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Abstract

This paper examines theoretically and empirically a two-factor stochastic volatility 
model. We adopt an affine two-factor stochastic volatility model, where aggregate 
market volatility is decomposed into two independent factors; a persistent factor and a 
transient factor. We introduce a pricing kernel that links the physical and risk neutral 
distributions, where investor’s equity risk preference is distinguished from her vari-
ance risk preference. Using simultaneous data from the S&P 500 index and options 
markets, we find a consistent set of parameters that characterizes the index dynamics 
under physical and risk-neutral distributions. We show that the proposed decompo-
sition of variance factors can be characterized by a different persistence and different 
sensitivity of the variance factors to the volatility shocks. We obtain negative prices for 
both variance factors, implying that investors are willing to pay for insurance against 
increases in volatility risk, even if those increases have little persistence. We also obtain 
negative correlations between shocks to the market returns and each volatility factor, 
where correlation is less significant in transient factor and therefore has a less signifi-
cant effect on the index skewness. Our empirical results indicate that unlike stochastic 
volatility model, join restrictions do not lead to the poor performance of two-factor 
SV model, measured by Vega-weighted root mean squared errors.

JEL Classi ication: G10; G12; G13
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1 Introduction

The dynamics of index return volatility and their role in pricing options have had a long
history following the classic early works by Wiggins (1987) and Heston (1993), that recog-
nized the volatility’s stochastic nature and managed to derive closed form expressions for the
resulting European options. Related early contributions were also by Duan (1995), Duan
et al. (1999), and Heston and Nandi (2000) under GARCH return dynamics, with option
prices derived either by closed form expressions or numerical methods. More recent studies,
however, have pointed out that a single factor stochastic volatility (SV) or GARCH is not
sufficient to simultaneously fit the persistence of volatility and the volatility of volatility.
Two volatility factors, one with persistent dynamics and one with transient dynamics, are
needed to model return volatility dynamics in both the underlying (P ) and the risk neutral
(Q) measures for the key S&P 500 index and its options.1 Methodologically, these studies
either fit numerically the two volatility factor return dynamics to both return and option
data, or limit themselves only to one of the two returns, most often the option-implied ones.

This paper examines index option pricing under two SV factors, in an integrated theoretical
and empirical framework, by reconciling the two markets where the underlying and the
options are traded through a pricing kernel that contains the index return and the two
volatility factors. Aggregate market volatility is decomposed into a more persistent volatility
component, which has nearly a unit root, and a transitory volatility component, which has
a more rapid time decay. We adopt an affine two-factor SV process for the underlying index
returns and introduce an admissible pricing kernel to find the risk-neutral returns dynamic
and to price European options.2 We also introduce an associated component volatility model
(bivariate GARCH model) and derive the corresponding pricing kernel linking the P - and
Q-distributions under these dynamics. Although our study is not the first one to examine
multifactor SV and GARCH models, it is to our knowledge the only one to present consistent
P - and Q-parameter estimates both theoretically and empirically. Our paper has the same
relationship to the cited bivariate SV and GARCH option pricing models as the Christoffersen
et al. (2013) study had to the earlier Heston (1993) and Heston and Nandi (2000) models.

In our empirical work, we apply our theoretically derived two-factor SV and GARCH models
to the S&P 500 index estimating the joint dynamics of returns and variances under the P
and Q measures.3 First, we derive two vectors of daily spot variances using the Particle

1 See, for instance, Bollerslev and Zhou (2002), Alizadeh et al. (2002), and Chernov et al. (2003) for the
P -returns and Bates (2000), Christoffersen et al. (2008), and Christoffersen et al. (2009) for the option-based
Q-distribution.

2 Note that the extracted risk-neutral dynamics are not restricted to the introduced admissible pricing
kernel, where investor’s variance risk preference is distinguished from her equity risk preference. In other
words, we can obtain the risk-neutral dynamics without completely characterizing the equilibrium in econ-
omy. To do so, we specify a class of Radon-Nikodym derivatives and derive restrictions that ensure the
existence of equivalent martingale measure, which makes the discounted stock price process a martingale.

3 Joint estimation appropriately weights returns and option data and simultaneously address the model’s
ability to fit the time-series of returns and cross-section of option prices. The importance of joint estimation
of the structural parameters of the underlying returns and volatility dynamics has been addressed in Bates
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Filter (PF) method4 and extend the conventional filtration procedure of similar studies by
a novel procedure for the separation of the two variance components’ paths. We then use
a likelihood-based loss function that combines both underlying and option-based data to
obtain a consistent set of structural parameters for the two-factor models. Our estimations
are based on a 15-year data set that contains daily observations and the entire cross section
of option prices, unlike earlier studies that limited themselves to a very short time series and
weekly or monthly options in order to minimize the computational burden.5 To the best of
our knowledge, this is the first study that estimates consistent P - and Q-parameters from
underlying index return and option data and reports variance risk premiums for a persistent
and a transient component.

We find that one of the volatility factors is highly persistent (persistent component) while
the immediate impact of volatility shocks on the other volatility factor is larger but short-
lived (transient component). We also find the same level of persistence in the transient
and persistent variance components when we only use option data, which is consistent with
previous studies in option market. The unconditional transient and persistent variances
are consistent with the average filtered spot transient and persistent variance components.
Consistent with our intuition, we observe that the transient volatility component is much
more volatile than the persistent volatility component. The same result holds when we use
only option data.

We also find negative prices for both variance components, λ1 = −1.0798 and λ2 = −1.0355,
implying that investors are willing to pay for an insurance against an increase in volatility
risk, even if that increase has little persistence. To the best of our knowledge, this finding
is novel for the option market, since none of the previous two-factor SV studies reports the
price of the variance risk factors. It is, however, consistent with the findings in Adrian and
Rosenberg (2008), who find negative and significant prices for both short-run and long-run
volatility components in stock return data.6

We obtain a negative correlation between shocks to the market returns and each variance
component, implying that both components are important in capturing the so-called leverage
effect. Nonetheless, the point estimate of the transient correlation parameter (ρ2 = −0.2173)
is smaller in absolute value that that of the persistent one (ρ1 = −0.6918), implying a weaker
impact on the volatility smirk, on the return skewness and kurtosis, and on the the price
of out-of-money put options. We observe the same pattern between correlation parameters
when we estimate the model only with option data.

In the remainder of this section we complete the literature review. Extensive empirical
evidence supports the presence of two volatility components in the dynamics of the market

(1996), Chernov and Ghysels (2000), Pan (2002), Eraker (2004), and Broadie et al. (2007) among others.
4 For the application of PF in estimating the model parameters see Gordon et al. (1993), Johannes et al.

(2009), Johannes and Polson (2009), Christoffersen et al. (2010), and Boloorforoosh (2014).
5 See, for instance, Pan (2002) and Eraker (2004).
6 Note that Adrian and Rosenberg (2008) introduce a discrete-time model where short-run and long-

run volatility components are distinguished by construction whereas in our models we do not impose any
restrictions on the variance dynamics other than variance shocks are independent.
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returns. For, the P -distribution the relative performance of the two-factor SV structure com-
pared to its one-factor counterpart in the dynamics of the exchange rate and equity returns
has been examined in Bollerslev and Zhou (2002), Alizadeh et al. (2002), and Chernov et al.
(2003).7 These studies document that one-factor models are incapable of simultaneously
fitting the persistence of volatility and the volatility of volatility. For instance, Chernov
et al. (2003) suggest that the addition of a second volatility factor breaks the link between
tail thickness and volatility persistence, leading to a significant improvement in capturing
the return dynamics in affine models. They also find that when the second volatility factor
is allowed to have its own correlation with returns, the correlation parameters can take on
both positive and negative values, contrary to the findings in single factor volatility models,
where the correlation parameter is always negative.

Similar considerations also hold for the Q-distribution. Earlier studies in the option markets
such as Bakshi et al. (1997), Bates (2000), Jones (2003), and Egloff et al. (2010) have noted
the problems with single factor SV models in the modeling of the volatility smirk.8 Other
empirical studies such as Derman (1999) note that the shape of the volatility smirk can
be either flat or steep at a given volatility level, but stochastic volatility models cannot
accommodate both at the same time for a given parametrization.9 This problem in one
factor SV models is more serious when estimating the model parameters using multiple cross-
sections of options data, since the correlation between stock returns and variance is constant
across all cross-sections of option contracts regardless of the level and shape of the volatility.
Multiple SV models, on the other hand, can better capture the time-varying nature of the
smirk as the correlation between stock returns and total volatility is stochastic.10 Moreover,
the conditional skewness and kurtosis are more flexible for given levels of conditional variance.

Inconsistencies in the joint estimation of the SV model are illustrated by Broadie et al. (2007),
who note the failure of SV model to reconcile the P - and Q-estimates of certain structural
parameters of the SV model (correlation coefficient and volatility of volatility) and conclude
that the SV model is basically misspecified. They also show that the joint restrictions on the
returns and volatility dynamics under the P and Q measures lead to the poor performance
of the SV model, which cannot generate sufficient amounts of conditional skewness and
kurtosis. Christoffersen et al. (2008) introduced a two-component GARCH model, which
can generate more flexible skewness and volatility of volatility dynamics in capturing the
dynamics of the S&P 500 index returns and in pricing European S&P 500 call options.

7 There is also evidence that multifactor volatility model is needed to capture the term structure of the
interest rates. See Dai and Singleton (2000, 2002) among others.

8 Egloff et al. (2010, Page 1289) investigate the volatility term structure effect by incorporating mean
reversion in variance dynamics. They show that the upward sloping autocorrelation term structure of variance
swap rate quotes points to the existence of multiple variance risk factors and is evidence for non-zero market
prices for variance risk factors.

9 See Derman (1999).
10 Christoffersen et al. (2009, Equation 15) show that the correlation between returns and total volatility

in a two-factor SV model is stochastic. Such models, therefore, have more flexibility to fit the term structure
of the volatility and to control the level and the slope of volatility smirk in cross-sections of option prices.
See, for instance, Egloff et al. (2010) and Mencía and Sentana (2013).
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Nonetheless, the absence of an explicit pricing kernel linking the P - and Q-distributions in
that study necessitated either the use of an arbitrary price of volatility risk or the estimation
of the risk neutral parameters by relying on the Q-distribution only. Similarly, Christoffersen
et al. (2009) use only the Q-distribution to further explore multiple variance factors and find
that it can generate stochastic correlation between total instantaneous volatility and stock
returns. Our own empirical analysis confirms the advantages of the two-factor SV and
GARCH models by using our theoretically integrated P and Q dynamics and finds that the
joint restrictions do not lead to the poor performance of the two-factor SV model.

This paper proceeds as follows. Section 2 presents the theoretical model for pricing index
options under SV and GARCH. Section 3 contains the description of the data set. In section
4, we discuss the methodology for estimation of the structural parameters that characterize
the dynamics of index return and variance components under both P - and Q- distributions.
Section 5 presents the estimation results. Section 6 investigates the performance of the
model and reports in-sample goodness-of-fit statistics. Section 7 examines the stability of
the model and measures the out-of-sample performance of the model. Section 8 concludes.
The appendix provides the proofs of the most important theoretical results.

2 Model Setup

We start by a multiple-factor stochastic volatility dynamics that governs the market index
returns under the P -distributions and then introduce a pricing kernel that links the P -
dynamics to their risk-neutral counterparts by imposing appropriate martingale’s restrictions
on pricing kernel. We complete the index model by deriving a closed-form pricing equation
for index options. We then introduce a GARCH model under physical distribution which
is similar to our multiple-factor stochastic volatility model with two independent volatility
dynamics. The risk neutral GARCH dynamics is also defined using a discrete-time analog
of our continuous-time pricing kernel.

