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Abstract

Various options are designed to be embedded in corporate bonds to meet various requirements

from investors and issuers. Analyzing how the exercise strategy of an embedded option and hence

the evaluation of the bond are influenced by the presence of other embedded options, the issuers’

creditworthiness, and market variables like prevailing interest rate levels has drawn much attention

from academic studies and market participants. This paper analyzes the interactions of exercise

strategies among call options, default options, and conversions options embedded in convertible-

callable-defaultable bonds (CVCDs) and compare these strategies with those of bonds with only call

options or conversion ones. Based on the structural-form credit risk model, our theoretical analyses

show that the presence of conversion (call) options would attract option issuers (bond holders) to

precipitates call (conversion) decisions to maximize their values at the expense of options owned by

their counter parties. In addition, the increment of the intrinsic value of an embedded option and

the value of other coexisting options held by the counterparty also precipitate the exercise decision

of the embedded option. Precipitations and delay of exercise decisions can also be visualized by

observing the changes of embedded options’ exercise boundaries generated by our quantitatively

examinations. Empirical tests for recent twenty-year bond data gathered from FISD support both

our theoretical analyses and quantitative examinations. Out-of-the-money calls (or early calls) phe-

nomena for CVCDs that are found but are not well explained in past studies can now be satisfactory

explained to preempt conversion due to our findings. Similarly, we can also explain that CVCDs’

holders may convert early to preempt the issuer’s redemption right.
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1 Introduction

A corporate bond is becoming an important financial instrument for a firm to raise capital to fulfill

operation expenses and finance business expansions. Securities Industry and Financial Markets Asso-

ciation (abbreviated as SIFMA) reports that the amount of outstanding in the US market grew from

337.4 billion in 1996 to 1,526.9 billion in 2016.1 Many outstanding bonds contain embedded options

to meet various requirements from issuers and investors. For example, the statistical records in SIFMA

says that about 60% of U.S. corporate bonds are callable bonds; callable convertible bonds that si-

multaneously grant bond issuers call options and bond holders options to convert (the bonds into the

issuer’s stocks) are also widely traded in bond markets. How the presences of embedded option(s) and

relevant market variables like the prevailing interest rate influence the exercise strategies of embedded

option(s) and hence the evaluations of host bonds have drawn much attention in theoretical analyses

and empirical studies. Take the most popular callable corporate bonds for example. Acharya and

Carpenter (2002) (abbreviated as AC) view default decisions as a default option owned by the bond

issuer and study how the presence of these two options embedded in a callable default bond influence

the issuer decisions to exercise options. Unlike the typical prediction made by Brennan and Schwartz

(1977) and Ingersoll (1977a) that a callable bond should be redeemed once its market value exceeds

the effective call price, AC find the “interaction effect” between these two options; that is, an bond

issuer would postpone exercise decisions for both options to avoid value destruction of the other un-

exercised option owned by the issuer. These theoretical analyses are then confirmed empirically and

quantitatively by Jacoby and Shiller (2010) and Liu et al. (2016). This paper, on the other hand,

analyzes how the exercise decisions of a bond issuer (or a owner) is influenced by the presence of an-

other embedded option(s) owned by the counterparty by analyzing a convertible-callable-defaultable

bond (abbreviated as CVCD), a bond that grants the issuer and the owner the right to redeem and to

convert the bond, respectively. We show that the presence of this embedded “game option” – both

writers and buyers simultaneously own the option(s) to terminate the contract– would precipitate the

exercise decisions for both parties at the expense of the option(s) owned by the counterparty. Our

findings not only explain Bhattarcharya (2012)’s insight on early call decisions but provide another

explanation for Jensen and Pedersen (2016)’s observation about the early conversion decision.2

To study the interaction effect among bond embedded options, we analyze how the coexistence of

these options influence the exercise behaviors of embedded call options, default options, and conversion

options. We follow AC framework that decomposes a bond with embedded option(s) into a default-

free bullet bond plus a combination of embedded options, and use the structural credit risk model

pioneered by Merton (1974) to price these bonds, bond options, equity values as contingent claims on

the bond issuer’s value and the stochastic short-term interest rate. In light of Grundy and Verwijmeren

(2016)’s empirical findings that the perfect capital market assumption can fairly predict call strategies

of CVCDs after the prevalence of the anti-dilution provisions since 2003, our model follows the setting

in AC and Finnerty (2015) that do not consider the market frictions like transaction costs. Ceteris

paribus, we theoretically show that the redemption of a CVCD tends to be earlier than the redemption

of an otherwise identical callable bond without conversion options since the early redemption of a

CVCD can further increase the equity holder’s value at the expense of bond holders’ conversion rights.

This explains why an issuer may redeem a CVCD early as found empirically in King and Mauer (2014)

1See http://www.sifma.org/research/statistics.aspx.
2Jensen and Pedersen (2016) address that bond holders tend to convert their CVCDs early due to market frictions,

such as short-sale costs, transaction costs, or funding costs.
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and Bechmann et al. (2014). Similarly, we also show that the conversion decision of a CCV tends

to be earlier than the decision of an otherwise identical convertible bond without call options since

the early conversion of a CVCD can further increase the holder’s value at the expense of the issuer’s

call rights. This explains the early conversion phenomenon discussed in Jensen and Pedersen (2016).

The aforementioned theoretical analyses are also empirically confirmed by analyzing twenty-year bond

redemption and conversion data gathered from FISD database.

The increment of the intrinsic value of a bond embedded option and the value of other coexisting

option(s) held by counter-parties may precipitate the exercise decision of the embedded option. The

relationships among exercise behaviors and the market variables that influence the values of embedded

options can be theoretically analyzed by extending the AC framework and empirically verified as

discussed in later sections. Recall that a call option grants a bond issuer the right to redeem the bond

with a contract-specified call price. Thus the decrement of the interest rate level or the increment of

the coupon rate would increase the bond value as well as the option’s intrinsic value that precipitates

call decisions. Our empirical studies not only confirm our above theoretical analyzing results, but

suggest that a bond with a better credit rating tends to be called earlier. Note that a higher credit

rating entails a better issuer’s financial status, a higher stock price, and hence a higher conversion

value; this suggests that a higher value of the conversion option owned by bond holders precipitate the

issuer’s call decisions. Next, a conversion option grants holders the right to convert their bonds into

issuer’s stocks. Thus a higher-rating bond entails a higher intrinsic value of the conversion option and

hence an earlier conversion, which will be empirically confirmed later. The impacts of some market

variables on conversion decisions can be conflict since the issuer can call a CVCD back to force bond

holders to convert. For example, a higher coupon rate would increase the bond value and hence the

intrinsic value of the call option to trigger the call that may force holders to convert their bonds.

However, a lower coupon rate could increase the intrinsic value of the conversion option to trigger

the conversion voluntarily. Our empirical studies reflect this conflict by showing that the level of

coupon rates can not significantly explain early conversion phenomena. Besides, the interaction effect

of default options that are introduced in AC framework is reexamined in this paper. When default

options are worth to be exercised, the issuer’s financial status must be poor and conversion options

are valueless. Thus the presence of conversion options only slightly accelerates default decisions as

analyzed later.

The remainder of this paper proceeds as follows. Section 2 reviews past studies on exercise be-

haviors of options embedded in CVCDs and theoretical analyses of interaction effects among coexisting

options embedded in bonds. Section 3 lays out some baseline assumptions adopted in AC and in our

theoretical models, including the dynamics of interest rates and the bond issuer’s asset value. AC

decompose an option-embedded bond into a default-free bullet bond plus the an embedded option

that grants the issuer the right to call back the bond, to default, or both. Their analyses of exercise

behaviors under the structural credit risk model that will be applied in this paper are briefed in this

section and in the appendix. Section 4 extends AC framework by allowing embedded (game) option si-

multaneously grant bond holders the conversion right in addition to the aforementioned rights granted

to the issuer. By comparing CVCDs with bonds that contain only conversion options, only call options,

and etc., we analyze how the exercise behavior of an embedded option and hence the bond evaluation

are influenced by the presence of other embedded options (if any) and the change of market variables.

These analyses are empirically examined with twenty-year data of bonds with call options, conversion

options, or both gathered from FISD as in Section 5. Section 6 concludes this paper.
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2 Literature Reviews

Call strategies of CVCDs would significantly influence fund raising strategies, bond evaluations, as well

as hedging, and they are widely studied theoretically and empirically in past literature. Ingersoll

(1977a) and Brennan and Schwartz (1977) adopt the contingent claim evaluation approach pioneered

by Black and Scholes (1973) and Merton (1974) to analyze CVCDs. They predict that a CVCDs is

called optimally once its conversion value — the market value of the common stocks obtained by

converting a CVCDs — exceeds its call price. This “at-the-money” call strategy minimize the CVCDs

value, which is equivalent to maximizing the equity value under the perfect capital market assumption

considered in the Modigliani-Miller capital structure irrelevance theorem (see Modigliani and Miller,

1958). Although the at-the-money call strategy is widely applied for evaluating CVCDs (see Hung and

Wang, 2002; Chambers and Lu, 2007; ?), in-the-money calls (late calls) and out-of-the-money calls

(early calls) are more widely observed in past empirical studies.

Much literature explains the phenomenon of in-the-money calls with the properties of imperfect

capital market assumptions, like the existences of information asymmetry (see Harris and Raviv,

1985), transaction costs (see Ingersoll, 1977b; Emery and Finnerty, 1989), and tax shield benefits

due to corporate taxes (see Asquith and Mullins, 1991; Campbell et al., 1991; Sarkar, 2003; Liao and

Huang, 2006; Chen et al., 2013). On the other hand, some works argue that this phenomenon is due

to mitigation of agency conflicts (see Billett et al., 2007; King and Mauer, 2014), the existences of call

notice periods (see Ingersoll, 1977b; Altintig and Butler, 2005), or call protections (see Asquith, 1995).

However, Grundy and Verwijmeren (2016) show that the prevailing of dividend protection provisions3

considerably increases the issuer’s incentive to call and hence diminish the phenomena of in-the-money

calls since the bond conversion value is protected against the dilution due to dividend payouts. Thus

researching the rationales for out-the-money calls seems to be more important thereafter.

The phenomena of out-of-the-money calls are also widely observable (see Cowan et al., 1993;

Grundy and Verwijmeren, 2012; King and Mauer, 2014; Bechmann et al., 2014); however, the re-

searches for the rationales are limited and contradicted. Sarkar (2003) and Chen et al. (2013) propose

that issuers trigger out-of-the-money calls to preempt default. On the other hand, in addition to

the decrement of the interest rate level, Bhattarcharya (2012) argue that out-of-the-money calls are

triggered to preempt conversions. Bechmann et al. (2014) confirm preemptions of conversions as they

observe “avoid-dilution arguments” when out-of-the-money calls are announced.4 To justify the ar-

guments of preemptions of conversions or defaults, we take advantage of AC framework and the game

option analysis pioneered by Kifer (2000) to study the conflict of interest between bond issuers and

holders. Both our theoretical analyses and empirical results suggest that issuers call to preempt con-

versions rather than defaults. Besides, just like call decisions of callable bonds discussed in King and

Mauer (2000), we also confirm that the decrement of the interest rate level would precipitate the call

decisions of CVCDs.

Empirical studies of conversions strategies are relatively rare. Jensen and Pedersen (2016) observe

3 Grundy and Verwijmeren (2016) find that more than 82% of convertible bonds issued between 2003 and 2006 are
dividend-protected. Finnerty (2015) confirms that this prevailing has continued through 2013.

4Bechmann et al. (2014) state that

Several out-of-the-money call announcements explicitly mention the main reason is ‘avoid-dilution argu-
ments’ as the main reason for the call. For example, on November 5, 1997, BancTec Inc. made an
out-of-the-money convertible bond call. In the call announcement, the firm said “the call will be funded
with internal capital and existing lines of credit and should allow the company to avoid dilution of 1.5
million shares,” which should be compared to the 21.1 million shares outstanding.
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that bond holders tend to convert early when facing market frictions like transaction costs. This paper

empirical compare CVCDs and convertible bonds without call options to show that the presence of calls

precipitate the conversion options with rigorous theoretical analyses based on the AC framework.

Analyzing the interaction effects among multiple coexisting options embedded in a contingent

claim can be challenging, since the exercise of one option would destroy the contingent claim and

hence all other options embedded on that claim. AC evaluate non-perpetual bonds with call and/or

default options owned by the issuer under stochastic bond issuer’s asset value process and the short

rate process. They decompose an option-embedded bond into an otherwise identical default-free bond

minus a (combination) of option(s) to call and/or default. Then they analyze their values and exercise

strategies with the risk-neutral valuation method. To maximize equity holders’ value, AC show that

a bond issuer would postpone its call/default decisions to avoid the value destruction of the other

unexercised option owned by itself. Moreover, the more valuable the call (or default) option is, the

more significant the default (or call) decision is delayed. For example, the deterioration of the issuer’s

creditworthiness would increase the value of the default option and make call delay phenomenon more

salient. On the other hand, the improvement of the issuer’s creditworthiness and the drop of the

interest rate level would increase the value of the call option and further delay the default decision.

In addition to analyzing the scenario that options are owned by the same participant, Kifer (2000)

analyzes “game options” that grant both the issuer and the holder the right to terminate the contract.

His constant interest rate assumption is adopted by Sirbu et al. (2004) and Ŝırbu and Shreve (2006)

to build a zero-sum two-person game for analyzing perpetual and non-perpetual CVCDs, respectively.

Although their models suggest the possibilities of out-of-the-money calls, they fail to analyze how the

interactions among call, default, and conversion options are influenced by the evolutions of interest

rates. Bielecki et al. (2008) release the constant interest rate assumption but fail to model the dilution

effect due to adoptions of reduced form credit risk model. Chen et al. (2013) extend the above works

to nonzero sum game and argue that out-of-the-money calls are triggered only for preempting defaults.

But this argument contradicts AC’s argument that an issuer tends to postpone its call decision to avoid

the value destruction of its default options. Bechmann et al. (2014) and this paper also argue that

out-of-the money calls are triggered to preempt conversions rather than defaults.

3 Baseline Assumptions

Our paper adopts the perfect capital market assumption as adopted in AC due to Grundy and Ver-

wijmeren (2016)’s empirical findings that this assumption can fairly predict call strategies after the

prevalence of anti-dilution provisions since about 2003. The mathematical models and terminologies in

AC that will be used in the paper are introduced as follows. All market participants have equal access

to market information and trade continuously in a frictionless and complete market without arbitrage

opportunity. The values of all contingent claims and embedded options are assessed under the risk

neutral valuation method and exercise strategies of embedded options are determined to maximize the

benefits of their holders. There exists a unique risk-neutral probability measure P̃ to make discounted

price processes of all assets be martingale processes (see Harrison and Kreps, 1979). rt follows the

stochastic process

drt = µ(rt, t)dt+ σ(rt, t)dZ̃t, (1)

where Z̃t denotes a standard Brownian motion under P̃ . µ and σ are continuous functions satisfying

Lipschitz and linear growth condition described in Equations (2) v (3) in AC. For convenience, we
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assume all bonds are issued at time 0 and mature at time T . The asset value of the bond issuing firm

at time t, Vt, is assumed to follow a log-normal diffusion process

Vt = V0e
∫ t
0 rsds−

∫ t
0 γsds−

1
2

∫ t
0 φ

2
sds+

∫ t
0 φsdW̃s , (2)

where γt ≥ 0 denotes the payout ratio for serving contractually-obligated debt repayments and divi-

dend payout at time t, φt > 0 represents the firm value volatility, and W̃t refers to a standard Brownian

motion under P̃ . Note that ρt ∈ [−1, 1] denote the correlation of Z̃t and W̃t. For ease of analyses, we

follow AC by considering a firm with one outstanding non-perpetual bond. Protective bond covenants

deter the firm from arbitrarily adjusting both the payout ratio γt and the investment policy proxied

by the firm value volatility φt. The available cash payout γtVt is first used to fulfill interest payments,

and the rest (if any) is then distributed to equity holders as dividends. On the other hand, if the

payout fails to meet interest payments, we follow Chen (2010) by assuming that the firm will issue new

equity to cover the shortfall. In addition, default decisions are viewed as options owned by the firm as

defined in AC. In other words, we do not consider exogenous bond provisions like minimum net worth

covenants mentioned in Leland (1994) or net cash flow covenants (see Fan and Sundaresan, 2000)

that force the firm to default when its asset value Vt or cash flow γtVt fall below certain thresholds,

respectively.

