13*** 0.10** 0.07 0.07 0.08
9m 0.20*** 0.13** 0.11** 0.06 0.08 0.07
12m 0.16*** 0.06 0.04 -0.03 0.00 -0.04

M4

1m 0.11*** 0.08** 0.06* 0.07** 0.04 0.06*
3m 0.14*** 0.10** 0.07 0.06 0.06 0.10*
6m 0.18*** 0.13** 0.11* 0.08 0.10 0.13*
9m 0.19*** 0.12** 0.10* 0.06 0.10 0.12
12m 0.15*** 0.04 0.02 -0.05 -0.01 -0.02

M5

1m 0.10** 0.06 0.03 0.04 0.00 0.01
3m 0.20*** 0.16*** 0.11** 0.0** 0.05* 0.05*
6m 0.29*** 0.25*** 0.20*** 0.13*** 0.07*** 0.01
9m 0.34*** 0.30*** 0.27*** 0.18*** 0.11*** -0.03
12m 0.35*** 0.31*** 0.29*** 0.22*** 0.16*** -0.01

M6

1m 0.26*** 0.19** 0.15** 0.16** 0.11 0.05
3m 0.43*** 0.36*** 0.31*** 0.29*** 0.2** 0.10
6m 0.61*** 0.60*** 0.60*** 0.60*** 0.54*** 0.36*
9m 0.59*** 0.60*** 0.63*** 0.65*** 0.64*** 0.51**
12m 0.52*** 0.47*** 0.48*** 0.50*** 0.51** 0.44**

This table reports out-of-sample R2 across alternative models, at different prediction horizons, of h= 1-
month, 3-month, 6-month, 9-month and 12-month. The seven forecasting models used are ATSM with
alternative risk price restrictions. R2 values are generated using the out-of-sample R2 measure of Campbell
and Thompson (2008). In particular, out-of-sample R2 measures the predictive accuracy of bond excess re-
turn forecasts relative to the EH benchmark. The EH implies the historical mean being the optimal forecast
of excess returns. Positive values of this statistic imply that the forecast outperforms the historical mean
forecast and suggests evidence of time-varying return predictability. Statistical significance is measured
using a one-sided Diebold-Mariano statistic. * denotes significance at 10%, ** significance at 5% and ***
significance at 1% level. The in-sample period is January 1990 to December 2003, and the out-of-sample
period is January 2004 to December 2007.
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Table 8.4: Out-of-sample Economic performance of Bond excess return forecasts across investment scenarios: 1-
month prediction horizon.

Panel A: w= [-1,2] Panel B: w= [-inf,+inf]

Model 2Y 3Y 4Y 5Y 7Y 10Y Model 2Y 3Y 4Y 5Y 7Y 10Y

CER: (γ = 3)

M0 3** 4** 7** 9** 9 2 M0 42** 33** 28* 27* 13 5
M1 2* 3 3 5 6 3 M1 34*** 24** 20** 20** 10 8
M2 1* 2* 3* 4* 5 3 M2 15* 7 6 8 1 5
M3 0 0 0 0 0 1 M3 11*** 7* 7** 7* 0 5
M4 0 0 0 0 1 2 M4 7 3 3 4 -2 4
M5 0 0 0 0 0 0 M5 15 12* 10 8 0 4
M6 2** 3 4 6* 6 2 M6 34*** 26** 22** 23** 12 7

CER: (γ = 5)

M0 3** 5** 7** 9** 8 3 M0 25** 19** 16* 16* 8 3
M1 2* 3 4 6* 5 4 M1 20*** 14** 12** 12** 6 5
M2 1* 2* 3* 4* 4 5 M2 9* 4 4 5 1 3
M3 0 0 0 0 1 2 M3 6*** 4* 4** 4** 0 3
M4 0 0 0 1* 2* 4 M4 5 2 2 3 -1 3
M5 0 0 0 0 0 2 M5 9 7* 6 5 0 2
M6 2** 3* 4 6* 6 4 M6 20*** 15** 13** 14** 7 4

CER: (γ = 10)