2.1 The Multifactor Stochastic Volatility Model

We assume the following two-factor stochastic volatility process governing the dynamics of
the market index returns and variance under the physical distributions.

dSt/St = (r + µ1v1,t + µ2v2,t)dt+
√
v1,tdz1,t +

√
v2,tdz2,t

dv1,t = κ1(θ1 − v1,t)dt+ σ1
√
v1,tdw1,t

dv2,t = κ2(θ2 − v2,t)dt+ σ2
√
v2,tdw2,t

(1)

where, as in Christoffersen et al. (2009) we assume the stochastic structure (2).
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dw1,t · dz1,t = ρ1dt, −1≤ρ1≤ +1

dw2,t · dz2,t = ρ2dt, −1≤ρ2≤ +1

dw1,t · dw2,t = 0

ρ21 + ρ22 ≤ +1

(2)

As in Heston (1993), θ1 and θ2 are unconditional average variance components, κ1 and κ2
capture the speed of mean reversion in each variance components, and σ1 and σ2 measure the
volatility of variance components. The market equity risk premiums are denoted by µ1v1,t
and µ2v2,t. Following Bollerslev and Zhou (2006) we expect that µ1 and µ2 measure the
persistent and transient “continuous-time” volatility feedback effects or risk-return trade-
offs. The instantaneous correlation between shocks to the market returns and shocks to the
persistent variance component is measured by ρ1 and the instantaneous correlations between
market returns and the transient variance component is given by ρ2. As in Bollerslev and
Zhou (2006), we expect that ρ1 and ρ2 account for persistent and transient “continuous-time”
leverage (asymmetry) effect.

Note that (2) implies that the total return variance and the correlation between return and
total variance are as follows.

Vart[dSt/St] = v1,tdt+ v2,tdt = vtdt

Corrt[dSt/St, dVt] =
ρ1σ1v1,t + ρ2σ2v2,t√

σ2
1v1,t + σ2

2v2,t
√
v1,t + v2,t

dt (3)

We may then prove the following result.

Proposition 1. The market index has the following dynamics under the risk-neutral measure:

dSt/St = rdt+
√
v1,tdz̃1,t +

√
v2,tdz̃2,t ,

dv1,t = κ̃1(θ̃1 − v1,t)dt+ σ1
√
v1,tdw̃1,t ,

dv2,t = κ̃2(θ̃2 − v2,t)dt+ σ2
√
v2,tdw̃2,t ,

(4)

where, κ̃1 = κ1 + λ1, κ̃2 = κ2 + λ2, θ̃1 = k1θ1
k1+λ1

, θ̃2 = k2θ2
k2+λ2

. The market prices of risk factors
are

ψ1,t =
σ1µ1 − ρ1λ1
σ1(1− ρ21)

√
v1,t , ψ2,t =

σ2µ2 − ρ2λ2
σ2(1− ρ22)

√
v2,t ,

ψ3,t =
λ1 − ρ1σ1µ1

σ1(1− ρ21)

√
v1,t , ψ4,t =

λ2 − ρ2σ2µ2

σ2(1− ρ22)

√
v2,t .

(5)

One admissible pricing kernel that links the physical dynamics in (1) to the risk-neutral
dynamics in (4) takes the following exponential affine form.
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Mt

M0

=
(St

S0

)φ
exp

[
δt+ η1

∫ t

0

v1,sds+ η2

∫ t

0

v2,sds+ ζ1(v1,t − v1,0) + ζ2(v2,t − v2,0)
]

(6)

As in Christoffersen et al. (2013), {δ, η1, η2} governs the time-preferences, while {φ, ζ1, ζ2}
governs the respected risk aversion to the index and variance risk factors, all of which are
defined in the appendix.

Proof. See Appendix A.

We note that the introduced nonlinear log pricing kernel in (6) is one way of “completing
the market” and linking P - to Q- dynamics, where ζ1, ζ2 capture the nonlinearity of the log
pricing kernel.11 Transforming the physical dynamics in (1) into the risk neutral dynamics
in (4) can also be done by assuming the following standard stochastic discount factor and
without explicit assumptions about the investor’s variance preferences. The proof of such a
transformation can be found in Appendix B.

dMt

Mt

= −rdt− ψ′
tdWt , (7)

where ψt ≡ [ψ1,t, ψ2,t, ψ3,t, ψ4,t] is the vector of market price of risk factors and Wt ≡
[z1,t, z2,t, w1,t, w2,t] is the vector of innovations in return and variance.

To embed the options market data into the estimation of structural parameters, we determine
a closed-from expression for the price of the European call options, with strike price K and
time to maturity τ , by inverting the conditional characteristic function of the log spot index
prices, xt = ln(St).

Ct(St, K, v1,t, v2,t, τ) = StP1 −Ke−rτP2 , (8)

where,

P1 =
1

2
+

1

π

1

Sterτ

∫ ∞

0

<
[e−iφ lnK f̃(v1,t, v2,t, τ, φ− i)

iφ

]
dφ ,

P2 =
1

2
+

1

π

∫ ∞

0

<
[e−iφ lnK f̃(v1,t, v2,t, τ, φ)

iφ

]
dφ ,

(9)

and where the risk-neutral conditional characteristic function of the natural logarithm of the
index price at expiration, xt+τ , is

11 Note also that ζ1, ζ2 affect a wedge between physical and risk neutral structural parameters of volatility
dynamics.
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f̃(v1,t, v2,t, τ, φ) ≡ EQ
t [exp(iφxt+τ ) | xt] . (10)

Since the two-factor SV model in (4) is an affine process, following Heston (1993), the
conditional risk-neutral characteristic function in (10) has the following affine exponential
form.12

f̃(v1,t, v2,t, τ, φ) = exp
[
iφxt+ iφrτ +A1(τ, φ) + A2(τ, φ) +B1(τ, φ)v1,t +B2(τ, φ)v2,t

]
, (11)

where13 for every j = {1, 2}

Aj(τ, φ) =
κ̃j θ̃j
σ2
j

[
(κ̃j − ρjσjiφ− dj)τ − 2 ln

[1− cje
−djτ

1− cj

]]
Bj =

κ̃j − ρjσjiφ− dj
σ2
j

[ 1− e−djτ

1− cje−djτ

]
cj =

κ̃j − ρjσjiφ− dj
κ̃j − ρjσjiφ+ dj

dj =
√

(κ̃j − ρjσjiφ)2 + σ2
jφ(φ+ i) .

(12)

2.2 The Component Volatility Model (Bivariate GARCH)

Since the seminal papers of Engle (1982) and Bollerslev (1986) several ARCH-type mod-
els have been proposed where the main difference i s i n p arametrization o f t he conditional 
variance and asymmetry effect. E xtensive e mpirical e vidence e xamines t he i mportance of 
conditional heteroskedasticity and variance mean reversion in modeling index returns and 
index options.

Note that in ARCH-type models volatility is considered as a deterministic process, whereas 
in case of SV models volatility has a fully stochastic nature.

Engle and Lee (1999) introduce a component extension to the simple GARCH(1,1) model 
where the unconditional mean of the conditional variance process is time-varying and pro-
vide empirical evidence that the component model provides a very good fit to return data. 
Christoffersen et al. (2008) consider an affine version of component volatility model of Engle

12 Note that the conditional risk-neutral characteristic function of the natural logarithm of return, 
xt+τ − xt = ln(St+τ /St), can be defined with the same expression as (11) but without the first component, 
iφxt.

13 Following Duffie et  al . (2 000), th e co efficients A1, A2, B1, and B2 a re the solu tions of a  sy st em of 
Riccati equations subject to appropriate boundary conditions. For the ease of computation, we modify these 
solutions based on the little Heston trap formulation of Albrecher et al. (2006).
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and Lee (1999) by generalizing the affine Gaussian GARCH(1,1) Heston and Nandi (2000)
as follows.

Rt ≡ ln(
St

St−1

) = r + (µ− 1

2
)ht +

√
htzt

ht = qt + βh(ht−1 − qt−1) + αh

(
(zt−1 − γh

√
ht−1)

2 − (1 + γ2hqt−1)
)

qt = wq + βqqt−1 + αq

(
(zt−1 − 1)2 − 2γq

√
ht−1zt−1)

2
)
,

(13)

where ht is referred to as the total conditional variance, qt as the long-run component of
conditional variance, and therefore ht − qt as the short-run component conditional variance
with zero unconditional mean. This volatility component model is relatively simple since
both of the volatility components, ht and qt, are characterized by nonlinear functions of a
single innovation zt−1. A richer model of return volatility includes multiple innovations.14

We introduce a component volatility model (bivariate GARCH model) which is similar to our
two-factor stochastic volatility model in the sense that volatility components are independent.
We extend the Heston and Nandi (2000) affine Gaussian GARCH(1,1) model that yields a
closed-form option valuation formula similar to our SV model. Note that several studies
investigate the limits of GARCH models as the time intervals become small and find that for
a given GARCH model, there could be a several continuous-time limits and several GARCH
models could converge to a continuous-time stochastic volatility model.15 A discrete time
analog of our SV model under the physical measure can be defined as follows.

Rt ≡ ln(
St

St−1

) = r + (µ1 −
1

2
)h1,t + (µ2 −

1

2
)h2,t + ε1,t + ε2,t

h1,t = w1 + β1h1,t−1 + α1(z1,t−1 − γ1
√
h1,t−1)

2

h2,t = w2 + β2h2,t−1 + α2(z2,t−1 − γ2
√
h2,t−1)

2

(14)

where r is the daily continuously compounded interest rate, ε1,t =
√
h1,tz1,t, ε2,t =

√
h2,tz2,t,

and z1,t and z2,t are standard normal distributions. h1,t+h2,t is the conditional variance of the
log return in period t. The autoregressive parameters β1 and β2 determine the persistence
of the each variance component and the innovation parameters α1 and α2 determine the
variance of variance and thus kurtosis in each variance component. γ1 and γ2 capture the
so-called leverage effect, asymmetry in the response of each volatility component to positive
versus negative return shocks. Note that in our specification, the conditional mean return is

Et−1[St/St−1] = Et−1[exp(Rt)] = exp(r + µ1h1,t + µ2h2,t) . (15)

14 See for instance Feunou and Tédongap (2012), Christoffersen et al. (2010), and Khrapov and Renault
(2016).

15 See Corradi (2000).
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The expected future variance is a linear function of current variance and long-run average
(unconditional) variance.

Et−1[ht+1] = Et−1[h1,t+1 + h2,t+1]

= (β1 + α1γ
2
1)h1,t + (1− β1 − α1γ

2
1) E[h1,t]

+ (β2 + α2γ
2
2)h2,t + (1− β2 − α2γ

2
2) E[h2,t]

(16)

where E[h1,t] ≡ σ2
1 = (w1+α1)/(1−β1−α1γ

2
1) and E[h2,t] ≡ σ2

2 = (w2+α2)/(1−β2−α2γ
2
2)

are long-run average (unconditional) component variance. We refer to (β1 + α1γ
2
1) and

(β2 + α2γ
2
2) as the persistence of the variance component. A high level of persistence (close

to one) implies that shocks that push variance away from its long-run average will persist
for a long time. The conditional variance of ht+1 is also linear in past variance.

Vart−1[ht+1] = Vart−1[h1,t+1 + h2,t+1] = 2α2
1 + 4α2

1γ
2
1h1,t + 2α2

2 + 4α2
2γ

2
2h2,t (17)

The conditional covariance between stock returns and variance is

Covt−1(Rt, ht+1) = Covt−1(Rt, h1,t+1 + h2,t+1) = −2α1γ1h1,t − 2α2γ2h2,t . (18)

We transform the physical stock price process (14) to the corresponding risk neutral process
using a discrete-time analog of the continuous-time pricing kernel (6).

Mt

M0

=
(St

S0

)φ
exp

[
δt+ η1

t∑
s=1

h1,s + η2

t∑
s=1

h2,s + ζ1(h1,t+1 − h1,1) + ζ2(h2,t+1 − h2,1)
]

(19)

where parameters {δ, η1, η2} govern the time-preference, and parameters {φ, ζ1, ζ2} govern
the respected risk aversion to equity risk and to variance risk factors. Note that ζ1 and ζ2
capture the non-linearity of the log pricing kernel.