Contingent claims can be evaluated as the lump sum of the present values of future expected payoffs

under the risk neutral valuation method. Under the stochastic interest rate setting in Equation (1),

the discount factor from time τ back to t can be expressed as

βt,τ ≡ e−
∫ τ
t rsds. (3)

Thus the value of a unit face value default-free straight bond at time t can be expressed as

Pt = Ẽ

[
c

∫ T

t
βt,sds+ 1 · βt,T

∣∣∣∣Ft] , (4)

where c denotes a fixed continuous coupon rate, T denotes the maturity date, Ẽ[·] represents the

expectation under the risk neutral measure P̃ , and {Ft} denotes a filtration generated by the evolve-

ments of the interest rate and the firm’s asset value defined in Equations (1) and (2). Under AC

framework, a bond’s embedded option, like a call or (and) a default option, parasitizes in the afore-

mentioned straight bond, or the so-called the “host bond”. The value of the embedded option fX can

be interpreted as a function of the host bond price p, the bond issuer’s asset value v, and the current

time t. Thus the value of an option-embedded bond can be expressed as the value of the host bond

minus the value of the embedded option owned by the issuer as

pX = p− fX(p, v, t), (5)

where the subscript X can be C for a callable default-free (i.e., pure callable) bond, D for a non-

callable defaultable (i.e., pure defaultable) bond, and CD for a callable defaultable bond under the AC

framework.

Both embedded option and hence the option embedded bond are evaluated by assuming that the

bond issuer exercises his own option optimally to maximize his benefit. The optimal option exercise

strategy to maximize the bond issuer’s equity value is equivalent to the strategy that minimizing the

bond value in a perfect capital market due to Modigliani-Miller theorem; therefore, to maximize the
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value of the embedded option, the issuer would optimally exercise his option at time τX to exchange

the call price kτX (i.e. to redeem the bond early) or the firm value VτX (i.e. to bankrupt) for the host

bond with value PτX as follows:

fX(p, v, t) = sup
t≤τX≤T

Ẽ

[
βt,τX (PτX − κ (Vτ , τX))+

∣∣∣∣Ft] , (6)

where the strike price κ(VτX , τX) = kτX , Vτ , and kτ ∧ Vτ for X = C, D, and CD, respectively.

The stopping time τX adapted to the filtration {Ft} denotes the optimal option execution time that

satisfies the condition

τX = inf{t ∈ [0, T ] : fX(p, v, t) = (p− κ(v, t))+}.

Specifically, the embedded option value fX(p, v, t) is larger than or equal to the exercise value (p −
κ(v, t)), and the option is exercised once the exercise value equals to the option value.

To analyze the impacts of the bond issuer’s creditworthiness and the interest rate level on the

interaction effect between call and default decisions, AC derive useful mathematical lemmas and prop-

erties for embedded call and default options to theoretically compare the exercise boundaries of these

options embedded in pure callable, pure defaultable, and callable-convertible bonds. These lemmas

and properties that will be used in this paper are introduced in Appendix A. These mathematical

properties can be applied to derive more lemmas in Appendix B that can used to analyze exercise

strategies of game options embedded in bonds in Appendix C.

4 Theoretical Analyses of Embedded Options Exercise Strategies

To theoretically analyze the exercise strategies of various options embedded in corporate bonds, we

prove the existences and the shapes of exercise boundaries for these options based on the risk-neutral

valuation method and the analyses of callable (and/or) defaultable bonds proposed in AC. These

exercise boundaries can also be numerically estimated by the three-dimensional tree like ? and Dai

et al. (2013). Thus we can plot these boundaries like a computerized tomography to explain and

to verify our proofs. This section will first explain the visualization of exercise boundaries. After

that, we analyze a pure convertible bond (abbreviated as CV hereafter), or the bond with only a

conversion option, by decomposing it into an otherwise identical host bond plus a conversion option.

Then we analyze how the change of the issuer’s credit worthiness and the interest rate level influence

the value of the conversion option, and hence the exercise boundary of the option (abbreviated as

the “conversion boundary” hereafter). To analyze the interaction of exercise strategies simultaneously

owned by issuers and bond holders, we extend the analyses of CD in AC and our former analyses for

CV to analyse the game option embedded in CVCD. By comparing the exercise boundaries of options

embedded in CVCDs, CDs, and CVs, we show that issuers (or bond holders) would precipitate their

exercise decisions to destroy the options owned by the counterparty.

4.1 Visualized Exercise Boundaries

A three dimensional tree that discretely models the issuer’s asset value and the short rate process

at each time step as illustrated in Figure 1 can be used to evaluate a defaultable option-embedded

bond and to estimate the exercise strategy of embedded options for each node of the tree (see Liu

et al., 2016). For each option, we draw the exercise boundary that separates the exercise nodes from
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Figure 1: A Computerized Tomography of Exercise Boundaries in a Tree. We implement a three-

dimensional tree that can discretely models the evolution of the firm value and the short rate at each time step.

For each option-embedded bond, we can determine whether its embedded option is exercised or not at each

node of the tree and hence evaluate the bond with the backward induction method. We can draw an exercise

boundary (denoted by the dash curve) that separates exercise nodes (denoted by gray circles) and unexercised

ones (by white circles) at an arbitrary time step u. Thus the exercise regions of different option-embedded

bonds expressed in terms of the issuer’s asset value Vu and the host bond price Pu (implied by the prevailing

short rate ru) can be visualized and compared as illustrated in Figure 2.

unexercise ones at an arbitrary time step u to obtain a “computerized tomography” of exercise regions

as illustrated in Figure 2. For example, the dark gray dashed curve, which is partially overlapped

with the dark solid one, denotes the call boundary of CD. A state (p′,v′,t) which denotes that the host

bond price, the issuer’s value, and the time are p′, v′, and t, respectively, may fall above or below the

call boundary to denote the CD shall be called or not in this very “state”, respectively. Indeed, this

“state” may fall into one of the three following exercise regions that denotes whether the corresponding

embedded option is exercised or not. The “default region” in the upper left corner denotes that bond

issuers would default when the issuer’s asset value (denoted by the x-axis) is relatively low and the

host bond price (denoted by the y-axis) is relatively high. The “call region” in the upper right corner

denotes that the a bond issuer would redeem the bond early when both the issuer’s value and the

host bond price are relatively high. The ”conversion region” in the lower right corner denotes that a

bond holder would convert the bond when the issuer’s value is relatively high and the host bond price

is low. Note that the call region and the conversion one for a CVCD may overlap; and this scenario

denotes that bond conversions are forced by issuer’s call decisions. If this state does not fall into one

of above exercise region, then no embedded option is exercised and the bond survives at that time

step. To explain the existence of exercise boundaries in later discussions, we may compare a state,

says (p′, v′, t) with a “threshold” state that locates exactly on an exercise boundary. The host bond

price of a threshold state can be viewed as a function of the issuer’s asset value v and the prevailing
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Figure 2: Optimal Default, Call, and Conversion Boundaries. Optimal default, call, and conversion

boundaries for three otherwise identical 3-year CD, CV, and CVCD with coupon rates 3% and face value 100 are

illustrated in a two-dimensional profile, the x and the y axes of which denote the issuer’s asset value v and the

host bond price p, respectively. The call prices k for both CD and CVCD are set to 100. The horizontal dot line

p = k, which denotes the call boundary for a default-free callable bond, is plotted for comparing with the call

boundaries of the CD (denoted by the dark dash curve) and the CVCD (the dark solid curve). The conversion

boundaries for CVCD and CV are denoted by light solid and the light dash curves, respectively. The vertical dot

line v = k/z denotes the boundary that the CVCD is forced to be converted, where z denotes the proportion of

the issuer’s value obtained by converting CVCD. The default boundaries for CD and CVCD are almost overlapped

and is denoted by the black sold curve. These boundaries divide the profile into the call region, the conversion

region, the default region, and the remaining region that no embedded options are exercised. Given the issuer’s

value v, the corresponding host bond price located at the the call boundaries of CD and CVCD are bCD(v, t) and

bCD∗(v, t), respectively; the bond price located at the conversion boundaries of CV and CVCD are bCV (v, t) and

bCV ∗(v, t), respectively. Similarly, given the host bond price p, the corresponding issuer’s value located at the

conversion boundary of CV is VCV (p, t). We adopt the Hull-White short rate model (see Hull and White, 1994)

with the average interest rate level, the mean reversion rate, and the volatility being set to 6%, 0.5 and 0.1,

respectively. The payout ratio γ and the volatility φ for the issuer’s asset value process Vt in Equation (2)

are 0.04 and 0.2, respectively. The correlation ρ between the asset value Vt and the short rate rt is 0. z is set

to 0.7.

time t. For example, bCD(v′, t) and bCV (v′, t) denote the “critical” host bond prices of two threshold

states located at the call boundary of CD and the conversion boundary of CV, respectively. Similarly,

the issuer’s asset value of a threshold state can be viewed as a function of the host bond price p and

the prevailing time t. For example, vCV (p′, t) denotes the critical issuer’s asset value of the threshold

state located at the conversion boundary of CV.

The shape and the size of an exercise region expresses how the change of the issuer’s asset value,

the host bond price, and the presence of other embedded options influence the exercise decision. For

example, the upward sloping of default boundaries for both CD and CVCD (denoted by a black solid
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curve) entail that a lower issuer asset value or a higher host bond price would encourage the bond issuer

to default. The overlap of these two default boundaries entails that the presence of the conversion

option does not have significant influence on the issuer’s default decision. In addition, the size of an

exercise region reflects the tendency to exercise the corresponding option. For example, the call region

of a CD (whose call boundary is denoted by the dark dashed curve) is relatively smaller than that of a

CVCD (whose boundary is denoted by the dark solid curve), which implies that presence of a conversion

option would precipitate the decision to exercise the call option. Note that the latter region becomes

wider than the former one with the increment of the issuer’s asset value; this entails that the difference

of call strategies becomes more significant with the increment of the issuer’s value.

4.2 Pure Convertible Bonds

4.2.1 Evaluations of Bonds and Embedded Conversion Options

To reflect the prevailing of the anti-dilution covenant since 2003 as studied in Grundy and Verwijmeren

(2016), we assume that an embedded conversion option allows a CV holder to convert the bond into

the issuer’s common stocks being worth a fixed fraction z ∈ [0, 1] of the issuer’s asset value.5 By

mimicking the analyses of AC in Equation (5), we decompose the value of a CV at time t into the value

of an otherwise identical host bond p plus the value of a conversion option fCV that can be treated

as a function of the host bond price p, the issuer’s value v, and the time t (or as the function of the

state (p, v, t) in shorthand) as follows:

pCV = p+ fCV (p, v, t). (7)

A CV holder would maximize his benefit by exercising his conversion option optimally at time τCV and

the option value can be expressed as

fCV (p, v, t) = sup
t≤τCV ≤T

Ẽ

[
βt,τCV (zVτCV − PτCV )+

∣∣∣∣Ft] , (8)

where zVτCV is the conversion value at time τCV . The optimal conversion time is defined as

τCV = inf{t ∈ [0, T ] : fCV (p, v, t) = (zv − p)+},

ensuring the condition

fCV (p, v, t) ≥ (zv − p)+

for (p, v, t) ∈ R+ × R+ × [0, T ]. Note that the moneyness of the conversion option is determined

through the sign of the value zv − p; in other words, in (out of) the money conversion denotes that

the conversion value exceeds (falls below) the host bond price when a CV is converted. The following

theorem describes how the conversion option value fCV (p, v, t) is influenced by the change of the

issuer’s asset value (to reflect the issuer’s creditworthiness) and the host bond price (to reflect the

interest rate level).

5This anti-dilution setting can be found in Sarkar (2003), Liao and Huang (2006), Ŝırbu and Shreve (2006) and Chen
et al. (2013). Note that issuing new shares at time t for financing the shortage to repay the coupon payment with firm
value payout ratio γt as in Equation (2) would dilute the value of existing shares. Allowing obtaining a constant fraction
of the issuer’s asset from converting CVs immunizes this dilution.
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Theorem 1 Denote two different host bond prices by p(1) and p(2) and two different firm’s asset values

by v(1) and v(2). The following properties hold for the fCV (p, v, t).

1. p(1) > p(2) ⇒ fCV
(
p(1), v, t

)
< fCV

(
p(2), v, t

)
.

2. v(1) < v(2) ⇒ fCV
(
p, v(1), t

)
< fCV

(
p, v(2), t

)
.

3. p(1) 6= p(2) ⇒ −1 ≤ fCV (p(2),v,t)−fCV (p(1),v,t)
p(2)−p(1) < 0. (Put delta inequality)

4. v(1) 6= v(2) ⇒ 0 <
fCV (p,v(1),t)−fCV (p,v(2),t)

v(1)−v(2) < z. (Call delta inequality)

The proofs are similar to those in AC and we detail them in Appendix C.1. The first two parts of the

this theorem denote that the conversion option value increases with the decrement of the host bond

price or the increment of the bond issuer’s asset value (that reflects the improvement of the issuer’s

creditworthiness). According to Equation (8), an embedded conversion option can be viewed as a

put option on the host bond price. The put delta inequality in part 3 entails that the value of the

option increases at a slower rate than the decrement rate of the underlying host bond price. Since the

value of CV, pCV , can be decomposed into the value of the host bond plus fCV as in Equation (7),

the put delta inequality entails that the price of pCV decreases with the increment of the interest rate

level. Similarly, an conversion option can be regarded as an call option on the conversion value, and

the call delta inequality in part 4 entails that the value of fCV increases at a slower rate than the

increment rate of the issuer’s asset value.

4.2.2 Conversion Boundaries

The properties of fCV (p, v, t) proved above can be used to infer the existence and the shape of the

conversion boundary (i.e. the light dash curve in Figure 2) described in Theorem 2 and Theorem 3,

respectively, as follows.

Theorem 2 The existence of the conversion boundary.

1. If it is optimal to convert a CV at a state (p′, v′, t), then there exists a critical host bond price

bCV (v′, t) < zv′. It is optimal to convert the CV if an only if the host bond price is lower than

bCV (v′, t) given that the issuer’s asset value is v′ at time t.

2. The aforementioned conversion state also entails the existence of a critical issuer’s asset value

vCV (p′, t) > p′/z. It is optimal to convert the CV if and only if the issuer’s value is higher than

vCV (p′, t) given that the host bond price is p′ at time t.

The proof of the theorem is detailed in page 32 of the Appendix C.1. It sketches the location of the

conversion region is located in the lower right part of Figure 2 by showing that bond holders tends to

convert the bond when the host bond price is relatively low or when the issuer’s asset value is relatively

high. Besides, it implies that out-of-the-money conversion is always not the optimal strategy for a CV

because bCV (v′, t) < zv′ and zvCV (p′, t) > p′. In other words, the conversion of a CV only occurs when

its conversion value is larger than its host bond price.

Theorem 3 The shape of the conversion boundary.

For each t ∈ [0, T ),

1. v(1) < v(2) ⇒ bCV
(
v(1), t

)
≤ bCV

(
v(2), t

)
.
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2. p(1) > p(2) ⇒ vCV
(
p(1), t

)
≥ vCV

(
p(2), t

)
.

The proof of the theorem is detailed in page 33 of the Appendix C.1. The first part of this theorem

indicates that the critical host bond price decreases with the decrement of the issuer’s asset value.

This implies that it takes a lower host bond price (or a higher prevailing interest rate level) to trigger

a conversion when the issuer’s financial status (proxied by its asset value) is worse. The second part

also show that the issuer’s asset value increases with the increment of the host bond price. Both

aforementioned results suggest that the conversion boundary denoted by the light gray dashed curve

in Figure 2 should be upward-slopping.

