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Abstract

We study American equity options in a stochastic interest framework of Vasicek type

(Vasicek (1977)). We allow for a non-zero correlation between the innovations driving

the equity and the interest rates. We also allow for the interest rate to assume nega-

tive values, which is the case for some investment grade government bonds in Europe

in recent years. We develop a bivariate discretization of the equity and interest rates

processes by matching their original moments. The discretized processes converge in

probability to their joint limiting distribution as the time step shrinks. The discretiza-

tion is described by a recombining quadrinomial tree whose computational complexity

is quadratic in the number of steps. We exploit our quadrinomial tree to evaluate

American put options on the risky equity asset, characterizing also the optimal exercise

policy. We analyze the two-dimensional free boundary, i.e. the underlying asset and the

interest rate values that trigger the optimal exercise of the option. We document in the

stochastic interest rates framework non-standard exercise policies associated with the

double continuation region first described by Battauz et al. (2015) in constant interest

rate framework.

JEL Classification: G13.
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1 Introduction

In an arbitrage-free financial market the role of the short-term interest rate is twofold: on

one hand it represents the rate at which the equity appreciates; on the other hand it drives

the locally risk-free asset and the related discount rate. Therefore, neglecting the variability

of short-term interest rates may induce significant mispricings on both interest rates and

equity derivatives. This issue is particulary relevant when derivatives are path-dependent

and therefore sensitive to the entire path of the short-term interest rate, and not just its

expected value at maturity. American equity call and put options, due to the optionality

of their exercise policy, fall within this category. In fact, the holder of an American option

has to timely chose when to cash in by exercising the option, balancing the effects from

the discount rate and from the rate of return of the underlying asset. When both of these

effects depend on a stochastic process, the valuation of the option becomes tricky. Our

paper offers an intuitive and effective lattice method to compute both the price and the

optimal exercise policies of American options on a risky asset with constant volatility in

a stochastic interest rate framework of Vasicek type (see Vasicek (1977)). We employ the

Vasicek mean-reverting model for the interest rate, because it allows the interest rate to as-

sume mildly negative values, as the ones documented in recent years in the Eurozone1. We

also allow for a correlation between the Brownian innovations of the interest rate and the

risky security processes. The feasibility of negative interest rates within the Vasicek model,

once a source of major criticism, has very recently become the reason of renewed interest

in the model itself because of the aforementioned market circumstances. The literature on

American equity options has so far focused on alternative stochastic interest rates models,

such as the CIR one, based on the seminal work of Cox et al. (1885) (See2 Medvedev and

1It is widely accepted to proxy the risk-free rate in Europe by the recently negative rates of German

bonds.
2Medvedev and Scaillet (2010) introduce an analytical approach to price American options using a short-

maturity asymptotic expansion. They perform a throughout numerical investigation for American call and
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Scaillet (2010) and Boyarchenko and Levendorskǐi (2013)). Our paper is, to our knowledge,

the first that addresses the evaluation of American equity options in a stochastic interest

rate framework of Vasicek type, allowing for the possibility of negative interest rates (see

Detemple (2014) for an exhaustive review of the state of the art and Fabozzi et al. (2016)

for a new recent quasi-analytic method to price and hedge American options on a lognormal

asset with constant interest rate). First attempts to evaluate the impact of stochastic inter-

est rates on American derivatives date back to Amin and Jr. (1995) and Ho et al. (1997).

Nevertheless, both of them proxy American with Bermudan options with few exercise dates.

Although this allows them to obtain closed form solutions for both the price of the options

and their optimal exercise policy, the approximation of a continuum of exercise dates by just

a couple of possible exercise dates leads to a heavy mispricing of the options and provides

no accurate insight on the free boundary.

In the spirit of Cox et al. (1979), we propose a lattice-based approach to compute an

American option’s price, its optimal exercise policy and the related free boundary. Building

on Nelson and Ramaswamy (1990), who provide a tree approximation for an univariate

process, we construct a discrete joint approximation for the both the stock price and the in-

terest rate processes. Hahn and Dyer (2008) develop a similar discretization for a correlated

two-dimensional mean reverting process representing the price of two correlated commodi-

ties and they use it to evaluate the value of an oil and gas switching option. Our paper

is different, as the mean reverting stochastic interest rate process enters the risk-neutral

drift of our stock price, that has constant volatility and correlates with the interest rate.

put options with both stochastic CIR interest rates and stochastic underlying’s volatility. Analogously,

Boyarchenko and Levendorskǐi (2013) consider a stochastic volatility equity and stochastic interest rates

depending on two CIR factors, allowing for non-zero correlations between all the underlying processes.

They provide a sophisticated iterative algorithm to price American derivatives that exploits a sequence of

embedded perpetual options and their pricing results are in line with those of the Longstaff and Schwartz

method and the asymptotics of Medvedev and Scaillet (2010).
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In this framework, we provide a throughout investigation of American equity call and put

options and their free boundaries. Our findings contribute to the literature on American

options with stochastic interest rates, that usually restricts on non-negative interest rates.

Detemple (2014) develops a state-of-the-art investigation of the American options’ pricing

problem in a stochastic non-negative interest rate framework. The free boundary is retrieved

by a discretization of an integral equation for the early exercise premium decomposition.

In particular, for American call options he argues that the exercise region is connected in

the upward direction, namely, if immediate exercise is optimal at some underlying asset

price at some fixed date t, it remains optimal at any higher asset price at date t. The

property holds true in a non-negative interest rate framework. On the contrary, we show

that such property may fail if interest rates may assume even only slightly negative values.

In this case, we document the existence of a non standard double continuation region first

described by Battauz et al. (2015) in a constant interest rate framework. In particular,

a non-standard additional continuation region appears where the option is most deeply in

the money. In this case, a mildly negative interest rates may lead to optimal postponment

of the deeply in the money option as the holder is confident the option will still be in the

money later on prefers to delay the cash-in.

The remaining of the paper is organized as follows: in Section 2 we introduce the finan-

cial framework we work in describing the stochastic processes we have and the related

traded assets. We develop here the lattice-based discretization of the market, that we call

quadrinomial tree. In Section 3 we deal with American put options describing numerical

pricing results, showing the differences arising from the standard constant interest rate case

and providing a graphical characterization of the optimal exercise policy and of the free

boundaries. Section 4 concludes.
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2 The market and the Quadrinomial Tree

2.1 The Assets in the Market

Consider a stylized financial market in a continuous time framework with investment horizon

T > 0. A risky security S(t) is traded. Following the seminal work of Vasicek (1977), we

assume a mean-reverting stochastic process for the prevailing short term interest rate on

the market r(t). We allow for a non zero correlation between the innovations of S and r. A

market player can invest in the short-term interest rate, which is locally risk-free, through

the money market account B(t).

The dynamics of the risky security, of the short-term interest rate and of the money market

account under the risk-neutral measure Q are:
dS(t)

S(t)
= (r(t)− q)dt+ σSdWQ

S (t)

dr(t) = κ (θ − r(t)) dt+ σrdW
Q
r (t)

dB(t) = r(t)B(t)dt

(1)

with 〈dWQ
S (t), dWQ

r (t)〉 = ρdt and given some initial conditions S(0) = S0, r(0) = r0 and

B(0) = 1. Moreover: q is the deterministic constant annual dividend rate of the stock,

σS > 0 the volatility of the stock, κ the speed of mean-reversion of the short-term interest

rate, θ its long-run mean, σr > 0 the volatility of the short-term interest rate and ρ ∈ [−1, 1]

the correlation between the Brownian shocks on S and r.