Proposition 2. Given the physical GARCH process (14) and the pricing kernel (19), the
risk neutral innovations may be characterized by the following transformations.

z∗1,t =
√

1− 2α1ζ1
(
z1,t + (µ1 +

α1ζ1
1− 2α1ζ1

)
√
h1,t

)
z∗2,t =

√
1− 2α2ζ2

(
z2,t + (µ2 +

α2ζ2
1− 2α2ζ2

)
√
h2,t

) (20)

Hence, the corresponding risk-neutral GARCH process may be characterized as follows
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Rt ≡ ln(
St

St−1

) = r − 1

2
h∗1,t −

1

2
h∗2,t +

√
h∗1,tz

∗
1,t +

√
h∗2,tz

∗
2,t

h∗1,t = w∗
1 + β1h

∗
1,t−1 + α∗

1(z
∗
1,t−1 − γ∗1

√
h∗1,t−1)

2

h∗2,t = w∗
2 + β2h

∗
2,t−1 + α∗

2(z
∗
2,t−1 − γ∗2

√
h∗2,t−1)

2

(21)

where conditional variance under physical and risk-neutral distributions are linked as

h∗1,t =
h1,t

1− 2α1ζ1
, h∗2,t =

h2,t
1− 2α2ζ2

(22)

and for every j = {1, 2} the parameters mapping may be given by

α∗
j =

αj

(1− 2αjζj)2

w∗
j =

wj

1− 2αjζj

γ∗j = (µj −
1

2
+ γj)(1− 2αjζj) +

1

2

(23)

Proof. The proof of this proposition is very similar to its continuous-time counterpart. We
show that the GARCH model under physical measure (14) is linked to the GARCH model
under risk-neutral measure (21) with the proposed pricing kernel (19) by specifying a set of
sufficient conditions (20), (22), and (23). We first impose Euler equation for the risk-free
asset and subsequently impose Euler equation for the underlying asset to find this parameters
mapping. See Appendix C.

Note that linking P - to Q- dynamics can also be done through a log-linear pricing kernel.
But, log-linear pricing kernel within GARCH models does not incorporate directly the effect
of variance premium on risk neutralization. However, variance dependent pricing kernel
allows to directly incorporate the effect of variance premium as −2αζ in risk neutralization.
A negative variance premium yields higher level of risk-neutral variances compared to the
physical variances as h∗1,t exceeds h1,t and h∗2,t exceeds h2,t. Negative variance premium also
yields higher level of risk neutral innovation parameters α∗

1 and α∗
2 and hence increases the

risk neutral variance persistence, (β1 + α∗
1γ

∗
1
2) and (β2 + α∗

2γ
∗
2
2).

3 Data

We obtain daily prices of S&P 500 index options from the OptionMetrics volatility surface
data set, which is based on the midpoint of bid-ask quotes. Our sample of S&P 500 index
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options is from January 4, 1996 through December 29, 2011. We follow the data cleaning
routine commonly used in the empirical option pricing literature: we remove options with
implied volatility less than 5% and greater than 150%; we also follow the filtering rules in
Bakshi et al. (1997) to remove options that violate various no-arbitrage conditions. We focus
on out-of-the-money (OTM) options with maturity up to and including one-year and with
10% moneyness (spot price over strike price).16,17 Our option-based optimization function
minimizes the squared deviations between model and market option prices and therefore may
put greater weight on expensive in-the-money (ITM) and long-maturity options.18 Moreover,
ITM S&P 500 call options are less liquid than OTM call options. To prevent such biases
in our optimization, we discard all ITM options and use OTM S&P 500 put options and
convert them into ITM call options. After cleaning, we have 345,710 S&P 500 index option
quotes together with daily underlying returns. This is the dataset that we use to filter daily
spot variances and to estimate a set of structural parameters.

Table (1) presents the descriptive statistics of the call option contracts in our sample sorted
by moneyness (stock price over strike price) and day-to-maturity (DTM). Note that we
focus on OTM option contracts, which means S/K is below 1 for OTM call contracts. After
cleaning, we have 208,098 out-of-the-money call option contracts with an average day-to-
maturity of 143 days, an average price of $35.59, an average implied volatility of 20.64%,
and an average delta of 0.37. Table (2) reports the descriptive statistics of the put option
contracts in our sample sorted by moneyness and day-to-maturity. After cleaning, we use
137,612 out-of-the-money (S/K is above 1) put option contracts with an average day-to-
maturity of 136 days, an average price of $32.11, an average implied volatility of 24.34%,
and an average delta of -0.29. Note that Panel C in Tables (1) and (2) reflect the well-known
volatility smirk in index options, as implied volatility is larger for OTM put options (Table
(2), Panel C) compared to the OTM call options (Table (1), Panel C).

[Table (1) about here]

[Table (2) about here]

The data for daily index level, index return, and the dividend yields are from CRSP. In
our analysis we first adjust daily index level with dividend yields and then compute the
option prices using the dividends adjusted returns. Risk-free interest rates for all maturities

16 This range of moneyness implies that we keep OTM call options with moneyness less than 1.1 and OTM
put options with moneyness greater than 0.9.

17 As discussed in previous section, multiple-factor SV models could better capture the slope and the
level of smirk compare to single-factor SV models. Therefore, unlike similar analysis, we undertake a more
extensive calibration exercise by incorporating the information content of options on longer maturity horizons
and wider moneyness ranges. For instance, Ait-Sahalia and Kimmel (2007, Section 7) only include short-
maturity at-the-money S&P 500 Index Options; Eraker (2004) use 3,270 call options contracts recorded over
1,006 trading days; Jones (2003) models are estimated using a sample of 3537 S&P 100 index options from
January 1986 to June 2000.

18 See Huang and Wu (2004).
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are estimated by linear interpolation between the closest zero-coupon rates using the Zero
Coupon Yield Curve data from OptionMetrics.

4 Estimation Methodology

To estimate the parameters of two-factor stochastic volatility model of the index we follow
the literature on the estimation of stochastic volatility models, where the main challenge is
the estimation of unobserved latent volatilities. There are several approaches to estimate
stochastic volatility model. Our own approach combines the information from underlying
index and option markets to impose consistency between structural parameters under P and
Q distributions, known as joint estimation. Therefore, we use a likelihood function that
contains a return-based component and an option-based component, as in Santa-Clara and
Yan (2010) and Christoffersen et al. (2013).19 Here we do a joint-estimation by filtering
the two vectors of daily spot variances, {v1,t, v2,t}, and simultaneously estimating a set of
structural parameters of the dynamics of index returns and variances, including the market
price of each variance component, Θ ≡ {κ1, κ2, θ1, θ2, σ1, σ2, ρ1, ρ2, λ1, λ2}. Note that joint
estimation allow us to have reliable prices of variance risk factors, as we can get a consistent
set of structural parameters between the P and Q distributions.

Since the market variances are unobserved state variables, we first extract daily instantaneous
persistent and transient variance components using the Particle Filter (PF) method. This
optimal filtering methodology provides a tool for learning about unobserved shocks and
states from discretely observed prices generated by continuous-time models.20 Although we
generally follow the conventional filtration procedure in the literature, we provide a novel
approach to the challenge of filtering the two separate variance paths. Our proposed solution
is not trivial and to the best of our knowledge is novel and constitutes a methodological
contribution to the option pricing literature.

4.1 The Return Based Likelihood Function

To define the return-based likelihood function and filter spot variances, we start by discretiz-
ing the returns dynamics (1). Applying Ito’s lemma to equation (1), gives the dynamics of
logarithm of stock prices as follows.

19 Consistency can also be imposed through moment-based and simulation-based methods; see Ait-Sahalia
and Kimmel (2007), Eraker (2004), Jones (2003), Chernov and Ghysels (2000), and Pan (2002). Other
approaches use only option-based data to estimate only the Q distribution; Bakshi et al. (1997), Bates
(2000), Huang and Wu (2004), and Christoffersen et al. (2009).

20 For the application of PF in estimating the model parameters see Gordon et al. (1993), Johannes et al.
(2009), Johannes and Polson (2009), Christoffersen et al. (2010), and Boloorforoosh (2014).
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d ln(St) = (µ− 1

2
(v1,t + v2,t))dt+

√
v1,tdz1,t +

√
v2,tdz2,t ,

dv1,t = κ1(θ1 − v1,t)dt+ σ1
√
v1,tdw1,t ,

dv2,t = κ2(θ2 − v2,t)dt+ σ2
√
v2,tdw2,t ,

(24)

where, µ ≡ r + µ1v1,t + µ2v2,t. We discretize (24) using the Euler scheme.21 Equation (25)
models the relation between observed index prices and unobserved variances at time t+∆t
conditional on the time t variances.

ln(St+∆t)− ln(St) = (µ− 1

2
(v1,t + v2,t))∆t+

√
v1,t∆t z1,t+∆t +

√
v2,t∆t z2,t+∆t ,

v1,t+∆t = v1,t + κ1(θ1 − v1,t)∆t+ σ1
√
v1,t∆t w1,t+∆t ,

v2,t+∆t = v2,t + κ2(θ2 − v2,t)∆t+ σ2
√
v2,t∆t w2,t+∆t .

(25)

Brownian shocks z1,t+∆t, z2,t+∆t, w1,t+∆t, and w2,t+∆t are normal random variables with
mean zero and variance one. From the first equation in (25) we use the observed daily
index log-prices (ln(St), ln(St+∆t)) to first filter the daily return’s shocks (z1,t+∆t, z2,t+∆t)
and then, using the filtered shocks in returns and the last two equation in (25), we filter daily
spot variances (v1,t+∆t, v2,t+∆t). Note that we filter filter the summation of return shocks
z1,t+∆t+z2,t+∆t as we cannot separate the daily observed shocks into two components, z1,t+∆t

and z2,t+∆t. Therefore, we rewrite the underlying dynamics as (26), given that the return
shocks are uncorrelated and then discretize the dynamics.

d ln(St) = (µ− 1

2
(v1,t + v2,t))dt+

√
v1,t + v2,tdzt ,

dv1,t = κ1(θ1 − v1,t)dt+ σ1
√
v1,tdw1,t ,

dv2,t = κ2(θ2 − v2,t)dt+ σ2
√
v2,tdw2,t ,

(26)

with the correlation structure:

dw1,t · dzt = ρ1dt, −1≤ρ1≤ +1 ,

dw2,t · dzt = ρ2dt, −1≤ρ2≤ +1 ,

dw1,t · dw2,t = 0 .

(27)

We decompose the variance shocks into orthogonal components as in (28) and then discretize
the return dynamics (26) using the Euler scheme and shock’s decomposition (28).22

21 According to Eraker (2004) and Li et al. (2008) the discretization bias of the Euler scheme is negligible
for daily data.

22 Note that the quadratic variations of the transformed using the proposed shocks decomposition (28)
should remain the same as

√
dt.
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dw1,t = ρ1dzt +
√
1− ρ21 dB1,t

dw2,t = ρ2dzt −
ρ1ρ2√
1− ρ21

dB1,t +

√
1− ρ21 − ρ22

1− ρ21
dB2,t

〈dB1,t , dB2,t〉 = 0

(28)

ln(St+∆t)− ln(St) = (µ− 1

2
(v1,t + v2,t))∆t+

√
(v1,t + v2,t)∆t zt+∆t ,

v1,t+∆t = v1,t + κ1(θ1 − v1,t)∆t+ σ1
√
v1,t∆t w1,t+∆t ,

v2,t+∆t = v1,t + κ2(θ2 − v2,t)∆t+ σ2
√
v2,t∆t w2,t+∆t ,

(29)

where, zt+∆t, w1,t+∆t, and w2,t+∆t are all N(0, 1). Now, using daily index log-returns, we
proceed to filter the spot variances from the discretized model in (29) given the correlation
structure in (28).