M0 3** 6** 7* 8* 4 1 M0 12** 10** 8* 8* 4 1
M1 2** 3* 4* 6** 3 2 M1 10*** 7** 6** 6** 3 2
M2 2** 2* 3* 4** 0 2 M2 5* 2 2 3 0 2
M3 0 0 1 2* 0 2 M3 3*** 2* 2** 2** 0 2
M4 0 1* 2** 3** 0 1 M4 2 1 1 1 0 1
M5 0 0 2 3 0 1 M5 4 3* 3 3 0 1
M6 3** 4* 5* 7* 4 2 M6 10*** 8** 7** 7** 4 2

This table reports annualized certainty equivalent returns (CERs) across alternative models, at 1-month
prediction horizon. CERs are generated by out-of-sample forecasts of bond excess returns and are reported
in basis points. At every time step, t, an investor with power utility preferences, evaluates the entire
predictive density of bond excess returns and solves the asset allocation problem, thus optimally allocating
her wealth between a riskless bond and risky bonds with maturities 2, 3, 4, 5, 7 and 10-years. CER is, then,
defined as the value that equates the average utility of each alternative model against the average utility of
the EH benchmark. The seven forecasting models used are ATSM with alternative risk price restrictions.
The coefficient of risk aversion is either γ = 3, 5 or 10. Positive values indicate that the models perform
better than the EH benchmark. Panel A presents CERs under the first scenario, where, portfolio weights
are restricted to range in the interval [-1, 2], such that investors are prevented from extreme investments.
Panel B, reports CER values under the second scenario, where extreme investments are allowed and, as
such, portfolio weights are free of constraints. Statistical significance is measured using a one-sided Diebold-
Mariano statistic. * denotes significance at 10%, ** significance at 5% and *** significance at 1% level.
The in-sample period is January 1990 to December 2003, and the out-of-sample period is January 2004 to
December 2007.
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Table 8.5: Out-of-sample Economic performance of Bond excess return forecasts across investment scenarios:
multiple prediction horizons (γ = 3).

CER (γ = 3)

Panel A: w= [-1,2] Panel B: w= [-inf,+inf]

h 2Y 3Y 4Y 5Y 7Y 10Y h 2Y 3Y 4Y 5Y 7Y 10Y

M0

1m 3** 4** 7** 9** 9 2 1m 42** 33** 28* 27* 13 5
3m 5*** 8** 11** 15** 17* 3 3m 69*** 52*** 41*** 42*** 27* 6
6m 9*** 12*** 16*** 21*** 24** 12 6m 90*** 67*** 62*** 57*** 41** 14
9m 9*** 11** 14** 21** 27** 16 9m 74*** 65*** 58*** 58*** 44** 18
12m 5* 2 2 6 13 8 12m -1 0 12 21 23 8

M1

1m 2* 3 3 5 6 3 1m 34*** 24** 20** 20** 10 8
3m 6*** 7** 8** 11** 13* 7 3m 54*** 36*** 27** 29** 22* 13
6m 10*** 13*** 16*** 21*** 26** 23* 6m 85*** 58*** 54*** 52*** 46*** 33**
9m 9*** 12** 15** 20** 28** 30* 9m 81*** 64*** 55*** 57*** 52** 43**
12m 6** 4 3 7 11 16 12m 27 14 16 20 27 27

M2

1m 1* 2* 3* 4* 5 3 1m 15* 7 6 8 1 5
3m 2* 2 3 6* 8 7 3m 9 2 1 5 6 10
6m 3** 4* 5* 9** 13** 17* 6m 18 13 22* 26** 30** 30**
9m 1 0 1 4 8 16* 9m 5 15 20* 28** 35** 37***
12m -2 -7 -10 -9 -8 1 12m -66 -46 -22 -9 10 21*

M3

1m 0 0 0 0 0 1 1m 11*** 7* 7** 7* 0 5
3m 0 0 0 0 0 3* 3m -5 -4 -5 -2 -1 7
6m 0 0 0 0 0 3** 6m -15 -8 2 5 10** 15***
9m 0 0 0 0 0 1 9m -46 -12 -1 6 12*** 18***
12m 0 0 0 0 0 0 12m -101 -48 -20 -11 5 15***