System (1) can be rewritten equivalently in the following vectorial specification:
dS(t)

S(t)
= µSdt+ νS · dWQ(t)

dr(t) = µrdt+ νr · dWQ(t)

(2)

where µS = (r(t) − q), µr = κ(θ − r(t)), νS = [σS 0], νr = [σrρ σr
√

1− ρ2], WQ(t) =[
WQ

1 (t) WQ
2 (t)

]′
is a standard two-dimensional Brownian motion and · is the matrix prod-

uct.
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The explicit solution to the system of SDEs in (1) is

S(t) = S0 exp

[∫ t

0
r(s)ds−

(
q +

σ2
S

2

)
t+ σSWS(t)

]
r(t) = r0e

−κt + θ(1− e−κt) + σr

∫ t

0
e−κ(t−s)dWr(s)

B(t) = exp

[∫ t

0
r(s)ds

] (3)

The zero-coupon bond with maturity T pays 1 at its holder at T and its price at t ∈ (0, T )

is labelled with p(t, T ). By no arbitrage valuation, we have

p(t, T ) = EQ
[

1

B(T )

∣∣∣∣Ft] = EQ
[

exp

[
−
∫ T

0
r(s)ds

]∣∣∣∣Ft] ,
that admits a closed formula solution as derived in Section 3.2.1 of Brigo and Mercurio

(2007):

p(t, T ) = eA(t,T )−B(t,T )r(t) (4)

where:

B(t, T ) =
1

κ

(
1− e−κ(T−t)

)
(5)

A(t, T ) =

(
θ − σ2

r

2κ2

)
(B(t, T )− (T − t))− σ2

rB
2(t, T )

4κ
. (6)

In this fairly general pricing framework, the price of European put (and also of an European

call) option on S can be derived in closed formulas. Exploiting a change of numèraire as

described in Geman et al. (1995), it is possible to obtain a generalization of the Black-Scholes

formula for the price of a put option:

Proposition 1 (Value of the European put option) In the financial market specified

in (1), the price at t ∈ [0, T ] of an European put option on S with strike K is equal to

πE(t, S(t), r(t)) = Kp(t, T )N(−d̃2)− S(t)e−q(T−t)N(−d̃1)
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with3:

d̃1 =
1√
Σ2
t,T

(
ln

S(t)

Kp(t, T )
+

1

2
Σ2
t,T − q(T − t)

)
,

d̃2 = d̃1 −
√

Σ2
t,T ,

Σ2
t,T = σ2

S(T − t) + 2σSσrρ

(
−1 + e−κ(T−t) + κ(T − t)

k2

)
+

−σ2
r

(
3 + e−2κ(T−t) − 4e−κ(T−t) − 2κ(T − t)

2k3

)
.

Proof. See Appendix B.

2.2 The Quadrinomial Tree

In their seminal work, Cox et al. (1979) show how to discretize a lognormal risky security and

how to easily exploit such a binomial discretization in order to evaluate derivatives written

on the primary asset. Embedding this geometric Brownian motion case into a more gen-

eral class of diffusion processes, Nelson and Ramaswamy (1990) propose a one-dimensional

scheme to properly define a binomial process that approximates a one-dimensional diffusion

process. They do so by matching the diffunsion’s instantaneous drift and its variance and

imposing a recombining structure to their discretized process. Can scheme can be used also

for the univariate Ornstein–Uhlenbeck process.

The discretization via a tree/lattice structure of correlated processes, possibly of differ-

ent kind, is more challenging. Gamba and Trigeorgis (2007) model two or more correlated

geometric Brownian motion representing the price processes of different risky assets exploit-

ing a log-transformation of the processes first and then an orthogonal decomposition of the

shocks. In this way they are able to efficiently price derivatives on five correlated assets.

Moving away from lognormality, Hahn and Dyer (2008) construct a quadrinomial lattice

3Notice that the current value of the interest rate r(t) enters the current price of the zero-coupon bond

p(t, T ) in d̃1 and d̃2.
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to approximate two mean-reverting processes in order to model two correlated one-factor

commodity prices and evaluate derivatives on them.

We propose here a quadrinomial tree to jointly modelling a mean-reverting process for

the short term interest rate as suggested first by Vasicek (1977) and the process for the

risky stock’s price with constant volatility and the drift that embeds the stochastic interest

rate as in (1). A non constant short-term interest rates is surely more suitable from an

option pricing perspective and an Ornstein–Uhlenbeck process enables us to investigate

some interesting features of options when the discount rate becomes slightly negative. This

situation, which was one of the major critique to the model proposed by Vasicek, actually

reflects the present situation of European risk-free rates4 with maturities up to 5 years.

We first show how to build the discretization of the processes (S(t), r(t)) described by

(1) and then we address the convergence issue of the discretization itself.

We apply Itô’s Lemma to Y (t) := ln(S(t)) and we get dY (t) = µY dt+ σSdWS(t)

dr(t) = µrdt+ σrdWr(t)
(7)

where µY :=

(
r(t)− q −

σ2
S

2

)
and µr := κ(θ − r(t)). Again, the vectorial version of (2) is:

d

 Y (t)

r(t)

 =

 (r(t)− q − σ2
S
2

)
κ(θ − r(t))

dt+

 σS 0

σrρ σr
√

1− ρ2

 · dW (t). (8)

We refer here to the general technique of Section 11.3 of Stroock and Varadhan (1997)

exploiting the very convenient notation introduced in Section 3.2.1 of Prigent (2003). For

the ease of the reader we recall here their template. Consider the following bivariate SDE:

dX(t) = µ(x, t)dt+ σ(x, t) · dW (t) (9)

where X(t)t≥0 = (Y (t), r(t))t≥0, W (t) is a standard two-dimensional Brownian motion,

µ(x, t) : (R × R+) × R+ → R2, σ(x, t) : (R × R+) × R+ → R2×2 and an initial condition

4it is widely accepted to proxy the risk-free rate in Europe by the rates of German bonds.
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X(0) = (x0, r0) is given.

Consider a discrete uniform partition of the time interval [0, T ] like
{
iTn , i = 1, . . . , n

}
and

define ∆t := T
n . For each n consider a bivariate stochastic process {Xn} on [0, T ] which is

constant between the nodes of the partition. At each node, both of the components of Xn

jump up (or down) a certain distance with a certain probability. The sizes of the jumps

and the probabilities are allowed to be time-dependent and state-contingent. Since after

any jump each component of Xn can assume two new different values, there will be globally

four possible outcomes after the jumps. For sake of clarity, fix n and consider the generic

i-th step of the bivariate discrete process Xi = (Yi, ri). In the following step, the process

can assume only one of the following four values:

(Yi+1, ri+1) =


(Yi + ∆Y +, ri + ∆r+) with probability quu

(Yi + ∆Y +, ri + ∆r−) with probability qud

(Yi + ∆Y −, ri + ∆r+) with probability qdu

(Yi + ∆Y −, ri + ∆r−) with probability qdd

(10)

where ∆Y ±,∆r± are the jumping increments and the four transition probabilities are both

time-dependent and state-contingent. Figure (1) provides a graphical intuition for the

bivariate binomial discretization over one step.

Globally, there are 8 parameters to pin down at each step: ∆Y ±, ∆r±, quu, qud, qdu and

qdd.

In order to obtain a discretization that converges in probability to the solution of (9), we

need to match the first two moments of Y (t) and r(t) as well as their cross variation. In

this way we impose 5 conditions on the 8 parameters we need to determine. One more

constraint has to be imposed on the four transition probabilities that need to sum up to

one. Finally, we may want to impose a recombining structure to our quadrinomial tree in

order to preserve tractability. Setting ∆Y − = −∆Y + := ∆Y and ∆r− = −∆r+ := ∆r

makes the number of different outcomes of our discretization grow quadratically (and non

exponentially) in the number of steps. Figure (2) provides a graphical intuition of this
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Figure 1: One step of the bivariate

binomial discretization.

Figure 2: Two steps of the bivariate

binomial discretization.

trick: starting from (Y0, r0), after two steps the bivariate binomial process may assume 9

possible values, namely all the possible ordered couples of {Y0 − 2∆Y, Y0, Y0 + 2∆Y } and

of {r0 − 2∆r, r0, r0 + 2∆r}. Thus, for a generic number of time steps n, the final possible

outcomes of the discretization are (n+1)2 rather than 2n+1, the number of possible outcomes

along a non recombining tree.

We now derive the explicit expressions of the increments and of the transition probabilities

of our discretization for the bivariate SDEs (2), which, again, is just a simple instance of

(9).

Matching the first two moments of Y (t) and S(t) as well as their cross-variation, neglecting

the ∆t-second order terms, imposing the proper constraint on the probabilities and imposing

a recombining tree as explained above lead to the following system of 8 equations in 8
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unknowns:

E[∆Y ] = (quu + qud)∆Y
+ + (qdu + qdd)∆Y

− !
= µY ∆t

E[∆r] = (quu + qdu)∆r+ + (qud + qdd)∆r
− !

= µr∆t

E[∆Y 2] = (quu + qud)(∆Y
+)2 + (qdu + qdd)(∆Y

−)2 !
= σ2

S∆t

E[∆r2] = (quu + qdu)(∆r+)2 + (qud + qdd)(∆r
−)2 !

= σ2
r∆t

E[∆Y∆r] = quu∆Y +∆r+ + qud∆Y
+∆r−+

+qdu∆Y −∆r+ + qdd∆Y
−∆r−

!
= ρσSσr∆t

quu + qud + qdu + qdd
!

= 1

∆Y + !
= −∆Y −

∆r+ !
= −∆r−

Imposing ∆Y + > ∆Y − and ∆r+ > ∆r− we get:

∆Y + = σS
√

∆t = −∆Y − := ∆Y

∆r+ = σr
√

∆t = −∆r− := ∆r
(11)

quu =
µY µr∆t+ µY ∆r + µr∆Y + (1 + ρ)σrσS

4σrσS

qud =
−µY µr∆t+ µY ∆r − µr∆Y + (1− ρ)σrσS

4σrσS

qdu =
−µY µr∆t− µY ∆r + µr∆Y + (1− ρ)σrσS

4σrσS

qdd =
µY µr∆t− µY ∆r − µr∆Y + (1 + ρ)σrσS

4σrσS
.