We follow Pitt (2002)23 and adopt a particular implementation of the PF, which is referred
to as the sampling-importance-resampling (SIR) PF. This implementation of PF method
allow us to approximate the true density of the persistent variance component (v1,t) and the
transient variance component (v2,t) using two sets of particles that are updated recursively
through equations (29). In other words, we recursively simulate next period particles of each
variance component until we have the empirical distributions of each variance factor over
the entire sample. That is, given N particles of {vj1,t}Nj=1, N particles of {vj2,t}Nj=1, simulated
return shocks, and w1,t+∆t and w2,t+∆t we generate the next period particles, N particles
{vj1,t+∆t}Nj=1 and another N particles {vj2,t+∆t}Nj=1 at any time t+∆t.

We start by simulating return’s shocks zjt+∆t given the initial value of structural param-
eters Θ0 and current variance particles {vj1,t, v

j
2,t}, on every day t and for every particle

j = 1, 2, ..., N , according to (30). Then using (31) we simulate volatility shocks wj
1,t+∆t and

wj
1,t+∆t. Note that εj1,t+∆t and εj2,t+∆t are independent standard normal random variables.

zjt+∆t =
[
ln(St+∆t/St)− (µ− 1

2
(vj1,t + vj2,t))∆t

]
/
√
(vj1,t + vj2,t)∆t (30)

wj
1,t+∆t = ρ1z

j
t+∆t +

√
1− ρ21 ε

j
1,t+∆t

wj
2,t+∆t = ρ2z

j
t+∆t −

ρ1ρ2√
1− ρ21

εj1,t+∆t +

√
1− ρ21 − ρ22

1− ρ21
εj2,t+∆t

(31)

23 See Pitt (2002), Christoffersen et al. (2010), and Boloorforoosh (2014) for a detailed description of the
PF algorithm.

15



Then, given the simulated return’s shocks {zjt+∆t}Nj=1 and simulated shocks to the persistent
and transient variance components {wj

1,t+∆t}Nj=1 and {wj
2,t+∆t}Nj=1, we simulate next period

variance particles {ṽj1,t+∆t} and {ṽj2,t+∆t}, for every day t according to (32).

ṽj1,t+∆t = vj1,t + κ1(θ1 − v1,t)∆t+ σ1
√
v1,t∆t w1,t+∆t

ṽj2,t+∆t = vj2,t + κ2(θ2 − v2,t)∆t+ σ2
√
v2,t∆t w2,t+∆t

(32)

This is the “Sampling Step,” at the end of which we generate N possible daily values for the
persistent variance component v1,t+∆t and another N possible daily values for the transient
variance component v2,t+∆t over the entire sample. In the next step, “Importance Step,” we
evaluate importance of the sampled daily particles by assigning appropriate weights W̃ j

t+∆t

to the simulated daily particles using a multivariate normal distribution. Intuitively, these
weights, W̃ j

t+∆t, are likelihood that the next day return at t + 2∆t is generated by this set
of particles. Then, the probability of each daily particle can be defined by normalizing the
weights within each day according to (35). Note that these weights are the basis of our
likelihood function under the P distribution.

(rt+2∆t|{ṽ1,t+∆t , ṽ2,t+∆t}) ∼ N
[
(µ− 1

2
(ṽ1,t+∆t + ṽ2,t+∆t))∆t , (ṽ1,t+∆t + ṽ2,t+∆t)∆t

]
(33)

W̃ j
t+∆t =

1√
2π(ṽj1,t+∆t + ṽj2,t+∆t)∆t

· exp
(
− 1

2

(
ln(St+2∆t

St+∆t
)− (µ− 1

2
(ṽj1,t+∆t + ṽj2,t+∆t))∆t

)2
(ṽj1,t+∆t + ṽj2,t+∆t)∆t

)
(34)

W̆ j
t+∆t =

W̃ j
t+∆t∑N

j=1 W̃
j
t+∆t

(35)

Note that combining independent shocks z1,t and z2,t in (26) imposes a restriction on the
weights of daily variance particles. Therefore, the importance probability is assigned to the
summation of return’s shocks. However, estimation results show that the path of filtered
spot persistent variance component and transient variance component in our two-factor SV
model are not sensitive to this assumption. We investigate the sensitivity of our result to
this weighting assumption by estimating daily spot variances using the two-step iterative
approach, following Huang and Wu (2004). We do not observe significant difference between
filtered spot variances in two-step iterative approach and those filtered with particle filter
method.

In the last step, “Resampling Step,” we find the empirical distribution of smoothly resampled
daily particles. Following the Pitt (2002) algorithm, we draw smoothed daily particles by
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assigning uniform distributions to the raw daily particles for persistent and transient variance
components. As in the sampling step, we start from the beginning of the sample period
and recursively simulate the next period daily particles using the smoothly resampled daily
particles. The procedure continues until we have the empirical distributions of the persistent
and transient variance components over the entire sample.

Given the appropriate weights (35), we define the return-based likelihood function as follows.

LLR ∝
T∑
t=1

ln
( 1

N

N∑
j=1

W̆ j
t (Θ)

)
(36)

Our implementation uses the maximum likelihood importance sampling (MLIS) methodology
to maximize LLR criterion. Note that return-based likelihood function (36) is a function of
the structural parameters of the market model under P measure, Θ ≡ {κ1, κ2, θ1, θ2, σ1, σ1, ρ1,
ρ2}. Note also that the filtered daily spot persistent variance component vP1,t and transient
variance component vP2,t can be defined as the average of the smoothly resampled particles.

v̂P1,t =
1

N

N∑
j=1

vj1,t , v̂P2,t =
1

N

N∑
j=1

vj2,t (37)

4.2 The Option Based Likelihood Function

In order to fully specify the market dynamics under the Q measure, we need to estimate a set
of structural parameters for the market model under Q measure Θ̃ ≡ {κ1, κ2, θ1, θ2, σ1, σ1, ρ1,
ρ2, λ1, λ2}, a vector of daily spot persistent variance component v̂Q1,t, and a vector of daily spot
transient variance component v̂Q2,t. Unobserved daily spot persistent and transient variance
components under the Q measure can be filtered using the PF method. We follow the same
procedure as described in (30)-(35) for the market variances under P measure while using
structural parameters under Q measure, {κ̃1, κ̃2, θ̃1, θ̃2, σ1, σ1, ρ1, ρ2}. Note that κ̃i = κi + λi

and θ̃i = κiθi

κi+λi for i = {1, 2} according to the Proposition (1). We may obtain daily spot
persistent and transient variance components underQmeasure as the average of the smoothly
resampled daily particles for each component of market variance.

v̂Q1,t =
1

N

N∑
j=1,Q

vj1,t , v̂Q2,t =
1

N

N∑
j=1,Q

vj2,t (38)

Define the option-based likelihood function using a Vega-weighted loss function for the index
options, where Vega is the Black-Scholes sensitivity of the option price with respect to
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volatility.24 The Vega- weighted option pricing errors serves as an approximation to the
implied volatility root mean squared errors,25 which is a very popular loss function. This
Vega-weighted loss function does not require a numerical inversion of the Black and Scholes
(1973) model price and thus is helpful in large scale optimization problems such as ours.

Define normalized option pricing errors as follows.

ηn = (CO
n − CM

n (Θ̃, v̂Q1 , v̂
Q
2 , St, K, τ))/V egan , n = 1, . . . ,M (39)

where CO
n is the observed daily option prices and CM

n (Θ̃, v̂Q1 , v̂
Q
2 , St, K, τ) is the model price

of index option n, according to pricing equation (8), given the filtered spot persistent and
transient variance component and structural parameters under Q measure. M is the total
number of index option contracts and V egan is the Black and Scholes (1973) option Vega
for the option n. Then we may obtain the option-based likelihood as follows.26

LLO ∝ −1

2

(
M ln(2π) +

M∑
n=1

(
ln(s2) + η2n/s

2
))

, (40)

Combining the returns-based likelihood function (36) and the options-based likelihood func-
tion (40), we have the total likelihood function. Our implementation uses the nonlinear least
squares importance sampling (NLSIS) estimation mythology to solve the following optimiza-
tion and to estimate the structural parameters of the market model Θ̂ and ˆ̃Θ and daily spot
persistent and transient variance components.

max
Θ,Θ̃

(
LLR + LLO

)
. (41)

It is important to note that our optimization algorithm is iterative. Each iteration starts
with an initial set of structural parameters, which then will be used to filter daily spot
volatilities using the information content of index returns. Then, given spot volatilities and
observed option prices, next set of optimal parameters can be reached by minimizing the
option pricing errors over the entire sample. The procedure iterates until an optimal set of
structural parameters is reached and thereby we obtain final vectors of transient and variance
spot variance components.

24 Note that while several loss functions have been used in option pricing literature, option theory does not
suggest a specific loss function as pricing equations do not contain an error term. Therefore, the appropriate
loss functions are defined according to econometric considerations as well as convenience.

25 See for example Carr and Wu (2007) and Christoffersen et al. (2009).
26 Note that we replace s2 by its sample analog ŝ2 = 1

M

∑N
n=1 η

2
n.
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5 Parameter Estimation Results

This section reports the filtered daily spot variance components together with the structural
parameter estimates for the two-factor SV model. As described in the Data Section, we
use a long time-series of daily S&P 500 index returns and the entire cross-section of S&P
500 option prices over the period from January 4, 1996 to December 29, 2011. Given the
slow mean-reversion in the dynamic of market volatility, it is important to let the data set
span a long time series. This is in particular important in our analysis as we decompose the
overall market volatility into two independent components and would like to characterize
the dynamics of transient and persistent variance components.

In what follows we set the market risk premium µ equal to the sample average daily index
returns. We use 10% OTM index options and then put-call-parity to convert OTM puts
into ITM calls. Table (3) reports structural parameter estimates (under P measure) that
characterize the dynamics of index returns and its persistent and transient variance compo-
nents. Panel A provides result of the joint estimation; a consistent set of parameters under
P and Q measures. Therefore, the speeds of mean reversion and the unconditional mean
of the persistent and transient variance components under Q-measure are linked to their
P -measure equivalents through the market prices of the volatility risk factors (κ̃1 = κ1 + λ1,
κ̃2 = κ2 + λ2, θ̃1 = k1θ1

k1+λ1
, θ̃2 = k2θ2

k2+λ2
).27 To provide a basis for further comparison and to

examine the goodness of fit of the two-factor SV model under the joint-estimation, we also
estimate structural parameters using only option data. This result is provided in Panel C.

[Table (3) about here]

As discussed, the purpose of two-factor stochastic volatility model is to capture independent
movements in the underlying returns and option prices over time. Consistent with previous
studies in both discrete time GARCH models and continuous time stochastic volatility mod-
els, we find that one of the volatility factors is highly persistent and the other one is highly
mean-reverting. In joint-estimation, we find that the first variance component is slowly
mean-reverting with κ1 = 1.4271 under physical measure while the rate of mean reversion
in the second variance component is much higher with κ2 = 3.5874 under the physical mea-
sure.28 The point estimate of mean reversion parameters from option-based estimation is
similar to those from joint estimation. Using options data only, we find that κ̃1 = 0.2267
and κ̃2 = 2.9137, which is consistent with the speed of mean reversion from joint estimation
where under Q-measure κ̃1 = 0.3473 and κ̃2 = 2.5520.

To gain a better intuition about persistent and transient variance components we define
the half-life (T1/2) of a variance component as the number of weeks that it takes for auto-
correlation of each variance component to decay to half of its weekly autocorrelation level.

27 See Proposition (1).
28 These value correspond to a daily variance persistence of 1− 1.4271/365 = 0.9961 for the first compo-

nent and 1− 3.5874/365 = 0.9901 for the second component.
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Half-life can be computed as T1/2 = ln(φ/2)/ ln(φ) where ∆t = 7/365 and φ = exp(−κ∆t), 
denoting weekly autocorrelation of time-series each variance component. The risk neutral 
point estimate of mean reversion speed in transient variance component implies a half-life 
around 15 weeks while it is 105 weeks in the persistent variance component, almost 7 times 
larger than its transient counterpart. These values confirm t hat fi rst va riance component 
is highly persistent while the second one is highly auto-correlated and thus the immediate 
impact of variance shocks on this component is larger but short-lived.

