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Natural Gas Price, Market Fundamentals and Hedging Effectiveness 

 

Abstract 

How to effectively manage risk is an important issue that the financial and commodity 

industries face. One of the issues is the estimation of the financial and consumption 

asset price volatility and estimation of the optimal hedge ratio. Our study examines 

whether it is important to incorporate fundamental variables in estimating price returns 

and volatility by studying the U.S. natural gas market. In doing so, we explain the spot 

and futures returns and volatilities based on market fundamental variables such as 

weather, gas underground storage, oil price and macroeconomic news. We find 

significant impacts of most of these variables on gas price. In addition, we calculate the 

optimal hedge ratio based on the price and volatility estimations. Our empirical 

evidence suggests that, as expected, the optimal hedge ratio was not constant but 

fluctuated significantly during the sample period. Incorporating time-varying hedge 

ratio has improved hedging effectiveness by a large percentage. In addition, 

incorporating market fundamental variables further improves the hedging effectiveness 

significantly. Our empirical results support the proposition that it is important to 

incorporate fundamental market variables in analyzing commodity price movement and 

improving hedging effectiveness.  

 

Keywords: Natural Gas Market; Hedge Ratio; Volatility; Weather; Macroeconomic 

News; DCC-MGARCH; VECM 

JEL classification: G13; Q40 
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1. Introduction 

     Asset and commodity prices are volatile. Hedging has been used to mitigate price 

risks. For example, futures contract prices have been used as a hedging tool to reduce 

risks involving spot transactions. In order for futures contract to be used effectively in 

managing spot price risk, optimal hedge ratio needs to be estimated. There is a sizable 

literature on the estimation of the optimal hedge ratio. Among others, Baillie and Myers 

(1991) estimated the optimal hedge ratio for six commodities, beef, coffee, corn, cotton, 

gold and soybean, using a bivariate GARCH (BGARCH) model for futures and spot 

prices, recognizing that the conventional regression method such as Ederington (1979) 

may not be appropriate. Zainudin (2013) employed a regime switching model to 

estimate the optimal hedge ratio for the crude palm oil (CPO) market. In a more recent 

study, Park and Jei (2010) examined the optimal hedge ratio estimation using a different 

variation of the BGARCH models. Liu et al (2014) estimated optimal hedge ratio for 

China’s copper and aluminum markets. Harris and Shen (2003), Choudhry (2003) 

estimated optimal hedge ratio for the stock futures, among other studies of hedging in 

the stock market. Balea (2014) reviewed in the crude oil risk management process the 

evolution of the optimal hedge ratio and hedge effectiveness. Salisu and Oloko (2015) 

used the adopted model to compute optimal portfolio weight and hedge ratios between 

oil price and US stocks using different sample data based on the break date. Their 

empirical evidence suggested that ignoring breaks exaggerated the hedging 

effectiveness. There are many studies estimating hedge ratios for other assets and 

commodities.   

     This paper makes contributions in two aspects. Even though other studies focused 

on methods used to estimate the optimal hedge ratio, our paper studies the importance 

of including fundamental economic variables in explaining price returns and volatilities 
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to improve hedging effectiveness. In addition, we provide a study that focuses on a 

growingly important market – the natural gas market. The hedge ratio estimation and 

hedging effectiveness literature for energy markets including electricity, oil and natural 

gas is limited. Haigh and Holt (2002) estimated optional hedge ratio and examined the 

effectiveness for hedging crack spread by linking the crude oil, heating oil and unleaded 

gasoline futures contracts. They found that accounting for volatility spillovers between 

the markets leads to significant reduction in uncertainty. Chen and Sutcliff (2012) 

studied the cross hedging between stock and crude oil markets.  

     Ederington and Salas (2008) investigated the cross-hedging effectiveness in the 

natural gas market for 17 hubs using the linear regression method and found that 

incorporating expected changes in the spot-futures relationship could increase efficiency 

and reduce bias. Woo et al. (2011) developed a linear regression model using natural gas 

futures as a cross hedge against electricity spot price risk. They found that hedge ratios 

varied substantially from month to month even though they did find that the natural gas 

cross hedge provided an effective tool to reduce electricity price risk. Martinez and 

Torro (2015) investigated the hedging strategies for the European natural gas market 

and considered seasonality in the estimation of the mean and volatility equations. They 

found that incorporating seasonality slightly improved the hedging effectiveness. Finally, 

Cotter and Hanly (2012) incorporated risk aversion in energy hedging and revealed that 

significant differences exist for optimal hedges based on the utility function. 

     This paper adds to the literature of optimal hedge ratio estimation and hedging 

effectiveness for the financial assets and commodity markets in general and the natural 

gas market in particular. Natural gas price is one of the most volatile commodity prices. 

Figure 1 shows the plot of natural gas futures and spot prices. Gas prices could spike to 

more than $10 followed quickly by prices as low as $3. Such a large price swing in 
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relatively a short time period suggests that it is imperative to hedge the price risk and 

maintain an effective hedging strategy. How to effectively model gas price and volatility 

becomes an important step in maintaining a successful hedging program. To this end, 

we incorporate fundamental factors available to the market participants in the price and 

variance equations and estimate the optimal hedge ratio using the DCC-MGARCH 

models to account for non-linearity and non-constancy of the hedge ratios. Specific 

factors considered include natural gas storage, crude oil price, weather information and 

macroeconomic news. In doing so, we emphasize the importance of these variables in 

influencing natural gas price and price volatility, and how hedging effectiveness can be 

improved. Our empirical results suggest that several fundamental market variables had 

significant effects on the level and volatility of the gas price, and optimal hedging ratio 

was time varying. The hedging effectiveness could improved significantly by 

incorporating time-varying hedging ratio models and incorporating market fundamental 

variables, suggesting the importance of utilizing more complicated econometric models 

and market fundamental variables to effectively manage the commodity risk.  

 The discussion in the next section provides the motivation for the including of 

several economic variables in modeling natural gas price. Section 3 discusses the data. 

Section 4 provides a discussion of estimation models and lays out the specification of 

several different models. Section 5 explains the estimation results and the last section 

concludes.  

 

2. Determinants of Natural Gas Prices 

2.1 Storage Impact 

Natural gas storage affecting gas price is a theoretically valid proposition and 

empirically observed regularity. The relationship between storage and the commodity 
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price has been discussed since the theory of storage emerged in 1933 by Holbrook 

Working. Brennan (1958) pointed out the connection between the value of storage 

commodity and the amount of commodity in storage and showed the importance of how 

storage would influence the yield of holding the commodity. Deaton and Laroque (1992, 

1996) and Chambers and Bailey (1996) presented an elaboration of the theory of storage 

and suggested that the changing amount of a commodity under storage can generate 

price variability of that commodity. 

Linn and Zhu (2004) focused on natural gas supply and demand conditions as 

reflected in the natural gas storage injections or drawdowns. Linn and Zhu investigated 

how gas storage injection or drawdown would have an impact on the residual volatility 

in natural gas futures prices.  In addition, Chiou-Wei el al. (2014) provided empirical 

evidence that supports the significant influence of storages on natural gas price and its 

volatility. 

Gay, Simkins, and Turac (2009) investigated analyst forecasts in the natural gas 

storage market and studied the analysts’ role in facilitating price discovery in futures 

markets. They indicated that the market appeared to condition expectations regarding a 

weekly storage release on the analyst forecasts and found that the market appeared to 

place greater emphasis on analysts' long-term accuracy than on their recent accuracy. 

Inventory announcements have also played a crucial role in stimulating the price 

dynamics of energy products. Halova, Kurov, and Kucher (2014) examined the effect of 

oil and gas inventory announcements on energy prices and suggested that energy prices 

were more strongly influenced by unexpected changes in inventory than shown in 

previous research. Moreover, recently, Bjursell, Gentle, and Wang (2015) identified 

jumps in daily futures prices and intraday jumps surrounding inventory announcements 

of crude oil, heating oil and natural gas using intraday data from January 1990 to 
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January 2008. They found that large jump components were often associated with the 

Energy Information Administration's inventory announcement dates, and volatility and 

trading volume were higher on days with a jump at the inventory announcement than on 

days without a jump at the announcement. 

2.2 Oil price 

 Oil and natural gas are connected as they are both hydrocarbons. They are 

substitutes in consumption as in the industrial production as well as consumption 

process, oil and gas can be substituted to a certain degree. Oil and gas are also related 

on the production side. Oil wells often produce associated gas. Natural gas liquids are 

also considered to be close substitutes to oil. Oil price has long been shown to be related 

to natural gas prices. For example, Brown and Yucel (2008) convincingly established 

the linkages between oil price and gas price and showed evidence that oil price was a 

prominent factor that drove natural gas price even during the period after 2008 when oil 

and gas prices showed some obviously diverging trends. Perifanis and Dagoumas (2018) 

showed that there were significant price and volatility spillovers between the oil and gas 

markets. Therefore, it is imperative to consider the impact of oil price on gas price.      