(12)

As noted in Nelson and Ramaswamy (1990), the four transition probabilities are not nec-

essarily positive. In the limit, namely as ∆t → 0, we have ∆Y,∆r → 0 and, therefore,

quu, qdd → (1+ρ)
4 > 0 and qud, qdu → (1−ρ)

4 > 0. For ∆t > 0, some of the four probabilities

in (12) may become non-positive. In Appendix A we derive conditions ensuring the four

probability in (12) are non-negative. Intuitively we get that quu, qdu, qud and qdd are positive

at any t as long as:

r ≤ r(t) ≤ r

where r and r depend on the parameters of the model but not on t. Namely, there exist two

boundaries for the interest rate process outside which we need to “adjust” the transition

probabilities in order to avoid the negative ones. We do so by setting equal to zero any
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transition probability that becomes negative and normalizing to 1 the other ones. This

ensures that our bivariate discretization covers in the limit the entire support of the bivariate

vector (Y, r).

Once we obtained a discretization of (2), we can map back the rate of return Y (t) to the

level S(t) of the risky stock. In this way we have a lattice discretization of the solution of

(2) and we name this discretization quadrinomial tree.

The following proposition shows that our quadrinomial tree converges in distribution to the

solution of (2).

Proposition 2 (Convergence of the quadrinomial tree) The bivariate discrete process

(Xi)i defined in (10) with the parameters in (11) and (12) converges in distribution to

X(t) = (Y (t), r(t)).

Proof. See Appendix B.

3 American Options

We now turn to American options. The holder of an American option can exercise it at any

time before maturity T . This feature leads to an optimization problem as the holder tries

to find the optimal exercise time that maximize her discounted profit. This flexibility does

not come for free. Consequently, American options are usually more expansive than their

European counterparts. This difference in the price is known as early exercise premium.

From now on, we will focus on American put option. In a continuous time framework,

as described in Section 21.5 of Björk (2009), the value at t ≤ T of an American put option

on S with strike price K and maturity T is:

V (t) = ess sup
t≤τ≤T

EQ
[
B(t)

B(τ)
(K − S(τ))+

∣∣∣∣Ft]
= ess sup

t≤τ≤T
EQ
[
e−

∫ τ
t r(s)ds(K − S(τ))+

∣∣∣Ft] (13)
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where the essential supremum accounts for the fact that the sup is taken on an (uncountable)

family of random variables defined up to zero-probability sets. In words, the value of

the American put option is determined by the optimal stopping time τ that maximizes

the discounted payoff. It is well known that equation (13) admits no explicit formulation

even in the standard Black ans Scholes market. In our case, since r is stochastic and not

independent of S, we cannot split the conditional expected value in (13) into two simpler

separate ones. Nevertheless, the following Proposition shows that, as in the standard case

of deterministic interest rate, the value of an American put option V (t) can be expressed

as a deterministic function of time t (or, equivalently, of time to maturity T − t) and of the

current value of both the underlying asset S(t) and the short term interest rate r(t).

Proposition 3 (Value of the American put option as a deterministic function)

In the market described by (1), the value of an American put option on S (13) is of the

form:

V (t) = F (t, S(t), r(t))

with F : [0, T ]× R+ × R 7→ R+ given by:

F (t, S, r) = sup
0≤η≤T−t

EQ
[
exp

(
−
∫ η

0
r(s)ds

)
·

·
(
K − S exp

(∫ η

0
r(s)ds−

(
q +

1

2
σ2
S

)
η + σSWS(η)

))+
]
. (14)

Proof. See Appendix B.

At each point in time the holder of the option compares the immediate payoff she would

get from an immediate exercise and the discounted future value of the option. As at any

t both the present and the expected future values of the option depend on the current

value of the underlying asset, S, and of the interest rate, r, it is convenient to divide the

plane (S, r) into two complementary regions: the early exercise region and the continuation

region. Provided that the holder of the option can distinguish the two, if for a given t she
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observes in the market a couple of values (S, r) that belongs to the early exercise region,

the option will be exercised. If the observed couple belongs to the continuation one, the

option will not be exercised at that moment.

We can now formally define the aforementioned regions. At each t ∈ [0, T ], the plane

(S, r) ∈ R+ × R can be divided into:

• the continuation region CR(t) = {(S, r) ∈ R+ × R : F (t, S, r) > (K − S)+}, the set of

couples (S, r) where it is optimal to continue the option at t;

• the early exercise region EER(t) = {(S, r) ∈ R+ × R : F (t, S, r) = (K − S)+}, the set

of couples (S, r) where it is optimal to exercise the option at t.

When r = r0 is deterministic and strictly positive, the two regions are separated by a free

boundary t 7→ S∗(t), called critical price. It has no explicit expression but its asymptotic

approximation as the time to maturity shrinks has been derived by Evans et al. (2002) and

Lamberton and Villeneuve (2003). In this case, the exercise region is downward connected,

as shown in Figure (3): if it is optimal at t to exercise the option for some underlying values,

it so for all the lower values of the underlying.

When, on the contrary, r = r0 < 0 and r0 − q −
σ2
S
2 > 0, Battauz et al. (2015) show that

the early exercise region lies in between two continuation regions. In this case there are two

free boundaries: an upper one, t 7→ S̄∗(t), and a lower one, t 7→ S∗(t). Again, they have

no explicit expressions but their asymptotic behaviours have been derived by Battauz et al.

(2015). In this case, the exercise region for the American put option is no more downward

connected, as shown in Figure (4).

When r is constant, the intuition is the following. The value of the American put option,

namely the counterpart of (14) is a deterministic function G(t, S) : R+ × R → R+ of the

time and the current value of the underlying:

G(t, S) = sup
0≤η≤T−t

EQ

[
e−rη

(
K − S exp

((
r − q −

σ2
S

2

)
η + σSWS(η)

))+
]
. (15)
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Figure 3: Free boundary of

an American put option with r0 > 0.

Figure 4: Free boundaries of

an American put option with r0 − q −
σ2
S
2 < 0

and r0 < 0.

Denote by µ :=
(
r − q − σ2

S
2

)
the drift of the risky stock’s value. The value of the risky

asset is increasing in µ and, consequently, the value of the American put option is on aver-

age decreasing in µ. The value of the American option is also decreasing, on average, with

respect to the discount rate r. Therefore, the impact on the value of the American option

of r streams from two channels: the discount factor e−rη and the drift µ of the risky asset.

When r decreases and becomes negative, the negative discount rate will make the holder of

the American option eager to wait and cash in later on to gain from the negative interest

rate. If also µ stays negative, the value of the underlying will decrease on average thus

making the put option more valuable. Therefore, both of the effects will make the investor

wait and exercise the option as late as possible, namely at maturity. In this case, the early

exercise premium will disappear and the value of the American option will collapse into the

value of its European counterpart. If, on the contrary, µ stays positive, the value of the un-

derlying will increase on average thus making the put option less valuable. In this case the

effects of the discount factor and of the the drift are not aligned and a trade-off arises: the

15



investor would like to wait in order to cash in later on and gain from the negative interest

rate but in this way she faces the risk of the payoff’s depreciation, as the value underlying is

expected to increase. In this case, r < 0 and µ = r−q− σ2
S
2 > 0, the aforementioned tradeoff

translates in a non-empty exercise region surrounded by a double continuation region. In

particular, a non standard continuation region appears when the option is mostly deeply

in the money. Here the risk of the payoff’s depreciation is very mild and the preference for

the postponement due to the negative interest rate prevails.

Notice that in the latter case, as r < 0 and σS > 0, µ > 0 implies q < 0, which can be

counter intuitive in the standard interpretation where q represents the continuous dividend

yield of the risky asset. Nevertheless, a negative q can appear as a storage cost when dealing

with options on commodities or as an “artificial drift” capturing the interplay of domestic

and foreign interest rate when evaluating quanto options (see Battauz et al. (2018)).

When the interest rate is stochastic, both the discount factor e−
∫ η
0 r(s)ds and the drift

µ :=
∫ η

0 r(s)ds−
(
q + 1

2σ
2
S

)
η in (14) depend on the whole path of r, from its current value

up to the exercise time η. Therefore, at a given instant of time t ∈ [0, T ] and for a generic

couple of state variables (S, r), the tradeoff between the discount factor and the expected

drift of S, and consequently the presence of a singular or a double continuation region,

depend on the all the possible future realizations of r, especially on its expected sign. The

following Proposition formalizes this intuition and provides two necessary conditions for the

existence of a double continuation region as the time to maturity of the option shrinks.