We observe that the unconditional persistent variance under P -measure is θ1 = 0.0026, which 
is much less than the unconditional transient variance θ2 = 0.0171. The unconditional risk 
neutral persistent and transient variance components are θ̃1 = 0.0106 and θ̃2 = 0.0240 which 
correspond to 10.30% and 15.49% volatility per year. Note that the unconditional variance 
of both components are consistent with the average filtered d aily s pot p ersistent variance 
and daily spot transient variance over the entire sample.

Consistent with our intuition, we observe a wide spread between the volatility of variance 
in the persistent and transient variance components. As a result of joint estimation we find 
that σ1 = 0.0855 and σ2 = 0.3496. This result is consistent with the option-based estimation 
where we find t hat t ransient variance c omponent i s m uch m ore v olatile w ith σ 2 =  0.5678 
compared to the persistent variance component with σ1 = 0.0958. Higher level of volatility 
of variance in option-based estimation compared to the joint estimation is consistent with 
previous studies29 

We find negative prices for both variance components where λ1 = −1.0798 and λ2 = −1.0355. 
These negative prices imply that investors are willing to pay for an insurance against an in-
crease in volatility risk, even if that increase has little persistence. To the best of our 
knowledge none of the previous studies of two-factor stochastic volatility models in option 
market reports the prices of the variance risk factors as they either focused on the options 
market data or the underlying index returns data. Our negative prices for both variance 
components is consistent with asset pricing studies where the short-run and the long-run 
volatility components are priced cross-sectional asset pricing factors. Adrian and Rosenberg 
(2008) use a large cross-section of individual stocks over a very long period and find that 
prices of both short-run and long-run variance components are negative and highly signif-
icant. Therefore, our joint estimation results confirm that there is a consensus of opinions 
about the price of transient and persistent variance components among option traders and 
equity traders.

Our joint estimation results show that correlation between shocks to the index returns and 
shocks to the persistent variance component is ρ1 = −0.6918. The correlation between shocks 
to the index returns and shocks to the transient variance component is ρ2 = −0.2173. ρ1 and ρ2 
captures asymmetry in the response of persistent and transient variance components to 
positive versus negative return shocks and can be considered as the persistent and transient

29 For instance, Bates (2000) reports that option-based estimates of volatility of variance is larger than 
the one obtained from time-series-based estimates.
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continuous time leverage (asymmetry) effect. The leverage effect induces negative skewness
in index returns and thus yields a volatility smirk. Our results show that that leverage effect
is more significant in the persistent variance component compared to the transient variance
component. Therefore, persistent variance component has more significant effect on the
dynamic of index skewness. Using the data from option market only, we find that ρ1 = −0.91
and ρ1 = −0.49. The higher absolute level of option implied correlation coefficients compared
to those of joint estimation is partly related to the well documented fact that risk neutral
distribution is more negatively skewed.

Our persistent and transient correlation coefficients are almost consistent with those of pre-
vious studies in option market. The average correlation coefficients in Christoffersen et al.
(2009, Table 3) are ρ1 = −0.96 for their first variance component and ρ2 = −0.83 for their
second variance component.30 Bates (2000) also reports the structural parameter estimates
of a two-factor SV model using 1988-1993 S&P 500 futures option prices. He obtains one
set of structural parameters over the entire sample where ρ1 = −0.78 and ρ2 = −0.38. To
provide a basis for comparison, we also estimate structural parameters using options data
only over the same sample period and find ρ1 = −0.91 and ρ2 = −0.49. There are potential
explanations for differences between the reported estimates of the correlation coefficients in
these studies, not in the least, the very different data set and the very different time span.
Despite differences in the magnitude of the coefficients, the point estimates for the correla-
tion coefficients are negative for both persistent and transient variance components across
all these studies. Further, the transient variance component has lower (in absolute value)
level of correlation compared to the persistent variance components in all these studies.

To provide some empirical evidence on the difference between persistent and transient vari-
ance components over time, we plot the paths of filtered variance components. Figure (1)
plots filtered time series of risk-neutral spot variance components of S&P 500 index based on
our two-factor stochastic volatility model. Panel A shows time series of persistent variance
component and Panel B shows time series of transient variance component. The blue plots
are based on the Particle Filter method using data from both S&P 500 index and option
markets (joint estimation) and the red plots are filtered spot variances using only S&P 500
options data.

[Figure (1) about here]

Naturally, the overall patterns of persistent and transient variance components filtered from
joint estimation are consistent with those filtered from options data only. However, option
implied variance components are more volatile in the sense that when variance increases,
it tends to do more sharply compared to the one filtered based on joint estimation and
thus exhibit more spikes. In particular, this pattern in more pronounced in the transient
variance component (Panel B). The observed sharper spikes in option-based filtered variance

30 Christoffersen et al. (2009) use data on European S&P 500 call option quotes over the period 1990-2004.
Note that they estimate a separate set of structural parameters for every year in their sample.
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in the two-factor SV model is consistent with previous studies of one-factor SV model. The
smoother variance paths in joint-estimation is partly due to smooth resampling procedure in
SIR PF method and partly due to imposed consistency between parameter estimates under
P and Q measures.

To provide more intuition about the total risk neutral variance in our two-factor SV model,
Figure (2) combines persistent and transient variance components and plots time series of
total spot variance versus model-free option-implied VIX volatility index. As we expect,
the time series of option implied total spot variance is closely related to the VIX volatility
index. Further, the time series of total spot variance from joint estimation follow the same
pattern as the VIX volatility index. However, due to joint restrictions, the total spot variance
from joint estimation do not exhibits volatility spikes as large as those observed in the VIX
volatility index.

[Figure (2) about here]

6 Model Performance and In-Sample Fit

We measure the goodness of fit using the following Vega-weighted root mean squared option
pricing errors (Vega RMSE) as it is consistent with the loss function that we used in the the
optimization routine.

Vega RMSE ≡

√√√√ 1

N

M∑
n,t

(CO
n,t − CM

n,t(
ˆ̃Θ, v̂Q1,t, v̂

Q
2,t)

V egan,t

)2
, (42)

where, CO
n,t is the observed price of index option n on day t, CM

n,t is the model price for the
same index option on the same day, and V egan,t is the Black-Scholes option Vega for the
same option contract on the same day. To provide a reference for comparison, we also report
the implied volatility root mean squared error (IVRMSE).

IVRMSE ≡

√√√√ 1

N

M∑
n,t

(
IV O

n,t − IV (CM
n,t(

ˆ̃Θ, v̂Q1,t, v̂
Q
2,t))

)2
, (43)

where, IV O
n,t is the Black-Scholes implied volatility of observed option n on day t and

IV (CM
n,t(

ˆ̃Θ, v̂Q1,t, v̂
Q
2,t)) is the Black-Scholes implied volatility of the model option price for

the same index option on the same day.

Table (4) reports in-sample goodness-of-fit for the two-factor stochastic volatility model over
the entire sample, 1996 through 2011 for various maturities. Panels A and B report in-
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sample fit for calls and puts separately. The right panel reports model fit based on the
joint estimation while the left panel gives reports option-based fit. We find that the overall
Vega-weighted RMSE of joint estimation and option-based estimation are 2.56% and 0.98%
respectively. Note that the overall IVRMSE are 2.59% and 0.99% respectively, which means
that Vega-weighted RMSE could be used as an approximation of IVRMSE. Overall, our
two-factor SV model provides a better fit to call option contracts compared to put option
contracts, which is consistent with the findings in one-factor stochastic volatility model.

Note that joint estimation imposes a consistency between physical and risk neutral param-
eters which are otherwise not identical. Such a restriction is not required in option-based
estimation which could partly explain the better in-sample fit of option-based estimation
compared to joint estimation. However, the reported RMSEs confirms that unlike stochastic
volatility model, joint restrictions on return and variance dynamics under P and Q measures
does not lead to the poor performance of the two-factor SV model.

Broadie et al. (2007) refer to the inconsistency between the option-based estimates of certain
structural parameters in SV model and the parameter estimates from underlying time-series
of returns and indicate that the SV model is basically misspecified. In particular, they
state that the point estimates of the correlation coefficient and volatility of volatility are
incompatible under the P and Q measures. They also show that the joint restrictions on the
returns and volatility dynamics under the P and Q measures lead to the poor performance
of the stochastic volatility model, measured by high level of RMSE. Using S&P 500 returns
and futures options data over the period of 1987 through 2003, they find IVRMSE of 1.1%
for the option-based estimation and 8.73% while imposing time-series consistency.

They note that this poor performance of SV model indicates the inability of the SV models to
generate sufficient amounts of conditional skewness and kurtosis. This drawback in standard
SV models is mainly attributed to the fact that the estimated conditional higher moments
are highly correlated with the estimated conditional variance. By contrast, in-sample fit of
our two-factor SV model is significantly improved relative to the Heston SV model. Further,
the spread between Vega-weighted RMSE of joint estimation and option-based estimation is
reduced significantly in the two-factor SV model versus the Heston SV model. The better
performance of two-factor SV model is due to the fact that it can generate stochastic cor-
relation between volatility and stock returns. This feature enables the two-factor SV model
to better capture the conditional skewness and kurtosis.31

7 Model Stability and Out-of-Sample Performance

In order to examine the stability of the two-factor SV model of index and its out-of-sample
performance, we divide the dataset into two subsample periods. The first subsample is from
January 1996 through December 2003 and contains 169,800 daily option contracts. The

31 Previous studies show that using the option data only two factor SV model improves on the benchmark
SV model both in-sample and out-of-sample, see Christoffersen et al. (2009, Section 3.1).
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second one is from January 2004 to December 2011 which contains 175,910 daily option con-
tracts. Using both daily returns and option data we filter spot daily persistent variance path
and transient variance path and repeat the joint estimation routine within each subsample.
Table (5) reports the parameter estimates within each subsample (Panels A and B). For the
sake of comparison, Panels C and D also report the parameter estimates from option-based
estimation. The main results of the subsample tests are as follows.

First, we find that PF is a reliable filtering technique even within shorter sample period of
8 years. We observe that the time series of total spot daily variances under risk neutral
measure is largely consistent with the time series of the VIX option implied volatility index
within each subsample period.

Second, the parameter estimates within each subsample period is largely inline with those
obtained from whole-sample estimates. Moreover, within each subsample period, the joint
estimation results are also consistent with option-based parameter estimates. We find that
point estimate for the transient mean reversion parameter is higher in the second subsample
period while the opposite is true for the persistent mean reversion speed. Overall, the level
and order of parameter estimates are almost consistent within both subsample periods and
also across both estimation methods (joint estimation and option-based estimation).32

Third, the correlation coefficients between transient and persistent variance shocks and re-
turn shocks within subsample periods remain consistent with the ones estimated over the
entire sample period and those reported in previous studies33 in the sense that the magni-
tude of persistent correlation coefficient is higher than its transient counterpart. Further,
the transient and persistent remain negative with the same order within two subsample pe-
riods, confirming our previous findings that investors are willing to pay to avoid transient
and highly mean reverting volatility shocks.

Fourth, we evaluate our model fit within both subsample periods and report Vega RMSEs
and IVRMSEs separately for calls and puts and for different maturities. Entries in Table (6)
and Table (7) are inline with model fit over the entire sample period, reported in Table (4).
Our joint estimation result show a better in-sample fit over the second subsample period as
Vega RMSEs and IVRMSEs are reduced.

Last, in order to measure the out-of-sample performance of the two-factor SV model in
capturing the behaviour of S&P 500 index options, we use the parameter estimates form
the first subsample (1996-2003). Given the parameter estimates from the first subsample
period, we use Particle Filter methods to filter risk neutral spot daily persistent and transient
variance components over the second subsample period and then compute the IVRMSEs and

32 Christoffersen et al. (2009, Table 3) report annual risk neutral parameter estimates for the two-factor
SV model over the period 1990 through 2004 using data from S&P 500 index option data. Our option-based
subsample parameter estimates are mostly consistent with their average annual result except for the volatility
of volatility parameter. Apart from differences in the size of sample, this difference in point estimates may
partly be explained by the fact that the annual parameter estimates in Christoffersen et al. (2009) does not
satisfy the Feller condition. Feller (1951) shows that a square root process is strictly positive if 2κθ > σ2.