2.3 Weather Factors 

Weather is clearly behind the pricing of many agricultural and energy 

commodities. Hansen, Hodges, and Jones (1998) showed that one weather event, ENSO 

(El Niño–Southern Oscillation), influenced crop production and was associated with 

low grain yield. Moral-Carcedo and Vicens-Otero (2005), as well as Koirala et al. (2015) 

all examined the relationship between weather and commodity prices. Their findings 

showed that weather factors, especially temperature variable, had significantly 

influenced the commodity prices. Lee and Oren (2009) showed that energy and 

agriculture were good example of weather sensitive industries. They found that the 
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profit of each industry shared some common factors, and retail price, cost, and demand 

all were affected by weather. They also pointed out that the energy industry was 

especially exposed to weather risk on the ground as the energy demand was highly 

dependent on weather condition. For example, according to Considine (2000), the 

demand for gasoline and jet fuel had a strong seasonal factor, but it was not sensitive to 

temperature. Electricity, natural gas, and heating oil consumptions, however, are greatly 

sensitive to weather. Hong, Chang and Lin (2013) also suggested that weather had a 

significant impact on electricity demand and energy use and directly influenced the 

price of electricity. Despite the importance of weather in determining demand for 

natural gas, few have studied the direct role of weather in the natural gas market (an 

exception is Mu (2007)). Given that the U.S. natural gas market has evolved from a 

highly regulated market to a largely deregulated market in more recent history, natural 

gas prices driven by weather made natural gas market one of the most volatile markets.  

To capture the impact of the weather on gas prices, we utilize several weather 

variables including temperature and relative humidity with an assumption that these 

variables directly affect demand for natural gas. This is fairly reasonable as natural gas 

is used in the U.S. mainly in spacing heating in the winter and electricity generation in 

the summer. Therefore, colder temperature in winter, higher temperature in summer as 

well as higher relative humidity in summer would increase the demand for natural gas. 

2.4 Macroeconomic News 

Earlier studies suggested that macroeconomic news was significantly related to 

the commodity prices and was a well-known key driver for asset prices. Frankel and 

Hardouvelis (1985) and Barnhart (1989) focused on the effect of monetary variables and 

revealed that surprises in interest rate and declines of money supply caused commodity 

prices to increase. Fleming and Remolona (1999) found that economic news 
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announcement had a great influence on commodity prices and trading activity when 

public information arrived, and it was so especially when uncertainty was high. 

According to Ederington and Lee (1993), Hess and Hautsch (2002) and Bartolini et al. 

(2008), financial market price responses to macroeconomic news announcements were 

generally the strongest for the employment situation summary, the GDP advance release 

report, the Institute for Supply Management’s Manufacturing Report, Consumer 

Sentiment, Consumer Confidence and Retail Sales. More recently, Tang and Xiong 

(2012) presented evidence to support the claim that commodity prices had been exposed 

to market-wide shocks, and they suggested that macroeconomic announcements had a 

substantial influence on commodity prices.  

Recent studies such as Hess, Huang, and Niessen (2008), Christie–David, 

Chaudhry, and Koch (2000) assumed that commodity price’s sensitivity to the 

announcements was symmetrical and constant over time. However, Kilian and Vega 

(2011) suggested that it was reasonable to question these assumptions. They presented 

two possible factors that might have an impact on the response of commodity prices to 

news announcements. They found that the good news and bad news factors had 

different influences on the commodity price.  

Recently, Karali and Ramirez (2014) analyzed the time-varying volatility and 

spillover effects in crude oil, heating oil, and natural gas futures markets by 

incorporating changes in important macroeconomic variables, including major political 

and weather-related events into the conditional variance equations. These authors 

showed the presence of asymmetric effects in both random disturbances and 

macroeconomic variables, while crude oil volatility was found to increase following 

major political, financial, and natural events. In addition, Basistha and Kurov (2015) 

examined the effect of monetary policy surprises on energy prices and found a 
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significant response of energy prices to surprise changes in the federal funds target rate 

in an intraday window immediately following the monetary announcement. 

We believe there can be connections between macroeconomic conditions and 

demand for natural gas. Even though we have argued that weather is one of the major 

factors that would influence the demand for natural gas through demand from the 

residential, commercial and power sectors, economic conditions could have a major 

impact on industrial demand for natural gas. Thus any news on economic conditions 

would be expected to have some impact on gas price and volatility. The empirical study 

of macroeconomic news on natural gas price and volatility is rare (exceptions include 

Chan and Gray (2017)). News releases regarding economic variables are many. As a full 

investigation of the impact of all economic variables on natural gas is not the objective 

of this study, we have only selected a few representative economic news releases, 

namely advance retail sales, business inventory, changes in nonfarm payroll, housing 

starts, industrial production and construction spending, to study the effects of the 

economic news announcement on gas price levels and returns, with an emphasis on 

hedging effectiveness.   

To summarize, in an attempt to estimate the optimal hedge ratio and hedge 

effectiveness, we consider several weather factors, storage, oil price and several 

macroeconomic news announcements in modeling natural gas price and volatility. Our 

empirical evidence shows that the inclusion of these variable improves the hedging 

effectiveness significantly. 

 

3. Data 

We obtained the weekly and daily oil price (West Texas Intermediate or WTI), 

natural spot prices (at Henry Hub) and futures contract prices, and storage data from the 
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US Energy Information Administration (EIA). The sample period starts in January 2000 

and ends in December 2013. EIA releases a weekly survey report of the actual level and 

changes of natural gas storage in the United States regularly on Thursday morning at 

10:30 AM Eastern Time; and it gives an updated storage data as of the previous Friday. 

If the EIA weekly storage report contained a revision, we would omit the observation 

and also the previous week’s observation. 

The EIA storage report reveals important information about natural gas market 

supply and demand balance. Since storage contains such critical information, industry 

players usually monitor gas flows from pipeline nominations and transportation or 

survey a limited number of storage operators. As a result, industry players are able to 

access the storage information thoroughly and promptly. As storage is such an important 

piece of information in the gas market, market participants anticipate the storage report 

and news agencies collect analysts’ forecast and disseminate to the market. We use 

Bloomberg’s storage survey as the measure of market expectation. 

Our weather data were obtained from National Climate Data Center (NCDC) 

which is the division of the National Oceanographic and Atmospheric Administration 

(NOAA). The daily and weekly data span the period of January 1, 2000 to December 31, 

2013. NOAA’s National Climatic Data Center (NCDC) is the world’s largest climate 

data archive and offers climatological services and data to not only every sector of the 

United States economy but also to users worldwide. NCDC’s reports range from 

paleoclimatology data to data less than an hour old. The Center maintains these data and 

makes them available to the public, business, industry, government, and researchers. 

NCDC’s stations, land-based, collect the climate data from instruments sited at locations 

on every continent. The observations include temperature, dew point, relative humidity, 

precipitation, wind speed and direction, visibility, atmospheric pressure and types of 
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weather occurrences. NCDC provides service with wide level that is associated with 

land-based observations. Data are available on daily, weekly and multi-year timescales. 

We compiled our weather data for the following cities: Dallas, Baton Rouge, Atlanta, 

Chicago, Los Angeles, Phoenix, Saint Louis, New York, Philadelphia, Oklahoma City 

and Salt Lake City. These cities represent the major gas consumption regions. We 

computed an average day temperature by daily T_max, T_min measured from midnight 

to midnight. We then computed a Cooling Degree Day (CDD) measure, a Heating 

Degree Day (HDD) measure for each day and each week. We also compiled information 

on relative humidity (RH).  

We used Bloomberg as our source to collect the macroeconomic news data during 

the period of January 1, 2000 to December 31, 2013. Bloomberg provides a description 

of any announcement releases, including the number of observations, the agency that 

reports the news, and the release time (see Table 1 for the news items we selected). Our 

data includes retail sales (ARS), business inventories (BI), changes in nonfarm payrolls 

(CNP), housing starts (HS), industrial production (IP), and construction spending (CS). 

[Insert Table 1 Here] 

 

4. Methodology 

4.1 Modeling the Storage Surprises of Natural Gas 

EIA reports the survey result of the storage as of the previous Friday on each 

Thursday morning at 10:30 EST. If Thursday falls on a holiday, then the report will be 

announced either on Wednesday or Friday and these changes are announced ahead of 

time to the market so the market knows the report time exactly. Bloomberg collects the 

storage forecast from gas market analysts and makes them available ahead of the EIA 

announcement. For our study, we define the storage surprise as the difference between 
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the storage estimated reported by EIA and the survey result by Bloomberg (EStoraget). 

NGSt = Storaget – EStoraget         (1) 

4.2 Modeling Related Weather Factors 

Next, we define the temperature measures by cooling degree days (CDD) and 

heating degree days (HDD). When actual temperature minus 65℉ is greater than zero 

then it is defined as the cooling degree day. We set heating degree day as 65℉ minus 

actual temperature when actual temperature is lower than zero. The following shows the 

definition of HDD and CDD. 

2

t t
t

Tmax Tmin
TD


              (2) 

CDDt=max(0, TDt-65F)                   (3) 

HDDt=max(0, 65F-TDt)                   (4) 

where TDt is the temperature for day t, Tmaxt is the daily maximum temperature, and 

Tmint is the daily minimum temperature on date t. We calculate daily HDD and CDD 

first, and then the weekly HDD and CDD are the weekly accumulation of daily CDDs 

and HDDs for the week, respectively. 

In addition to the temperature variation, we define a relative humidity factor. We 

model the relative humidity enthalpy latent days as defined by Huang el al (1986). 

365 24
0

1 1

1
( ){ }

24
t tij tij tij

i j

RH E E
 

                (5) 

where RHt is the relative humidity enthalpy latent days of week t, E is the enthalpy and 
0
 

is the enthalpy at the humidity ratio of 0.0116 and the temperature measured. 

4.3 Measuring Surprises on Macroeconomic News  

In this study, we have selected six news items related macroeconomic issues 

which are Advanced Retail Sales (ARS), Business Inventory (BI), Change in Nonfarm 

Payroll (CNP), Construction Spending (CS), Housing Start (HS), and Industrial 
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Production (IP). These variables represent various aspects of the real economic 

activities and are expected to have influences on consumers’ demand for natural gas. 