M4

1m 0 0 0 0 1 2 1m 7 3 3 4 -2 4
3m 0 0 0 0 1 4* 3m -9 -10 -9 -6 -3 7
6m 0 0 0 0 1* 5** 6m -12 -5 5 9* 14*** 19***
9m 0 0 0 0 0 5** 9m -34 -4 6 13** 19*** 25***
12m 0 0 0 0 0 1 12m -98 -44 -16 -5 12* 20***

M5

1m 0 0 0 0 0 0 1m 15 12* 10 8 0 4
3m 0 0 0 0 0 2 3m 14* 12* 8 7* 3 4
6m 0 0 0 0 0 -1 6m -4 0 4* 1 -2 -3
9m 0 0 0 0 0 -1 9m -16 6* 5* 3 -2 -4
12m 0 0 0 0 0 0 12m -51 -11 2 0 1 -1

M6

1m 2** 3 4 6* 6 2 1m 34*** 26** 22** 23** 12 7
3m 6*** 7** 8* 11** 12 1 3m 49*** 35*** 28** 30** 22 6
6m 10*** 13*** 16*** 21*** 25** 17 6m 85*** 62*** 59*** 56*** 46** 24
9m 9*** 12** 16** 21** 28** 25 9m 76*** 67*** 59*** 60*** 51** 32*
12m 5* 4 5 9 14 15 12m 29 22 24 26 26 17

This table reports annualized certainty equivalent returns (CERs) across alternative models, at different
prediction horizons, of h= 1-month, 3-month, 6-month, 9-month and 12-month. The coefficient of risk
aversion is γ = 3. CERs are generated by out-of-sample forecasts of bond excess returns and are reported
in basis points. At every time step, t, an investor with power utility preferences, evaluates the entire
predictive density of bond excess returns and solves the asset allocation problem, thus optimally allocating
her wealth between a riskless bond and risky bonds with maturities 2, 3, 4, 5, 7 and 10-years. CER is, then,
defined as the value that equates the average utility of each alternative model against the average utility of
the EH benchmark. The seven forecasting models used are ATSM with alternative risk price restrictions.
Positive values indicate that the models perform better than the EH benchmark. Panel A presents CERs
under the first scenario, where, portfolio weights are restricted to range in the interval [-1, 2], such that
investors are prevented from extreme investments. Panel B, reports CER values under the second scenario,
where extreme investments are allowed and, as such, portfolio weights are free of constraints. Statistical
significance is measured using a one-sided Diebold-Mariano statistic. * denotes significance at 10%, **
significance at 5% and *** significance at 1% level. The in-sample period is January 1990 to December
2003, and the out-of-sample period is January 2004 to December 2007.
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Table 8.6: Out-of-sample Economic performance of Bond excess return forecasts across investment scenarios:
multiple prediction horizons (γ = 5).

CER (γ = 5)

Panel A: w= [-1,2] Panel B: w= [-inf,+inf]

h 2Y 3Y 4Y 5Y 7Y 10Y h 2Y 3Y 4Y 5Y 7Y 10Y

M0

1m 3** 5** 7** 9** 8 3 1m 25** 19** 16* 16* 8 3
3m 6*** 9** 12** 17** 16* 4 3m 41*** 31*** 25*** 25*** 16* 4
6m 10*** 13*** 17*** 22*** 23** 9 6m 54*** 40*** 37*** 34*** 25** 9
9m 9*** 11** 16** 23** 27** 11 9m 44*** 39*** 35*** 35*** 27** 11
12m 5* 3 3 10 17 5 12m -1 1 8 13 14 5

M1

1m 2* 3 4 6 5 4 1m 20*** 14** 12** 12** 6 5
3m 6*** 7** 9** 12** 13* 8 3m 32*** 22*** 16** 17** 13* 8
6m 10*** 13*** 17*** 21*** 24** 19* 6m 51*** 35*** 32*** 31*** 28*** 20**
9m 9*** 12** 16** 22** 29** 25* 9m 49*** 38*** 34*** 34*** 32** 26**
12m 6** 5 5 9 15 16 12m 16 9 10 13 16 17

M2

1m 1* 2* 3* 4* 4 5 1m 9* 4 4 5 1 3
3m 2* 3 4 7* 8 7 3m 5 1 0 3 3 6
6m 4** 5* 8* 12** 15** 16* 6m 10 8 13* 16** 18** 18**
9m 1 2 4 9 15 19* 9m 0 7 12 17** 22** 24***
12m -2 -5 -6 -3 4 10 12m -46 -30 -14 -6 7 14**