4.3 Bonds with Game Options

4.3.1 Evaluations of Bonds and Embedded Game Options

This section analyzes bonds with game options that simultaneously grants its holders the right to

convert the bond into the issuer stock and its issuer the right to call bonds or to default. By analyzing

these game-option-embedded bonds like a CVCD, a convertible-callable bond (abbreviated as CVC), and

a convertible-defaultable bond (abbreviated as CVD), we can theoretically analyze the impact of one

option, says a conversion option, on other coexisting option(s), like a call option. Now we decompose

the value of a CVCD at time t into the value of an otherwise identical host bond p plus the value of a

game option fCV CD granting both the issuer and holders the rights to terminate the bond and the

game options prematurely as follows.

pCV CD = p+ fCV CD(p, v, t). (9)

Note that each party would maximize its benefit at the expense of the other one. Specifically, to

minimize the value of a CVCD, the issuer could either call the bond or default as the CVCD is still alive;

on the other hand, bond holders would maximize the value by converting the bond. To express the

interactions between the bond issuer and holders’ decisions as well as their conflict of interests, we

define the stopping time τCV ∗ as the bond holder’s optimal conversion time subject to the issuer’s

optimal call or default time τCD∗ , where the star sign here denotes the exercise time for the option

embedded in CVCD. The CVCD and its embedded game option terminates if either party exercises his

option at time τCV ∗ ∧ τCD∗ ; thus the payoff can be expressed as

fCV CD(p, v, t) = Ẽ

[
βt,τCV ∗∧τCD∗G (τCV ∗ , τCD∗)

∣∣∣∣Ft] .
The payoff of the option at the exercised date is denoted by the function G (τCV ∗ , τCD∗) as

G (τCV ∗ , τCD∗) =
(
zVτCV ∗ − PτCV ∗

)
I{τCV ∗≤τCD∗} −

(
PτCD∗ − κ

(
VτCD∗ , τCD∗

))
I{τCD∗<τCV ∗}, (10)

where the optimized times for both parties to exercise their options are

τCV ∗ = inf{t ∈ [0, T ] : fCV CD(p, v, t) = (zv − p)},

τCD∗ = inf{t ∈ [0, T ] : fCV CD(p, v, t) = − (p− κ (v, t))}.

Note that bond holders may either voluntarily convert the bonds or be forced to convert by the issuer’s

call announcements. The former case can be represented by τCV ∗ < τCD∗ while the latter one can be
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represented by τCV ∗ = τCD∗ .
6 Note that Equation (10) also allows negative payoffs for exercising

calls
(
zVτCV ∗ − PτCV ∗

)
and conversion options

(
PτCD∗ − κ

(
VτCD∗ , τCD∗

))
to capture phenomena of

out-of-the-money calls and conversions, respectively, on CVCDs found in empirical studies.

Note that the payoff of fCV CD defined in Equation (10) is evaluated from bond holders’s view-

point. Define fCDCV as the value of the same game option from the issuer’s view point, and then we

have

fCV CD(p, v, t) ≡ −fCDCV (p, v, t). (11)

Note that the conversion option value of CVCD should be less than that of CVD since the former

conversion right can be impaired by the issuer’s call announcements. Similarly, the value that combines

call and default options owned by the issuer can also be impaired by holders conversions. Thus the

values of options embedded in CV, CD, and CVCD would follow

fCV CD(p, v, t) ≤ fCV D(p, v, t), (12)

fCDCV (p, v, t) ≤ fCD(p, v, t), (13)

By comparing the value relationships of these embedded option, we can analyze the interaction effects

between the issuer’s and holder’s exercise strategies, like why the conversion (call) option of CVCD is

more likely to be exercised than the same option embedded in CVD (CD) as illustrated in Figure 2.

Besides, to analyze how the presence of the call option and/or the default option influence aforemen-

tioned interaction effects, we compare exercising strategies of convertible-callable bonds (abbreviated

as CVC) and convertible-defaultable bonds (abbreviated as CVD) with CVCD. By mimicking the afore-

mentioned analyses, the value of a CVC at time t can be decomposed into the value of a host bond plus

the value of a game option fCV C

pCV C = p+ fCV C(p, v, t). (14)

Define the stopping time τ̂C as the bond issuer’s optimal call time subject to holders’ optimal conversion

time τ̂CV , where the overhead hat symbol denotes the exercise time for the option embedded in CVC.

The payoff of fCV C is defined by substituting kτ̂C for κ (Vτ̂C , τ̂C) in Equation (10) due to the absence

of the default risk. Similarly, the value of a CVD at time t can be expressed as

pCV D = p+ fCV D(p, v, t). (15)

Again, we define the stopping time τ̌D as the bond issuer’s optimal default time subject to holders’

optimal conversion time τ̌CV , where the overhead check symbol denotes the exercise time for the

option embedded in CVD. The payoff of fCV D is defined by substituting Vτ̌D for κ
(
VτCD∗ , τCD∗

)
in

Equation (10) due to the absence of the call provision. The relations among the values of different

game options fCV , fCV C , fCV D, and fCV CD can be expressed by the following theorem.

6However, given the conversion fraction 0 < z < 1, it is always optimal for a bond holder to keep the bond unconverted
once the issuer announces default. That is because the recovery value v is larger than the conversion value zv; therefore,
default never forces conversion.
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Theorem 4 For each t ∈ [0, T ),

fCV C(p, v, t) ∨ fCV D(p, v, t) ≤ fCV (p, v, t), (16)

fCV C(p, v, t) ∧ fCV D(p, v, t) ≥ fCV CD(p, v, t). (17)

Inequality (16) is intuitive since granting the issuer either a call option or a default option would

destroy the value of embedded conversion option owned by bond holders. The second part of this

theorem, Inequality (17), suggests that granting a bond issuer both the call and the default option

would harm holders’ conversion right the most than only granting the issuer either call or default

options. Rigorous proofs are given in page 34 in Appendix C.2. The aforementioned theorem can be

used to infer how the values of game options (i.e., fCV CD(p, v, t), fCV C(p, v, t) and fCV D(p, v, t)) are

influenced by the issuer’s asset value and the host bond price as follows.

Theorem 5 Denote two different host bond prices at time t by p(1) and p(2) and two different issuer’s

asset value at time t by v(1) and v(2) . The following properties hold for the fCV CD(p, v, t), fCV D(p, v, t)

and fCV C(p, v, t).

1. p(1) > p(2) ⇒ fCV CD
(
p(1), v, t

)
≮ fCV CD

(
p(2), v, t

)
.

p(1) > p(2) ⇒ fCV D
(
p(1), v, t

)
< fCV D

(
p(2), v, t

)
.

2. v(1) < v(2) ⇒ fCV CD
(
p, v(1), t

)
< fCV CD

(
p, v(2), t

)
.

v(1) < v(2) ⇒ fCV C
(
p, v(1), t

)
< fCV C

(
p, v(2), t

)
.

3. p(1) 6= p(2) ⇒ −1 ≤ fCV CD(p(2),v,t)−fCV CD(p(1),v,t)
p(2)−p(1) .

p(1) 6= p(2) ⇒ −1 ≤ fCVD(p(2),v,t)−fCVD(p(1),v,t)
p(2)−p(1) < 0. (Put delta Inequality)

4. v(1) 6= v(2) ⇒ 0 ≤ fCV CD(p,v(1),t)−fCV CD(p,v(2),t)
v(1)−v(2) < 1.

v(1) 6= v(2) ⇒ 0 ≤ fCV C(p,v(1),t)−fCV C(p,v(2),t)
v(1)−v(2) < z. (Call delta Inequality)

The proof is detailed in page 35 in Appendix C.2. Parts 1 and 3 analyze how the change of the host

bond values influence a bond holder’s game option value. Note that the increment of the host bond

price (or decrement of the interest rate level) would discourage a bond holder to convert the bond

into equity but encourage the issuer to default. Thus the game option value fCV D decreases with the

increment of the host bond price (or the decrement of the interest rate level), which is similar to the

property of the conversion option value fCV described in part 1 of Theorem 1. On the other hand,

the presence of the call option may invalidate the size relationship since its exercise can be triggered

either to save the interest rate cost (by substituting new debts for old ones) in the low interest rate

environment or to reduce bond holders’ conversion value (i.e, the interaction effect) in the high interest

rate environment. The size relationships in part 1 forms the right hand side put delta inequality of

CVD in part 3 but no upper bound for CVCD due to the interaction effect. The lower bounds for put

delta inequalities suggest that the decrement magnitude of holders’ game option value can not be

larger than the increment magnitude of the host bond value. Therefore, the value of a bond with

embedded game option increases with the increment of the host bond price (or the decrement of the

interest rate level) since the bond value can be decomposed into the host bond value plus the game

option value as defined in Equations (9) and (15).

Part 2 and 4 analyze how the change of the issuer’s asset value influence a holder’s game option

value. Similar to part 2 in Theorem 1, inequalities in part 2 of this theorem suggests that the
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game option value increases with the increment of the issuer’s asset value. These inequalities form

the left hand side call delta inequality of part 4. The absent of the default right gives a tighter

upper bound z for fCV C (compared to 1 for CVCD) because the presence of the default right makes

the corresponding game option more sensitive to the issuer’s creditworthiness. The upper bounds of

the call delta inequalities entail that the value of a bond with embedded game options increases at a

slower rate than the increment of the issuer’s asset value.

4.3.2 Exercise Boundaries for Game Options and Interaction Effects

We first analyze the the upper and the lower bound of the game option value fCV CD in the following

proposition. Grundy and Verwijmeren (2016) argues that in-the-money call phenomena for CVCD

disappears after the prevailing of anti-dilution provisions; therefore, perfect capital market assumptions

can fairly predict call strategies. Our following position shows that incorporating the anti-dilution

policy7 and perfect market assumptions into the risk neutral valuation model theoretically analyze

the rationale of out-of-the-money and at-the-money calls.

Proposition 1 The value range of the game option fCV CD is

zv − p ≤ fCV CD(p, v, t) ≤ κ (v, t)− p. (18)

This size relationship suggests the rationale of out-of-the-money and at-the-money calls.

Proof. From a bond holder’s point of view, the value of the game option fCV CD should be always

larger than or equal to the payoff to exercise the embedded conversion option as follows:

fCV CD(p, v, t) ≥ zv − p.

A holder would convert his/her CVCD into equities when the equality holds. This inequality forms the

left hand side of Equation (18). On the other hand, from an issuer’s view point, the game option

value fCDCV should be larger than or equal to the payoff to exercise the embedded call or default

option as follows.

fCDCV (p, v, t) ≥ p− κ (v, t) .

The issuer exercises the call/ default option when the equality holds. This inequality forms the

right hand side of Equation (18) due to the property fCV CD(p, v, t) ≡ −fCDCV (p, v, t) defined in

Equation(11). Equation (18) defines the lower bound and the upper bound values for fCV CD

to make the embedded game option unexercised and hence CVCD alive. This value range becomes an

empty set (i.e., the lower bound exceeds the upper one) when the issuer’s value v exceeds the threshold

VCV ∗ ≡ kt/z. Note that the issuer would not consider exercising default option at this scenario since

the strike price κ defined in Equation (6) could be evaluated as (v, t) = kt∧v = kt. This entails that

a CVCD should be optimally called prior to the issuer’s value soaring to exceed VCV ∗ . Above property

is consistent with our quantitative analyses of exercise strategies in Figure 2 by observing that the

call boundary (denoted by the dark solid curve) for CVCD lies at or to the left of the vertical threshold

v = VCV ∗ . Note that exercising calls at this threshold implies at-the-money call phenomena proposed

in Ingersoll (1977a) and Brennan and Schwartz (1977) since the conversion value zv is equal to the

7This policy is implemented by setting a bond can be converted into a constant fraction z of the issuer’s value as
defined in page 10.
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call price kt. Exercising calls to the left of the threshold implies out-of-the money calls phenomena.

The above analysis for the value range inequality also provides the rationale for converting a CVCD

prior to the issuer’s value soaring to exceed VCV ∗ . This property consists with the property that the

conversion boundary (denoted by the light solid curve in Figure 2) would lie at or to the left of

v = VCV ∗ . The overlap of the call and the conversion regions reflect the “call force to conversion”

phenomenon widely studied in empirical literature. Note that removing the call provision from the

embedded option of CVCD would remove the upper bound constraint of Equation (18). The threshold

constraint VCV ∗ also disappears and conversion decisions are postponed by observing the shrinking

conversion region defined by the conversion boundary (denoted by the light dash curve) of CVD.

Similarly, removing the conversion provision would remove the lower bound constraint of Equation

(18) and call decisions are postponed by observing the shrinking call region defined by the call

boundary (denoted by the dark dash curve) of CD.

Since Proposition 1 suggests that a CVCD must be called or converted prior to the issuer’s value

soaring to exceed vCV ∗ , we analyze the optimal exercise strategies for embedded options given the

range of the issuer’s value located within the region (0, vCV ∗). The size relations of game options

described in Theorem 5 is used to infer the existences and the shapes of exercise boundaries by

Theorem 6 and 7 described as follows.

Theorem 6 The existences of exercise boundaries.

1. If it is optimal to convert (call) a CVCD at a state (p′, v′, t), then there exists a critical host bond

price, bCV ∗(v
′, t) (bCD∗(v

′, t)). It is optimal to convert (call) the CVCD if and only if the corresponding

host bond price is lower (higher) than bCV ∗(v
′, t) (bCD∗(v

′, t)) given that the issuer’s asset value is v′

at time t.

2. If it is optimal to call a CVCD at a state (p′, v′, t), then there exists a critical host bond price

v̄CD∗(p
′, t) to satisfy the constraint kt ≤ v̄CD∗(p, t) < vCV ∗. It is optimal to call the CVCD if and only

if the issuer’s value is higher than v̄CD∗(p
′, t) given that the corresponding host price is p′ at time t.

Similarly, if it is optimal for a CVCD issuer to declare default at a state (p′, v′, t), then there exists a

critical host bond price vCD∗(p
′, t) to satisfy the constraint 0 ≤ vCD∗(p, t) ≤ kt. It is optimal to declare

default if and only if the issuer’s value is lower than vCD∗(p
′, t) given that the corresponding host price

is p′ at time t.

The proof of this theorem is described in page 39 of Appendix C.2. It explains why the call region

is located in the upper right part of Figure 2 by showing that an issuer tends to call the bond when

the host bond price or the issuer’s value is relatively high. Similar arguments can be used to explain

why the conversion and the default regions are located in the lower right and the upper left parts,

respectively. The existence of bCV ∗(v, t) explains the rationale of premature voluntary conversions

of CVCD as found in Finnerty (2015). On the other hand, the existences of bCD∗(v, t) and v̄CD∗(p, t)

explain the reason of out-of-the-money calls studied in Cowan et al. (1993); Grundy and Verwijmeren

(2012); King and Mauer (2014); Bechmann et al. (2014). Above theorems can be used to infer the

shape of exercise boundaries and in consequence the interaction effects among coexisting options as

follows.

Theorem 7 Shapes of exercise boundaries. For each t ∈ [0, T )

1. v(1) < v(2) ≤ kt < vCV ∗ ⇒ bCD∗
(
v(1), t

)
≤ bCD∗

(
v(2), t

)
. (Default case)

2. kt < v(1) < v(2) < vCV ∗ ⇒ bCD∗
(
v(1), t

)
≥ bCD∗

(
v(2), t

)
. (Call case)

16



3. v < vCV ∗ ⇒ bCV ∗ (v, t) ≥ bCV (v, t).

4. v < vCV ∗ ⇒ bCD∗ (v, t) ≤ bCD (v, t).

The proof of this theorem is sketched in page 40 of Appendix C.2. The first part indicates the

positive slope of the default boundary as illustrated by the black curve in Figure 2 by showing that

the critical host bond price increases with the increment of the issuer’s value. On the other hand, the

second part indicates the negative slope of the call boundary as illustrated by the dark solid curve

by showing that the critical host bond price decreases with the increment of the issuer’s value. This

negative-slope call boundary also explain why out-of-the-money calls are more likely triggered by lower

interest rate levels (or higher host bond price) as observed in Bechmann et al. (2014). The shapes of

exercise boundaries mentioned above are similar to the shapes of exercise strategies of CD discussed in

Theorem 9 in Appendix A to reflect the interaction effect of coexisting call and default options as

proposed in Acharya and Carpenter (2002). Specifically, the issuer exercises one of the option would

destroy the value of the other one, and the issuer would delay its exercise decision to alleviate the

impact of value destruction. The delay becomes salient as the value destruction becomes significant.

That is why the critical host bond price for the default (call) boundary increases when the issuer’s

asset value increases (decreases) since the value of call (default) option being destroyed also increases.

Part 3 and 4 analyze the interaction effect of a game option by comparing the exercise boundaries

of CVCD, CV, and CD. Part 4 suggests that the presence of the conversion option would precipitates the

call decision by observing that the call of a CVCD is more easily to be triggered than the call of an

otherwise identical CD in Figure 2. Specifically, the call region of CVCD (defined by bCD∗) is larger

than the region of CD (defined by bCD). This is because exercising call options of CVCDs can further

destroy corresponding conversion options that may trigger equity dilution injurious to the existing

equity holder as found in Bechmann et al. (2014). To maximize the bond value subject to this call

strategy, a CVCD would be converted earlier as observed in Jensen and Pedersen (2016) to prevent loss

of conversion value. This can be confirmed in part 3 that the conversion of a CVCD is more easily to

be triggered than the conversion of an otherwise identical CD. Specifically, the conversion region of

CVCD (defined by bCV ∗) is larger than the region of CV (defined by bCV ). Part 3 and 4 capture the

interaction effect of a game option that reflect the conflict of interests between the bond issuer and

holders.