33 See Section 6.
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Vega RMSE over the second subsample (2004-2011). Table (8) reports the summary statistics
of the out-of-sample performance for different maturities and for calls and puts separately.
Comparing out-of-sample entries in (8) with those of in-sample in (7) over the same period
supports the stable performance of the two-factor SV model either in joint-estimation or in
option-based estimation.

8 Concluding Remarks

In this paper we investigate a two-factor stochastic volatility model where the aggregate
market volatility is decomposed into a persistent and a transient volatility component. We
extend the pricing kernel in Christoffersen et al. (2013), where investor’s equity preference is
distinguished from her variance preference, and introduce an admissible pricing kernel that
links the proposed market dynamics under P and Q measures. We also discuss alternative
pricing kernel for risk neutralization without separating equity and variance preferences. As
the proposed two-factor specification is affine, we obtain a closed-from pricing expression
for European call options. We use a long time-series of daily S&P 500 index returns and
the entire cross-section of S&P 500 option prices over the same time span. We filter time
series of persistent and transient spot variance components and simultaneously estimate a
set of structural parameters that characterizes the dynamics of index return and variance
components.

In empirical analysis, we show that the proposed decomposition of volatility can be character-
ized by different sensitivity of the variance components to the volatility shocks and different
persistence in variance components. Consistent with the previous studies in both discrete
time GARCH models and continuous time stochastic volatility models, we find that one of
the volatility component is highly persistent and the other one is highly mean-reverting,
where immediate impact of volatility shocks on the transient volatility component is bigger
but short-lived. We obtain negative risk premium for both variance components, implying
that investors are willing to pay for insurance against increases in volatility risk, even if
such increases have little persistence. The negative risk premiums of both variance compo-
nents are consistent with the findings in equity market where Adrian and Rosenberg (2008)
find that short-run and long-run variance components are priced factors with negative risk
premium. We also obtain negative correlations between shocks to the index returns and
shocks to the transient and persistent variance components. In particular, we observe that
the persistent correlation coefficient has more significant effect on the dynamics of index
skewness.

Our model provides good fit to observed option prices both in- and out-of-sample, measured
by Vega-weighted root mean squared option pricing errors and implied volatility root mean
squared errors. More to the point, we find that unlike stochastic volatility model, joint
restrictions on return and variance dynamics under P and Q measures does not lead to the
poor performance of our two-factor SV model.
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Appendix

A Proof of Proposition 1

We impose the condition that the product of the price of any traded asset and the pricing
kernel under physical measure is a martingale. We also impose the condition that the
discounted price of any traded asset under risk neutral measure is also a martingale. We show
that the two-factor stochastic volatility process under physical measure in (1) are linked to its
risk-neutral counterpart in (4) by the unique arbitrage free pricing kernel introduced in (6)
and deduce restrictions on the time-preference parameters, {δ, η1, η2}, risk-aversion (equity
aversion) parameter, φ, and variance preference parameters (variance aversion), {ζ1, ζ2}. We
close this proof by showing how physical Wiener processes {z1,t, z2,t, w1,t, w2,t} are linked to
risk neutral Wiener processes {z̃1,t, z̃2,t, w̃1,t, w̃2,t} by equity premium {µ1, µ2} and variance
premium {λ1, λ2} parameters.

Consider that index return under physical and risk-neutral measures follows the dynamics
(A.1) and (A.2).

dSt/St = (r + µ1v1,t + µ2v2,t)dt+
√
v1,tdz1,t +

√
v2,tdz2,t

dv1,t = κ1(θ1 − v1,t)dt+ σ1
√
v1,t(ρ1dz1,t +

√
1− ρ21dB1,t)

dv2,t = κ2(θ2 − v2,t)dt+ σ2
√
v2,t(ρ2dz2,t +

√
1− ρ22dB2,t)

(A.1)

dSt/St = rdt+
√
v1,tdz̃1,t +

√
v2,tdz̃2,t

dv1,t = κ̃1(θ̃1 − v1,t)dt+ σ1
√
v1,t(ρ1dz̃1,t +

√
1− ρ21dB̃1,t)

dv2,t = κ̃2(θ̃2 − v2,t)dt+ σ2
√
v2,t(ρ2dz̃2,t +

√
1− ρ22dB̃2,t)

(A.2)

Then, following Christoffersen et al. (2013), we show that the pricing kernel links the physical
and risk neutral measures has the following exponential affine form.

Mt

M0

=
(St

S0

)φ
exp

[
δt+ η1

∫ t

0

v1,sds+ η2

∫ t

0

v2,sds+ ζ1(v1,t − v1,0) + ζ2(v2,t − v2,0)
]

(A.3)

Note that in the sprite of Cox et al. (1985) and Heston (1993) we assume that the market
price of each variance risk factor is proportional to spot variance. Therefore, the risk neutral
process in (A.2) can be defined as follows.
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dSt/St = rdt+
√
v1,tdz̃1,t +

√
v2,tdz̃2,t

dv1,t = (κ1(θ1 − v1,t)− λ1v1)dt+ σ1
√
v1,tdw̃1,t

dv2,t = (κ2(θ2 − v2,t)− λ2v2)dt+ σ2
√
v2,tdw̃2,t

(A.4)

The log stock price process under physical measure and log pricing kernel process have the
following dynamics respectively.

d(log(St)) = (r + µ1v1,t + µ2v2,t −
1

2
v1,t −

1

2
v2,t)dt+

√
v1,tdz1,t +

√
v2,tdz2,t (A.5)

d(log(Mt)) = φ · d(log(St)) + (δ + η1v1,t + η2v2,t)dt+ ζ1dv1,t + ζ2dv2,t (A.6)

Replacing (A.5) and (A.1) into (A.6) we have:

d(log(Mt)) =
[
φ(r + µ1v1,t + µ2v2,t −

1

2
v1,t −

1

2
v2,t) + δ + η1v1,t + η2v2,t

+ ζ1κ1(θ1 − v1,t) + ζ2κ2(θ2 − v2,t)
]
dt

+
[
φ
√
v1,t + ζ1ρ1σ1

√
v1,t

]
dz1,t +

[
φ
√
v2,t + ζ2ρ2σ2

√
v2,t

]
dz2,t

+
[
ζ1σ1

√
v1,t

√
1− ρ21

]
dB1,t +

[
ζ2σ2

√
v2,t

√
1− ρ22

]
dB2,t.

(A.7)

As dMt/Mt = d(log(Mt)) +
1
2
[d(log(Mt))]

2 we have

dMt/Mt =
[
φ(r + µ1v1,t + µ2v2,t −

1

2
v1,t −

1

2
v2,t) + δ + η1v1,t + η2v2,t

+ ζ1κ1(θ1 − v1,t) + ζ2κ2(θ2 − v2,t) +
1

2
φ2(v1,t + v2,t)

+ φ(ζ1ρ1σ1v1,t + ζ2ρ2σ2v2,t) +
1

2
ζ21σ

2
1v

2
1,t +

1

2
ζ22σ

2
2v

2
2,t

]
dt

+
[
φ
√
v1,t + ζ1ρ1σ1

√
v1,t

]
dz1,t +

[
φ
√
v2,t + ζ2ρ2σ2

√
v2,t

]
dz2,t

+
[
ζ1σ1

√
v1,t

√
1− ρ21

]
dB1,t +

[
ζ2σ2

√
v2,t

√
1− ρ22

]
dB2,t.

(A.8)

The first restriction on the pricing kernel is that the product of the money market account,
Bt = B0 exp(rt), and the pricing kernel, Mt, should be a martingale under physical measure.
Therefore, E[d(Bt ·Mt)] = 0 or E[dMt/Mt] = −rdt.
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[
φ(r + µ1v1,t + µ2v2,t −

1

2
v1,t −

1

2
v2,t) + δ + η1v1,t + η2v2,t + ζ1κ1(θ1 − v1,t) + ζ2κ2(θ2 − v2,t)

+
1

2
φ2(v1,t + v2,t) + φ(ζ1ρ1σ1v1,t + ζ2ρ2σ2v2,t) +

1

2
ζ21σ

2
1v

2
1,t +

1

2
ζ22σ

2
2v

2
2,t

]
dt = −rdt

(A.9)

As (A.9) holds for v1,t = v2,t = 0,

δ = −r(φ+ 1)− ζ1κ1θ1 − ζ2κ2θ2. (A.10)

(A.9) also holds for v1,t = v2,t = ∞.

η1 = −φµ1 + 1/2φ+ ζ1κ1 − 1/2(φ2 + ζ21σ
2
1 + 2φζ1σ1ρ1)

η2 = −φµ2 + 1/2φ+ ζ2κ2 − 1/2(φ2 + ζ22σ
2
2 + 2φζ2σ2ρ2)

(A.11)

The second restriction on the pricing kernel is based on the fact that [St.Mt] is also a mar-
tingale under physical measure. Therefore, E[d(St ·Mt)] = 0. As a result of this restriction
we have

v1,t(µ1 + φ+ ζ1σ1ρ1) + v2,t(µ2 + φ+ ζ2σ2ρ2) = 0,

φ =
−1

v1,t + v2,t

[
(µ1 + ζ1σ1ρ1)v1,t + (µ2 + ζ2σ2ρ2)v2,t

]
.

(A.12)

If we impose the restriction that µ1 + ζ1σ1ρ1 ≡ µ2 + ζ2σ2ρ2, then (A.12) can be simplified as
follows.

φ = −(µ1 + ζ1σ1ρ1) = −(µ2 + ζ2σ2ρ2) (A.13)

We impose the third restriction on pricing kernel so that for any asset U ≡ U(S, v1, v2, t),
[U(t).Mt] is also a martingale under P -distribution. Therefore, E[d(U ·Mt)] = E[dU.Mt +
U.dMt+dU.dMt] = 0. Replacing Mt and dMt into this equation we have the following restric-
tion where US = ∂U(S, v1, v2, t)/∂S, Uv1 = ∂U(S, v1, v2, t)/∂v1, and Uv2 = ∂U(S, v1, v2, t)/∂v2.
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− rU + Ut + US(r + µ1v1,t + µ2v2,t)S + Uv1,tκ1(θ1 − v1,t) + Uv2,tκ2(θ2 − v2,t)

+
1

2
USS(v1,t + v2,t) +

1

2
Uv1,tv1,tσ

2
1v1,t +

1

2
Uv2,tv2,tσ

2
2v2,t + USv1,tρ1σ1v1,t + USv2,tρ2σ2v2,t

+ (USS
√
v1,t + Uv1,tρ1σ1

√
v1,t)(φ

√
v1,t + ζ1ρ1σ1

√
v1,t)

+ (USS
√
v2,t + Uv2,tρ2σ2

√
v2,t)(φ

√
v2,t + ζ2ρ2σ2

√
v2,t)

+ Uv1,tζ1σ
2
1v1,t(1− ρ21) + Uv2,tζ2σ

2
2v2,t(1− ρ22) = 0

(A.14)

The last restriction is based on the fact that discounted price process should be a martingale
under risk neutral measure. Therefore, for any asset, U(S, v1, v2, t), whose payoff depends
on the state variables {S, v1, v2}, U/Bt is a Q-martingale. This restriction implies that
EQ[d(U/Bt)] = 0 or equivalently EQ[d(U(S, v1, v2, t))] = rU(S, v1, v2, t).

Ut + rSUS + Uv1,t(κ1(θ1 − v1,t)− λ1v1,t) + Uv2,t(κ1(θ1 − v1,t)− λ2v2,t) +
1

2
USS(v1,t + v1,t)

+
1

2
Uv1,tv1,tσ

2
1v1,t +

1

2
Uv2,tv2,tσ

2
2v2,t + USv1,tρ1σ1v1,t + USv2,tρ2σ2v2,t = rU.

(A.15)

Replace (A.15) from the last restriction into (A.14) from the third restriction.