For example, ARS and CNP represent economic activities, which are expected to have a 

positive impact on natural gas demand through industrial and commercial demand for 

gas. HS and CS may be directly related to the demand for natural gas in space heating, 

and IP is expected to be an indicator of demand for natural gas from industrial sectors.  

All of these news items are announced monthly. Based on Anderson et al. (2003), 

the macroeconomic news surprise component is computed as followed: 

, ,

,

i m i m

i m

A F
NRS

STD


 ,             (6) 

where ,i mNRS  is the news release shock (i=1 to 6, each corresponding to an economic 

news item), STD is the standard deviation, ,i mA  is the actually released value, and ,i mF  

is the median analyst forecast. This standardization affects neither the statistical 

significance of the estimated response coefficients nor the fitness of the regressions. 

This procedure facilitates a comparison of the estimated coefficients. The standardized 

surprise ,i mNRS  is used in our empirical analysis.  

4.4 Econometric Model 

As we model the natural gas spot and futures prices together, we use both the 

Multivariate GARCH (MGARCH) Model specified by Bollerslev et al. (1988) and 

Vector Error Correction Model (VECM) proposed by Engle and Granger (1987) to 

examine returns and volatility spillover effect between spot and futures natural gas 

markets. In particular, we rely on the use of two relatively flexible volatility models that 

explicitly incorporate the direct transmission of shocks and volatility across spot and 

futures markets. This section begins with the presentation of the conditional means in 



14 

the VECM–MGARCH framework, and then introduces the MGARCH specifications 

under consideration. 

4.4.1. VECM Model for the Conditional Mean Specification 

For the empirical analysis on return spillovers across the futures and spot markets, 

we assume that the conditional mean of returns on the spot and futures markets can be 

described by a vector autoregressive (VAR) model. In the two-variable case, a VAR 

model can be set up as in Equations (7) and (8) below. The appropriate lag length of the 

VAR model is determined using several measures including AIC, SIC and others. See 

also Table 4 for more details. The base model shown below shows that the futures and 

spot prices depend on their lagged values. Particularly, we consider there would be only 

one cointegration relationship between spot and futures prices in natural gas markets, 

we apply the following specification for the mean equations to model the returns 

spillover within two markets: 

 

 

1

1

1

1

1

                  

p
Futures Futures Futures Futures Futures

t t i t i
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               (8) 

where Futures

tNG  and Spot

tNG  are the logarithmic returns of the futures and spot 

natural gas price series, respectively. The error correction term (ECM), ECMt-1 is 

included in each equation (7) and (8), to capture the cointegrating relationship. If the 

cointegration equation is 0 1

Futures Spot

t tNG NG     , then ECMt is defined as

0 1

Futures Spot

t t tECM NG NG      . The residuals, t   are assumed to be serially 
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uncorrelated, but the covariance ( , )Spot Futures

t tE    needs not be zero. The coefficients 

Spot  and Futures  provide the measures of own-mean spillovers, whereas the 

coefficients 
Spot  and 

Futures  measure the cross-mean spillovers between the 

logarithmic returns of the spot and futures natural gas prices. 

4.4.2. MGARCH Models for Conditional Variance 

We model the dynamics of the conditional volatility and volatility 

interdependence between the logarithmic returns of the spot and futures prices for 

natural gas. In the DCC model, which assumes a time-dependent conditional correlation 

matrix Rt=(ρij,t), i, j = 1, 2, the conditional variance–covariance matrix Ht is defined as 

t t t tH D R D                (9) 

where 

 11, 22,,.....,t t tD diag h h               (10) 

,ii th  is defined as a GARCH(1,1) specification, i.e. 2

, , 1 ,ii t i i i t i ii th h      , i=1, 2, and 

   1/2 1/2

, ,t ii t t ii tR diag q Q diag q               (11) 

with the 2×2 symmetric positive-definite matrix Qt = (qij,t), i, j=1, 2, given by 

1 2 1 1 1 2 1(1 )t t t tQ Q u u Q     
                 (12) 

and ,/it it ii tu h Q   is the 2×2 unconditional variance matrix of tu , and 1  and 2  

are non-negative adjustment parameters satisfying 0< 1 + 2 <1. tQ  basically 

resembles an autoregressive moving average (ARMA) type process which captures 

short-term deviations in the correlation around its long-run level. The variance–

covariance matrix defined in Eq. (10) permits us, then, to model the degree of volatility 

interdependence between markets across time. 
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Hence, we specify our full model (VECM-DCC-MGARCH) for empirical 

estimation as follows: 
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and conditional variance equation takes the following form: 

   

   

1 1 1 1 1

1 1        

t t t t t t

t t

H CC A A BH B D NGS D E Weather E

F NRS F G CrudeOil G

     

 

           

  
         (15) 

In Equations (13) through (15), 1tNGS   stands for the lagged one week (day) of 

storage surprise for US natural gas, 1C trudeOil   is the lagged one week (day) of WTI 

spot crude oil return, and we use the shocks of CDD (cooling degree day), HDD 

(heating degree day), and RH (relative humidity) as a series of weather factors 

(Weather). Moreover, macroeconomic news factors (NRS) include shocks of ARS 

(retail sales), BI (business inventories), CNP (change in nonfarm payrolls), HS (housing 

starts), IP (industrial production), and CS (construction spending), respectively. In 

Equations (13) and (14), we have specified several lags in the exogenous variables. 

However, in the estimation, for tractability due to a large number of estimated 
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coefficients, we have included only one lag for each of the exogenous economic 

variables and three lags each for the spot and futures return. 

Therefore, we set up a total of five models for the empirical estimation and they 

are as follows: Model 1 is the base model only with the ECM term and lagged futures 

and spot price return values in conditional mean equation and conditional variance 

equation. Model 2 is based on Model 1 specification plus the lagged storages surprise 

variable. Model 3 is based on Model 2 and it includes lagged weather shocks. Model 4 

is based on Model 3 and it includes lagged macroeconomic news variables. And Model 

5 is based on Model 4 and it includes the lagged WTI spot oil price returns. The market 

fundamental variables enter both the mean and variance equations. 

4.4.3 Calculating the Time-Varying Hedge Ratio 

The H* optimal hedge ratio is computed as conditional covariance between spot 

return and futures divided by the conditional variance of futures return. Thus the 

minimum variance hedge ratio has now become time-varying as it varies with the 

changes in conditional covariance matrices as follows: 

*
sf

ff

h
H

h
                      (16) 

where
2

, , 1 , 1ss t ss ss s t ss ss th c h      , , , 1 , 1 , 1sf t sf sf s t f t sf sf th c h        , and 

2

, , 1 , 1ff t ff ff f t ff ff th c h       are specified and estimated as in the above equations. 

 

4.4.4 Evaluating Hedging Effectiveness 

Following Ederington (1979), Hedging Effectiveness (HE) is defined as the gain 

or loss in the variance of terminal revenue due to price changes in an unhedged position 

relative to those in a hedged position and therefore is defined as: 
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( ) ( )

( )

Unhedged Hedged

t t

t Unhedged

t

VAR VAR
HE

VAR

    


            (17) 

where ( )Unhedged

tVAR   and ( )Hedged

tVAR  are the variances for the unhedged and 

hedged positions, respectively. The return of the hedged portfolio during the holding 

period is defined by Hedged S F

t t t tR R H R   . According to Eq. (17), the closer HE is to 1, 

the higher the degree of hedging effectiveness. 

 

5. Empirical Results 

5.1 Unit-Root Test 

Figure 1 shows the time series plots of natural gas prices and several fundamental 

variables including CDD, HDD, RH, storage and crude oil price. Both spot and futures 

gas prices exhibit large volatilities with prices reaching the high of $14 to $15 followed 

soon by the low of $2 to $3. Such a high price volatility warrantees active price risk 

management. CDD, HDD and storage show strong seasonal variations while oil price 

shows a generally upward trend with a major break occurred in 2008/2009. 

[Insert Figure 1 Here] 

We performed the Augmented Dickey–Fuller (ADF) and the Phillips–Perron (PP) 

unit root tests as well as the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) stationarity 

test (Table 2). The results reported in Panel A of Table 2 indicate that all the 

log-differences of the series were stationary at the 1% level while the log of the spot 

price was also stationary. We further tested the conditional heteroscedasticity in the 

second moment of the price series. The Engle (1982) test for conditional 

heteroscedasticity (Panel B of Table 2) shows that the ARCH effects were significantly 
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present in all the return series, which provides support to our decision to use the 

GARCH-based approach to examine the return and volatility transmission between the 

spot and futures natural gas prices in the U.S. market.  

[Insert Table 2 Here] 

Table 3 shows the conventional Granger causality test to obtain the information 

about how spot and futures prices were linked to each other. Panel A in table 3 shows 

that both the weekly spot and futures prices were Granger causing each other. Panel B 

also suggests that the bi-directional causality existed when we use log daily price 

differences or gas price returns. However, from both Panel A and Panel B, the null 

hypothesis of no futures price causing spot price can be rejected at a much higher 

marginal significance level than the null hypothesis of spot price causing futures price 

with respective to both the weekly and daily data. This result appears to be consistent 

with Chiou-Wei et al (2014) which found that futures price moved ahead of spot price 

when they used daily prices. This is mainly due to different price settings of spot and 

futures contracts for the same day. Spot transactions are usually done early in a day due 

to gas nomination for transportation for the next day and futures trading ends the trading 

day in the afternoon. Therefore, spot prices in the second day usually reacts to 

information already contained in the previous day’s futures price. We also picked up this 

pattern in the weekly data, suggesting that the nomination and scheduling of the spot 

transactions could be one of the explanations of futures leading spot slightly ahead of 

spot leading futures.   