5 Empirical Tests

5.1 Empirical Implications

Compared with the results in AC and those in Section 4.2, we theoretically document the interaction

effect revealing the conflict of interest between bond issuers and bond holders behaving to maximize

their own value: the presence of the conversion option precipitates call and, in response to this call

strategy, the presence of the call provision precipitates conversion; the more valuable the the call and

conversion options, the more salient the precipitation. If this interaction effect holds, out-of-the-money

calls of convertible bonds is possible, and we can further infer that this type of call is for pre-empting

conversion rather than for pre-empting default though either call or conversion can eliminate the

possibility of default. In addition, this effect provides another tunnel to explain Jensen and Pedersen

(2016)’s observation about early conversion decision. Based on the results illustrated in Figure 2, we

summarize the empirical implications as follows.
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Hypothesis 1. A callable bond would be called earlier in its call period due to the presence of

the conversion option given the level of interest rate, its coupon rate, its issuer’s credit quality, and

its average call price during the call period. Note that the higher the coupon rate and the better the

firm’s credit quality, the earlier the call timing; the higher the level of interest rate and the average

call price, the later the call timing.

Subject to the call strategy for callable convertible bonds addressed in Hypothesis 1, the conversion

strategy would be developed as the following hypothesis.

Hypothesis 2. A convertible bond would be converted earlier in its conversion period due to the

presence of the call option given the level of interest rate, its coupon rate, its issuer’s credit quality,

and the dividend per bond if converted. Note that the better the firm’s credit quality, the earlier

conversion timing. However, the level of interest rate, the coupon rate, and the dividend per bond if

converted may be insensitive to the conversion timing.

We especially notice that higher coupon rates lead to higher possibility of call but result in less

possibility to trigger conversion. That thus implies higher possibility of bond mature if firms want to

force conversion. Similarly, higher dividend per bond if converted lead to less possibility of call but

results in higher possibility to trigger conversion that dilutes existing equity holder’s value. That thus

implies higher possibility of bond mature if firms behave to maximize the equity holder’s value.

5.2 Data

To examine the empirical implications derived from our theoretical framework, we collect the infor-

mation about the features of dollar-denominated callable nonconvertible, noncallable convertible and

callable convertible corporate bonds issued during the period January 1990 – December 2010 from

Mergent Fixed Income Securities Database.That includes bond issue dates, maturity dates, princi-

pal amounts, coupon rates, ratings with corresponding rating dates, whether the bonds are called,

converted and mature, call information (e.g., the first call dates, call effective dates, call price sched-

ules and call frequency), conversion information (e.g., the first conversion dates, conversion effective

dates, conversion prices, conversion commodities and quantity of conversion commodities) and other

covenant details. We then search for the call announcement date through ABI/INFORM Complete in

ProQuest system. Besides, we obtain the information on constant maturity Treasury rates based on

Federal Reserve Board’s H.15 Report from Federal Reserve Bank Reports and gather the details on

dividends paid by convertible bond issuers from Compustat.

We focus on the fixed and non-resettable coupon-bearing bonds with $1000 par value and 30/360

day count convention. We eliminate puttable, exchangeable or pay-in-kind bonds (see Sarkar, 2003;

King and Mauer, 2014) or bonds with credit enhancement. Besides, to avoid the call decision that

may be influenced by bond covenants, we exclude the callable bonds with sinking fund, make whole,

maintenance and replacement fund, and sudden death par provisions and those with indexed principal

redemptions. In addition, to concentrate on the bonds convertible to the common stocks of bond

issuers, we also exclude the bonds convertible to cash, preferred stocks of bond issuers, stocks of other

firms, and others. Finally, we choose non-perpetual bonds that can be called or converted at any time

within the stated call and conversion periods, and we select only those that are already mature, called

and converted to construct our sample.

The remaining bond samples are separated into two groups: the callable and convertible samples.
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The former sample includes 2687 callable nonconvertibles and 362 callable convertibles that are called

or mature, whereas the latter one includes 34 noncallable convertibles and 223 callable convertibles

that are converted and mature. We remove the bonds with incomplete information. For example,

we eliminate the callable bonds missing valid call price schedules (i.e., the complete set of call prices

and dates), and call announcement and effective dates from the callable sample. Specifically, the time

spans between announcement and effective dates are limited to 90 days. In addition, we eliminate

the convertible bonds missing the information about bond issuers’ dividend payments, and conver-

sion effective dates from the convertible sample. The final callable sample comprises 2432 callable

nonconvertibles (399 mature and 2033 called bonds) and 301 callable convertibles (115 mature and

186 called bonds). The final convertible sample comprises 24 noncallable convertibles (23 mature

and 1 converted bonds) and 141 callable convertibles (105 mature and 36 converted bonds; 29 of the

36 converted bonds are identified as forced conversion). Table 1 reports the distribution of the final

sample by year issued.

Callable Sample Convertible Sample
Year Callable Callable Convertible Convertible Callable Convertible

1990–1995 862 31 0 9
1996–2000 934 152 3 63
2001–2005 421 101 9 57
2006–2010 215 17 12 12

Total 2432 301 24 141

Table 1: Distribution of the bond sample by year issued during the period 1990–2010. The bond

sample is separated into two subsamples: the callable sample and convertible sample. The callable sample

consists of callable nonconvertible and callable convertible bonds issued during the period 1990–2010, and we

include only the bond issues that are already called and mature. The convertible sample contains noncallable

convertible and callable convertible bonds issued during the same period, and we include only the bond issues

that are already converted and mature.

5.3 Variables and Descriptive Statistics

Notice that life spans and the lengths of call periods of callable nonconvertible bonds are usually longer

than those of callable convertibles. To make the call or conversion time comparable, we standardize

the option exercise time by defining the dependent variable, the ratio of time span (RatioTS), as

follows:

RatioTS =
Maturity Date− Effective Date

Maturity Date− First Date
,

where the Effective Date stands for call/conversion effective date or bond maturity date, and the

First Date represents the first call or conversion date. Note that this ratio is bounded within [0, 1]; it

equals 1 as the Effective Date equals the First Date and equals 0 as the Effective Date equals

the Maturity Date. Thus, the greater the ratio, the earlier the bond is called or converted in the

stated call or converted period.

The following explanatory variables are used in the empirical tests to proxy the parameters of our

theoretical model. We choose 2-year Treasury rate as the proxy for the reference interest rate level,

because most of our convertible bonds are short-term or middle-term. We then select the rates in

month −5 given that the month 0 is the call, conversion or maturity effective month and treat them

as the determinants of the outcomes of our bond samples (i.e., called, converted or mature).8 The

8 King and Mauer (2000) select the rates in month −2 or −3 given that the month 0 is the call announcement month,
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coupon rate is the constant coupon rate on the bond. With our theoretical models, it can thus be

predicted that greater RatioTS follows the lower interest rate level or the higher coupon rate for the

callable sample (i.e., bonds called or mature). However, following the discussion in Section 4.3.2 and

in Hypothesis 2, RatioTS is insensitive to the interest rate level and the coupon rate for the convertible

sample.

Our bond samples include both rated and unrated bonds, and we identify them using the unrated

indicator as in Kroszner and Rajan (1994): 0 if the bond is rated and 1 if otherwise. For the rated

bonds, we use S&P’s, Moody’s or Fitch’s bond ratings as proxies for bond issuers’ credit quality,9 and

we imitate King and Mauer (2000) to cardinalize the bond ratings as AAA = 1, AA+ = 2... and

D = 25. For the unrated bonds that are not rated by S&P, Moody and Fitch, we follows Lemmon

and Roberts (2010)’s observation and regard them as the bonds with the worst rating in the junk

bond rating category though this treatment may overly degrade their true credit quality.10 With

the cardinalized ratings and according to our model, it can thus be predicted that greater RatioTS

follows the lower bond credit rating for both of the callable and convertible samples. Following this

prediction, if treating unrated bonds as the worst rating junk bonds overly degrades their credit quality

on average, the unrated indicator would be positively related to RatioTS.

Note that we select the callable bond samples that can be called at any time within the stated call

periods. The average levels of call prices during the call periods are then determined by calculating

the summation of each call price multiplied by the ratio of the corresponding call period to whole

stated call period under 30/360 day count convention. Regarding the dividend per bond, we follow

Sarkar (2003) to approximate it as the dividend income per convertible bond if converted for the most

recent year prior to the conversion or maturity effective year. Notice that we focus only on the bond

samples with $1000 par value. Thus, our model predict that greater RatioTS follows the lower average

levels of call price during the call period for the callable sample. However, similar to the coupon rate,

RatioTS is insensitive to the dividend per bond if converted for the convertible sample as discussed

in Hypothesis 2.

Finally, for the callable bond samples, we use the convertible indicator to identify whether the

callable bond is convertible: 0 if the callable bond is nonconvertible and 1 if otherwise. Similarly, for

the convertible bond samples, we use the callable indicator to identify whether the convertible bond is

callable: 0 if the convertible bond is noncallable and 1 if otherwise. With the indicators, the interaction

effect implied by our model then predicts that the coefficient estimates on them is positively related

to RatioTS for both of the callable and convertible samples given the aforementioned exploratory

variables. That is, compared with callable nonconvertible bonds, callable convertible bonds are prone

to be called by bond issuers in stated call periods. Likewise, compared with noncallable convertible

bonds, callable convertible bonds are prone to be converted by bond holders in stated conversion

periods. Table 2 summarizes the sample characteristics.

and we limit the time spans between announcement and effective dates to 90 days and choose the rates in month −5
given that the month 0 is the call, conversion or maturity effective month.

9 That is on the premise that the three rating agencies use similar rating criteria.
10 According to Molyneux and Shamroukh (1996), the junk bond market consists of bonds rated Ba1 or lower by

Moody’s, BB+ or lower by S&P’s, or unrated. Also, Lemmon and Roberts (2010) empirically identify that speculative
grade firms are more profitable than unrated firms “on average” and that they are significantly financially healthier than
unrated firms as indicated by higher Altman Z-scores.
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2.A. Callable Sample
Callable Callable Convertible

Mean Median SD Mean Median SD
Maturity (year) 13.27 9.84 9.44 6.74 6.70 2.59
Call period (year) 8.40 5.00 7.20 3.73 3.98 2.38
Ratio of time span 0.64 0.75 0.36 0.40 0.24 0.41
Treasury rate (%) 2.76 2.53 1.67 3.13 2.76 1.72
Coupon rate (%) 8.32 8.00 1.93 5.21 5.25 1.57
Bond rating 12.11 13.00 5.42 18.57 18.00 5.96
Average call price (%) 101.01 100.95 1.12 101.28 101.42 1.64
(% of par value)

2.B. Convertible Sample
Convertible Callable Convertible

Mean Median SD Mean Median SD
Maturity (year) 5.64 4.99 1.87 6.50 6.63 2.80
Conversion period (year) 5.60 4.98 1.87 6.38 6.45 2.81
Ratio of time span 0.00 0.00 0.02 0.15 0.00 0.28
Treasury rate (%) 0.97 0.56 1.13 3.23 3.22 1.62
Coupon rate (%) 4.26 5.00 2.40 5.40 5.25 1.79
Bond rating 20.33 25.00 6.02 21.51 25.00 4.83
Dividend per bond 4.53 0.00 15.15 6.85 0.00 26.09
($ dividned per $1000 bond)

Table 2: Descriptive statistics of variables used in the regressions. This table displays the descriptive

statistics of variables that would be used in the regression, including mean, median and standard deviation

(SD). The panel A is for the callable sample and B is for the convertible sample. The maturity is the bond

initial maturity in years. The call period is the length of the period in years during which a callable bond

may be called. The conversion period is the length of period in years during which a convertible bond may

be converted. The ratio of time span defined for the callable sample is the ratio of time span between the call

effective (maturity) date and maturity date to the length of the call period, and that for the convertible sample

is the ratio of time span between the bond conversion effective (maturity) date and maturity date to the length

of the conversion period. The bond rating is the bond issuer’s cardinalized S&P’s (or Moody’s or Fitch’s) bond

rating, and AAA = 1,..., D = 25. The Treasury rate in percent per annum is the 2-year Treasury rate in month

−5 given that the month 0 is the call/conversion effective month or the bond maturity month. The coupon rate

is the constant coupon rate on a bond issue. The average call price is the weighting average of the stated call

prices in percentage of bond par value. The dividend per bond is the dividend income per bond (if converted)

for the most recent year before the conversion effective month or the bond maturity month.

5.4 Regression Results

Table 3 displays the predicted signs following the aforementioned section and the regressions of

RatioTS on Convertible/Callable indicator, Treasury rate, Coupon rate, Bond rating, Average call

price/Dividend per bond, and Unrated indicator for the callable sample of 2733 bonds and the con-

vertible sample of 165 bonds. In regression (2) and (4), we further take the financial indicator as the

control variable to identify whether the bond is issued by a highly regulated financial company.

For the callable sample, as predicted, regression (1) indicates that RatioTS is significantly neg-

atively related to Treasury rate, Bond rating, and Average call price but is significantly positively

related to Coupon rate. Though the sample statistics in Table 2 shows the ratio of time span for the

callable convertible bonds is less than that of the callable nonconvertible bonds on average, it can

observed through this regression that the Convertible indicator is significantly positively related to

RatioTS by taking the aforementioned exploratory variables as given. That implies callable convertible

bonds are prone to be called by a bond issuer in the stated call period. This pattern is the same even

if we take the financial indicator as the control variable in regression (2). On the other hand, for the

convertible sample, the regression (3) indicates that the RatioTS is significantly negatively related to

Bond rating. Taking the relation as given, we find that the Callable indicator is significantly positively
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Callable Sample Convertible Sample
Independent Predicted Predicted
Variables Sign (1) (2) Sign (3) (4)

Intercept 1.762 1.908 0.158 0.163
(2.90)∗∗∗ (3.15)∗∗∗ (0.98) (1.01)

Convertible indicator + 0.212 0.201
(7.78)∗∗∗ (7.40)∗∗∗

Callable indicator + 0.130 0.133
(2.00)∗∗ (2.03)∗∗

Treasury rate − −0.895 −1.016 ? 0.256 0.278
(−2.39)∗∗ (−2.72)∗∗∗ (0.20) (0.21)

Coupon rate + 7.654 7.442 ? 0.800 0.931
(17.58)∗∗∗ (17.12)∗∗∗ (0.74) (0.85)

Bond rating − −0.044 −0.046 − −0.016 −0.017
(−26.29)∗∗∗ (−26.97)∗∗∗ (−1.69)∗ (−1.74)∗

Average call price − −1.203 −1.288
(−1.95)∗∗ (−2.09)∗∗

Dividend per bond ? −0.001 −0.001
(−1.56) (−1.34)

Unrated indicator + 0.230 0.260 + 0.274 0.278
(8.02)∗∗∗ (8.99)∗∗∗ (2.80)∗∗∗ (2.83)∗∗∗

Financial indicator − −0.093 − −0.05
(−5.42)∗∗∗ (−0.70)

Adjusted R2 0.28 0.29 0.08 0.08
F -statistic 180.40∗∗∗ 160.43∗∗∗ 3.51∗∗∗ 3.07∗∗∗

No. of observations 2733 2733 165 165

Table 3: Regression of ratio of time span on explanatory variables. The dependent variable is the

ratio of time span. For the callable sample, it is the ratio of time span between the call effective (maturity)

date and maturity date to the length of the call period. For the convertible sample, it is the ratio of time span

between the bond conversion effective (maturity) date and maturity date to the length of the conversion period.

The exploratory variables are defined as follows. The convertible indicator equals to one once the callable bond

is convertible, and zero otherwise. The callable indicator equals to one once the convertible bond is callable,

and zero otherwise. The Treasury rate is the 2-year rate in month −5 given that the month 0 is the call,

conversion or maturity effective month. The coupon rate is the constant coupon rate on the bond. The bond

rating is the bond issuer’s cardinalized S&P’s (or Moody’s or Fitch’s) bond rating, and AAA = 1,..., D = 25.

The average call price is the weighting average of the stated call prices in percentage of bond par value. The

dividend per bond is the dividend income per bond if converted for the most recent year before the conversion

or maturity effective month. The unrated indicator equals to one if the bond is unrated, and zero otherwise.