US(µ1v1,t + µ2v2,t)S + Uv1,tλ1v1,t + Uv2,tλ2v2,t

+ (USS
√
v1,t + Uv1,tρ1σ1

√
v1,t)(φ

√
v1,t + ζ1ρ1σ1

√
v1,t)

+ (USS
√
v2,t + Uv2,tρ2σ2

√
v2,t)(φ

√
v2,t + ζ2ρ2σ2

√
v2,t)

+ Uv1,tζ1σ
2
1v1,t(1− ρ21) + Uv2,tζ2σ

2
2v2,t(1− ρ22) = 0

US(µ1v1,t + µ2v2,t)S + Uv1,tλ1v1,t + Uv2,tλ2v2,t

+ USSφv1,t + USSζ1ρ1σ1v1,t + Uv1,tρ1σ1φv1,t + Uv1,tζ1σ
2
1v1,t

+ USSφv2,t + USSζ2ρ2σ2v2,t + Uv2,tρ2σ2φv2,t + Uv2,tζ2σ
2
2v2,t = 0

(A.16)

From the second restriction in (A.12) we know that µ1v1,t + µ2v2,t = −φv1,t − ζ1ρ1σ1v1,t −
φv2,t − ζ2ρ2σ2v2,t. Therefore, we can further simplify (A.16).

Uv1,t

(
ρ1σ1φ+ λ1 + ζ1σ

2
1

)
v1,t + Uv2,t

(
ρ2σ2φ+ λ2 + ζ2σ

2
2

)
v2,t = 0 (A.17)

One admissible solution for (A.17) would be:
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ρ1σ1φ+ λ1 + ζ1σ
2
1 = 0

ρ2σ2φ+ λ2 + ζ2σ
2
2 = 0

(A.18)

If we combine restrictions in (A.18) with those introduced in (A.13) and replace them back
into (A.13) we have φ, ζ1, and ζ2.

ζ1 =
ρ1σ1µ1 − λ1
σ2
1(1− ρ21)

ζ2 =
ρ2σ2µ2 − λ2
σ2
2(1− ρ22)

(A.19)

φ = −µ1 −
ρ21σ

2
1µ1 − λ1ρ1σ1
σ2
1(1− ρ21)

= −µ2 −
ρ22σ

2
2µ2 − λ2ρ2σ2
σ2
2(1− ρ22)

(A.20)

Therefore, an admissible pricing kernel linking the P and Q dynamics in (A.1) and (A.2) is
as follows.

dMt

Mt

= −rdt− µ1
√
v1,tdz1,t − µ2

√
v2,tdz2,t +

ρ1σ1µ1 − λ1
σ2
1(1− ρ21)

dB1,t +
ρ2σ2µ2 − λ2
σ2
2(1− ρ22)

dB2,t

(A.21)

This is the pricing kernel introduced in (1).

Now, we show that how physical shocks are linked to risk neutral shocks through equity
premium {µ1, µ2} and variance premium {λ1, λ2} parameters.

dz̃1,t = dz1,t + (ψ1,t + ρ1ψ3,t)dt

dz̃2,t = dz2,t + (ψ2,t + ρ2ψ4,t)dt

dw̃1,t = dw1,t + (ψ3,t + ρ1ψ1,t)dt

dw̃2,t = dw2,t + (ψ4,t + ρ2ψ2,t)dt

(A.22)

Replace physical shocks in return dynamics (1) by risk neutral shocks introduced in (A.22).

dSt/St = (r + µ1v1,t + µ2v2,t)dt

+
√
v1,tdz̃1,t − (ψ1,t + ρ1ψ3,t)

√
v1,tdt+

√
v2,tdz̃2,t − (ψ2,t + ρ2ψ4,t)

√
v2,tdt

(A.23)
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As a result of risk neutralization in (A.23), the expected stock returns in (A.23) should be
equal to the risk free rate of returns. Therefore, we have the following restriction.

(µ1v1,t + µ2v2,t)dt = (ψ1,t + ρ1ψ3,t)
√
v1,tdt+ (ψ2,t + ρ2ψ4,t)

√
v2,tdt (A.24)

One possible solution of (A.24) is as follows.

µ1
√
v1,t = ψ1,t + ρ1ψ3,t

µ2
√
v2,t = ψ2,t + ρ2ψ4,t

(A.25)

Similarly, we replace the proposed transformation in (A.22) into the dynamics of volatilities
in (1).

dv1,t = κ1(θ1 − v1,t)dt+ σ1
√
v1,tdw̃1,t − σ1

√
v1,t(ψ3,t + ρ1ψ1,t)dt

dv2,t = κ2(θ2 − v2,t)dt+ σ2
√
v2,tdw̃2,t − σ2

√
v2,t(ψ4,t + ρ2ψ2,t)dt

(A.26)

The risk-neutral variance dynamics in (A.26) should be equivalent to those in (A.4), where
the market price of variance risk factors is proportional to spot variance. Therefore, we have
following restrictions:

σ1
√
v1,t(ψ3,t + ρ1ψ1,t) = λ1v1,t

σ2
√
v2,t(ψ4,t + ρ2ψ2,t) = λ2v2,t

(A.27)

Combining the restrictions in (A.25) and (A.27), we have the following results, which link
the physical distribution (1) to the risk neutral distribution (4).

ψ1,t =
σ1µ1 − ρ1λ1
σ1(1− ρ21)

√
v1,t

ψ2,t =
σ2µ2 − ρ2λ2
σ2(1− ρ22)

√
v2,t

ψ3,t =
λ1 − ρ1σ1µ1

σ1(1− ρ21)

√
v1,t

ψ4,t =
λ2 − ρ2σ2µ2

σ2(1− ρ22)

√
v2,t

(A.28)
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B Risk Neutral Distribution

Risk neutral distribution in (4) can also be extracted by assuming the following standard
stochastic discount factor, without explicit assumptions about the investor’s variance pref-
erences.

dMt

Mt

= −rdt− ψ′
tdWt , (B.1)

where ψt ≡ [ψ1,t, ψ2,t, ψ3,t, ψ4,t] is the vector of market price of risk factors and Wt ≡
[z1,t, z2,t, w1,t, w2,t] is the vector of innovations in market index return and variance com-
ponents. Given the SDF in (B.1), the change-of-measure from P to Q distribution has the
following exponential form.

dQ

dP
(t) ≡Mt exp(rt) = exp

[
−
∫ t

0

ψ
′

udWu −
1

2

∫ t

0

ψ
′

ud〈W,W
′〉uψu

]
(B.2)

where 〈W,W ′〉 is the covariance operator.

We follow the notion of Doléans-Dade exponential (stochastic exponential) and define the
stochastic exponential ε(·) as follow.

ε
(∫ t

0

ϑ
′

udWu

)
≡ exp

[ ∫ t

0

ϑ
′

udWu −
1

2

∫ t

0

ϑ
′

ud〈W,W
′〉uϑu

]
(B.3)

Therefore, the change-of-measure (B.2) can be expressed in term of stochastic exponential
as

dQ

dP
(t) = ε

(∫ t

0

−ψ′

udWu

)
(B.4)

Applying Ito’s lemma, we get the following dynamic for the log stock price process under
physical measure.

log
(St

S0

)
= (r + µ1v1,t + µ2v2,t)t−

1

2
v1,tt+

∫ t

0

√
v1,udz1,u −

1

2
v2,t +

∫ t

0

√
v2,udz2,u (B.5)

Given (B.5) and definition of stochastic exponential (B.3) we have

St

S0

= exp
[
(r + µ1v1,t + µ2v2,t)t

]
ε
(∫ t

0

√
v1,udz1,u

)
ε
(∫ t

0

√
v2,udz2,u

)
(B.6)
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To find the market prices of risk we impose the restriction that the product of the price of
any traded asset and the pricing kernel under physical measure is a P -martingale. Given
the change-of-measure (B.2), the following process, N(t), should be a P -martingale.

N(t) ≡ St

S0

dQ

dP
(t) exp (−rt) (B.7)

where

N(t) = exp
[
(µ1v1,t + µ2v2,t)t

]
ε
(∫ t

0

√
v1,udz1,u

)
ε
(
−

∫ t

0

ψ1,udz1,u −
∫ t

0

ψ3,udw1,u

)
ε
(∫ t

0

√
v2,udz2,u

)
ε
(
−

∫ t

0

ψ2,udz2,u −
∫ t

0

ψ4,udw2,u

) (B.8)

Using the properties of a stochastic exponential ε(·), ε(Xt)ε(Yt) = ε(Xt + Yt) exp(〈X,Y 〉t)
we can rewrite the process of N(t) as follows.

N(t) = exp
[
(µ1v1,t + µ2v2,t)t

]
ε
(∫ t

0

(√
v1,u − ψ1,u

)
dz1,u −

∫ t

0

ψ3,udw1,u

)
exp

[
−

∫ t

0

√
v1,u(ψ1,u + ρ1ψ3,u)du

]
ε
(∫ t

0

(√
v2,u − ψ2,u

)
dz2,u −

∫ t

0

ψ4,udw2,u

)
exp

[
−

∫ t

0

√
v2,u(ψ2,u + ρ2ψ4,u)du

] (B.9)

From the definition of a stochastic exponential we know that ε(·) are P -martingales. Thus,
the process N(t) is a P -martingale when the following restriction holds.

exp
[
(µ1v1,t + µ2v2,t)t

]
exp

[
−

∫ t

0

√
v1,u(ψ1,u + ρ1ψ3,u)du

]
exp

[
−
∫ t

0

√
v2,u(ψ2,u + ρ2ψ4,u)du

]
= 1

(B.10)

The restriction in (B.10) can be satisfied if

µ1v1,tt−
√
v1,t(ψ1,t + ρ1ψ3,t)t = 0

µ2v2,tt−
√
v2,t(ψ3,t + ρ2ψ4,t)t = 0

(B.11)

To fully specify the market prices of risk we assume that market price of variance risk factors
are proportional to spot volatilites, following Heston (1993).
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(ψ3,t + ρ1ψ1,t) =
v1,t

σ1
√
v1,t

λ1

(ψ4,t + ρ2ψ2,t) =
v2,t

σ2
√
v2,t

λ2

(B.12)

Combining the restrictions in (B.11) and (B.12), we have the following market price of risk
factors. Note that these prices are the same as those we find in Proposition (1).

ψ1,t =
σ1µ1 − ρ1λ1
(1− ρ21)

√
v1,t

σ1

ψ2,t =
σ2µ2 − ρ2λ2
(1− ρ22)

√
v2,t

σ2

ψ3,t =
λ1 − ρ1σ1µ1

(1− ρ21)

√
v1,t

σ1

ψ4,t =
λ2 − ρ2σ2µ2

(1− ρ22)

√
v2,t

σ2

(B.13)

Given the market price of risk factors (B.13), we can apply Girsanov’s theorem to find
transform physical innovations in (1) to its risk neutral counterpart in (4).

dz̃1,t = dz1,t + ψ1,tdt+ ρ1ψ3,tdt

dz̃2,t = dz2,t + ψ2,tdt+ ρ2ψ4,tdt

dw̃1,t = dw1,t + ψ3,tdt+ ρ1ψ1,tdt

dw̃2,t = dw2,t + ψ4,tdt+ ρ2ψ2,tdt

(B.14)

With some algebra we have the following transformations.

dz̃1,t = dz1,t + µ1
√
v1,tdt

dz̃2,t = dz2,t + µ2
√
v2,tdt

dw̃1,t = dw1,t + (λ1/σ1)
√
v1,tdt

dw̃2,t = dw2,t + (λ2/σ2)
√
v2,tdt

(B.15)

Replacing dz1,t, dz2,t, dw1,t, dw2,t from (B.15) into the physical dynamics in (1) and knowing
that κ̃1 = κ1 + λ1, κ̃2 = κ2 + λ2, θ̃1 = k1θ1

k1+λ1
, θ̃2 = k2θ2

k2+λ2
we obtain risk neutral return and

variance dynamics.

dSt/St = (r + µ1v1,t + µ2v2,t)dt+
√
v1,tdz1,t +

√
v2,tdz2,t

= (r + µ1v1,t + µ2v2,t)dt+
√
v1,t(dz̃1,t − µ1

√
v1,tdt) +

√
v2,t(dz̃2,t − µ2

√
v2,tdt)

= rdt+
√
v1,tdz̃1,t +

√
v2,tdz̃2,t

(B.16)
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dv1,t = κ1(θ1 − v1,t)dt+ σ1
√
v1,t(dw̃1,t − (λ1/σ1)

√
v1,tdt)

= (κ1θ1 − (κ1 + λ1)v1,t)dt+ σ1
√
v1,tdw̃1,t

= κ̃1(θ̃1 − v1,t)dt+ σ1
√
v1,tdw̃1,t

(B.17)

dv2,t = κ2(θ2 − v2,t)dt+ σ2
√
v2,t(dw̃2,t − (λ2/σ2)

√
v2,tdt)

= (κ2θ2 − (κ2 + λ2)v2,t)dt+ σ2
√
v2,tdw̃2,t

= κ̃2(θ̃2 − v2,t)dt+ σ2
√
v2,tdw̃2,t

(B.18)

C Proof of Proposition 2

We show that the GARCH model under physical measure (14) is linked to the GARCH
model under risk-neutral measure (21) with the proposed pricing kernel (19) by specifying
a set of sufficient conditions (20), (22), and (23). We first impose Euler equation for the
risk-free asset and subsequently impose Euler equation for the underlying asset to find this
parameters mapping.