[Insert Table 3 Here] 

5.2 Return and Volatility Spillovers between Spot and Futures Market for Natural Gas 

The selection of the optimal lag of the VAR system is presented in Table 4. We 

present five statistical tests and three tests (AIC, SC, and HQ) suggested a similar lag 
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order. Therefore, we chose 3 as the optimal numbers of lags for the VAR system of spot 

and futures prices with respect to both of weekly data (Panel A) and daily data (Panel 

B). 

[Insert Table 4 Here] 

5.2.1 Estimations of DCC-MGARCH Models 

Table 5 shows the estimation results of the ECM-DCC-MGARCH models with 

different specifications. Several results stand out. First, there were significant lagged 

price effect for both the spot and futures returns as many of the lagged futures and spot 

returns coefficient estimates are statistically significant. This result holds true regardless 

of the model specification. This suggests that both the futures and spot prices could be 

predictable to a certain degree. In addition, the one-period lagged futures price 

influenced futures prices positively (positive feedback effect of own price) while the 

spot price was negatively affected by own lagged prices (negative feedback effect). The 

negative feedback effect of the spot price on its own was rather long at all three lags. 

[Insert Table 5 Here] 

In addition, we do observe some statistically significant cross-price effect. Lagged 

futures price had a positive effect on spot price while lagged spot price had relatively 

weaker effects on futures price. Combining the own-price and cross-price effect, it 

appears that the futures price was mainly affected by own lagged values while the spot 

price was influenced more by the futures price rather than by own lagged price. This 

estimation result is consistent across all five models. 

The lagged storage surprise effect on both spot and futures prices is significantly 

negative across various model specifications, indicating that a higher than expected 

storages decreased gas prices, which is consistent with our expectation and earlier 

results by Linn and Zhu (2004) and Chiou-Wei et al (2014). Linn and Zhu (2004) found 
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the negative storage effect in the 5-minute data and Chiou-Wei et al (2014) found the 

same effect using the daily data. In this study, we used the weekly and daily data; and 

the effect is still detectable with high significances in the weekly data. This piece of 

evidence simply points to the extreme importance of the storage in influencing natural 

gas prices. 

Oil price had a significantly positive effect on gas price returns, as indicated by 

Model 5 estimation results. This result holds true for both the spot and futures prices 

from both the daily and weekly data. The positive connection between oil and gas prices 

is consistent with the general findings in the literature such as Brown and Yucel (2008).  

Weather variables, especially the temperature related variables such as CDD and 

HDD, had some significant effects on gas prices. Both CDD and HDD significantly 

increased gas demand as hypothesized. Relative humidity had a less significant effect 

on gas prices. In the weekly data estimation, none of the RH variable showed up to be 

statistically significant. In the daily data estimation, however, RH had a significantly 

positive effect on gas consumption, suggesting that RH is more relevant on the daily 

basis rather than at the weekly basis.  

Macroeconomic news variables had some significant effects on gas price returns 

though the effects are mixed from the weekly data estimation, but the effects were 

universally positive from the daily data estimation.  

The conditional variance-covariance estimation results presented in Table 5 show 

that all models had significant GARCH effect, which is not surprising. The economic 

fundamental variables had significant volatility effects on the gas price variables. Most 

of the volatility effects of the fundamental variables were positive with the exception of 

gas storage surprises whose effect turned out to be negative.  

Our estimation results across different model specifications appear to be robust. 
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The significance and estimated signs of various variables remain generally consistent 

across model specifications and data frequency. The estimation results using the weekly 

data corroborate well with the estimation results of the daily data. 

 

5.3 Time-Varying Hedge Ratio (HR) and Multiple Structural Breaks in Trend 

Figure 2 plots the estimated optimal hedge ratio using different specifications 

based on DCC-MGARCH (Figures 2-A to 2-E corresponding to Models [1] to [5]) 

estimated using the weekly data. It is obvious that the estimated HRs fluctuated much 

more significantly than the rolling OLS HRs which serve as the benchmark. Even 

though the average values of the DCC-MGARCH HRs are close to 1.0, frequently the 

HRs deviate significantly from the value of 1.0. Occasionally the values can reach as 

high as 1.5 or higher and as low as 0.5 or lower. These values are possible as sometimes 

spot and futures prices can deviate significantly from each other, and the number of 

futures contracts to be used to achieve minimum variation in the value of the portfolio 

can change significantly.   

[Insert Figure 2 Here] 

Figure 3 shows the HR estimation results using daily data. The general 

conclusions are similar to those estimated from the weekly price data except that there 

are larger spikes in the HR of the daily price estimations. This can be explained on the 

basis that daily price fluctuations are larger compared to the weekly average price 

fluctuation as the weekly average price has eliminated more extreme daily price 

movement. 

[Insert Figure 3 Here] 

Table 6 provides the descriptive statistics of the time-varying hedge ratio, and the 

results of statistical tests for zero mean, median, and variance. We find that the average 
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hedge ratio from DCC-MGARCH ranges from 0.9244 (Model [1]) to 0.9905 (Model [5]) 

for weekly data. However, the average hedge ratios for daily data are significantly 

smaller, ranging from 0.3312 (Model [1]) to 0.5253 (model [5]). This suggests much 

smaller co-movement in the daily prices of spot and futures compared to the weekly 

prices. The unconditional volatility as measured by the standard deviation ranges from 

0.2145 (for Model [1]) to 0.4256 (for Model [5]) for the weekly data but 0.2131 (Model 

[1]) to 0.2653 (Model [5]) for daily data. The skewness coefficients are positive for all 

hedge ratio series. The kurtosis coefficients are above three for all the estimated hedge 

ratio series. These findings indicate that the probability distributions of the hedge ratio 

are skewed and leptokurtic. The formal tests reject the normality assumption. Finally, 

we find statistical significance in zero mean, median and variance tests for all 

specifications.  

[Insert Table 6] 

The results presented in Table 7 suggest that there were structural breaks in the 

hedge ratio series estimated with different model specifications. The null hypothesis of 

no structural breaks against the alternative of an unknown number of structural breaks is 

clearly rejected. All test statistics are above their critical values at common levels of 

significance. As proposed by Bai and Perron (2003), we used the Bayesian information 

criterion (BIC) to condense the information given by the tests. This criterion is most 

appropriate in our case, as structural breaks have to be expected a priori. In Panel A, 

both the LWZ (modified Schwarz criterion) and BIC suggest one or two breaks in the 

series of estimated hedge ratio based on Models [1] – [5]. The estimation results from 

the daily data are similar to those from the weekly data even though the detected break 

dates do not match those from the weekly data exactly. To some extent, this large 

number of structural breaks may be due to the high level of sensitivity that we chose for 
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our tests. We set the trimming parameter to 10% which results in a minimum length of a 

segment of 725 days and allows for 5 structural breaks detected in every single series at 

the maximum. Our results suggest that it is very important to account for the 

time-varying nature of the hedge ratio and it is also imperative to recognize the 

structural breaks in the hedge ratio in order to hedge effectively. 

[Insert Table 7 Here] 

5.4 Hedging Effectiveness (HE) 

Our key findings are shown in Table 8 which shows the hedging effectiveness 

based on variance reduction of hedged portfolios compared to the unhedged positions 

under different model specifications. The dynamic hedging strategy using 

DCC-MGARCH models without incorporating any market fundamentals did work for 

natural gas market with more than 60% of variance reductions for the weekly data. For 

the daily data, accounting for time-varying nature of the hedging ratio would lead to 

33% reduction in the variance of the portfolio. As more market fundamental variables 

are included in the model (in the order of Model [2] to Model [5]), the hedging 

effectiveness increases. Incorporating only the storage shock variable in both the mean 

and variance equations would raise the HE from 65% to 73% for the weekly data and 

from 34% to 38% for the daily data. However, when all the variables are considered, the 

HE increases to 85% for the weekly data and 59% for the daily data. For both the 

weekly and daily data cases, incorporating economic variables increases the HE by 

more than 20%. 

To summarize, incorporating available economic information and engaging in 

dynamic hedging help to reduce risk. This is evident from the comparison of the HEs 

generated with models that incorporated fundamental variables to the HEs generated 

with models that employed only the lagged price variables. 
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[Insert Table 8 Here] 

6. Conclusions 

Price risks faced by investors of financial and consumption assets can be large. 

This is particular true for energy market participants including investors, producers and 

consumers. How to effectively manage risk is always an important issue. 

This paper studies the effect of incorporating fundamental factors in modeling 

commodity prices with the focus on the U.S. natural gas market. The price and volatility 

of natural gas have been modeled using various fundamental factors such storage news, 

oil price, weather information, and macroeconomic news announcement. Our modeling 

results suggest that incorporating these factors improves the model performance and 

leads to better estimation of the optimal hedge ratio.  

Our estimated results also reveal that the optimal hedge ratio fluctuated quite 

significantly during the sample period. In addition, there were structural breaks in the 

estimated hedge ratios. As the result, hedging against price risks in the energy market in 

general, natural gas market in particular, requires dynamic hedging of the portfolio. Our 

analysis of hedge effectiveness using various models suggests that hedging using a 

constant hedge ratio can lead to subpar hedging performances and dynamic hedging 

using time-varying hedge ratios under the guidance of economic theory can improve 

hedging effectiveness quite significantly. Our modeling results suggest that the variance 

of the hedged assets can be more than 65% lower than the variance of the unhedged 

portfolio from the weekly data and more than 33% lower from the daily data.  