The financial indicator equals to one if the bond is issued by a financial firm, and zero otherwise. T -statistics

are listed in parentheses. Asterisks indicate significance levels: *, **, *** signify the 10%, 5% and 1% levels

using a two-tailed test.

related to RatioTS, suggesting callable convertible bonds are prone to be converted by bond holders in

the stated conversion period. This pattern is again the same even if we take the financial indicator as

the control variable in regression (4). Notice especially that the conversion timing is thus insensitive

to the level of interest rate once the interaction effect holds (i.e., both of the Convertible and Callable

indicators are significantly positively related to RatioTS).

6 Conclusion

This paper constructs a valuation framework based on a structural model of credit risk for a callable

convertible bond associated with the option execution decisions revealing the conflict of interest be-

tween bond issuers and holders. We then document that this conflict stimulates the interaction

precipitating call and conversion decision as the two option holders behave to maximize their own

value at expense of the other. The precipitation would be more salient as the values of the two
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options appreciate. Out-of-the-money call or conversion is even triggered following this interaction

effect, and it is the effect that makes the conversion strategy insensitive to the level of interest rate.

We thus address that a bond issuer would call early to pre-empt conversion and the corresponding

bond holder converts early to pre-empt redemption rather than pre-empting default though either

call or conversion can eliminates the possibility of default. These empirical implications can better

capture Bhattarcharya (2012)’s insight into the observable early call decision and can provide another

tunnel to explain Jensen and Pedersen (2016)’s observation about the early conversion decision. We

finally consolidate these implications by carrying out empirical tests with twenty years of callable

nonconvertible, noncallable convertible, and callable convertible bond data.
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Appendix A A Brief Review of Acharya and Carpenter (2002)(AC)

This section provides a quick review of AC’s mathematical properties and analyses of bonds with em-

bedded default and/or call options that will facilitate our analyses. They first characterize the interest

rates by a continuous-time Markov process as in Equation (1) and use the no-crossing property in

Karatzas and Shreve (1987) to derive useful corollaries as follows. Let
{
r

(1)
τ

}
τ≥t

and
{
r

(2)
τ

}
τ≥t

denote

two otherwise identical processes of short-term interest rates with initial values r
(1)
t ≤ r

(2)
t , then the

no-crossing property implies

P̃
[
r

(1)
t ≤ r

(2)
t , 0 ≤ t <∞

]
= 1.

AC apply this property to prove the no-crossing properties for {βt,τ}τ≥t, {Pτ}τ≥t, {βt,τPτ}τ≥t and

{Vτ}τ≥t given that t ≥ 0 as follows.

Corollary 1 Let
{
β

(1)
t,τ

}
τ≥t

and
{
β

(2)
t,τ

}
τ≥t

be two discount factors processes defined in Equation (3)

that are corresponding to two different initial short-term interest rates r
(1)
t and r

(2)
t , respectively. Then

r
(1)
t < r

(2)
t ⇒ β

(1)
t,τ ≥ β

(2)
t,τ , P̃ − a.s. ∀τ ∈ [t,∞).

Note that P̃ − a.s. is the abbreviation of P̃−almost surely. Similarly, let
{
P

(1)
τ

}
and

{
P

(2)
τ

}
be two

host bond price processes defined in Equation (4) that are corresponding to r
(1)
t and r

(2)
t , respectively.

Then Corollary 1 implies that

Corollary 2 r
(1)
t ≤ r

(2)
t ⇒ P

(1)
τ ≥ P (2)

τ , P̃ − a.s. ∀τ ∈ [t, T ].

Associating Corollary 1 with Corollary 2, we have

Corollary 3 r
(1)
t < r

(2)
t ⇒ β

(1)
t,τ P

(1)
τ > β

(2)
t,τ P

(2)
τ , P̃ − a.s. ∀τ ∈ [t, T ].

Again, let
{
V

(1)
τ

}
and

{
V

(2)
τ

}
be two bond issuer’s asset value processes defined in Equation (2) that

are corresponding to r
(1)
t and r

(2)
t , respectively. We derive the no-crossing property for the issuer’s

asset value described as

Corollary 4 r
(1)
t < r

(2)
t ⇒ V

(1)
τ ≤ V (2)

τ , P̃ − a.s. ∀τ ∈ [t, T ].

Now we suppress the subscript t to make host bond price Pt ≡ p. Aforementioned corollaries are then

applied to characterize the relations of host bond prices as follows.

Lemma 1 r
(1)
t ≤ r

(2)
t ⇒ Ẽ

[
β

(2)
t,τ P

(2)
τ − β(1)

t,τ P
(1)
τ

∣∣∣∣Ft] ≥ p(2) − p(1), P̃ − a.s. ∀τ ∈ [t, T ].

To analyze a bond issuer’s strategy to exercise bond options, AC first analyze the size relationship

of the options fX to call (i.e. X = C for a pure callable bond), to default (i.e. X = D for a pure

defaultable bond), and to call or default (i.e. X = CD for a callable and defaultable bond) the host

bond. The following theorem holds for aforementioned three embedded options.

Theorem 8 Denote two different host bond prices at time t by p(1) and p(2) and two different firm’s

asset value at time t by v(1) and v(2). Then we have

1. p(1) > p(2) ⇒ fX
(
p(1), v, t

)
> fX

(
p(2), v, t

)
.
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2. v(1) < v(2) ⇒ fX
(
p, v(1), t

)
≥ fX

(
p, v(2), t

)
.

3. p(1) 6= p(2) ⇒ 0 <
fX(p(1),v,t)−fX(p(2),v,t)

p(1)−p(2) ≤ 1. (Call delta inequality)

4. v(1) 6= v(2) ⇒ −1 ≤ fX(p,v(1),t)−fX(p,v(2),t)
v(1)−v(2) < 0. (Put delta inequality)

According to Equation (6), the aforementioned three embedded options can be treated as the call

options on the host bond price, and the call delta inequality entails that the values of these options

increase slower than the increment of the underlying host bond price. Similarly, these three embedded

options can be regarded as put options on the issuing firm’s asset value, and the put delta inequality

entails that the values of these options decrease slower than the increment of the underlying firm’s

asset value. AC then analyze the value range of the combined option fCD (p, v, t) as follows:

Proposition 2

fC (p, v, t) ∨ fD (p, v, t) ≤ fCD (p, v, t) ≤ fC (p, v, t) + fD (p, v, t).

The first inequality describes that the value of the combined option is greater than that of either the

constituent call or the default option, since the combined option has a lower strike price than the

strike price of the other two options as in Equation (6). However, the value of the combined option

is less than the sum of these two constituent options due to the interaction effect (see Kim et al.,

1993); that is, the loss of destroying one constituent option due exercising another constituent option

lowers the value of the combined option. AC then argues how the existence of the call (or default)

option postpones the execution decision of the default (or call) option.

AC characterizes the bond issuer’s call and default strategies by analyzing the existences and the

shapes of exercise boundaries. Given that the issuer’s asset value is v at time t, they show that it is

optimal to default or call the bond once the host bond price p is higher than the critical bond price

bX (v, t) for X = C, D, or CD as illustrated by black and dray gray curves in Figure 2. On the other

hand, given that the host bond price is p at time t, they show that it is optimal to call (default) the

bond once the issuer’s asset value is higher (lower) than the critical issuer’s asset value vX (p, t) for

X = CD or D. The above findings not only confirm the existence of exercise boundaries, but can be

used to sketch the shapes of option execution boundaries as follows:

Theorem 9 For each t ∈ [0, T )

1. v(1) < v(2) ⇒ bD
(
v(1), t

)
≤ bD

(
v(2), t

)
.

2. p(1) > p(2) ⇒ vD
(
p(1), t

)
≥ vD

(
p(2), t

)
.

3. v(1) < v(2) ≤ kt ⇒ bCD
(
v(1), t

)
≤ bCD

(
v(2), t

)
. (Default case)

4. kt < v(1) < v(2) ⇒ bCD
(
v(1), t

)
≥ bCD

(
v(2), t

)
. (Call case)

5. v ≤ kt ⇒ bCD (v, t) ≥ bD (v, t).

6. v > kt ⇒ bCD (v, t) ≥ bC (v, t).
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The first two parts describe the change of the critical value and hence the default boundary (i.e.,

the default strategy) for a pure defaultable bond. The part one suggests that the stronger the issuer

financial status (proxied by a higher issuer’s asset value), the harder the host bond price p (can be

treated as a proxy of the issuer’s prevailing debt obligation level) would exceed the default critical

bond price bD. In other words, a healthier firm is less likely to default unless the prevailing market

interest rate level drops lower enough to make the host bond price increases above bD. On the other

hand, the part two suggests that the higher debt obligation level (proxied by the host bond price), the

easier the issuer’s asset value fails to meet the default threshold vD. The above two properties imply a

upward sloping default boundary as illustrated by the black curve in Figure 2. They also entail that a

bond issuer is less likely to default in the high interest rate (or the low bond price) environment, which

is consistent with Duffee (1998) empirical observations that the bond credit spreads are negatively

related to the level of interest rate. The default and the call boundaries for a CD are analyzed in Part

3 (given the issuer’s asset value at time t, vt, is smaller than the call price kt) and in part 4 (vt > kt),

respectively. The default boundary analysis in part 3 is analogous to that in part 1 and the boundary

can also be expressed by the upward sloping black curve11 in Figure 2. On the other hand, the call

strategy analysis in part 4 suggests that the critical bond price bCD decreases with the increment of

the issuer asset value. This entails that a healthier issuer is more likely to redeem its CD once p exceeds

bCD. This implies a downward-sloping dark dash curve illustrated in Figure 2. The coexisting call

and default option would postpone the exercise decision of the embedded default and call option as

in part 5 and 6, respectively. This can be confirmed by the presence of the coexisting options makes

the critical bond price bCD higher than bD or bC ; thus a lower interest rate level (i.e., a higher host

bond price) is required to trigger exercise for bonds with coexisting options. AC argue that CD issuers

would postpone their exercise decisions to avoid the value destruction of another unexercised option,

and this phenomenon is empirically confirmed by Jacoby and Shiller (2010).

Appendix B Mathematical Properties Extended from AC

To analyze embedded game options in CVCD, we derive new mathematical properties derived from AC

described in Appendix A as follows.

Corollary 5 Let
(
β

(1)
t,τ

)
τ≥t

and
(
β

(2)
t,τ

)
τ≥t

be two processes of the discount factors corresponding to

two different initial short-term interest rates r
(1)
t and r

(2)
t , respectively. Then, for an arbitrary time

t ∈ [0, T ],

r
(1)
t ≤ r

(2)
t ⇒ β

(1)
t,τ V

(1)
τ = β

(2)
t,τ V

(2)
τ , P̃ − a.s. ∀τ ∈ [t, T ].

Proof. According to Equation (2), V
(1)
τ can be written as

V (1)
τ = Vte

∫ τ
t r

(1)
s ds−

∫ τ
t γsds−

1
2

∫ τ
t φ

2
sds+

∫ τ
t φsdW̃s .

11The default boundaries for D and CD are almost overlapped.
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Multiplying β
(1)
t,τ defined in Equation (3) on both sides of the above equation, we have

β
(1)
t,τ V

(1)
τ = e−

∫ τ
t r

(1)
s ds

(
Vte

∫ τ
t r

(1)
s ds−

∫ τ
t γsds−

1
2

∫ τ
t φ

2
sds+

∫ τ
t φsdW̃s

)
= Vte

−
∫ τ
t γsds−

1
2

∫ τ
t φ

2
sds+

∫ τ
t φsdW̃s (19)

= e−
∫ τ
t r

(2)
s ds

(
Vte

∫ τ
t r

(2)
s ds−

∫ τ
t γsds−

1
2

∫ τ
t φ

2
sds+

∫ τ
t φsdW̃s

)
= β

(2)
t,τ V

(2)
τ .

Corollary 6 For an arbitrary time t ∈ [0, T ], the following statements hold given that κ (Vτ , τ) is set

as kτ , Vτ , or kτ ∧ Vτ .

r
(1)
t ≤ r

(2)
t ⇒ β

(1)
t,τ κ

(
V (1)
τ , τ (1)

)
≥ β(2)

t,τ κ
(
V (2)
τ , τ (2)

)
, P̃ − a.s. ∀τ ∈ [t, T ].

Proof. We first consider the case that κ (Vτ , τ) ≡ kτ . Corollary 1 yields that

β
(1)
t,τ κ

(
V (1)
τ , τ

)
= β

(1)
t,τ kτ ≥ β

(2)
t,τ kτ = β

(2)
t,τ κ

(
V (2)
τ , τ

)
. (20)

Then we consider the case κ (Vτ , τ) ≡ Vτ . Corollary 5 yields that

β
(1)
t,τ κ

(
V (1)
τ , τ

)
= β

(1)
t,τ V

(1)
τ = β

(2)
t,τ V

(2)
τ = β

(2)
t,τ κ

(
V (2)
τ , τ

)
. (21)

Finally, we consider the case κ (Vτ , τ) ≡ kτ ∧ Vτ . For the case kτ ≤ V
(1)
τ < V

(2)
τ , this corollary holds

due to Equation (20). For the case V
(1)
τ < V

(2)
τ ≤ kτ , this corollary holds due to Equation (21). If

V
(1)
τ < kτ < V

(2)
τ , then

β
(1)
t,τ κ

(
V (1)
τ , τ

)
= β

(1)
t,τ V

(1)
τ = β

(2)
t,τ V

(2)
τ > β

(2)
t,τ kτ = β

(2)
t,τ κ

(
V (2)
τ , τ

)
.

Next, we calculate the conditional expectation of the discounted issuer’s asset value βt,τVτ .

Corollary 7 Ẽ[βt,τVτ |Ft] = e−
∫ τ
t γsdsVt, ∀τ ∈ [t, T ], t ≥ 0.

Proof. Equation (19) in the proof of Corollary 5 can be rearranged as

βt,τVτ = Vte
−

∫ τ
t γsds

(
e−

1
2

∫ τ
t φ

2
sdu+

∫ τ
t φsdW̃s

)
. (22)

Take conditional expectation given Ft on both sides of above equation, we have

Ẽ[βt,τVτ |Ft] = Vte
−

∫ τ
t γsds

{
Ẽ

[
e−

1
2

∫ τ
t φ

2
sds+

∫ τ
t φsdW̃s

∣∣∣∣Ft]}
= e−

∫ τ
t γsdsVt

(
e−

1
2

∫ t
t φ

2
sds+

∫ t
t φsdW̃s

)
(23)

= e−
∫ τ
t γsdsVt .

Because e−
∫ τ
t γsds is deterministic and Vt is (Ft)-measurable, they can be taken out from expectation

as in Equation (23). The property of a exponential martingale process (see Shreve, 2004) leads to

Equation (23), and e−
1
2

∫ t
t φ

2
sds+

∫ t
t φsdW̃s = e0 = 1 derives the last equality.
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Corollary 8 For an arbitrary time τ ∈ [t, T ], V
(1)
t < V

(2)
t → βt,τV

(1)
τ < βt,τV

(2)
τ

Proof. By substituting V
(1)
τ and V

(2)
τ into Equation (22), we have

βt,τV
(1)
τ = V

(1)
t e−

∫ τ
t γsds

(
e−

1
2

∫ τ
t φ

2
sdu+

∫ τ
t φsdW̃s

)
< V

(2)
t e−

∫ τ
t γsds

(
e−

1
2

∫ τ
t φ

2
sdu+

∫ τ
t φsdW̃s

)
= βt,τV

(2)
τ .

Corollary 9 For an arbitrary time τ ∈ [t, T ], V
(1)
t < V

(2)
t → βt,τκ

(
V

(1)
τ , τ

)
≤ βt,τκ

(
V

(2)
τ , τ

)
.

Proof.

βt,τκ
(
V (1)
τ , τ

)
= βt,τV

(1)
τ ∧ kτ ≤ βt,τV (2)

τ ∧ kτ = βt,τκ
(
V (2)
τ , τ

)
.

The definition of κ can be found in Equation(6). The above inequality is due to Corollary 8.

Corollary 10 For an arbitrary time τ ∈ [t, T ], V
(1)
t < V

(2)
t →

βt,τκ
(
V (1)
τ , τ

)
− βt,τκ

(
V (2)
τ , τ

)
≥ βt,τV (1)

τ − βt,τV (2)
τ .

Proof.

βt,τκ
(
V (1)
τ , τ

)
− βt,τκ

(
V (2)
τ , τ

)
= βt,τV

(1)
τ ∧ kτ − βt,τV (2)

τ ∧ kτ . (24)

Note that βt,τV
(1)
τ < βt,τV

(2)
τ due to Corollary 8. We enumerate all possible scenarios for kτ to

show that Equation (24) should be larger than or equal to βt,τV
(1)
τ − βt,τV (2)

τ under these scenarios.