M3

1m 0 0 0 0 1 2 1m 6*** 4* 4** 4** 0 3
3m 0 0 0 1 3 5* 3m -4 -4 -4 -2 -1 4
6m 0 0 0 1 4 8** 6m -10 -5 1 3 6** 9***
9m 0 0 0 0 4 9 9m -28 -8 0 4 8*** 12***
12m 0 0 0 0 2 7 12m -67 -32 -14 -7 4 10***

M4

1m 0 0 0 1 2 4 1m 5 2 2 3 -1 3
3m 0 0 0 2 4 6* 3m -6 -6 -6 -4 -2 4
6m 0 0 0 2 6* 10** 6m -9 -4 3 5 9*** 12***
9m 0 0 0 1 7 12** 9m -22 -3 3 8** 13*** 16***
12m 0 0 0 0 4 9 12m -63 -30 -12 -5 7* 13***

M5

1m 0 0 0 0 0 2 1m 9 7* 6 5 0 2
3m 0 0 0 1 2 2 3m 9* 7* 5 4* 2 2
6m 0 0 0 0 -2 -2 6m -2 1 3* 0 -1 -2
9m 0 0 0 0 -1 -2 9m -8 4* 3* 2 -1 -2
12m 0 0 0 0 1 0 12m -30 -6 2 0 1 0

M6

1m 2** 3 4 6* 6 4 1m 20*** 15** 13** 14** 7 4
3m 6*** 7** 9* 12** 12 4 3m 29*** 21*** 17** 18** 13* 4
6m 10*** 13*** 17*** 23*** 25** 14 6m 50*** 37*** 35*** 33*** 28** 15
9m 9*** 13** 17** 24** 30** 19 9m 45*** 40*** 36*** 36*** 31** 20*
12m 5* 5 7 12 18 12 12m 15 13 14 16 16 11

This table reports annualized certainty equivalent returns (CERs) across alternative models, at different
prediction horizons, of h= 1-month, 3-month, 6-month, 9-month and 12-month. The coefficient of risk
aversion is γ = 5. CERs are generated by out-of-sample forecasts of bond excess returns and are reported
in basis points. At every time step, t, an investor with power utility preferences, evaluates the entire
predictive density of bond excess returns and solves the asset allocation problem, thus optimally allocating
her wealth between a riskless bond and risky bonds with maturities 2, 3, 4, 5, 7 and 10-years. CER is, then,
defined as the value that equates the average utility of each alternative model against the average utility of
the EH benchmark. The seven forecasting models used are ATSM with alternative risk price restrictions.
Positive values indicate that the models perform better than the EH benchmark. Panel A presents CERs
under the first scenario, where, portfolio weights are restricted to range in the interval [-1, 2], such that
investors are prevented from extreme investments. Panel B, reports CER values under the second scenario,
where extreme investments are allowed and, as such, portfolio weights are free of constraints. Statistical
significance is measured using a one-sided Diebold-Mariano statistic. * denotes significance at 10%, **
significance at 5% and *** significance at 1% level. The in-sample period is January 1990 to December
2003, and the out-of-sample period is January 2004 to December 2007.
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Table 8.7: Out-of-sample Economic performance of Bond excess return forecasts across investment scenarios:
multiple prediction horizons (γ = 10).

CER (γ = 10)

Panel A: w= [-1,2] Panel B: w= [-inf,+inf]

h 2Y 3Y 4Y 5Y 7Y 10Y h 2Y 3Y 4Y 5Y 7Y 10Y

M0

1m 3** 6** 7* 8* 4 1 1m 12** 10** 8* 8* 4 1
3m 6*** 10*** 12*** 13*** 8* 2 3m 20*** 16*** 12*** 12*** 8* 2
6m 10*** 14*** 17*** 17*** 12** 4 6m 27*** 20*** 18*** 17*** 12** 4
9m 9*** 13*** 17*** 17*** 13** 5 9m 22*** 19*** 18*** 18*** 13** 5
12m 5** 5 7 8 7 2 12m -1 1 4 7 7 2