Proposition 4 (Asymptotic necessary conditions for the existence of a double

continuation region) In the market described by (1), at any point in time t and given the

current value of the interest rate r(t) = r, the following are jointly necessary conditions for

the existence of the lower free boundary for the American put option for T − t ≈ 0:

[NC0] the current level of the interest rate r is such that either T − t > 2

κ
· r

r − θ
if r > θ or
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κr < 0 if r < θ;

[NC1] the dividend yield is non positive, q ≤ 0;

[NC2] for some S, πE(t, S, r) = (K −S)+, where πE(t, S, r) is the value of the European put

option defined in Proposition 1.

Proof. See Appendix B.

With respect to [NC0], the case r < θ is way much more likely: the long-run mean of

the interest rate θ is commonly assumed to be positive and above the current short-term

interest rate. Furthermore, the speed of mean reversion κ of r is usually assumed to be

positive: a negative κ would make the process r diverge, which is not the case according to

traditional economic theory. Therefore, in most of the cases, [NC0] boils down to r < 0.

[NC1] ensures that the discounted price of the risky security is not a supermartingale. If this

was the case, we show in the proof that this would lead automatically to optimal exercise

at maturity only, under condition [NC0].

Under [NC0], [NC2] ensures that the price of the European put option πE(t, S, r) does not

dominate the immediate payoff value. If this was the case, the American put option would

dominate the immediate payoff value as well, thus preventing the existence of early optimal

exercise opportunities.

Condition [NC1] is poor. We empirically find the following finer condition:

[NC1’] the expected drift of S is positive, namely, (r−θ)α+
(
θ − q − σ2

S
2

)
(T −t) > 0 where

α :=
1− e−κ(T−t)

κ
.

Although the formal proof of the necessary conditions in Proposition 4 requires the time

to maturity to be small enough, we show in the following section that actually those condi-

tions ([NC1’] and [NC0]) correctly identify nodes on the tree in which a double continuation

region appears along the whole lifetime of the option (see Figure 7).
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3.1 Numerical examples

We now present and describe three illustrative numerical examples that show the opti-

mal exercise strategies and the possible characterizations of the continuation region for the

American put option in the market described by (1).

We exploit our quadrinomial tree to evaluate the American put option by backward in-

duction. Once the whole quadrinomial tree, namely all the couples (S, r) and the related

transition probabilities, have been generated, we start from the values of the state variables

S and r at maturity T . At maturity, the American option is exercised in all the nodes in

which it is in the money; the resulting payoff is the value of the American option at T . At

any other generic instant t ∈ {0,∆t, 2∆t, . . . , T −∆t}, and for any couple (S(t), r(t)), we

compute the immediate payoff (K − S(t))+ and we compare it to the continuation value of

the option. The continuation value is obtained as the discounted (by the current realization

of r(t)) expected value (according the transition probabilities computed at (S(t), r(t))) of

the four values of the American option at t+ ∆t connected on the tree to the current node.

From the comparison between the immediate exercise and the continuation value, we get

the value of the American option in the node (S(t), r(t)). Going backward, we finally get

the price of the American option at t = 0.

Proposition 2 showed that the quadrinomial tree we proposed converges in distribution to

the bivariate process that solves (1), as the time step shrinks. Mulinacci and Pratelli (1998)

prove that the convergence in distribution of the lattice-based approximation of the under-

lying state variables implies that the price of the American option evaluated according to

the backward procedure described above converges to its theoretical value given by (13).

In all of the three following examples the parameters are: T = 1, n = 125, S0 = K = 1,

σS = 0.15, r0 = 0, θ = 0.02, κ = 1, σr = 0.01 and ρ = 0.05. The dividend yield q of the

risky stock is the only parameter that varies across the examples: in the first one we set
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q = 0, in the second q = 0.02 and q = −0.02 in the last one.

For each example we:

• compute the value of the expected drift of S at t = 0 over the whole investment

horizon

µ̄|t=0 =

∫ T

0
EQ [r(s)] d(s)−

(
q +

σ2
S

2

)
T

as this is one of the two key drivers of the option’s exercise policy as explained below;

• compute the value at inception of the European counterpart πE obtained both with

the formula of Proposition 1 and along the quadrinomial tree (the values obtained in

the two ways are indistinguishable);

• compute the value at inception of the American put option πA along the quadrinomial

tree;

• compute the price of the American put option, πr0A , evaluated along the standard

binomial tree of Cox et al. (1979) with a deterministic interest rate r = r0 = 05.

Our aim is to quantify the error that an “unsophisticated” investor would make by

evaluating the American put option within a flat term structure framework rather

than within a fluctuating one;

• graphically show how the lower and upper boundary (if any) look like in the space

(t, S, r). This graphs characterize the optimal exercise policy: at any t, the investor

should look at the current values of (S(t), r(t)). If (S(t), r(t)) is below the upper

boundary and above the lower one (if any), she should exercise the option; otherwise,

she is better off by postponing the exercise.

5we also evaluate the American put option with a deterministic interest rate equal to the expected value of

r over the investment period; namely, we also set r = EQ [r(T )] = 1.26%. This exercise delivers qualitatively

similar results. With respect to the last column of Table 1, the relative errors in this case are, respectively,

4.58%, 4.64%, 4.52%.
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Numerical results are summed up in Table 1.

Figure q µ̄|t=0 πE πA πr0A |πA − πr0A |/πA
5 0% 0.139% 5.620% 5.990% 5.712% 4.87%

6 2% 2.139% 6.565% 6.973% 6.570% 6.14%

7 -2% -1.861% 4.763% 5.240% 5.030% 4.18%

Table 1: Results from the three numerical examples.

First example: q = 0%. If the underlying pays no dividend and its volatility is reasonably

small, the expected drift of S, µ̄, basically coincides with r(t). This splits the domain of

r in two complementary regions according to the sign of r (and of µ̄), as shown in the

bottom panel of Figure 5. In the left one where both r and µ̄ are negative, the investor is

willing to wait and to postpone the exercise as much as possible in order to gain from both

the negative discount rate and the depreciation of S. In the right region, on the contrary,

we have the standard tradeoff between a positive discount rate (that makes the investor

willing to exercise the option as soon as possible) and a negative expected drift of S (that

makes the investor willing to wait for a larger payoff). This generates the standard upper

boundary shown in the top panels Figure 5.

The investor who believes that the term structure is flat and evaluates the American option

with a constant discount rate makes a relative error almost equal to 5%.

Second example: q = 2%. If the underlying pays (positive) dividends, the instantaneous

drift of S, µ(t), is equal to r(t) plus a negative quantity (−q − σ2
S
2 < 0). As a result, µ(t)

(and µ̄) is positive if and only if r (and its expected value) is sufficiently high. This splits

the domain of r into three complementary regions, as shown in the bottom panel of Figure

6: the one in which r and µ̄ are both negative, the one in which r is positive but small

so that µ̄ is still negative, the last one in which r and µ̄ are both positive. In the first
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Figure 5: First example: q = 0%.

one, the option is optimally exercised at maturity, as before. In the middle region there

is a new tradeoff: the investor would like to cash in as soon as possible due to r > 0 but

the value of S is expected to decrease as µ̄ < 0. This last condition allows for a standard

upper boundary. The critical price below which the investor will exercise, though, becomes

smaller as r approaches 0: as r decreases the threat of the positive discount rate weakens

and, therefore, the investor would postpone the exercise unless the underlying reaches a

very low level. In other words, if the discount is not that strong, the investor prefers to gain

the high dividend yield keeping the asset as long as possible. In the last region, we find the

standard behaviour already outlined in the first example.

The investor who believes that the term structure is flat and evaluates the American option
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Figure 6: Second example: q = 2%.

with a constant interest rate makes here an even higher relative error than before (6.14%).

Third example: q = −2%. In the case of negative dividends, the instantaneous drift of S,

µ(t), is equal to r(t) plus a quantity which is now positive (−q − σ2
S
2 > 0). As a result,

µ(t) (and µ̄) may be positive also when r is mildly negative. This splits again the domain

of r into three complementary regions, as shown in the middle panel of Figure 7: the one

in which r and µ̄ are both negative, the one in which r is negative but µ̄ is positive and

the last one in which r and µ̄ are both positive. In the first region, the option is again

optimally exercised at maturity as in the previous examples. In the middle region a double

continuation region appears: this is the case in which the necessary conditions in Propo-

sition 4 are satisfied as documented in the bottom panels of Figure 7. In the last region
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where both r and µ̄ are positive, we find the standard behaviour already outlined in the

first two examples.