Even though the hedging effectiveness can be improved quite significantly by 

utilizing dynamic hedging and incorporating all economic information, we do note that 

there could be some practical issues related to the implementation of such approaches. 

One such issue is the cost of dynamic hedging resulted in from constant rebalancing of 
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the portfolio, which is expected to increase the transaction cost quite rapidly. The 

second issue is that to effectively model the price and volatility of asset prices, one 

needs to have reliable information about fundamentals. In the natural gas market, one 

needs to have reliable information on the fundamental market variables including at 

least the variables modeled in this paper. In the practice, the successful modeling of the 

price and volatility requires accurate forecasts of these variables. While the accurate 

forecasts can be hard to come by, it is beneficial for market participants to actively seek 

out this information.  
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A. Weekly spot price of natural gas  B. Weekly futures price of natural gas 

 

 

 

C. Daily spot price of natural gas  D. Daily futures price of natural gas 

 

 

 
E. Weekly storages of natural gas  F. Weekly relative humidity 

Figure 1 

Time-series plot of key variables 
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G. Weekly Heating Degree Day (HDD)  H. Weekly Cooling Degree Day (CDD) 

 

 

 
I. Weekly WTI crude oil price  J. Daily WTI crude oil price 

Figure 1. Time series plot of key variables (Continued) 
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A. Base model conditional (Model 1) 

 
B. Base model with storages in conditional mean and variance equation (Model 2) 

 
C. Base model with storages and weather factors in conditional mean and variance equation (Model 3) 

 
D. Base model with storages, weather factors and macroeconomic news in conditional mean and variance equation 

(Model 4) 

 
E. Base model with spot WTI crude oil return, storages, weather factors and macroeconomic news in conditional 

mean and variance equation (Model 5) 

 

Figure 2 

Weekly time-series hedging ratio estimated by DCC-MGARCH under different specifications 
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A. Base model (Model 1) 

 

B. Base model with storages, weather factors and macroeconomic news in conditional mean equation (Model 2) 

 

C. Base model with storages and weather factors in conditional mean and variance equation (Model 3) 

 

D. Base model with storages, weather factors and macroeconomic news in conditional mean and variance equation 

(Model 4) 

 

E. Base model with spot WTI crude oil return, storages, weather factors and macroeconomic news in conditional mean 

and variance equation (Model 5) 

 

Figure 3 

Daily time-series hedging ratio estimated by DCC-MGARCH under different specifications 
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Table 1 

Announcements of macroeconomic news 

Time New item 
Observation 

(actual value) 
Consensus Forecast Shock S.D 

08:30 Retail sales (ARS) 244 122 18 0.155 

08:30 Business inventories (BI) 243 122 168 0.421 

08:30 Change in nonfarm payrolls (CNP) 283 142 39 0.145 

08:30 Housing starts (HS) 310 155 142 0.413 

09:15 Industrial production (IP) 266 133 132 0.335 

10:00 Construction spending (CS) 248 124 123 0.375 

Total 1,594 
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Table 2 

Unit root tests and conditional heteroscedasticity test 

Panel A. Unit root tests 

Variables 
Weekly data 

 
Daily data 

ADF PP KPSS ADF PP KPSS 

Spot Price of Natural Gas 
-3.463** 

(0.044) 

-3.230* 

(0.079) 

0.535 
a
 

[0.463] 
 

-3.502*** 

(0.008) 

-3.649*** 

(0.005) 

1.169
 a 

[0.463] 

Futures Price of Natural Gas 
-2.986 

(0.137) 

-2.973 

(0.141) 

0.554
 a
 

[0.463] 
 

-2.321 

(0.165) 

-2.276 

(0.180) 

1.372 

[0.463] 

Log-Difference in Spot Price 

of Natural Gas 

-23.197*** 

(0.000) 

-22.937*** 

(0.000) 

0.066 

[0.463] 
 

-47.885*** 

(0.000) 

-55.139*** 

(0.000) 

0.050 

[0.463] 

Log-Difference in Futures 

Price of Natural Gas 

-22.304*** 

(0.000) 

-22.184*** 

(0.000) 

0.067 

[0.463] 
 

-61.739*** 

(0.000) 

-61.897*** 

(0.000) 

0.233 

[0.463] 

Panel B. Conditional heteroscedasticity tests 

Variables 
Weekly data 

 
Daily data 

ARCH-LM Tests ARCH-LM Tests 

Spot Price of Natural Gas 436.780
a
 (0.000)  23,034.36

a
 (0.000) 

Futures Price of Natural Gas 1042.634
a
 (0.000)  21,936.9

a
 (0.000) 

Log-Difference in Spot Price 

of Natural Gas 
11.166

a
 (0.000)  1080.16

a
 (0.000) 

Log-Difference in Futures 

Price of Natural Gas 
5.126

a
 (0.000)  21.95

a
 (0.000) 

Note: ADF, PP and KPSS are the empirical statistics of the Augmented Dickey and Fuller (1979), and the Philips 

and Perron (1988) unit root tests, and the Kwiatkowski et al. (1992) stationarity test, respectively. 
a
 Denotes the 

rejection of the null hypotheses of normality, no autocorrelation, unit root, non-stationarity, and conditional 

homoscedasticity at the 1% significance level. Asymptotic critical values at the 1% level from 

Kwiatkowski-Phillips-Schmidt-Shin (1992) are reported in brackets. The P-values are reported in the parentheses. 
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Table 3 

Pairwise Granger causality tests – log natural gas spot and futures prices returns 

Null Hypothesis: # of Lag Observations F-Statistic (P-value) 

Panel A. Weekly data 

Level 

Spot Price does not Granger Cause Futures 

Price  
3 725 4.477*** (0.004) 

Futures Price does not Granger Cause Spot 

Price 
3 725 33.786*** (0.000) 

Log-Differences 

Log-Difference in Spot Price does not Granger 

Cause Log-Difference in Futures Price  
3 725 2.948** (0.032) 

Log-Difference in Futures Price of does not 

Granger Cause Log-Difference in Spot Price  
3 725 24.630*** (0.000) 

Panel B. Daily data 

Level 

Spot Price does not Granger Cause Futures 

Price  
3 3,494 10.366*** (0.000) 

Futures Price does not Granger Cause Spot 

Price 
3 3,494 274.762*** (0.000) 

Log-Differences 

Log-Difference in Spot Price does not Granger 

Cause Log-Difference in Futures Price  
3 3,494 12.306** (0.000) 

Log-Difference in Futures Price of does not 

Granger Cause Log-Difference in Spot Price  
3 3,494 141.189*** (0.000) 

Note: *, ** and *** indicate a rejection of the null hypothesis at the 10%, 5%, and 1% 

significance levels, respectively. 
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Table 4 

Selection criteria of optimal VAR lag order  

# of Lag LogL LR AIC SC HQ 

Panel A. Weekly data 

0 2222.981 
 

-6.187 -6.174 -6.182 

1 2257.824 69.395* -6.272 -6.234 -6.258 

2 2269.141 22.476 -6.293 -6.229 -6.268 

3* 2287.408 36.179 -6.345* -6.243* -6.298 

4 2295.837 16.646 -6.338 -6.230 -6.301* 

Panel B. Daily data 

0 -22643.9  12.9813 12.9849 12.9826 

1 -18063.3 9161.3 10.3579 10.3684 10.3616 

2 -18059 8.6128 10.3577 10.3753 10.364 

3* -17987.2 143.64* 10.3188* 10.3435* 10.3276* 

4 -17984.4 5.4785 10.3195 10.3513 10.3309 

Note: * indicates lag order selected by the criterion. 
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Table 5 

Estimation results of the VECM-DCC-MGARCH model using different specifications 

Variables 

Panel A. Weekly Data 

Model[1] 
 

Model[2] 
 

Model[3] 
 

Model[4] 
 

Model[5] 

Spot Returns Futures Returns Spot Returns Futures Returns Spot Returns Futures Returns Spot Returns Futures Returns Spot Returns Futures Returns 

Panel A.1 Conditional Mean Equation 

Constant -0.210 (-1.111) -0.108 (-0.562) 
 

-0.006 (-0.031) -0.019 (-0.099)   -0.046 (-0.258) -0.017 (-0.089)  -0.237 (-0.707) -0.419 (-1.184)  -0.003 (-0.020) -0.116 (-0.644) 
ECT t-1 0.015** (2.226) 0.010* (1.649) 

 
0.009 (1.434) 0.008 (1.249) 

 0.013* (1.949) 0.009 (1.485)  0.005 (0.849) 0.004 (0.671)  0.005 (0.761) 0.004 (0.641) 
Spot Returns t-1 -0.334*** (-4.190) -0.086 (-1.441) 

 
-0.430*** (-5.997) -0.136** (-2.313) 

 -0.157 (-0.502) 0.326 (1.015)  -0.439*** (-5.955) -0.105* (-1.716)  -0.360*** (-5.651) -0.082 (-1.622) 
Spot Returns t-2 -0.263*** (-3.749) -0.035 (-0.560) 

 
-0.037 (-0.521) 0.085 (1.289) 

 -0.283 (-0.914) -0.379 (-1.177)  -0.003 (-0.042) 0.105 (1.598)  -0.008 (-0.118) 0.073 (1.247) 
Spot Returns t-3 -0.192*** (-2.670) -0.094 (-1.607) 