Indeed, under the scenarios kτ ≤ βt,τV
(1)
τ , βt,τV

(1)
τ ≤ kτ ≤ βt,τV

(2)
τ , and βt,τV

(2)
τ ≤ kτ , Equation

(24) becomes 0, βt,τV
(1)
τ − kτ , and βt,τV

(1)
τ − βt,τV (2)

τ , respectively, which are all larger than or equal

to βt,τV
(1)
τ − βt,τV (2)

τ .

Appendix C Theoretical Analyses of Exercise Boundaries of Em-

bedded Options

C.1 Pure Convertible Bonds

Proof of Theorem 1. The following proofs describe the impacts of the the host bond price and
the issuer’s asset value on the value of a CV’s embedded option fCV defined in page 10.
1. Let the stopping time τ ≡ τ

(1)
CV ∈ [t, T ] be the optimal conversion time for a CV given the prevailing

market state
(
p(1), v, t

)
. Since τ can be a feasible but not the optimal conversion time for another state(

p(2), v, t
)
, we have

fCV
(
p(1), v, t

)
− fCV

(
p(2), v, t

)
≤ Ẽ

[
β

(1)
t,τ

(
zV (1)

τ − P (1)
τ

)+

− β(2)
t,τ

(
zV (2)

τ − P (2)
τ

)+
∣∣∣∣Ft] .

Note that the premise p(1) > p(2) at time t implies their corresponding short rates r(1)
t < r

(2)
t . Corol-

lary 3 and 5 can be applied to entail that β(1)
t,τ P

(1)
τ > β

(2)
t,τ P

(2)
τ and β

(1)
t,τ V

(1)
τ = β

(2)
t,τ V

(2)
τ . Thus we have

β
(1)
t,τ

(
zV (1)

τ − P (1)
τ

)+

− β(2)
t,τ

(
zV (2)

τ − P (2)
τ

)+

=
(
zβ

(1)
t,τ V

(1)
τ − β(1)

t,τ P
(1)
τ

)+

−
(
zβ

(2)
t,τ V

(2)
τ − β(2)

t,τ P
(2)
τ

)+

≤ 0 a.s.,
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and
(
zβ

(1)
t,τ V

(1)
τ − β(1)

t,τ P
(1)
τ

)+

−
(
zβ

(2)
t,τ V

(2)
τ − β(2)

t,τ P
(2)
τ

)+

< 0 when the conversion option is exercised with a

nonzero probability. This ensures

Ẽ

[
β
(1)
t,τ

(
zV (1)

τ − P (1)
τ

)+
− β(2)

t,τ

(
zV (2)

τ − P (2)
τ

)+ ∣∣∣∣Ft] < 0

and confirms fCV
(
p(1), v, t

)
− fCV

(
p(2), v, t

)
< 0.

2. The premise v(1) < v(2) at time t entails that V
(1)
u < V

(2)
u , ∀u ∈ [t, T ] due to Equation (2). Let

the stopping time τ ≡ τ
(1)
CV ∈ [t, T ] be the optimal conversion time for a CV given the prevailing mar-

ket state
(
p, v(1), t

)
. Since τ can be a feasible but not the optimal conversion time for another state(

p, v(2), t
)
, we have

fCV
(
p, v(1), t

)
− fCV

(
p, v(2), t

)
≤ Ẽ

[
βt,τ

(
zV (1)

τ − Pτ
)+

− βt,τ
(
zV (2)

τ − Pτ
)+
∣∣∣∣Ft] . (25)

Note that
(
zV

(1)
τ − Pτ

)+

−
(
zV

(2)
τ − Pτ

)+

≤ 0 due to the premise V (1)
τ < V

(2)
τ and this inequality is strictly

negative when the conversion option is exercised with a positive probability. That ensures that In-
equality (25) and hence fCV

(
p, v(1), t

)
− fCV

(
p, v(2), t

)
are negative.

3. Note that the part 1 of Theorem 1 confirms the right hand side of the put delta inequality. Thus we
proceed to prove the left hand side inequality by showing that fCV

(
p(1), v, t

)
− fCV

(
p(2), v, t

)
≥ p(2)− p(1).

Without loss of generality, we consider the case p(1) > p(2) at time t, which implies r(1)
t < r

(2)
t . Let the

stopping time τ ≡ τ (2)
CV ∈ [t, T ] be the optimal conversion time for a CV given the prevailing market state(

p(2), v, t
)
. Since replacing the optimal conversion time for the state

(
p(1), v, t

)
with the non-optimal

conversion time τ would reduce the conversion option value fCV
(
p(1), v, t

)
, thus we have the first

inequality as follows.

fCV
(
p(1), v, t

)
− fCV

(
p(2), v, t

)
≥ Ẽ

[
β

(1)
t,τ

(
zV (1)

τ − P (1)
τ

)+

− β(2)
t,τ

(
zV (2)

τ − P (2)
τ

)+
∣∣∣∣Ft]

= Ẽ

[(
β

(1)
t,τ

(
zV (1)

τ − P (1)
τ

)+

− β(2)
t,τ

(
zV (2)

τ − P (2)
τ

))
· I{

zV
(2)
τ >P

(2)
τ

}∣∣∣∣Ft] (26)

≥ Ẽ

[(
β

(1)
t,τ

(
zV (1)

τ − P (1)
τ

)
− β(2)

t,τ

(
zV (2)

τ − P (2)
τ

))
· I{

zV
(2)
τ >P

(2)
τ

}∣∣∣∣Ft] (27)

= Ẽ

[((
zβ

(1)
t,τ V

(1)
τ − β(1)

t,τ P
(1)
τ

)
−
(
zβ

(2)
t,τ V

(2)
τ − β(2)

t,τ P
(2)
τ

))
· I{

zV
(2)
τ >P

(2)
τ

}∣∣∣∣Ft] (28)

= Ẽ

[(
β

(2)
t,τ P

(2)
τ − β(1)

t,τ P
(1)
τ

)
· I{

zV
(2)
τ >P

(2)
τ

}∣∣∣∣Ft] (29)

≥ Ẽ

[
β

(2)
t,τ P

(2)
τ − β(1)

t,τ P
(1)
τ

∣∣∣∣Ft] (30)

≥ p(2) − p(1). (31)

Equation (26) replaces “+” in
(
zV

(2)
τ − P (2)

τ

)+
with the indicator function I{

zV
(2)
τ >P

(2)
τ

}. It will

be larger than Inequality (27) since zV
(1)
τ − P (1)

τ can still be non-positive given zV
(2)
τ − P (2)

τ > 0. By

substituting the equality β
(1)
t,τ V

(1)
τ = β

(2)
t,τ V

(2)
τ derived in Corollary 5 into Equation (28), we obtain

Equation (29). The premise p(1) > p(2) at time t implies r(1)
t < r

(2)
t and hence β

(2)
t,τ P

(2)
τ − β(1)

t,τ P
(1)
τ ≤ 0 by

Corollary 3. Thus dropping the indicator function I{
zV

(2)
τ >P

(2)
τ

} would reduces the expectation in

Inequality (30). Finally, Inequality (31) is derived by taking advantage of Lemma 1.

4. Note that part 2 of Theorem 1 confirms the left hand side of the call delta inequality. Thus we pro-
ceed to prove the right hand side inequality by showing that fCV

(
p, v(1), t

)
−fCV

(
p, v(2), t

)
> z

(
v(1) − v(2)

)
by mimicking the aforementioned proof for part 3 as follows. Without loss of generality, we consider
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the case v(1) < v(2) at time t; thus Equation (2) suggests that V (1)
u < V

(2)
u , ∀u ∈ [t, T ]. Let the stopping

time τ ≡ τ (2)
CV ∈ [t, T ] be the optimal conversion time for a CV given the prevailing market state

(
p, v(2), t

)
.

Since replacing the optimal conversion time for the state
(
p, v(1), t

)
with the non-optimal conversion

time τ would reduce the conversion option value fCV
(
p, v(1), t

)
, thus we have the first inequality as

follows.

fCV
(
p, v(1), t

)
− fCV

(
p, v(2), t

)
≥ Ẽ

[
βt,τ

(
zV (1)

τ − Pτ
)+

− βt,τ
(
zV (2)

τ − Pτ
)+
∣∣∣∣Ft]

= Ẽ

[(
βt,τ

(
zV (1)

τ − Pτ
)+

− βt,τ
(
zV (2)

τ − Pτ
))
· I{

zV
(2)
τ >Pτ

}∣∣∣∣Ft] (32)

≥ Ẽ

[(
βt,τ

(
zV (1)

τ − Pτ
)
− βt,τ

(
zV (2)

τ − Pτ
))
· I{

zV
(2)
τ >Pτ

}∣∣∣∣Ft] (33)

= zẼ

[(
βt,τ

(
V (1)
τ − V (2)

τ

))
· I{

zV
(2)
τ >Pτ

}∣∣∣∣Ft]
> zẼ

[
βt,τ

(
V (1)
τ − V (2)

τ

) ∣∣∣∣Ft] (34)

= ze−
∫ τ
t γsds

(
v(1) − v(2)

)
(35)

> z
(
v(1) − v(2)

)
. (36)

Equation (32) replaces “+” in
(
zV

(2)
τ − Pτ

)+
with the indicator function I{

zV
(2)
τ >Pτ

}. It will be

larger than Inequality (33) since zV (1)
τ −Pτ can still be non-positive given zV

(2)
τ −Pτ > 0. The premise

v(1) < v(2) at time t implies V
(1)
τ < V

(2)
τ and hence dropping the indicator function would reduce the

value of the expectation in Inequality (34). Then we derive Equation (35) by taking advantage

of Corollary 7. Finally, Inequality (36) is derived due to the fact that 0 < ze−
∫ τ
t γsds < 1 and the

premise v(1) − v(2) < 0.

With the properties of fCV listed in Theorem 1, we prove the existence of the conversion boundary

described in Theorem 2 in page 11 as follows.

Proof of Theorem 2. Define the continuation region for the conversion option (i.e. the region that

will keep CV unconverted) U ≡
{

(p, v, t) ∈ R+ ×R+ × [0, T ] : fCV (p, v, t) > (zv − p)+
}

.

1. Without loss of generality, we consider two states (p(1), v, t) and (p(2), v, t) given that p(1) > p(2).

Now we prove that it is optimal to continue (i.e., not to convert the CV) at the former state under the

premise that it is optimal to continue at the latter one. The put delta inequality in Theorem 1 yields

fCV
(
p(2), v, t

)
− fCV

(
p(1), v, t

)
p(2) − p(1)

≥ −1

⇒ fCV

(
p(1), v, t

)
≥ fCV

(
p(2), v, t

)
+ p(2) − p(1).

Since it is optimal to continue at (p(2), v, t), the value of the conversion option fCV
(
p(2), v, t

)
should

be larger than the value to convert the CV immediately
(
zv − p(2)

)+
. Thus we have

fCV

(
p(1), v, t

)
≥ fCV

(
p(2), v, t

)
+ p(2) − p(1)

>
(
zv − p(2)

)+
+ p(2) − p(1)

≥
(
zv − p(2)

)
+ p(2) − p(1)

= zv − p(1). (37)
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Above inequality entails that it is optimal to continue at the state (p(1), v, t) since its conversion

option value fCV
(
p(1), v, t

)
is larger than the immediate conversion value zv − p(1). Given a fixed

asset value v at time t, let bCV (v, t) be the infimum of the host bond price p to satisfy the condition

(p, v, t) ∈ U . Equation (37) entails that a state (p′, v, t) would belong to U if p′ > bCV (v, t). Since

bCV (v, t) is the infimum, (p′, v, t) would not belong to U if p′ < bCV (v, t). Above properties make

bCV (v, t) the critical host bond price the separate the continuation region from the conversion one.

In addition, the value of the conversion option fCV (bCV (v, t), v, t) should be equal to the value to

immediately convert the CV zv− bCV (v, t), which should be positive. This implies that bCV (v, t) < zv.

2. Without loss of generality, we consider two states
(
p, v(1), t

)
and

(
p, v(2), t

)
given that v(1) < v(2).

We prove that it is optimal to continue at the former state under the premise that it is optimal to

continue at the latter one. The call delta inequality in Theorem 1 yields

fCV
(
p, v(1), t

)
− fCV

(
p, v(2), t

)
v(1) − v(2)

< z

⇒ fCV

(
p, v(1), t

)
> fCV

(
p, v(2), t

)
+ z

(
v(1) − v(2)

)
.

Since it is optimal to continue at
(
p, v(2), t

)
, the value of the conversion option fCV

(
p, v(2), t

)
should

be larger than the value to convert the CV immediately
(
zv(2) − p

)+
. Thus we have

fCV

(
p, v(1), t

)
≥ fCV

(
p, v(2), t

)
+ zv(1) − zv(2)

>
(
zv(2) − p

)+
+ zv(1) − zv(2)

≥
(
zv(2) − p

)
+ zv(1) − zv(2)

= zv(1) − p. (38)

Above inequality entails that it is optimal to continue at the state
(
p, v(1), t

)
since its conversion

option value fCV
(
p, v(1), t

)
is larger than the immediate conversion value zv(1)−p. Given a fixed host

bond price p at time t, let vCV (p, t) be the supremum of the issuer’s asset value v to satisfy the con-

dition (p, v, t) ∈ U . Equation (38) entails that a state (p, v′, t) would belong to U if v′ < vCV (p, t).

Since vCV (p, t) is the supremum, (p, v′, t) would not belong to U if v′ > vCV (p, t). Above properties

make vCV (p, t) the critical issuer’s asset price the separate the continuation region form the conver-

sion region. In addition, the value of the conversion option fCV (p, vCV (p, t), t) should be equal to

the value to immediately convert the CV zvCV (p, t) − p, which should be positive. This implies that

vCV (p, t) > p/z.

With the above two theorems, we can mathematically analyze the shape of the conversion boundary

described in Theorem 3 as follows.

Proof of Theorem 3.

1. To show that the critical host bond price increases with the increment of the prevailing issuer asset

value, it suffices to show that the premise p > bCV
(
v(2), t

)
(i.e., (p, v(2), t) is belong to the continuation
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region U) entails p > bCV
(
v(1), t

)
given v(1) < v(2). The call delta inequality in Theorem 1 yields

fCV

(
p, v(1), t

)
≥ fCV

(
p, v(2), t

)
+ zv(1) − zv(2)

>
(
zv(2) − p

)+
+ zv(1) − zv(2)

≥
(
zv(2) − p

)
+ zv(1) − zv(2)

= zv(1) − p.

This entails that p > bCV
(
v(1), t

)
since the conversion option value fCV

(
p, v(1), t

)
is larger than the

value to immediately convert the CV zv(1) − p.
2. To show that the critical asset value increases with the increment of the prevailing host bond price,

it suffices to show the premise v < vCV
(
p(2), t

)
(i.e., (p(2), v, t) is belong to the continuation region U)

entails v < vCV
(
p(1), t

)
given p(1) > p(2). The put delta inequality in Theorem 1 yields

fCV

(
p(1), v, t

)
≥ fCV

(
p(2), v, t

)
+ p(2) − p(1)

>
(
zv − p(2)

)+
+ p(2) − p(1)

≥
(
zv − p(2)

)
+ p(2) − p(1)

= zv − p(1).

This entails that v < vCV
(
p(1), t

)
since the conversion option value fCV

(
p(1), v, t

)
is larger than the

value to immediately convert the CV zv − p(1).

C.2 Bonds with Game Options

The proofs for Theorem 4 that analyzes the size relationship for fCV , and game options fCV C , fCV D,

and fCV CD are as follows.

Proof of Theorem 4.
To prove Inequality (17), it suffices to show both fCV C(p, v, t)−fCV CD(p, v, t) ≥ 0 and fCV D(p, v, t)−
fCV CD(p, v, t) ≥ 0. The proof for the latter inequality is similar to that for the former one so we only
prove the former one for simplicity. Recall that τ̂C and τCV ∗ are the optimal call time for CVC and the
optimal conversion time for CVCD for the state (p, v, t), respectively. If we apply the call strategy τ̂C
and the conversion strategy τCV ∗ for game options embedded in CVC and CVCD, we have

fCV C (p, v, t)− fCV CD (p, v, t)

≥ Ẽ

[
βt,τCV ∗ (zVτCV ∗ − PτCV ∗ ) I{τCV ∗≤τ̂C} − βt,τ̂C (Pτ̂C − kτ̂C ) I{τ̂C<τCV ∗}

∣∣∣∣Ft]︸ ︷︷ ︸
A

− Ẽ

[
βt,τCV ∗ (zVτCV ∗ − PτCV ∗ ) I{τCV ∗≤τ̂C} − βt,τ̂C (Pτ̂C − κ (Vτ̂C , τ̂C)) I{τ̂C<τCV ∗}

∣∣∣∣Ft]︸ ︷︷ ︸
B

(39)

= Ẽ

[
(βt,τ̂C (Pτ̂C − κ (Vτ̂C , τ̂C))− βt,τ̂C (Pτ̂C − kτ̂C )) I{τ̂C<τCV ∗}

∣∣∣∣Ft] (40)

= Ẽ

[
(βt,τ̂C (kτ̂C − κ (Vτ̂C , τ̂C))) I{τ̂C<τCV ∗}

∣∣∣∣Ft] (41)

≥ 0.