Finally, this is the case in which the investor who believes that the term structure is flat

and evaluates the American option with a constant discount rate makes the largest relative

error (6.14%).

4 Conclusions

In this paper we have studied American equity options in a stochastic correlated interest

framework of Vasicek (1977) type. We have introduced a tractable lattice-based discretiza-

tion of the equity and interest rate processes by means of a quadrinomial tree. Our quadri-

nomial tree matches the joint discretized moments of the equity and the stochastic interest

rate and converges in probability to the continuous time original processes. This allowed

us to employ our quadrinomial tree to characterize the two-dimensional free boundary for

an American equity put option, that consists of the underlying asset and the interest rate

values that trigger the optimal exercise of the option. Our results are in line with the

existing literature when interest rates lie in the positive realm. In particular, the higher

the dividend yield, the higher the benefits from deferring the option exercise. Moreover, in

this case, the exercise region is downward connected with respect to the underlying asset

value (see, for instance, Detemple (2014)). On the contrary, when interest rate are likely

to assume even mildly negative values, optimal exercise policies change, depending on the

tradeoff between the interest rate and the expected rate of return on the equity asset. If

such expected rate of return is negative, optimal exercise occurs at maturity only as the

option goes (on average) deeper in the money as time goes by and the negative interest rates

make the investor willing to cash in as late as possible. If the expected rate of return on the

equity asset is positive, the option is expected to move towards the out of the money re-
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Figure 7: Third example: q = −2%. Green points in the bottom panels show the nodes of

the quadrinomial tree in which the two necessary conditions of Proposition 4 for a double

continuation region hold simultaneously.
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gion. This effect is compensated by the preference to postponement due to negative interest

rates. The tradeoff results in a non-standard double continuation region that violates the

aforementioned downward connectedness of the exercise region. Finally, we quantified the

pricing error that an investor would make assuming a constant interest rate and therefore

neglecting the variability (and the related risk) of the term structure.
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A Bounds of the probabilities in the Quadrinomial Tree

Recall that at each t the four probabilities of an upward/downward movement of r/Y on

the tree are:

quu =
µY µr∆t+ µY ∆r+ + µr∆Y

+ + (1 + ρ)σrσS
4σrσS

qud =
−µY µr∆t+ µY ∆r+ − µr∆Y + + (1− ρ)σrσS

4σrσS

qdu =
−µY µr∆t− µY ∆r+ + µr∆Y

+ + (1− ρ)σrσS
4σrσS

qdd =
µY µr∆t− µY ∆r+ − µr∆Y + + (1 + ρ)σrσS

4σrσS

(A1)

with ∆r+ = σr
√

∆t, ∆Y + = σS
√

∆t, µY = r(t)− q − σ2
S
2 and µr = κ(θ − r(t)). From now

on we light the notation writing r instead of r(t). Nevertheless, it is crucial to remember

that these probabilities are different for each node of the quadrinomial tree.

As already pointed out, the four probabilities sum up to one by construction. Unfortunately,

they do not necessarily lie in (0,1). As a first control, we investigate what happens as the

length of the time step goes to zero, namely, as ∆t→ 0. We have

lim
∆t→0

quu = lim
∆t→0

qdd =
1 + ρ

4
,

lim
∆t→0

qud = lim
∆t→0

qdu =
1− ρ

4

which are all positive quantities (at least as ρ ∈ (−1, 1)). Therefore, the problem of having

possibly negative probabilities is only due to the discretization procedure.

For instance, with n = 250 steps and T = 1 (that corresponds to ∆t = 0.004), we need to

impose the positivity constraint on all the four numerators in (A1).

Imposing quu ≥ 0 and solving with respect to r leads to:

Auur
2 +Buur + Cuu ≤ 0 (A2)
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where:

Auu = κ

Buu = − κ
(
θ + q +

σ2
S

2
− σS√

∆t

)
− σr√

∆t

Cuu = − κθ
(
−q −

σ2
S

2
+

σS√
∆t

)
− σr√

∆t

(
−q −

σ2
S

2

)
− (1 + ρ)σrσS

∆t
.

Provided that the discriminant of equation (A2) is positive, which surely holds true as

∆t→ 0, the solution is ruu ≤ r ≤ ruu, where, of course,

ruu =
−Buu −

√
B2
uu − 4AuuCuu

2Auu
and ruu =

−Buu +
√
B2
uu − 4AuuCuu

2Auu
.

Similarly, we can work out all of the other probabilities.

Imposing qud ≥ 0 leads to:

Audr
2 +Budr + Cud ≥ 0

where:

Aud = κ

Bud = − κ
(
θ + q +

σ2
S

2
− σS√

∆t

)
+

σr√
∆t

Cud = − κθ
(
−q −

σ2
S

2
+

σS√
∆t

)
− σr√

∆t

(
q +

σ2
S

2

)
+

(1− ρ)σrσS
∆t

,

that is solved by r ≤ rud ∪ r ≥ rud.

Imposing qdu ≥ 0 leads to:

Adur
2 +Bdur + Cdu ≥ 0

where:

Adu = k

Bdu = − κ
(
θ + q +

σ2
S

2
+

σS√
∆t

)
− σr√

∆t

Cdu = − κθ
(
−q −

σ2
S

2
− σS√

∆t

)
+

σr√
∆t

(
q +

σ2
S

2

)
+

(1− ρ)σrσS
∆t

,
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that is solved by r ≤ rdu ∪ r ≥ rdu.

Finally, imposing qdd ≥ 0 leads to:

Addr
2 +Bddr + Cdd ≤ 0

where:

Add = κ

Bdd = − κ
(
θ + q +

σ2
S

2
+

σS√
∆t

)
+

σr√
∆t

Cdd = − κθ
(
−q −

σ2
S

2
− σS√

∆t

)
+

σr√
∆t

(
−q −

σ2
S

2

)
− (1 + ρ)σrσS

∆t
.

that is solved by rdd ≤ r ≤ rdd.

Summing up, probabilities in (A1) stay positive as long as r satisfies:
ruu ≤ r ≤ ruu
r ≤ rud ∪ r ≥ rud
r ≤ rdu ∪ r ≥ rdu
rdd ≤ r ≤ rdd

The solution to the previous system of inequalities depends on the sign of the correlation

ρ. Given the sign of ρ, the eight extremes values ruu, rud, . . . , rdu, rdd always satisfy the

same chain of inequalities. Furthermore, notice that this eight values depend only on the

parameters of the model and not on t.

When ρ ∈ (0, 1], the only interval on which all of the inequalities hold true is rud ≤ r ≤ rdu

as it can be conveniently seen in Figure 8.

The intuition here is that when r and S move together and the discretization of r reaches

values far away from its long run mean θ, a further movement of r away from θ and in

the opposite direction of S is extremely unlikely and, eventually, happens “with a negative

probability”.

If, for example, r(0) = 0, θ = 0.02, σr = 0.01, κ = 0.7, S(0) = 1, σS = 0.15, q = 0, ρ = 0.5,

T = 1 and n = 125, after m = 100 steps, namely at t = m ·∆t = m · Tn = 0.8, r(t) spans the
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rud ruu rdd rud rdu ruu rdd rdu0

quu ≥ 0

qud ≥ 0

qdu ≥ 0

qdd ≥ 0

Figure 8: Graphical solution to the system of inequalities when ρ ∈ (0, 1].

interval [-0.0885, 0.0885] and S(t) the interval [-1.3282, 1.3282], both of them assuming

m = 101 different values. Hence, at t = 0.8 there are 1012 = 10201 possible nodes on tree.

As an instance, at the node (S(t), r(t))t=0.8 = (0.5847,−0.0751) the four probabilities are:

quu = 0.4885

qud = −0.0143

qdu = 0.2780

qdd = 0.2478.

Indeed, with the given parameters, probabilities are all positive as long as rud = −0.0660 ≤

r(t) ≤ 0.0861 = rdu, which is not our case. As r(t) is extremely far away from its long-run

mean and since ρ > 0 implies that r and S are likely to move together in the same direction,

qud, namely the probability that r deviates even further from its long-run mean and also

against S, becomes negative. Notice that qud > qdd, meaning that the force that drives r

towards its long-run mean prevails on the positive correlation between the two processes.

When such a scenario happens, we adjust the probabilities by setting the negative one to 0

and normalizing to 1 the others. From the example above we would then get:

quu = 0.4816

qud = 0

qdu = 0.2741

qdd = 0.2443.
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A very similar situation happens when ρ ∈ [−1, 0) and the four probabilities stay positive

as long as rdd ≤ r ≤ ruu. Figure 9 shows the solution to the system of inequalities in this

case. Now quu or qdd might become negative. This is due to the negative correlation: as

r and S are likely to move in the opposite direction, when r is far away from its long-run

mean, moving even further in the same direction of S may result in a negative probability.