 
-0.210*** (-3.259) -0.130** (-2.270) 

 -0.180*** (-2.830) -0.105* (-1.895)  -0.219*** (-3.435) -0.144** (-2.458)  -0.250*** (-4.189) -0.174*** (-3.375) 
Futures Returns t-1 0.617*** (8.191) 0.243*** (3.580) 

 
0.721*** (9.646) 0.305*** (4.271) 

 0.425 (1.333) -0.180 (-0.547)  0.755*** (9.868) 0.302*** (4.144)  0.644*** (9.560) 0.242*** (3.726) 
Futures Returns t-2 0.217*** (2.828) 0.019 (0.261) 

 
0.053 (0.694) -0.064 (-0.854) 

 0.291 (0.917) 0.400 (1.208)  -0.000 (-0.002) -0.116 (-1.510)  -0.010 (-0.141) -0.092 (-1.321) 
Futures Returnst-3 0.233*** (2.889) 0.111 (1.534) 

 
0.201*** (2.689) 0.112 (1.573) 

 0.178** (2.379) 0.089 (1.270)  0.208*** (2.877) 0.125* (1.783)  0.287*** (4.061) 0.227*** (3.524) 
ΔStorage Surprises t-1      

-42.221*** (-4.176) -7.662 (-0.802) 
 -59.277*** (-5.846) -19.993** (-2.112)  -41.077*** (-4.144) -8.164 (-0.859)  -23.197 (-1.536) -5.203 (-0.382) 

ΔSpot Oil Return t-1                     0.281*** (6.528) 0.360*** (8.042) 
Weather Factors                        
ΔCDD t-1           0.588*** (4.194) 0.262* (1.746)  0.557*** (4.049) 0.237* (1.878)  0.350** (2.331) 0.098 (0.632) 
ΔHDD t-1           0.232*** (3.957) 0.060 (1.023)  0.240*** (4.042) 0.074 (1.243)  0.151* (1.649) 0.053 (0.595) 
ΔRH t-1           0.140 (0.235) 0.201 (0.328)  0.035 (0.060) 0.076 (0.124)  0.474 (0.744) 0.388 (0.582) 
Macroeconomic News                        

ΔARS t-1                0.185 (0.179) -0.736 (-0.631)  -0.957 (-1.308) -0.329 (-0.424) 
ΔBI t-1                -25.449*** (-4.572) -11.833** (-2.410)  0.690 (1.332) 0.474 (0.925) 
ΔCNP t-1                1.578 (1.339) 2.143* (1.780)  -0.149 (-0.155) -0.798 (-0.847) 
ΔCS t-1                1.587** (2.061) 1.237 (1.525)  -1.249** (-2.197) -1.200** (-2.119) 
ΔHS t-1                2.002** (2.121) 1.868** (1.980)  -0.844 (-1.437) -0.185 (-0.317) 
ΔIP t-1                -1.699* (-1.807) -1.560* (-1.660)  1.140* (1.788) 0.571 (0.890) 

Panel A.2 Conditional Variance-Covariance Equation 

Constant 2.334*** (3.865) 1.872*** (3.374) 
 

0.929*** (3.844) 1.010*** (3.512)   0.055 (0.140) 0.678** (2.111)   0.948*** (4.020) 1.177*** (4.198)  1.660*** (3.536) 2.476*** (7.678) 
ARCH t-1 0.345*** (9.038) 0.249*** (8.179) 

 
0.316*** (8.383) 0.240*** (7.397) 

 0.288*** (8.269) 0.241*** (7.733)  0.375*** (7.937) 0.291*** (7.058)  0.364*** (7.435) 0.345*** (6.789) 
GARCH t-1 0.707*** (30.351) 0.764*** (32.607) 

 
0.671*** (23.901) 0.733*** (21.428) 

 0.721*** (32.036) 0.741*** (24.850)  0.626*** (19.090) 0.676*** (15.600)  0.552*** (14.381) 0.481*** (7.696) 
ΔStorage Surprises t-1      

-54.279*** (-9.604) -30.799*** (-4.294) 
 -29.332*** (-2.608) -7.448 (-0.703)  -57.668*** (-10.230) -34.997*** (-5.277)  -23.529** (-2.562) -10.677 (-1.255) 

ΔSpot Oil Return t-1                     -0.013*** (-3.930) -0.011*** (-4.188) 
Weather Factors                         

ΔCDD t-1           0.403* (1.727) 0.094 (0.334)  0.105 (0.342) 0.026 (0.089)  0.224** (2.006) 0.055 (0.597) 
ΔHDD t-1           0.429*** (8.523) 0.253*** (5.906)  0.465*** (4.883) 0.261*** (4.897)  0.111* (1.942) 0.122*** (2.671) 
ΔRH t-1           1.930*** (3.788) -0.552 (-0.780)  2.590** (2.497) 0.022 (0.019)  0.456 (0.971) 0.347 (0.838) 
Macroeconomic News                        

ΔARS t-1                -0.886 (-0.779) 3.074** (2.493)  0.276 (0.349) 0.463 (0.669) 
ΔBI t-1                2.490*** (3.875) 1.394** (2.420)  1.858*** (4.378) 0.345 (0.991) 
ΔCNP t-1                1.397*** (3.230) 0.902** (2.092)  1.110** (2.488) 0.532 (1.358) 
ΔCS t-1                -1.648*** (-3.693) -1.546* (-1.832)  -1.156*** (-2.901) -0.608 (-1.205) 
ΔHS t-1                2.892** (2.116) 1.757* (1.903)  -1.344** (-2.201) -1.035*** (-2.863) 
ΔIP t-1                -0.145 (-0.316) -0.352 (-0.961)  3.968*** (2.887) 2.112*** (3.591) 

ρ(Spot, Futures) 0.899*** (65.483) 
   

0.911*** (80.748) 
   0.911*** (83.729)    0.913*** (74.593)    0.921*** (83.900)   

λ1 0.194*** (7.156) 
   

0.205*** (7.509) 
   0.205*** (6.597)    0.253*** (7.914)    0.219*** (7.368)   

λ2 0.652*** (15.522) 
   

0.588*** (12.480) 
   0.570*** (10.335)    0.567*** (12.697)    0.606*** (14.014)   

HQ(20) 15.106 [0.301] 
   

20.484 [0.116] 
   

16.231 [0.237] 
   

23.108 [0.111] 
   

23.108 [0.111] 
  

HQs(20) 3.259 [0.196] 
   

11.250 [0.939] 
   

19.913 [0.463] 
   

24.077 [0.239] 
   

24.077 [0.239] 
  

Mean Absolute Error (MAE) 1.995 
    

3.043 
    

3.042 
    

3.040 
    

3.040 
   

Theil Inequality Coefficient 0.986 
    

0.940 
    

0.939 
    

0.928 
    

0.928 
   

Observations 717 
    

717 
    

717 
    

717 
    717    

Log-likelihood -4,111 
    

-4,042 
    -4,088     -4,017     -3,936    

χ2 194***   
   

271***         301***       
 370***       

 476***       

Note: t-statistics (p-value) are reported in parentheses (brackets), respectively. *, **, *** denoted statistically significant at 10%, 5%, and 1%. ECT represents error coreection terms generated form VECM model. HQ(20) and HQs(20) are Hosking's 
multivariate portmanteau Q-statistics on the standardized residuals and the standardized squared residuals, respectively. Model [1]: Base model. Model [2]: Base model with storage, weather factors and macroeconomic news in conditional mean equation. 
Model [3]: Base model with storage and weather factors in conditional mean and variance equations. Model [4]: Base model with storage, weather factors and macroeconomic news in conditional mean and variance equations. Model [5]: Base model with 
spot WTI crude oil return, storages, weather factors and macroeconomic news in conditional mean and variance equation. 
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Table 5 (Continued) 

Variables 

Panel B. Daily Data 

Model[1] 
 

Model[2] 
 

Model[3] 
 

Model[4] 
 

Model[5] 

Spot Returns Futures Returns Spot Returns Futures Returns Spot Returns Futures Returns Spot Returns Futures Returns Spot Returns Futures Returns 