Part A of Inequality (39) is less than fCV C (p, v, t) since the non-optimal conversion strategy τCV ∗

accompanied by the optimal call strategy τ̂C ruins the benefits of CVC holders; on the other hand, part

B is greater than fCV CD (p, v, t) since the non-optimal call strategy τ̂C accompanied by the optimal
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conversion strategy τCV ∗ harms the benefits of the CVCD issuer and, in inconsequence, increases the

benefits of CVCD holders. Equation (40) is obtained after rearranging Inequality (39). The value

βt,τ̂C (kτ̂C − κ (Vτ̂C , τ̂C)) in Equation (41) is nonnegative since κ
(
VτC∗ , τC∗

)
is the minimum of Vτ̂C

and kτ̂C . Therefore we have fCV C(p, v, t)− fCV CD(p, v, t) ≥ 0.

Then we analyze how an issuer’s asset value and the host bond price influence the values of game

options described in Theorem 5 as follows.

Proof of Theorem 5.
1. This part explains how the change of the host bond price (or the interest rate level) influences

the values of game options. We first show that the presence of the call option makes the impact
of changing the host bond price on a fCV CD undetermined. This proof is then slightly modified to
analyze the impact on a fCV D. Let the stopping time τ (1)

CV ∗ ∈ [t, T ] be the optimal conversion strategy
for a CVCD holder given the prevailing market state

(
p(1), v, t

)
. The stopping time τ

(2)
CD∗ ∈ [t, T ] be the

optimal call/default strategy for the CVCD issuer given the market state
(
p(2), v, t

)
. Thus, we have

fCV CD
(
p(1), v, t

)
− fCV CD

(
p(2), v, t

)
≤ Ẽ

[
β

(1)

t,τ
(1)
CV ∗

(
zV

(1)

τ
(1)
CV ∗
− P (1)

τ
(1)
CV ∗

)
I{
τ
(1)
CV ∗≤τ

(2)
CD∗

} − β(1)

t,τ
(2)
CD∗

(
P

(1)

τ
(2)
CD∗
− κ

(
V

(1)

τ
(2)
CD∗

, τ
(2)
CD∗

))
I{
τ
(2)
CD∗<τ

(1)
CV ∗

}∣∣∣∣Ft]︸ ︷︷ ︸
A

− Ẽ

[
β

(2)

t,τ
(1)
CV ∗

(
zV

(2)

τ
(1)
CV ∗
− P (2)

τ
(1)
CV ∗

)
I{
τ
(1)
CV ∗≤τ

(2)
CD∗

} − β(2)

t,τ
(2)
CD∗

(
P

(2)

τ
(2)
CD∗
− κ

(
V

(2)

τ
(2)
CD∗

, τ
(2)
CD∗

))
I{
τ
(2)
CD∗<τ

(1)
CV ∗

}∣∣∣∣Ft]︸ ︷︷ ︸
B

(42)

= Ẽ


(
β

(1)

t,τ
(1)
CV ∗

(
zV

(1)

τ
(1)
CV ∗
− P (1)

τ
(1)
CV ∗

)
− β(2)

t,τ
(1)
CV ∗

(
zV

(2)

τ
(1)
CV ∗
− P (2)

τ
(1)
CV ∗

))
︸ ︷︷ ︸

C

I{
τ
(1)
CV ∗≤τ

(2)
CD∗

}∣∣∣∣Ft


+ Ẽ


(
β

(2)

t,τ
(2)
CD∗

(
P

(2)

τ
(2)
CD∗
− κ

(
V

(2)

τ
(2)
CD∗

, τ
(2)
CD∗

))
− β(1)

t,τ
(2)
CD∗

(
P

(1)

τ
(2)
CD∗
− κ

(
V

(1)

τ
(2)
CD∗

, τ
(2)
CD∗

)))
︸ ︷︷ ︸

D

I{
τ
(2)
CD∗<τ

(1)
CV ∗

}∣∣∣∣Ft

(43)

≮ 0.

Since the optimal bond holders’ conversion strategy τ
(1)
CV ∗ accompanied by the non-optimal issuer’s

call/default strategy τ
(2)
CD∗ would be beneficial for holders given the market state

(
p(1), v, t

)
, part A of

Inequality (42) should be greater than fCV CD
(
p(1), v, t

)
. Similarly, the optimal issuer strategy τ

(2)
CD∗

accompanied by the non-optimal holders’ strategy τ
(1)
CV ∗ would ruin holders’ benefits given the market

state
(
p(2), v, t

)
, part B should be less than fCV CD

(
p(2), v, t

)
. Combining above two size relationships

establish the Inequality (42). Rearranging Inequality (42) yields Equation (43). Note that the

premise the relation of time t bond prices p(1) > p(2) entails r
(1)
t < r

(2)
t . Thus we can apply Corollary 3

and 5 listed below

−β(1)

t,τ
(1)
CV ∗

P
(1)

τ
(1)
CV ∗

+ β
(2)

t,τ
(1)
CV ∗

P
(2)

τ
(1)
CV ∗

< 0

β
(1)

t,τ
(1)
CV ∗

V
(1)

τ
(1)
CV ∗
− β(2)

t,τ
(1)
CV ∗

V
(2)

τ
(1)
CV ∗

= 0,
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to entail that part C is negative. In addition, adding Corollary 3 to Corollary 6 listed below would
yield

β
(2)

t,τ
(2)
CD∗

P
(2)

τ
(2)
CD∗
− β(1)

t,τ
(1)
CD∗

P
(1)

τ
(1)
CD∗

< 0,

β
(1)

t,τ
(2)
CD∗

κ

(
V

(1)

τ
(2)
CD∗

, τ
(2)
CD∗

)
− β(2)

t,τ
(2)
CD∗

κ

(
V

(2)

τ
(2)
CD∗

, τ
(2)
CD∗

)
≥ 0, (44)

part D. But we can not determine whether part D is positive or negative; thus the impact of changing

the host bond price (or the interest rate level) on fCV CD is undetermined. Indeed, our later empirical

studies in Table 3 also suggests that the conversion decisions of CVCD holders are insensitive to the

Treasury rates.

The aforementioned undetermined phenomenon disappears when the embedded call option is ab-

sent; that is, we analyze CVD instead. The proof is similar as above except that the optimal stopping

time for CVCD (marked by star signs) should be replaced by the stopping times for CVD (marked by

overhead checks). Besides, κ(Vτ , τ) defined in Equation (6) is replaced by issuer’s asset value as

default occurs since a CVD issuer only owns the default option. Therefore, Inequality (44) is changed

to

β
(1)

t,τ̌
(2)
D

V
(1)

τ̌
(2)
D

− β(2)

t,τ̌
(2)
D

V
(2)

τ̌
(2)
D

= 0

due to Corollary 5. By mimicking the derivations in Equations (42) and (43), we have fCV D
(
p(1), v, t

)
−

fCV D
(
p(2), v, t

)
< 0.

2. Let the stopping time τ
(1)
CV ∗ ∈ [t, T ] be the optimal conversion strategy for a CVCD holder given the

prevailing market state
(
p, v(1), t

)
. The stopping time τ (2)

CD∗ ∈ [t, T ] be the optimal call/default strategy

for the CVCD issuer given the market state
(
p, v(2), t

)
. Thus we have

fCV CD
(
p, v(1), t

)
− fCV CD

(
p, v(2), t

)
≤ Ẽ

[
β
t,τ

(1)
CV ∗

(
zV

(1)

τ
(1)
CV ∗
− P

τ
(1)
CV ∗

)
I{
τ
(1)
CV ∗≤τ

(2)
CD∗

} − β
t,τ

(2)
CD∗

(
P
τ
(2)
CD∗
− κ

(
V

(1)

τ
(2)
CD∗

, τ
(2)
CD∗

))
I{
τ
(2)
CD∗<τ

(1)
CV ∗

}∣∣∣∣Ft]︸ ︷︷ ︸
E

− Ẽ

[
β
t,τ

(1)
CV ∗

(
zV

(2)

τ
(1)
CV ∗
− P

τ
(1)
CV ∗

)
I{
τ
(1)
CV ∗≤τ

(2)
CD∗

} − β
t,τ

(2)
CD∗

(
P
τ
(2)
CD∗
− κ

(
V

(2)

τ
(2)
CD∗

, τ
(2)
CD∗

))
I{
τ
(2)
CD∗<τ

(1)
CV ∗

}∣∣∣∣Ft]︸ ︷︷ ︸
F

(45)

= Ẽ


(
β
t,τ

(1)
CV ∗

(
zV

(1)

τ
(1)
CV ∗
− P

τ
(1)
CV ∗

)
− β

t,τ
(1)
CV ∗

(
zV

(2)

τ
(1)
CV ∗
− P

τ
(1)
CV ∗

))
︸ ︷︷ ︸

G

I{
τ
(1)
CV ∗≤τ

(2)
CD∗

}∣∣∣∣Ft


+ Ẽ


(
β
t,τ

(2)
CD∗

(
P
τ
(2)
CD∗
− κ

(
V

(2)

τ
(2)
CD∗

, τ
(2)
CD∗

))
− β

t,τ
(2)
CD∗

(
P
τ
(2)
CD∗
− κ

(
V

(1)

τ
(2)
CD∗

, τ
(2)
CD∗

)))
︸ ︷︷ ︸

H

I{
τ
(2)
CD∗<τ

(1)
CV ∗

}∣∣∣∣Ft

(46)

< 0.

Since the optimal bond holders’ conversion strategy τ
(1)
CV ∗ accompanied by the non-optimal issuer’s

call/default strategy τ
(2)
CD∗ would be beneficial for holders given the market state

(
p, v(1), t

)
, part E in

Inequality (45) should be greater than fCV CD
(
p, v(1), t

)
. Similarly, the optimal issuer strategy τ

(2)
CD∗

accompanied by the non-optimal holders’ strategy would ruin holders’ benefits given the market state(
p, v(2), t

)
, part F should be less than fCV CD

(
p, v(2), t

)
. Combining above two size relationships estab-

lish the Inequality (45). Rearranging Inequality (45) yields Equation (46). Under the premise
v(1) < v(2) , Corollary 8 entails thatβ

t,τ
(1)
CV ∗

V
(1)

τ
(1)
CV ∗
− β

t,τ
(1)
CV ∗

V
(2)

τ
(1)
CV ∗

< 0, which ensures part G is also neg-
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ative. Similarly, Corollary 9 entails that β
t,τ

(2)
CD∗

κ

(
V

(2)

τ
(2)
CD∗

, τ
(2)
CD∗

)
− β

t,τ
(2)
CD∗

κ

(
V

(1)

τ
(2)
CD∗

, τ
(2)
CD∗

)
≤ 0 and that

part H is non-positive. Thus, we confirm fCV CD
(
p, v(1), t

)
− fCV CD

(
p, v(2), t

)
< 0. Note that the above

proof can be easily extended to show fCV C have the same inequality by replacing κ

(
V

(2)

τ
(2)
CD∗

, τ
(2)
CD∗

)
and κ

(
V

(1)

τ
(2)
CD∗

, τ
(2)
CD∗

)
with V

(2)

τ
(2)
CD∗

and V
(1)

τ
(2)
CD∗

, respectively. Thus we skip the proof for simplicity.

3. The relation of CVD in part 1 of Theorem 5 confirms the right hand side of the put delta in-
equality. Thus we proceed to prove the left hand side inequality by showing that fCV CD

(
p(1), v, t

)
−

fCV CD
(
p(2), v, t

)
(or fCV D

(
p(1), v, t

)
− fCV D

(
p(2), v, t

)
) is larger than p(2) − p(1). We first focus on

the former proof for CVCD, and it can then be slightly modified for CVD. Without loss of generality,

we consider the case p(1) > p(2) at time t, which implies r(1)
t < r

(2)
t . Let the stopping time τ

(1)
CD∗ be the

optimal call or default strategy for the CVCD issuer given the market state
(
p(1), v, t

)
. The stopping

time τ
(2)
CV ∗ be the optimal conversion strategy for a CVCD holder given the market state

(
p(2), v, t

)
.

Thus, we have

fCV CD
(
p(1), v, t

)
− fCV CD

(
p(2), v, t

)
≥ Ẽ

[
β

(1)

t,τ
(2)
CV ∗

(
zV

(1)

τ
(2)
CV ∗
− P (1)

τ
(2)
CV ∗

)
I{
τ
(2)
CV ∗≤τ

(1)
CD∗

} − β(1)

t,τ
(1)
CD∗

(
P

(1)

τ
(1)
CD∗
− κ

(
V

(1)

τ
(1)
CD∗

, τ
(1)
CD∗

))
I{
τ
(1)
CD∗<τ

(2)
CV ∗

}∣∣∣∣Ft]︸ ︷︷ ︸
J

− Ẽ

[
β

(2)

t,τ
(2)
CV ∗

(
zV

(2)

τ
(2)
CV ∗
− P (2)

τ
(2)
CV ∗

)
I{
τ
(2)
CV ∗≤τ

(1)
CD∗

} − β(2)

t,τ
(1)
CD∗

(
P

(2)

τ
(1)
CD∗
− κ

(
V

(2)

τ
(1)
CD∗

, τ
(1)
CD∗

))
I{
τ
(1)
CD∗<τ

(2)
CV ∗

}∣∣∣∣Ft]︸ ︷︷ ︸
K

= Ẽ


(
β

(1)

t,τ
(2)
CV ∗

(
zV

(1)

τ
(2)
CV ∗
− P (1)

τ
(2)
CV ∗

)
− β(2)

t,τ
(2)
CV ∗

(
zV

(2)

τ
(2)
CV ∗
− P (2)

τ
(2)
CV ∗

))
︸ ︷︷ ︸

L

I{
τ
(2)
CV ∗≤τ

(1)
CD∗

}∣∣∣∣Ft


+ Ẽ


(
β

(2)

t,τ
(1)
CD∗

(
P

(2)

τ
(1)
CD∗
− κ

(
V

(2)

τ
(1)
CD∗

, τ
(1)
CD∗

))
− β(1)

t,τ
(1)
CD∗

(
P

(1)

τ
(1)
CD∗
− κ

(
V

(1)

τ
(1)
CD∗

, τ
(1)
CD∗

)))
︸ ︷︷ ︸

M

I{
τ
(1)
CD∗<τ

(2)
CV ∗

}∣∣∣∣Ft

(47)

≥ Ẽ


(
β

(2)

t,τ
(2)
CV ∗

P
(2)

τ
(2)
CV ∗
− β(1)

t,τ
(2)
CV ∗

P
(1)

τ
(2)
CV ∗

)
︸ ︷︷ ︸

N

I{
τ
(2)
CV ∗≤τ

(1)
CD∗

} +

(
β

(2)

t,τ
(2)
CD∗

P
(2)

τ
(2)
CD∗
− β(1)

t,τ
(2)
CD∗

P
(1)

τ
(2)
CD∗

)
︸ ︷︷ ︸

O

I{
τ
(1)
CD∗<τ

(2)
CV ∗

}∣∣∣∣Ft

(48)

= Ẽ

[(
β

(2)
t,τ P

(2)
τ − β(1)

t,τ P
(1)
τ

)
I{
τ=τ

(2)
CV ∗∧τ

(1)
CD∗

}∣∣∣∣Ft] (49)

≥ Ẽ

[
β

(2)

t,τ(2)
P (2)
τ − β(1)

t,τ P
(1)
τ

∣∣∣∣Ft] (50)

≥ p(2) − p(1). (51)

Since the optimal bond issuer’s call/default strategy τ
(1)
CD∗ accompanied by the non-optimal holders’

conversion strategy τ
(2)
CV ∗ would ruin holders’ benefits given the market state

(
p(1), v, t

)
, part J should

be smaller than fCV CD
(
p(1), v, t

)
. Similarly, the optimal holders’ conversion strategy τ

(2)
CV ∗ accompanied

by the non-optimal issuer strategy would increase holders’ benefits given the market state
(
p(2), v, t

)
,

part K should be larger than fCV CD
(
p(2), v, t

)
. Rearranging part J and K would yield Equation (47).