Again, we correct for such a phenomenon with the normalization described above.

ruu rud rdurdd ruurud rdu rdd0

quu ≥ 0

qud ≥ 0

qdu ≥ 0

qdd ≥ 0

Figure 9: Graphical solution to the system of inequalities when ρ ∈ [−1, 0).

For sake of completeness, we briefly discuss also the limit of zero correlation between r and

S. When ρ = 0, ruu = rud, rud = rdd, ruu = rdu and rdu = rdd. Hence, the two intervals we

found for the two previous cases, rud ≤ r ≤ rdu when ρ ∈ (0,−1] and rdd ≤ r ≤ ruu when

ρ ∈ [−1, 0), coincide. When ρ = 0, probabilities stay positive as long as r belong to that

interval.

Since the support of the discretization of r(t) is known at each t, we can retrieve the

maximum t before which no normalization of the probabilities is needed.

Given the two thresholds r and r (where r = rud, r = rdu if ρ > 0 and r = rdd, r = ruu if

ρ < 0) we can set t and t as:

t := min
s∈{0,∆t,2∆t,...,T}

{r(s) ≥ r} and t := max
s∈{0,∆t,2∆t,...,T}

{r(s) ≤ r} .

Given the binomial structure of the discretization, after m steps we have we have:

r(0)−m∆r− = r(0)−mσr∆t ≤ r(t) ≤ r(0) +mσr∆t = r(0) +m∆r+
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Figure 10: Section of the quadrinomial tree for S = 0. Red points indicate nodes at which

one transition probability becomes negative. Parameters: r(0) = 0, θ = 0.02, σr = 0.01,

κ = 0.7, S(0) = 1, σS = 0.15, q = 0, ρ = 0.5, T = 1, n = 125.

and, therefore, from

r(0)−mσr∆t ≥ r

r(0) +mσr∆t ≤ r
(A3)

we can explicitly compute:

t = m∆t =
r(0)− r
σr
√

∆t
∆t =

r(0)− r
σr

√
∆t

t = m∆t =
r − r(0)

σr
√

∆t
∆t =

r − r(0)

σr

√
∆t.

Of course, neither r, r nor t, t are likely to correspond to any node of the discretized process

r(t) or to the discretized time line {0,∆t, 2∆t, . . . , T}. In this case, we set r, r and t, t

equal to the smallest values on the grid of r(t) and t that satisfy the constraints in (A3).

Going back to the numerical example above, we have that t = 0.5840 and t = 0.7680. A

section of the quarinomial tree in this case is displayed in Figure 10.
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B Proofs of the Claims

Proof of Proposition (1): value of the European put option. We derive the price

of the European put option at t = 0. As the payoff of the derivative depends only on the

final value of S, the price at any t is obtained straightforwardly thanks to the Markovianity

of (S, r) by replacing S0 by S(t), r0 by r(t) and T by T − t.

In the market described by (1), the risk-neutral price at t = 0 of the European put option

on S with strike price K and maturity T is given by:

πEuropeanPut(0) = EQ[e−
∫ T
0 r(s)ds(K − S(T ))+]

= EQ
[

(K − S(T ))

B(T )
1{K−S(T )>0}

]
= KEQ

[
1{K−S(T )>0}

B(T )

]
− EQ

[
S(T )1{K−S(T )>0}

B(T )

]
. (B1)

Since B(T ) depends on r which is correlated with S, in order to compute the two expected

values we would need to know their joint distribution under Q and then evaluate a double

integral. This turns out to be rather complicated. Nevertheless, we can greatly simplify the

computation of the two expected values applying a change of numèraire.

We start from the first expectation in (B1). Consider the T-forward measure QT , namely

the martingale measure for the numèraire process p(t, T ). The Radon-Nikodym derivative

of QT with respect to Q (whose numèraire process is the money market B(t) = e
∫ t
0 r(s)ds)

is:

dQT

dQ
= LT (t) =

p(t, T )

B(t)p(0, T )
on Ft, 0 ≤ t ≤ T.
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As p(T, T ) = 1 and since p(0, T ) is a scalar, we get:

EQ
[
1{K−S(T )>0}

B(T )

]
= p(0, T )EQ

[
p(T, T )

B(T )p(0, T )
1{K−S(T )>0}

]
= p(0, T )EQ[LT (T )1{K−S(T )>0}]

= p(0, T )EQT [1{K−S(T )>0}]

= p(0, T )QT (S(T ) < K)

= p(0, T )QT

(
S(T )

p(T, T )
< K

)
.

By definition, under the T-forward measure QT the discounted process of the risky as-

set, when accounting for the dividend, Z0,T (t) :=
S(t)eqt

p(t, T )
is a martingale. Applying the

multidimensional Itō’s Lemma to Z0,T (t) under Q we get:

dZ0,T (t) = (. . . ) dt+ (νS +B(t, T )νr) · dWQ(t)

where, νS = [σS 0], νr = [σrρ σr
√

1− ρ2] and WQ(t) = [WQ
1 (t) WQ

2 (t)]′ is standard

two-dimensional Brownian motion under Q. Since the volatility process σ0,T (t) := νS +

B(t, T )νr is constant, we can apply a suitable change of measure from Q to QT to get rid

of the deterministic drift of Z0,T (t). Under the T-forward measure we get:

dZ0,T (t) = +σ0,T (t) · dWQT (t)

as we expected. The process Z0,T (t) is now a geometric Brownian motion driven by a

bi-dimensional Wiener process. Hence, its solution is:

Z0,T (t) = Z0,T (0) exp

{
−1

2

∫ t

0
||σ2

0,T (s)||ds+

∫ t

0
σ0,T (s) · dWQT (s)

}
=

S(0)

p(0, T )
exp

{
−1

2

∫ t

0
||σ2

0,T (s)||ds+

∫ t

0
σ0,T (s) · dWQT (s)

}
.

Notice that, due to Itō’s Isometry,

−1

2

∫ t

0
||σ2

0,T (s)||ds+

∫ t

0
σ0,T (s) · dWQT (s) ∼ N

(
−1

2
Σ2

0,T (t),Σ2
0,T (t)

)
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where:

Σ2
0,T (t) :=

∫ t

0
||σ2

0,T (s)||ds

=

∫ t

0
σ2
S + 2σSσrρB(s, T ) +B(s, T )2σ2

rds

=σ2
St+ 2σSσrρ

(
κt− e−kT

(
−1 + ekt

)
k2

)
+ σ2

r

(
e−2κT

(
−1 + e2κt + 4eκT − 4κ(t+T ) + 2e2κTκt

)
2k3

)
.

When t = T , the expression above simplifies to:

Σ2
0,T (T ) = σ2

ST + 2σSσrρ

(
−1 + e−κT + κT

k2

)
+ σ2

r

(
−3 + e−2κT − 4e−κT − 2κT

2k3

)
.

Finally, we can compute the T-forward probability that the put option closes in the money

as:

QT

(
S(T )

p(T, T )
< K

)
= QT

(
S(T )eqT

p(T, T )
< KeqT

)
= QT

(
Z0,T (T ) < KeqT

)
= QT

(
S(0)

p(0, T )
exp

{
−1

2

∫ T

0
||σ0,T ||2(s)ds+

∫ T

0
σ0,T (s) · dWQT (s)

}
< KeqT

)
= QT

(
N
(
−1

2
Σ2

0,T (T ),Σ2
0,T (T )

)
< ln

p(0, T )KeqT

S(0)

)
= N(−d̃2)

with d̃2 =
1√

Σ2
0,T (T )

(
ln

S(0)

p(0, T )K
− 1

2
Σ2

0,T (T )− qT
)

. Hence,

EQ
[
1{K−S(T )>0}

B(T )

]
= p(0, T )N(−d̃2).

We now turn to the second expected value in (B1). Consider the martingale measure QS

with numèraire process S(t)eqt. The Radon-Nikodym derivative of QS with respect to Q is:

dQS

dQ
= LS(t) =

S(t)eqt

S(0)B(t)
on Ft, 0 ≤ t ≤ T.
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As both S(0) and eqT are scalars, we have:

EQ
[
S(T )1{K−S(T )>0}

B(T )

]
= S(0)e−qTEQ

[
S(T )eqT

S(0)B(T )
1{K−S(T )>0}

]
= S(0)e−qTEQ [LS(T )1{K−S(T )>0}

]
= S(0)e−qTEQS [1{K−S(T )>0}]

= S(0)e−qTQS(S(T ) < K).

Under QS , the process Y0,T (t) :=
p(0, t)

S(t)eqt
is a martingale. Notice that Y0,T (t) = Z0,T (t)−1.