Panel B.1 Conditional Mean Equation 

Constant -0.093** (-2.309) -0.038 (-0.927)  -0.113*** (-2.727) -0.051 (-1.259)  -0.175*** (-3.594) -0.085* (-1.653)  -0.196*** (-3.644) -0.065 (-1.139)  -0.106*** (-2.582) -0.038 (-0.976) 
ECT t-1 -1.152*** (-10.812) -0.400*** (-6.202)  1.105*** (10.485) -0.439*** (-6.685)  1.030*** (10.007) -0.450*** (-6.819)  1.040*** (10.114) -0.446*** (-6.752)  1.097*** (10.603) -0.427*** (-6.873) 
Spot Returns t-1 -0.173*** (-8.902) -0.013 (-1.014)  -0.160*** (-8.026) -0.007 (-0.550)  -0.166*** (-8.544) -0.007 (-0.571)  -0.166*** (-8.517) -0.006 (-0.509)  -0.151*** (-7.506) -0.011 (-0.878) 
Spot Returns t-2 -0.163*** (-8.384) -0.004 (-0.361)  -0.160*** (-8.237) -0.004 (-0.290)  -0.151*** (-7.902) -0.002 (-0.183)  -0.151*** (-7.873) -0.002 (-0.139)  -0.157*** (-7.775) -0.003 (-0.289) 
Spot Returns t-3 -0.058*** (-4.043) 0.001 (0.114)  -0.051*** (-3.560) 0.003 (0.295)  -0.036** (-2.538) 0.004 (0.375)  -0.038*** (-2.701) 0.003 (0.318)  -0.063*** (-4.510) 0.003 (0.327) 
Futures Returns t-1 0.757*** (42.133) -0.041** (-2.277)  0.751*** (41.653) -0.042** (-2.310)  0.735*** (42.184) -0.046** (-2.536)  0.735*** (42.115) -0.047** (-2.572)  0.759*** (40.980) -0.019 (-1.097) 
Futures Returns t-2 0.107*** (4.412) 0.002 (0.104)  0.094*** (3.820) -0.003 (-0.167)  0.101*** (4.262) -0.003 (-0.140)  0.105*** (4.397) -0.003 (-0.138)  0.084*** (3.469) -0.008 (-0.381) 
Futures Returns t-3 0.157*** (6.716) -0.001 (-0.035)  0.158*** (6.785) -0.002 (-0.074)  0.139*** (6.138) -0.004 (-0.201)  0.137*** (6.056) -0.005 (-0.242)  0.153*** (6.488) -0.013 (-0.666) 
ΔStorage Surprises t-1      -3.476* (-1.733) -5.679*** (-2.888)  -8.592*** (-4.016) -8.834*** (-3.584)  -8.904*** (-4.109) -8.610*** (-3.457)  -3.588* (-1.924) -6.768*** (-3.738) 
ΔSpot Oil Return t-1      

               0.109*** (6.516) 0.322*** (18.447) 
Weather Factors                        
ΔCDD t-1      

     0.062*** (2.884) 0.069*** (2.898)  0.063*** (2.954) 0.069*** (2.901)  0.028 (1.193) 0.037 (1.632) 
ΔHDD t-1      

     2.353*** (3.846) 1.383** (2.161)  2.560*** (4.059) 1.295** (1.964)  3.061*** (5.480) 1.076** (2.231) 
ΔRH t-1      

     0.214*** (7.284) 0.058* (1.899)  0.217*** (7.273) 0.063** (2.038)  0.122*** (4.092) 0.013 (0.446) 
Macroeconomic News                         

ΔARS t-1      
          0.404 (0.796) 0.173 (0.268)  0.403 (0.761) 1.291** (2.038) 

ΔBI t-1      
          0.536* (1.695) 0.067 (0.196)  1.254*** (3.335) 0.419 (1.231) 

ΔCNP t-1      
          0.413 (0.765) 0.097 (0.170)  0.079 (0.126) 0.509 (0.838) 

ΔCS t-1      
          0.819** (2.284) 0.235 (0.595)  0.038 (0.085) 0.067 (0.169) 

ΔHS t-1      
          0.239 (1.310) 0.002 (0.011)  1.180*** (2.941) 0.591 (1.359) 

ΔIP t-1      
          0.112 (0.555) 0.017 (0.080)  0.322 (0.715) 0.787 (1.633) 

Panel B.2 Conditional Variance-Covariance Equation 

Constant 0.123*** (4.360) 1.872*** (3.374)  -1.818*** (-7.401) -2.671*** (-8.152)  -1.955*** (-7.107) -2.716*** (-8.216)  -1.959*** (-7.063) -2.718*** (-8.209)  -3.143*** (-7.052) -2.861*** (-3.762) 
ARCH t-1 0.179*** (11.778) 0.249*** (8.179)  0.205*** (11.929) 0.052*** (7.789)  0.211*** (12.435) 0.051*** (7.735)  0.213*** (12.542) 0.051*** (7.707)  0.243*** (12.920) 0.066*** (7.613) 
GARCH t-1 0.838*** (70.104) 0.764*** (32.607)  0.806*** (54.444) 0.939*** (119.553)  0.803*** (55.949) 0.940*** (121.710)  0.801*** (55.603) 0.940*** (121.605)  0.750*** (44.869) 0.918*** (72.558) 
ΔStorage Surprises t-1      -31.694*** (-13.524) -24.229*** (-3.423)  -32.620*** (-12.453) -24.593*** (-3.461)  -32.747*** (-12.457) -24.572*** (-3.453)  -72.467*** (-10.779) 14.466 (1.479) 
ΔSpot Oil Return t-1      

               0.234*** (5.246) 0.221*** (3.926) 
Weather Factors                         

ΔCDD t-1      
     0.105*** (3.155) 0.093 (0.900)  0.020 (0.687) 0.047 (0.845)  0.121*** (3.710) 0.110 (1.148) 

ΔHDD t-1      
     0.287 (0.159) 1.840 (0.391)  11.729*** (7.186) 3.041 (0.697)  0.902 (0.636) 3.534 (0.684) 

ΔRH t-1      
     0.885*** (6.042) 0.617* (1.844)  1.072*** (7.700) 0.524* (1.795)  0.713*** (5.835) 0.185 (0.453) 

Macroeconomic News                         

ΔARS t-1      
          0.189*** (11.681) 0.052*** (7.746)  3.548 (1.060) 2.424 (1.204) 

ΔBI t-1      
          0.824*** (61.819) 0.939*** (115.954)  5.244** (2.336) 3.130*** (2.839) 

ΔCNP t-1      
          3.538 (0.692) 2.328 (1.142)  0.978 (0.135) 2.983** (2.004) 

ΔCS t-1      
          5.831* (1.686) 2.999*** (2.809)  0.271 (0.835) 0.161 (0.270) 

ΔHS t-1      
          1.387 (0.219) 2.917** (2.020)  1.970 (0.226) 1.415 (0.707) 

ΔIP t-1      
          0.265 (0.920) 0.159 (0.255)  1.477 (0.174) 1.658 (0.792) 

ρ(Spot, Futures) 0.365*** (20.796)    0.363*** (20.462)    0.365*** (21.366)    0.364*** (19.898)    0.344*** (17.052)   
λ1 0.012 (1.633)    0.015** (2.002)    0.015* (1.866)    0.020** (2.483)    0.019*** (2.853)   
λ2 0.897*** (15.751)    0.890*** (17.160)    0.871*** (13.495)    0.884*** (19.983)    0.919*** (30.725)   

HQ(20) 18.778 [0.224]    
32.051 [0.157] 

   
18.752 [0.343] 

   
18.645 [0.230] 

   
35.921 [0.211] 

  
HQs(20) 19.507 [0.192]    

22.326 [0.133] 
   

10.770 [0.292] 
   

8.156 [0.227] 
   

9.140 [0.243] 
  

Mean Absolute Error (MAE) 1.993 
 

   
1.994 

    
1.995 

    
1.993 

    
1.990 

   
Theil Inequality Coefficient 0.967 

 
   

0.966 
    

0.965 
    

0.967 
    

0.940 
   

Observations 3,490 
 

   3,490     3,490     3,490     3,490    
Log-likelihood -16,758 

 
   -16,720     -16,642     -16,256     -16,981    

χ2 2,359***      2,301***         2,624***       
 2,574***       

 2,759***       

Note: t-statistics (p-value) are reported in parentheses (brackets), respectively. *, **, *** denoted statistically significant at 10%, 5%, and 1%. ECT represents error coreection terms generated form VECM model. HQ(20) and HQs(20) are Hosking's multivariate portmanteau 
Q-statistics on the standardized residuals and the standardized squared residuals, respectively. Model [1]: Base model. Model [2]: Base model with storage, weather factors and macroeconomic news in conditional mean equation. Model [3]: Base model with storage and 
weather factors in conditional mean and variance equations. Model [4]: Base model with storage, weather factors and macroeconomic news in conditional mean and variance equations. Model [5]: Base model with spot WTI crude oil return, storages, weather factors and 
macroeconomic news in conditional mean and variance equation. 
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Table 6 

Descriptive statistics on time-varying hedge ratios estimated by different specifications 

Statistics 
Model Specifications 

 
Test in 

[1] [2] [3] [4] [5] Mean Median Variance 

Panel A. Weekly data 

Mean 0.9244 0.9551 0.9624 0.9855 0.9905  2.190* 13.298*** 17.835*** 

Median 0.8951 0.9162 0.9167 0.9459 0.9517  (0.087) (0.004) (0.000) 

Maximum 2.1337 3.3109 3.3445 3.3400 3.3464     

Minimum 0.2936 -0.5561 -0.5438 -0.6203 -0.5207     

Std. Dev. 0.2145 0.3073 0.3156 0.3187 0.4256     

Skewness 1.2795 1.1436 1.2524 1.0275 1.389     

Kurtosis 7.2396 11.3548 10.6330 10.2618 12.831     

Jarque-Bera 732*** 1,235 1,923 1,697 2,767     

(Probability) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)     

Observations 725 725 725 725 725     

Panel B. Daily data 

Mean 0.3312  0.4183  0.4239  0.4812  0.5253   33.854*** 24.526 *** 9.030*** 

Median 0.2779  0.3578  0.3657  0.4157  0.4589   (0.000) (0.000) (0.000) 

Maximum 3.2342  6.1894  6.5881  6.1336  6.2706      

Minimum 0.0052  -0.2221  0.0292  -0.0126  -0.1945      

Std. Dev. 0.2131  0.2473  0.2559  0.2526  0.2653      

Skewness 5.7015  7.1745  8.1027  6.9447  6.8442      

Kurtosis 58.9737  114.6683  135.6946  104.3247  97.8112      

Jarque-Bera 473*** 841*** 596*** 519*** 633***     

(Probability) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)     

Observations 3,494 3,494 3,494 3,494 3,494     

Note: p-value are reported in parentheses. *** denoted statistically significant at 1%. Model [1]: Base model. 