Part L can be simplified to Part N since β
(1)

t,τ
(2)
CV ∗

V
(1)

τ
(2)
CV ∗
− β(2)

t,τ
(2)
CV ∗

V
(2)

τ
(2)
CV ∗

= 0 due to Corollary 5. Part O is

less than Part M since β(1)

t,τ
(1)
CD∗

κ

(
V

(1)

τ
(1)
CD∗

, τ
(1)
CD∗

)
−β(2)

t,τ
(1)
CD∗

κ

(
V

(2)

τ
(1)
CD∗

, τ
(1)
CD∗

)
≥ 0 due to Corollary 6. The above

two relations establish Inequality (48). Combining the indicator functions in Inequality (48) yields

Equation (49). Inequality (50) is established because β
(2)
t,τ P

(2)
τ − β

(1)
t,τ P

(1)
τ ≤ 0 due to Corollary 3.
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Inequality (51) is established due to Lemma 1.

The relation fCVD
(
p(1), v, t

)
−fCVD

(
p(2), v, t

)
≥ p(2)−p(1) can be similarly derived except that κ

(
V

(1)

τ̌
(1)
CD∗

, τ̌
(1)
CD∗

)
and κ

(
V

(2)

τ̌
(1)
CD∗

, τ̌
(1)
CD

)
are replaced by V

(1)

τ̌
(1)
CD∗

and V
(2)

τ̌
(1)
CD∗

in Part M, respectively. Since part M now equals

to Part O due to Corollary 5, the size relationship in above derivations remains unchanged.
4. Note that part 2 of Theorem 5 already confirms the left hand side of the call delta inequalities
for both CVCD and CVD. Thus we proceed to prove the right hand side inequality for CVCD by showing
that fCV CD

(
p, v(1), t

)
− fCV CD

(
p, v(2), t

)
> v(1) − v(2) . Then we modify this proof to show that CVC has

a tighter upper bound. Without loss of generality, we consider the case v(1) < v(2) at time t; thus

Equation (2) suggests V
(1)
u < V

(2)
u , ∀u ∈ [t, T ]. Let the stopping time τ

(1)
CD∗ be the optimal call and

default strategy for the issuer given the prevailing market state
(
p, v(1), t

)
, The stopping time τ (2)

CV ∗ be

the optimal conversion strategy for bond holders given the market state
(
p, v(2), t

)
. Thus we have

fCV CD
(
p, v(1), t

)
− fCV CD

(
p, v(2), t

)
≥ Ẽ

[
β
t,τ

(2)
CV ∗

(
zV

(1)

τ
(2)
CV ∗
− P

τ
(2)
CV ∗

)
I{
τ
(2)
CV ∗≤τ

(1)
CD∗

} − β
t,τ

(1)
CD∗

(
P
τ
(1)
CD∗
− κ

(
V

(1)

τ
(1)
CD∗

, τ
(1)
CD∗

))
I{
τ
(1)
CD∗<τ

(2)
CV ∗

}∣∣∣∣Ft]︸ ︷︷ ︸
P

− Ẽ

[
β
t,τ

(2)
CV ∗

(
zV

(2)

τ
(2)
CV ∗
− P

τ
(2)
CV ∗

)
I{
τ
(2)
CV ∗≤τ

(1)
CD∗

} − β
t,τ

(1)
CD∗

(
P
τ
(1)
CD∗
− κ

(
V

(2)

τ
(1)
CD∗

, τ
(1)
CD∗

))
I{
τ
(1)
CD∗<τ

(2)
CV ∗

}∣∣∣∣Ft]︸ ︷︷ ︸
Q

= Ẽ

[(
β
t,τ

(2)
CV ∗

(
zV

(1)

τ
(2)
CV ∗
− P

τ
(2)
CV ∗

)
− β

t,τ
(2)
CV ∗

(
zV

(2)

τ
(2)
CV ∗
− P

τ
(2)
CV ∗

))
I{
τ
(2)
CV ∗≤τ

(1)
CD∗

}∣∣∣∣Ft]
+ Ẽ

[(
β
t,τ

(1)
CD∗

(
P
τ
(1)
CD∗
− κ

(
V

(2)

τ
(1)
CD∗

, τ
(1)
CD∗

))
− β

t,τ
(1)
CD∗

(
P
τ
(1)
CD∗
− κ

(
V

(1)

τ
(1)
CD∗

, τ
(1)
CD∗

)))
I{
τ
(1)
CD∗<τ

(2)
CV ∗

}∣∣∣∣Ft]

= Ẽ


(
zβ

t,τ
(2)
CV ∗

V
(1)

τ
(2)
CV ∗
− zβ

t,τ
(2)
CV ∗

V
(2)

τ
(2)
CV ∗

)
︸ ︷︷ ︸

R

I{
τ
(2)
CV ∗≤τ

(1)
CD∗

}∣∣∣∣Ft


+ Ẽ


(
β
t,τ

(1)
CD∗

κ

(
V

(1)

τ
(1)
CD∗

, τ
(1)
CD∗

)
− β

t,τ
(1)
CD∗

κ

(
V

(2)

τ
(1)
CD∗

, τ
(1)
CD∗

))
︸ ︷︷ ︸

S

I{
τ
(1)
CD∗<τ

(2)
CV ∗

}∣∣∣∣Ft
 (52)

> Ẽ


(
β
t,τ

(2)
CV ∗

V
(1)

τ
(2)
CV ∗
− β

t,τ
(2)
CV ∗

V
(2)

τ
(2)
CV ∗

)
︸ ︷︷ ︸

T

I{
τ
(2)
CV ∗≤τ

(1)
CD∗

} +

(
β
t,τ

(1)
CD∗

V
(1)

τ
(1)
CD∗
− β

t,τ
(1)
CD∗

V
(2)

τ
(1)
CD∗

)
︸ ︷︷ ︸

U

I{
τ
(1)
CD∗<τ

(2)
CV ∗

}∣∣∣∣Ft

(53)

= Ẽ

[(
βt,τV

(1)
τ − βt,τV (2)

τ

)
I{
τ=τ

(2)
CV ∗∧τ

(1)
CD∗

}∣∣∣∣Ft] (54)

≥ Ẽ

[
βt,τV

(1)
τ − βt,τV (2)

τ

∣∣∣∣Ft] (55)

= e−
∫ τ
t γsds

(
v(1) − v(2)

)
(56)

≥ v(1) − v(2). (57)

Since the optimal bond issuer’s call/default strategy τ
(1)
CD∗ accompanied by the non-optimal holders’

conversion strategy τ
(2)
CV ∗ would ruin holders’ benefits given the market state

(
p, v(1), t

)
, part P should

be smaller than fCV CD
(
p, v(1), t

)
. Similarly, given another market state

(
p, v(2), t

)
, the optimal holders’

conversion strategy τ
(2)
CV ∗ accompanied by the non-optimal issuer strategy τ

(1)
CD∗ would increase holders’

benefits; therefore, part Q should be larger than fCV CD
(
p, v(2), t

)
. Rearranging part P and Q would

yield the next equation and can be further simplified as Equation (52). Part R is larger than Part

T in Inequality (53) because 0 < z < 1 and β
t,τ

(2)
CV ∗

V
(1)

τ
(2)
CV ∗

− β
t,τ

(2)
CV ∗

V
(2)

τ
(2)
CV ∗

< 0 due to Corollary 8.
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Part S is greater than or equal to part U due to Corollary 10. Thus Inequality (53) is yielded

by combining the above two size relationships. Combining the indicator functions in parts T and U

yields Equation (54). Inequality (55) is established because βt,τV
(1)
τ − βt,τV (2)

τ ≤ 0 due to Corollary

8. Equation (56) follows from Corollary 7. The relationships 0 < e−
∫ τ
t γsds < 1, and v(1) −

v(2) < 0 implies Inequality (57). The proof of the right hand side call delta inequality of CVC

can be straightforward derived by replacing κ

(
V

(1)

τ
(1)
CD∗

, τ
(1)
CD∗

)
and κ

(
V

(2)

τ
(1)
CD∗

, τ
(1)
CD∗

)
with k

τ
(1)
CD∗

in above

derivations. So we skip the proof for simplicity.

In the following proof of Theorem 6, we note that the continuation region at time t for the game

option is the open set

U∗ ≡
{

(p, v, t) ∈ R+ ×R+ × [0, T ] : zv − p < fCV CD (p, v, t) < κ (v, t)− p
}

for zv < κ (v, t).

Proof of Theorem 6.

1. Let p(1) and p(2) be two possible host bond prices at time t and we consider the case p(1) > p(2)

with fCV CD
(
p(1), v, t

)
< κ (v, t) − p(1) and fCV CD

(
p(2), v, t

)
< κ (v, t) − p(2) (i.e., the case the bond

issuer does not exercise the call or default option). Suppose it is optimal to continue at p(2) given that

the firm’s asset value at time t is 0 < v < vCV ∗ , we show that it is then optimal to continue at p(1).

According to part 3 of Theorem 5, we have

fCV CD
(
p(2), v, t

)
− fCV CD

(
p(1), v, t

)
p(2) − p(1)

≥ −1

⇒ fCV CD

(
p(1), v, t

)
≥ fCV CD

(
p(2), v, t

)
+ p(2) − p(1).

Because it is optimal to continue at p(2), we further have

fCV CD

(
p(1), v, t

)
≥ fCV CD

(
p(2), v, t

)
+ p(2) − p(1)

>
(
zv − p(2)

)
+ p(2) − p(1)

= zv − p(1).

This confirms fCV CD
(
p(1), v, t

)
> zv− p(1) and ensures that it is also optimal to continue at p(1). Let

bCV ∗(v, t) be the infimum of the host bond price p such that (p, v, t) ∈ U∗. The point (bCV ∗(v, t), v, t)

is not in continuation region U∗ because the region is open. Thus, fCV CD (bCV ∗(v, t), v, t) = zv −
bCV ∗(v, t).

On the other hand, we consider the case p(1) > p(2) with fCDCV
(
p(1), v, t

)
< p(1) − zv and

fCDCV
(
p(2), v, t

)
< p(2) − zv (i.e., the case the bond holder does not exercise the conversion option).

Suppose it is optimal to continue at p(1) given that the firm’s asset value at time t is 0 < v < vCV ∗ ,

we show that it is then optimal to continue at p(2). According to Equation (11) and part 3 of

Theorem 5, we have

fCDCV
(
p(2), v, t

)
− fCDCV

(
p(1), v, t

)
p(2) − p(1)

≤ 1

⇒ fCDCV

(
p(2), v, t

)
≥ fCDCV

(
p(1), v, t

)
+ p(2) − p(1).
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Because it is optimal to continue at p(1), we further have

fCDCV

(
p(2), v, t

)
≥ fCDCV

(
p(1), v, t

)
+ p(2) − p(1)

>
(
p(1) − κ (v, t)

)
+ p(2) − p(1)

= p(2) − κ (v, t) .

This confirms fCDCV
(
p(2), v, t

)
> p(2) − κ (v, t) and ensures that it is also optimal to continue at

p(2). Let bCD∗(v, t) be the supremum of the host bond price p such that (p, v, t) ∈ U∗. The point

(bCD∗(v, t), v, t) is not in continuation region U∗ because the region is open. Thus, fCDCV (bCD∗(v, t), v, t) =

bCD∗(v, t)− κ (v, t).

2. Let v(1) and v(2) be two possible firm’s asset values at time t and we consider the case kt ≤
v(1) < v(2) < vCV ∗ with fCDCV

(
p, v(1), t

)
< p − zv(1) and fCDCV

(
p, v(2), t

)
< p − zv(2) (i.e., the

case the bond holder does not exercise the conversion option). Suppose it is optimal to exercise the

call option at v(1), we show that it is then optimal to exercise the call option at v(2). According to

Equation (11) and part 2 of Theorem 5, we have

fCDCV

(
p, v(2), t

)
≤ fCDCV

(
p, v(1), t

)
= p− κ

(
v(1), t

)
= p− kt.

Besides, fCDCV
(
p, v(2), t

)
≥ p − κ

(
v(2), t

)
= p − kt. Then, we obtain fCDCV

(
p, v(2), t

)
= p − kt and

ensures that it is also optimal to exercise the call option at v(2). Let v̄CD∗(p, t) be the minimum of

the firm’s asset value at time t, kt ≤ v̄CD∗(p, t) < vCV ∗ , such that it is optimal to call at (p.v, t).

On the other hand, we consider the case 0 ≤ v(1) < v(2) ≤ kt with fCDCV
(
p, v(1), t

)
< p − zv(1)

and fCDCV
(
p, v(2), t

)
< p − zv(2). Suppose it is optimal to continue at v(1), we show that it is then

optimal to continue at v(2). According to Equation (11) and part 4 of Theorem 5, we have

fCDCV
(
p, v(1), t

)
− fCDCV

(
p, v(2), t

)
v(1) − v(2)

> −1

⇒ fCDCV

(
p, v(2), t

)
> fCDCV

(
p, v(1), t

)
+ v(1) − v(2).

Because it is optimal to continue at v(1), we then have

fCDCV

(
p, v(2), t

)
≥ fCDCV

(
p, v(1), t

)
+ v(1) − v(2)

>
(
p− v(1)

)
+ v(1) − v(2)

= p− v(2).

This confirms fCDCV
(
p, v(2), t

)
> p− v(2) and ensures that it is also optimal to continue at v(2). Let

vCD∗(p, t) be the infimum of the firm’s asset value v such that (p, v, t) ∈ U∗. The point (p, vCD∗(p, t), t)

is not in continuation region U∗ because U∗ is open. Thus, fCDCV (p, vCD∗(p, t), t) = p − vCD∗(p, t)
and 0 ≤ vCD∗(p, t) ≤ kt.

Proof of Theorem 7.

1. Consider the host bond price at time t is p and the case v(1) < v(2) < vCV ∗ with fCDCV
(
p, v(1), t

)
<

p− zv(1) and fCDCV
(
p, v(2), t

)
< p− zv(2). For the scenario v(1) < v(2) ≤ kt, we want to confirm that

if 0 < p < bCD∗
(
v(1), t

)
(i.e., the firm does not exercise its default option), then p < bCD∗

(
v(2), t

)
as
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well. According to Equation (11) and part 4 of Theorem 5 given 0 < p < bCD∗
(
v(1), t

)
, we have

fCDCV

(
p, v(2), t

)
≥ fCDCV

(
p, v(1), t

)
+ v(1) − v(2)

>
(
p− v(1)

)
+ v(1) − v(2)

= p− v(2).

Thus, fCDCV
(
p, v(2), t

)
> p− v(2), ensuring p < bCD∗

(
v(2), t

)
.

2. Consider the case v(1) < v(2) < vCV ∗ with fCDCV
(
p, v(1), t

)
< p − zv(1) and fCDCV

(
p, v(2), t

)
<

p − zv(2). We want to confirm that if 0 < p < bCD∗
(
v(2), t

)
(i.e., the firm does not exercise its call

option), then p < bCD∗
(
v(1), t

)
as well. According to Equation (11) and part 2 of Theorem 5 given

0 < p < bCD∗
(
v(2), t

)
, we have

fCDCV

(
p, v(1), t

)
≥ fCDCV

(
p, v(2), t

)
> p− kt.

Thus, fCDCV
(
p, v(1), t

)
> p− kt, ensuring p < bCD∗

(
v(1), t

)
.

3. Consider the case fCV CD (p, v, t) < κ (v, t)− p. We want to confirm that if p > bCV ∗ (v, t) (i.e., the

callable convertible bond holder does not exercise the conversion option), then p > bCV (v, t) as well.

According to Inequality (12) given p > bCV ∗ (v, t), we have

fCV (p, v, t) ≥ fCV CD (p, v, t) > zv − p.

Thus, fCV (p, v, t) > zv − p, ensuring p > bCV (v, t).

4. Consider the case fCDCV (p, v, t) < p − zv. We want to confirm that if p < bCD∗ (v, t) (i.e.,

the firm issuing callable convertible bond does not exercise its option), then p < bCD (v, t) as well.

According to Inequality (13) given p < bCD∗ (v, t), we have

fCD (p, v, t) ≥ fCDCV (p, v, t) > p− κ (v, t) .

Thus, fCD (p, v, t) > p− κ (v, t), ensuring p < bCD (v, t).
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