Then, Itō’s Lemma tells us immediately that:

dY0,T (t) = (. . . ) dt− (νS +B(t, T )νr) · dWQ(t)

and after a suitable change of measure we get that under QS :

dY0,T (t) = −σ0,T (t) · dWQS (t).

As before, we get:

Y0,T (t) = Y0,T (0) exp

{
−1

2

∫ t

0
||σ2

0,T (s)||ds−
∫ t

0
σ0,T (s) · dWQ2

(s)

}
=
p(0, T )

S(0)
exp

{
−1

2

∫ t

0
||σ2

0,T (s)||ds−
∫ t

0
σ0,T (s) · dWQS (s)

}
.

and, since again p(T, T ) = 1, the QS probability that the put option closes in the money is:

QS (S(T ) < K) = QS

(
1

S(T )
>

1

K

)
= QS

(
p(T, T )

S(T )eqT
>

1

KeqT

)
= QS

(
Y0,T (T ) >

1

KeqT

)
= QT

(
p(0, T )

S(0)
exp

{
−1

2

∫ T

0
||σ2

0,T (s)||ds−
∫ T

0
σ0,T (s) · dWQT (s)

}
>

1

KeqT

)
= QT

(
N
(
−1

2
Σ2

0,T (T ),Σ2
0,T (T )

)
> ln

S(0)

p(0, T )KeqT

)

= QT

N (0, 1) >
1√

Σ2
0,T (T )

(
ln

S(0)

p(0, T )K
+

1

2
Σ2

0,T (T )− qT
)

= N(−d̃1)
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where d̃1 =
1√

Σ2
0,T (T )

(
ln

S(0)

p(0, T )K
+

1

2
Σ2

0,T (T )− qT
)

= d̃2 +
√

Σ2
0,T (T ). Hence,

EQ
[
S(T )1{K−S(T )>0}

B(T )

]
= S(0)e−qTN(−d̃1).

Finally, putting everything together we find the initial price of the put option:

πEuropeanPut(0) = KEQ[p(0, T )1{K−S(T )>0}]− EQ[p(0, T )S(T )1{K−S(T )>0}]

= Kp(0, T )N(−d̃2)− S(0)e−qTN(−d̃1).

Proof of Proposition (2): convergence of the quadrinomial tree. We now need to

show that the bivariate discrete process (Xi)i defined in (10) with the parameters in (11)

and (12) converges in distribution to X(t) = (Y (t), r(t)) that solves (7). With the notation

of the general case in (9) and exploiting the result of Section 11.3 of Stroock and Varadhan

(1997), the desired result holds true if the following four conditions are met:

(A1) the functions µ(x, t) and σ(x, t) are continuous and σ(x, t) is non negative;

(A2) with probability 1 a solution (Xt)t to the SDE:

Xt = X0 +

∫ t

0
µ(Xs, s)ds+

∫ t

0
σ(Xs, s) · dW (s)

exists for 0 < t < +∞ and it is unique in law;

(A3) for all δ, T > 0

lim
n→+∞

sup
||x||≤δ,0≤t≤T

|∆Y ±| = 0

lim
n→+∞

sup
||x||≤δ,0≤t≤T

|∆r±| = 0;
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(A4) let Xi,j indicate the j-th entry of Xi and let Fi = σ(X1, . . . , Xi) be the filtration

generated by the discrete bivariate process (Xi). Define:

µi(x, t) :=

 µi,1(x, t)

µi,2(x, t)

 and σ2
i (x, t) :=

 σ2
i,1(x, t)

σ2
i,2(x, t)


where µi,j(x, t) =

EQ[Xi+1,j −Xi,j |Fi]
T
n

and σ2
i,j(x, t) =

EQ[(Xi+1,j −Xi,j)
2|Fi]

T
n

for

j = 1, 2. Let ρi(x, t) =
EQ[(Xi+1,1 −Xi,1)(Xi+1,2 −Xi,2)|Fi]

T
n

and ρ(x, t) = σ1(x, t) ·

σ2(x, t)′ where σj(x, t) is the j-th row of σ(x, t). Then, for all δ, T > 0,

lim
n→+∞

sup
||x||≤δ,0≤t≤T

||µi(x, t)− µ(x, t)|| = 0

lim
n→+∞

sup
||x||≤δ,0≤t≤T

||σ2
i (x, t)− σ2(x, t) · I2|| = 0

lim
n→+∞

sup
||x||≤δ,0≤t≤T

|ρi(x, t)− ρ(x, t)| = 0

where In is the column vector with all of the n entries equal to one.

For our quadrinomial tree we have Xt = [Y (t), r(t)]′,

µ(Xt, t) =

 (r(t)− q − σ2
S
2

)
κ(θ − r(t))

 and σ(Xt, t) =

 σS 0

σrρ σr
√

1− ρ2

 .
Assumption (A1) trivially holds true.

Assumption (A2) holds true if the standard conditions for the existence and the uniqueness

of the solution to an SDE are met. According, e.g., to Proposition 5.1 in Björk (2009), it

is sufficient to show that there exists a constant K such that the following are satisfied for

all xi = [yi, ri]
′, i = 1, 2 and t:

||µ(x1, t)− µ(x2, t)|| ≤ K||x1 − x2||,

||σ(x1, t)− σ(x2, t)|| ≤ K||x1 − x2||,

||µ(x1, t)||+ ||σ(x1, t)|| ≤ K (1 + ||x1||) .
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Notice that the second and the third conditions involve the operator norm of a matrix

A ∈ Rn defined as ||A|| := sup||x||=1{||A · x|| : x ∈ Rn}.

As ||µ(x1, t)− µ(x2, t)|| =
√

1 + κ2|r1 − r2| and (r1 − r2)2 ≤ ||x1 − x2||2, the first condition

is surely satisfied for any K ≥
√

1 + κ2. As σ(xi, t) is actually constant and independent

of xi and t, ||σ(x1, t) − σ(x2, t)|| = 0 and the second condition is surely satisfied for any

K ≥ 0. Finally, as

||σ(x1), t)|| = σ2
S + ρ2σ

2
r

2
+ |ρ|σr

2

√
4σ2

s + σ2
r

is constant and as

||µ(x1, t)|| =

√(
r1 − q −

σ2
S

2

)2

+ κ2(θ − r1)2

can be bounded from above by
√

2(1 + κ2)r2
1, we have

||µ(x1, t)||+ ||σ(x1, t)|| ≤
√

2(1 + κ2)||x1||+ ||σ(x1, t)|| ≤ K(1 + ||x1||)

for any K ≥ max{
√

2(1 + κ2), ||σ(x1, t)||}. As the three conditions hold true simultaneously

for any K ≥ max{
√

2(1 + κ2), ||σ(x1, t)||}, assumption (A2) is satisfied.

As the increments of the bivariate discrete process ∆Y ± = ±σS
√

∆t = ±σS
√

T
n , ∆r± =

±σr
√

∆t = ±σr
√

T
n are constant and do not depend neither on xi, i = 1, 2, nor on t,

sup
||x||≤δ,0≤t≤T

|∆Y ±| = |∆Y ±| = σS

√
T

n
,

sup
||x||≤δ,0≤t≤T

|∆r±| = |∆r±| = σr

√
T

n
.

As both of the sups are infinitesimal with respect to n, (A3) holds true as well.

As the parameters in (11) and (12) of the bivariate discretization Xi = (Yi, ri) are chosen

in order to match the first two moments and the cross-variation of X(t) = (Y (t), r(t)), we

have µi(x, t) = µ(x, t), σ2
i (x, t) = σ2(x, t) · I2 and ρi(x, t) = ρ(x, t). Hence, assumption (A4)

is satisfied by construction.

Theorem 11.3.3 of Stroock and Varadhan (1997) allows us to conclude.
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Proof of Proposition (3): value of the American put option as a deterministic

function. Let η := τ − t. Then we can rewrite the value of the American put option (13)

as:

Ṽ (t) = ess sup
0≤η≤T−t

EQ
[
e−

∫ t+η
t r(s)ds (K − S(t+ η))+

∣∣Ft] (B2)

Recalling the dynamics of the risky stock conditional on S(t) = S we can further rewrite

Ṽ (t) as:

Ṽ (t) = ess sup
0≤η≤T−t

EQ
[
exp

(
−
∫ t+η

t
r(s)ds

)
·

·
(
K − S exp

(∫ t+η

t
r(s)ds−

(
q +

1

2
σ2
S

)
η + σS(WS(t+ η)−WS(t))

))+
∣∣∣∣∣Ft
]

Therefore, Ṽ depends on the expectation of two random variables: the Brownian increment

WS(t + η) −WS(t) and the integral
∫ t+η
t r(s)ds, which appears both in the drift part of

the underlying and in the discount factor. The first of the two random variables is Ft-

independent by definition:

WS(t+ η)−WS(t) ⊥⊥ Ft,

and, moreover,

WS(t+ η)−WS(t)
Q∼WS(η).