M1

1m 2** 3* 4* 6** 3 2 1m 10*** 7** 6** 6** 3 2
3m 6*** 8** 8** 8** 7* 4 3m 16*** 11*** 8** 9** 7* 4
6m 10*** 14*** 16*** 15*** 14*** 10** 6m 25*** 17*** 16*** 15*** 14*** 10**
9m 10*** 13*** 17*** 17*** 16** 13** 9m 24*** 19*** 17*** 17*** 16** 13**
12m 6** 7 8 6 8 8 12m 8 5 5 6 8 8

M2

1m 2** 2* 3* 4** 0 2 1m 5* 2 2 3 0 2
3m 3** 4** 4* 3 2 3 3m 2 0 0 1 2 3
6m 5*** 7*** 8*** 8** 9*** 9** 6m 5 4 6* 8** 9*** 9**
9m 3** 5** 8** 8** 11** 12*** 9m -1 3 6 8** 11** 12***
12m -1 -1 0 -1 4 7** 12m -23 -15 -7 -3 4 7**

M3

1m 0 0 1 2* 0 2 1m 3*** 2* 2** 2** 0 2
3m 0 1** 1 0 -1 2 3m -2 -2 -2 -1 -1 2
6m 0 1** 2** 2 3** 5*** 6m -5 -3 1 2 3** 5***
9m 0 0 2 2** 4*** 6*** 9m -14 -4 0 2 4*** 6***
12m 0 0 -1 -2 2 5*** 12m -33 -16 -7 -4 2 5***

M4

1m 0 1* 2** 3** 0 1 1m 2 1 1 1 0 1
3m 0 1*** 1* 1 -1 2 3m -3 -3 -3 -2 -1 2
6m 0 1*** 3*** 3* 4*** 6*** 6m -5 -2 1 2 4*** 6***
9m 0 1** 3** 4** 6*** 8*** 9m -11 -2 2 4** 6*** 8***
12m 0 0 1 -1 4* 7*** 12m -31 -15 -6 -3 4* 7***

M5

1m 0 0 2 3 0 1 1m 4 3* 3 3 0 1
3m 0 1** 2 2* 1 1 3m 4* 4* 2 2* 1 1
6m 0 0 1** 0 -1 -1 6m -1 0 1* 0 -1 -1
9m 0 0 2* 1 -1 -1 9m -4 2* 2* 1 -1 -1
12m 0 0 1 0 0 0 12m -15 -3 1 0 0 0

M6

1m 3** 4* 5* 7* 4 2 1m 10*** 8** 7** 7** 4 2
3m 6*** 8** 8** 9** 7* 2 3m 14*** 10*** 8** 9** 7* 2
6m 10*** 15*** 17*** 17*** 14** 7 6m 25*** 18*** 17*** 17*** 14** 7
9m 10*** 14*** 18*** 18*** 15** 10* 9m 22*** 20*** 18*** 18*** 15** 10*
12m 6** 7 9 8 8 5 12m 7 6 7 8 8 5

This table reports annualized certainty equivalent returns (CERs) across alternative models, at different
prediction horizons, of h= 1-month, 3-month, 6-month, 9-month and 12-month. The coefficient of risk
aversion is γ = 10. CERs are generated by out-of-sample forecasts of bond excess returns and are reported
in basis points. At every time step, t, an investor with power utility preferences, evaluates the entire
predictive density of bond excess returns and solves the asset allocation problem, thus optimally allocating
her wealth between a riskless bond and risky bonds with maturities 2, 3, 4, 5, 7 and 10-years. CER is, then,
defined as the value that equates the average utility of each alternative model against the average utility of
the EH benchmark. The seven forecasting models used are ATSM with alternative risk price restrictions.
Positive values indicate that the models perform better than the EH benchmark. Panel A presents CERs
under the first scenario, where, portfolio weights are restricted to range in the interval [-1, 2], such that
investors are prevented from extreme investments. Panel B, reports CER values under the second scenario,
where extreme investments are allowed and, as such, portfolio weights are free of constraints. Statistical
significance is measured using a one-sided Diebold-Mariano statistic. * denotes significance at 10%, **
significance at 5% and *** significance at 1% level. The in-sample period is January 1990 to December
2003, and the out-of-sample period is January 2004 to December 2007.
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