Model [2]: Base model with storage, weather factors and macroeconomic news in conditional mean equation. 

Model [3]: Base model with storage and weather factors in conditional mean and variance equations. Model [4]: 

Base model with storage, weather factors and macroeconomic news in conditional mean and variance equations. 

Model [5]: Base model with spot WTI crude oil return, storages, weather factors and macroeconomic news in 

conditional mean and variance equation. 
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Table 7 

Structural breaks in the time-series hedging ratios using Bai and Perron (2003) approach 

Panel A. Weekly data 

Estimation 

models 

Specifications: z=1, q=1, p=0, h=72.5, M=5 

Test statistics 
SupFt(1) SupFt (2) SupFt (3) SupFt (4) SupFt (5) UDmax WDmax 

Model [1] 14.287 24.397 18.319 15.307 10.721 24.397 28.992 

Model [2] 10.006 13.315 9.808 8.555 6.355 13.315 15.823 

Model [3] 6.411 10.432 8.077 7.212 5.787 10.432 12.700 

Model [4] 6.266 8.959 6.932 6.299 5.018 8.959 11.012 

Model [5] 10.006 13.315 9.808 8.555 6.355 13.315 15.823 

 SupFt(1|0) SupFt (2|1) SupFt (3|2) SupFt (4|3) SupFt (5|4)  

Model [1] 14.287 33.850 5.832 5.895 0.000  

Model [2] 10.006 16.308 2.722 2.885 0.000  

Model [3] 6.411 14.271 3.249 4.500 0.000  

Model [4] 6.266 5.851 2.782 4.054 0.000  

Model [5] 10.006 16.308 2.722 2.885 0.000  

 Number of breaks selected 

 Sequential LWZ (Modified Schwarz criterion) BIC (Bayesian information criterion) 

Model [1] 1 1 1 

Model [2] 2 2 2 

Model [3] 2 2 2 

Model [4] 2 2 2 

Model [5] 2 2 2 

 Break dates according to BIC 

 Date [1]  Date [2]     

Model [1] 2/17/2006       

Model [2] 2/14/2003  2/17/2006     

Model [3] 2/14/2003  2/17/2006     

Model [4] 9/27/2002  2/17/2006     

Model [5] 11/08/2002  11/11/2005     

 Mean hedging ratio according to subsamples proposed by break dates given above 

 Subsample 1 (t-statistics) Subsample 2 (t-statistics) Subsample 3 (t-statistics) 

Model [1] 0.959***(79.050) 0.898***(27.440)  

Model [2] 0.931***(37.130) 1.057***(32.770) 0.924***(70.370) 

Model [3] 0.934***(36.290) 1.053***(31.610) 0.937***(69.210) 

Model [4] 0.946***(33.900) 1.067***(36.350) 0.961***(68.700) 

Model [5] 0.955***(35.520) 1.086***(37.330) 0.960***(73.240) 

Note: Based on Bai and Perron (2003) the Bayesian information criterion (BIC) has to be preferred under the presence of 

multiple breaks, the modified Schwarz criterion (LWZ) by contrast under H0: No breaks. M: Maximum number of breaks 

allowed. h: Minimum length of a segment (0.1*sample size). z: Matrix of regressors whose coefficients are allowed to 

change. q: Number of regressors z. x: Matrix of regressors with coefficients fixed across regimes. p: Number of 

regressors x. SupFt(l): F statistic for H0: No structural breaks vs. H1: Arbitrary number of breaks. SupFt(l+1|l): Sequential 

test, H0: No breaks vs. H1: l+1 breaks. UDmax: Double maximum statistic (max1≤l≤MsupFT(l)). WDmax: Weighted double 

maximum statistic (max1≤l≤M wlsupFT(l)). Newey-West (1987) corrected t-statistics appear in parentheses. *, **, *** 

denoted statistically significant at 10%, 5%, and 1%, respectively. Model [1]: Base model. Model [2]: Base model with 

storage, weather factors and macroeconomic news in conditional mean equation. Model [3]: Base model with storage 

and weather factors in conditional mean and variance equations. Model [4]: Base model with storage, weather factors 

and macroeconomic news in conditional mean and variance equations. [Model 5]: Base model with spot WTI crude oil 

return, storages, weather factors and macroeconomic news in conditional mean and variance equation. 
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Table 7 (continued) 

Panel B. Daily data 

Estimation 

models 

Specifications: z=1, q=1, p=0, h=72.5, M=5 

Test statistics 
SupFt(1) SupFt (2) SupFt (3) SupFt (4) SupFt (5) UDmax WDmax 

Model [1] 151.806 97.980 83.540 64.916 42.811 151.806 151.806 

Model [2] 122.566 80.615 69.568 53.862 36.808 122.566 122.566 

Model [3] 99.814 68.685 59.898 46.615 32.080 99.814 99.814 

Model [4] 136.163 79.544 70.194 53.788 36.286 136.163 136.163 

Model [5] 137.796 88.375 75.238 58.434 38.594 137.796 137.796 

 SupFt(1|0) SupFt (2|1) SupFt (3|2) SupFt (4|3) SupFt (5|4)  

Model [1] 151.806 31.160 26.368 5.444 0.000  

Model [2] 122.566 25.888 29.351 2.624 0.000  

Model [3] 99.814 19.873 30.516 4.354 0.000  

Model [4] 136.163 22.101 39.396 4.071 0.000  

Model [5] 137.796 27.251 23.882 5.290 0.000  

 Number of breaks selected 

 Sequential LWZ (Modified Schwarz criterion) BIC (Bayesian information criterion) 

Model [1] 1 1 1 

Model [2] 2 2 2 

Model [3] 2 2 2 

Model [4] 2 2 2 

Model [5] 2 2 2 

 Break dates according to BIC 

 Date [1]  Date [2]     

Model [1] 2/2/2010       

Model [2] 12/31/2002  2/27/2008     

Model [3] 12/31/2002  2/7/2008     

Model [4] 1/24/2003  2/1/2010     

Model [5] 1/24/2003  2/6/2008     

 Mean hedging ratio according to subsamples proposed by break dates given above 

 Subsample 1 (t-statistics) Subsample 2 (t-statistics) Subsample 3 (t-statistics) 

Model [1] 0.358***(85.960) 0.261***(22.220)  

Model [2] 0.409***(44.910) 0.483***(51.630) 0.366***(87.560) 

Model [3] 0.416***(44.160) 0.487***(48.630) 0.374***(92.250) 

Model [4] 0.476***(51.790) 0.527***(69.130) 0.403***(129.040) 

Model [5] 0.516***(53.500) 0.575***(71.470) 0.443***(134.830) 

Note: Based on Bai and Perron (2003) the Bayesian information criterion (BIC) has to be preferred under the presence of 

multiple breaks, the modified Schwarz criterion (LWZ) by contrast under H0: No breaks. M: Maximum number of breaks 

allowed. h: Minimum length of a segment (0.1*sample size). z: Matrix of regressors whose coefficients are allowed to 

change. q: Number of regressors z. x: Matrix of regressors with coefficients fixed across regimes. p: Number of 

regressors x. SupFt(l): F statistic for H0: No structural breaks vs. H1: Arbitrary number of breaks. SupFt(l+1|l): Sequential 

test, H0: No breaks vs. H1: l+1 breaks. UDmax: Double maximum statistic (max1≤l≤MsupFT(l)). WDmax: Weighted double 

maximum statistic (max1≤l≤M wlsupFT(l)). Newey-West (1987) corrected t-statistics appear in parentheses. *, **, *** 

denoted statistically significant at 10%, 5%, and 1%, respectively. Model [1]: Base model. Model [2]: Base model with 

storage, weather factors and macroeconomic news in conditional mean equation. Model [3]: Base model with storage 

and weather factors in conditional mean and variance equations. Model [4]: Base model with storage, weather factors 

and macroeconomic news in conditional mean and variance equations. Model [5]: Base model with spot WTI crude oil 

return, storages, weather factors and macroeconomic news in conditional mean and variance equation. 
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Table 8 

Hedging effectiveness under different model specifications 

Model 

Specifications 

Mean of Hedge 

Ratio 

Variance of Unhedged 

Portfolio (%) 

Variance of Hedge 

Portfolio (%) 

HE (Hedging 

Effectiveness)(%) 

Panel A. Weekly data 

Model [1] 0.9244 0.5665 0.1977 65.1039  

Model [2] 0.9551 0.5665 0.1478 73.9121  

Model [3] 0.9624 0.5665 0.1194 78.9160  

Model [4] 0.9855 0.5665 0.1041 81.6262  

Model [5] 0.9905 0.5665 0.0862 84.7795  

Panel B. Daily data 

Model [1] 0.3312 0.5210 0.3465 33.5012  

Model [2] 0.4183 0.5210 0.3224 38.1260  

Model [3] 0.4239 0.5210 0.2951 43.3663  

Model [4] 0.4812 0.5210 0.2388 54.1635  

Model [5] 0.5253 0.5210 0.2141 58.8996  

Note: Model [1]: Base model. Model [2]: Base model with storage, weather factors and 

macroeconomic news in conditional mean equation. Model [3]: Base model with storage and 

weather factors in conditional mean and variance equations. Model [4]: Base model with storage, 

weather factors and macroeconomic news in conditional mean and variance equations. Model [5]: 

Base model with spot WTI crude oil return, storages, weather factors and macroeconomic news in 

conditional mean and variance equation. 

 

 

 