We now show that also
∫ t+η
t r(s)ds is independent of Ft and that

∫ t+η
t r(s)ds

Q∼
∫ η

0 r(s)ds

as well. Recalling the solution to the SDE driving the short term interest rate conditional

on r(t) = r we have:∫ t+η

t
r(s)ds =

∫ t+η

t

[
re−κ(s−t) + θ(1− e−κ(s−t)) + σr

∫ s

t
e−κ(s−y)dWr(y)

]
ds

= −e
−κη

κ
(r − θ) +

r − θ
κ

+ θη + σr

∫ t+η

t

∫ s

t
e−κ(s−y)dWr(y)ds.

The constant α := − e−κη

κ (r− θ) + r−θ
κ + θη does not depend on t. Exploiting the definition

of stochastic integral with {ti}i=1,...,N such that t0 = t, tN = t+ η and ||{ti}|| → 0, we get:∫ t+η

t
r(s)ds = α+ σr

∫ t+η

t

N−1∑
i=0

e−κ(s−ti)(Wr(ti+1)−Wr(ti))ds.
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Since ti+1 > ti > t for any i = 1, . . . , N − 1, Wr(ti+1) −Wr(ti) ⊥⊥ Ft by definition and for

any value of s. Hence,

N−1∑
i=0

e−κ(s−ti)(Wr(ti+1)−Wr(ti)) ⊥⊥ Ft ∀s.

Since the sum is independent of Ft for any s, the outer integral in ds preserves such inde-

pendence. As a result, ∫ t+η

t
r(s)ds ⊥⊥ Ft.

Furthermore, we need to show that the distribution of∫ t+η

t
r(s)ds

does not depend on t. Recalling that:∫ t+η

t
r(s)ds = α+ σr

∫ t+η

t

∫ s

t
e−κ(s−y)dWr(y)ds

and setting a := s− t in the outer integral in ds, we get:∫ t+η

t
r(s)ds = α+ σr

∫ η

0

∫ a+t

t
e−κ(a+t−y)dWr(y)da.

The argument of the inner stochastic integral is deterministic in y and, therefore:∫ a+t

t
e−κ(s−y)dWr(y)

Q∼ N
(

0,

∫ a+t

t
e−2κ(s−y)dy

)
Q∼ N

(
0,

1

2κ

(
1− e−2κa

))
,

which does not depend on t. Thanks to a little abuse of notation we see that:∫ t+η

t
r(s)ds = α+ σr

∫ η

0
N
(

0,
1

2κ

(
1− e−2κa

))
da,

where the right-hand side of the equation does not depend on t. Hence:∫ t+η

t
r(s)ds

Q∼
∫ η

0
r(s)ds.
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We now go back to the original expression (B2). Thanks to the independence of Ft, the

conditional expected value turns into the unconditional one:

EQ
[
e−

∫ t+η
t r(s)ds(K − S(t+ η))+

∣∣∣Ft] = EQ
[
e−

∫ t+η
t r(s)ds(K − S(t+ η))+

]
,

and setting S(0) = S(t) = S, r(0) = r(t) = r,

EQ
[
e−

∫ t+η
t r(s)ds(K − S(t+ η))+

]
= EQ

[
e−

∫ η
0 r(s)ds(K − S(η))+

]
.

Therefore, the value on an American option on S defined in (13) reduces to

Ṽ = F (t, S(t), r(t))

with

F (t, S, r) = sup
0≤η≤T−t

EQ
[
exp

(
−
∫ η

0
r(s)ds

)
·

·
(
K − S exp

(∫ η

0
r(s)ds−

(
q +

1

2
σ2
S

)
η + σSWS(η)

))+
]
.

where t enters only the upper bound of η, namely the time to maturity of the option.

Proof of Proposition (4): asymptotic necessary conditions for the existence of

a double continuation region. When the interest rate is constant, the value at t of the

American put option is G(t, S(t)), where G is a deterministic function defined in (15). As

Battauz et al. (2015) show in Section 2, necessary conditions for the double continuation

region to appear at a generic t are that the drift of S is positive and G(t, 0) > K.

According to Proposition (3), the value of the American put on S in the market described

by (1) is of the form Ṽ (t) = F (t, S(t), r(t)) where F is a deterministic function implicitly

defined by (14). Following the same logic of Battauz et al. (2015), we need to impose

analogous conditions on the drift of S and on F (t, S(t), r(t)).

The counterpart of G(t, 0) > K in Battauz et al. (2015), is here F (t, 0, r) > K that delivers
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[NC0].

According to (14), we have:

F (t, 0, r) = K · sup
0≤η≤T−t

EQ
[
exp

(
−
∫ η

0
r(s)ds

)]
.

Therefore, we need to check under which condition the supremum on the right hand side of

the last equation is strictly greater than 1. Namely, we have to derive conditions under which

there exists a η ∈ [0, T − t] such that the supremumis strictly greater than 1. Exploiting

Jensen’s inequality and the uniform integrability of r(s), we get:

EQ
[
exp

(
−
∫ η

0
r(s)ds

)]
≥ exp

(
−EQ

[∫ η

0
r(s)ds

])
= exp

(
−
∫ η

0
EQ [r(s)] ds

)
.

As before, thanks to (3), we have:

EQ
[
exp

(
−
∫ η

0
r(s)ds

)]
≥ exp

(
−
∫ η

0
re−κs + θ(1− e−κs)ds

)
= exp (rα− θ(α+ η))

where we set α :=
e−κη − 1

κ
. Notice that α ≤ 0 for any κ and η ∈ [0, T − t].

If rα− θ(α+ η) > 0, then F (t, 0, r) > K.

Notice that, when κ · η ≈ 0:

α =
e−κη − 1

κ
≈

1− κη + κ2η2

2 − 1

κ
= −η +

κη2

2
.

Therefore, when κ · η ≈ 0:

rα− θ(α+ η) = α(r − θ)− θη ≈
(
−η +

κη2

2

)
(r − θ)− θη.

Hence, since η > 0, rα− θ(α+ η) > 0 holds true when κ · η ≈ 0 if:

(
−1 +

κη

2

)
(r − θ)− θ > 0. (B3)

If r > θ, (B3) can be rewritten as:

η >
2

κ
· r

r − θ
.
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Since η ∈ [0, T − t], if

T − t > 2

κ
· r

r − θ
,

(B3) is surely satisfied for at least a η ∈ [0, T − t].

If, on the contrary, r < θ, (B3) leads to:

η <
2

κ
· r

r − θ
.

Since η ∈ [0, T − t], if

0 <
2

κ
· r

r − θ
,

(B3) is surely satisfied for at least a η ∈ [0, T − t]. Notice that the last inequality holds true

if κ < 0 and r > 0 or if κ > 0 and r < 0.

Summing up, when κ · η ≈ 0, F (t, 0.r(t)) > K if:

• T − t > 2

κ
· r

r − θ
if r > θ,

• κr < 0 if r < θ.

Under [NC0], if [NC1], i.e. q > 0, is not satisfied, than the discounted risky security S̃ is

driven by

dS̃(t) = −qdt+ σSdWQ
S (t),

and S̃ is a supermartingale. Thus, for any t < τ < T ,

EQ
[
S(τ)e−

∫ τ
t r(s)ds

]
≤ S(t)

and, by Jensen’s inequality,

EQ
[
(K − S(τ))+ e−

∫ τ
t r(s)ds

]
≥
(
KEQ

[
e−

∫ τ
t r(s)ds

]
− S(t)

)+

≥ (K − S(t))+,

where the last inequalities holds under [NC0]. This shows that, under [NC0], if [NC1] is

violated, early exercise is never optimal at t.
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Under [NC0], if [NC2] is not satisfied, then πA(t, S, r) ≥ πE(t, S, r) > (K−S)+, that means

that early exercise is never optimal at t.

We conclude the proof by motivating condition [NC1’]. When interest rates are stochastic,

the drift of S is no longer constant. Therefore, we need to impose a condition on its expected

value under Q up to maturity:

µ̄ := EQ
[∫ T−t

0
r(s)ds−

(
q +

1

2
σ2
S

)
(T − t)

]
.

Recalling the dynamics of r(s) in (3), we have:

µ̄ = (r − θ)α+

(
θ − q −

σ2
S

2

)
(T − t)

where we set α :=
1− e−κ(T−t)

κ
.

If µ̄ is negative, the value of S is expected to decrease and, therefore, the early exercise of

the American option is never optimal. If µ̄ is positive, early exercise might be optimal as

the value of S is expected to increase thus reducing the value of the put option. Therefore,

µ̄ > 0 is a necessary condition for the presence of a critical price at t.
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