Given the pricing kernel (19), we have

Mt

Mt−1

=
( St

St−1

)φ
exp

[
δ + η1h1,t + η2h2,t + ζ1(h1,t+1 − h1,t) + ζ2(h2,t+1 − h2,t)

]
(C.1)

Rewrite the physical GRACH dynamics (14) as follows.

St/St−1 = exp
[
r + (µ1 −

1

2
)h1,t + (µ2 −

1

2
)h2,t +

√
h1,tz1,t +

√
h2,tz2,t

]
h1,t+1 − h1,t = w1 + (β1 − 1)h1,t + α1(z1,t − γ1

√
h1,t)

2

h2,t+1 − h2,t = w2 + (β2 − 1)h2,t + α2(z2,t − γ2
√
h2,t)

2

(C.2)

Substitute the dynamics (C.2) into (C.1)

Mt

Mt−1

= exp
[
rφ+ (µ1 −

1

2
)φh1,t + (µ2 −

1

2
)φh2,t +

√
h1,tφz1,t +

√
h2,tφz2,t

+ δ + η1h1,t + η2h2,t

+ w1ζ1 + (β1 − 1)ζ1h1,t + α1ζ1(z1,t − γ1
√
h1,t)

2

+ w2ζ2 + (β2 − 1)ζ2h2,t + α2ζ2(z2,t − γ2
√
h2,t)

2
]
.

(C.3)

Expanding squares and collecting some terms yield the following expression for a one-day
pricing kernel.
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Mt

Mt−1

= exp
[
rφ+ δ + w1ζ1 + w2ζ2

+
(
(µ1 −

1

2
)φ+ η1 + (β1 − 1)ζ1 + α1γ

2
1ζ1

)
h1,t

+
(
(µ2 −

1

2
)φ+ η2 + (β2 − 1)ζ2 + α2γ

2
2ζ2

)
h2,t

+ (φ− 2α1γ1ζ1)
√
h1,tz1,t + (α1ζ1)z

2
1,t

+ (φ− 2α2γ2ζ2)
√
h2,tz2,t + (α2ζ2)z

2
2,t

]
(C.4)

Before imposing the Euler equation, we introduce the expectations (C.5), where z1,t and z2,t
follow a standard normal distribution.

E
[
exp(2a1b1z1,t + a1z

2
1,t)

]
= exp

[
− 1

2
ln(1− 2a1) +

2a21b
2
1

1− 2a1

]
E
[
exp(2a2b2z2,t + a2z

2
2,t)

]
= exp

[
− 1

2
ln(1− 2a2) +

2a22b
2
2

1− 2a2

] (C.5)

where in our case

a1 = α1ζ1 , b1 =
φ− 2α1γ1ζ1

2α1ζ1

√
h1,t

a2 = α2ζ2 , b2 =
φ− 2α2γ2ζ2

2α2ζ2

√
h2,t

(C.6)

and thus

2a21b
2
1 = 2α2

1ζ
2
1

(φ− 2α1γ1ζ1
2α1ζ1

)2
h1,t =

1

2

(
φ− 2α1γ1ζ1

)2
h1,t

2a22b
2
2 = 2α2

2ζ
2
2

(φ− 2α2γ2ζ2
2α2ζ2

)2
h2,t =

1

2

(
φ− 2α2γ2ζ2

)2
h2,t

(C.7)

Therefore, conditional expectations of the last two lines of pricing kernel (C.4) may be
simplified as follows.

Et−1

[
exp

[
(φ− 2α1γ1ζ1)

√
h1,tz1,t + α1ζ1z

2
1,t

]]
= exp

[
− 1

2
ln(1− 2α1ζ1) +

φ− 2α1γ1ζ1
2(1− 2α1ζ1)

h1,t
]

Et−1

[
exp

[
(φ− 2α2γ2ζ2)

√
h2,tz2,t + α2ζ2z

2
2,t

]]
= exp

[
− 1

2
ln(1− 2α2ζ2) +

φ− 2α2γ2ζ2
2(1− 2α2ζ2)

h2,t
]

(C.8)

We begin the proof by imposing the Euler equation for the risk-free asset.
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Et−1

[ Mt

Mt−1

]
= exp(−r) (C.9)

Substituting (C.4) into (C.9), taking conditional expectation, and using the results (C.8)
yield

Et−1

[ Mt

Mt−1

]
= exp

[
rφ+ δ + w1ζ1 + w2ζ2

+
(
(µ1 −

1

2
)φ+ η1 + (β1 − 1)ζ1 + α1γ

2
1ζ1

)
h1,t

+
(
(µ2 −

1

2
)φ+ η2 + (β2 − 1)ζ2 + α2γ

2
2ζ2

)
h2,t

− 1

2
ln(1− 2α1ζ1) +

φ− 2α1γ1ζ1
2(1− 2α1ζ1)

h1,t

− 1

2
ln(1− 2α2ζ2) +

φ− 2α2γ2ζ2
2(1− 2α2ζ2)

h2,t

]
= exp(−r)

(C.10)

Taking logs requires

(1 + φ)r + δ + w1ζ1 + w2ζ2 −
1

2
ln(1− 2α1ζ1)−

1

2
ln(1− 2α2ζ2)

+
[(
(µ1 −

1

2
)φ+ η1 + (β1 − 1)ζ1 + α1γ

2
1ζ1

)
+
φ− 2α1γ1ζ1
2(1− 2α1ζ1)

]
h1,t

+
[(
(µ2 −

1

2
)φ+ η2 + (β2 − 1)ζ2 + α2γ

2
2ζ2

)
+
φ− 2α2γ2ζ2
2(1− 2α2ζ2)

]
h2,t = 0

(C.11)

Therefore, one possible solution of (C.11) can be defined as follows.

δ = −(φ+ 1)r − ζ1w1 − ζ2w2 +
1

2
ln(1− 2ζ1α1) +

1

2
(1− 2ζ2α2)

η1 = −(µ1 −
1

2
)φ− ζ1α1γ

2
1 + (1− β1)ζ1 −

(φ− 2ζ1α1γ1)
2

2(1− 2ζ1α1)

η2 = −(µ2 −
1

2
)φ− ζ1α2γ

2
2 + (1− β2)ζ2 −

(φ− 2ζ2α2γ2)
2

2(1− 2ζ2α2)

(C.12)

Then, we impose the Euler equation for the underlying index.

Et−1

[ St

St−1

× Mt

Mt−1

]
= 1 (C.13)

where
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Mt

Mt−1

× St

St−1

=
( St

St−1

)(φ+1)
exp

[
δ + η1h1,t + η2h2,t + ζ1(h1,t+1 − h1,t) + ζ2(h2,t+1 − h2,t)

]
.

(C.14)

Following the results in (C.10), we replace φ by φ+ 1 and we have

Et−1

[ Mt

Mt−1

× St

St−1

]
= exp

[
r(φ+ 1) + δ + w1ζ1 + w2ζ2

+
(
(µ1 −

1

2
)(φ+ 1) + η1 + (β1 − 1)ζ1 + α1γ

2
1ζ1

)
h1,t

+
(
(µ2 −

1

2
)(φ+ 1) + η2 + (β2 − 1)ζ2 + α2γ

2
2ζ2

)
h2,t

− 1

2
ln(1− 2α1ζ1) +

(φ+ 1)− 2α1γ1ζ1
2(1− 2α1ζ1)

h1,t

− 1

2
ln(1− 2α2ζ2) +

(φ+ 1)− 2α2γ2ζ2
2(1− 2α2ζ2)

h2,t

]
= exp(−r)

(C.15)

Taking logs and substituting δ, η1 and η2 from (C.12) yield the following restriction.

(µ1 −
1

2
) + (µ2 −

1

2
) +

1 + 2φ− 4α1γ1ζ1
2(1− 2α1ζ1)

h1,t +
1− 2φ− 4α2γ2ζ2
2(1− 2α2ζ2)

h2,t = 0 (C.16)

Therefore, one admissible solution for the risk aversion parameter would be

φ = −(µ1 −
1

2
+ γ1)(1− 2α1ζ1) + γ1 −

1

2
= −(µ2 −

1

2
+ γ2)(1− 2α2ζ2) + γ2 −

1

2
(C.17)

To complete the proof, we need to specify how physical shocks z1,t and z2,t are transformed
to risk-neutral shocks z∗1,t and z∗2,t. We use the fact that the risk-neutral distribution is
proportional to the physical distribution times pricing kernel. We also use the fact that z1,t
and z2,t are independent.

f ∗
t−1(St) =

Mt

Et−1[Mt]
× ft−1(St) (C.18)

Using the proposed pricing kernel and physical dynamics and after some algebra, we find
that the mean and variance may shift according to the following transformations.

z∗1,t =
√

1− 2α1ζ1
(
z1,t + (µ1 +

α1ζ1
1− 2α1ζ1

)
√
h1,t

)
z∗2,t =

√
1− 2α2ζ2

(
z2,t + (µ2 +

α2ζ2
1− 2α2ζ2

)
√
h2,t

) (C.19)
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Note that the risk-neutral (21) dynamics can be derived by replacing the risk-neutral shocks
(C.19) into the physical dynamics (14).
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Table 1: S&P 500 Index Call Option Data Characteristics by Moneyness and Maturity

Panel A: Number of call option contracts
DTM≤30 30<DTM≤91 91<DTM≤182 DTM>182 All

S/K≤0.92 152 3,371 12,690 8,782 24,995
0.92<S/K≤0.94 642 8,220 17,345 8,342 34,549
0.94<S/K≤0.96 4,033 14,436 18,557 8,096 45,122
0.96<S/K≤0.98 10,761 17,202 17,000 7,167 52,130
S/K>0.98 13,052 16,137 15,628 6,485 51,302
All 28,640 59,366 81,220 38,872 208,098

Panel B: Average price of call option contracts
DTM≤30 30<DTM≤91 91<DTM≤182 DTM>182 All

S/K≤0.92 13.6200 15.5478 23.0998 47.0797 24.8368
0.92<S/K≤0.94 11.7434 16.1440 26.2574 56.2993 27.6110
0.94<S/K≤0.96 9.9935 18.0151 34.2459 69.4400 32.9236
0.96<S/K≤0.98 11.5532 24.4015 44.6126 82.1867 40.6885
S/K>0.98 18.5235 35.5330 57.9296 95.6642 51.9126
All 13.0867 21.9283 37.2290 70.1340 35.5945

Panel C: Average implied volatility of call option contracts
DTM≤30 30<DTM≤91 91<DTM≤182 DTM>182 All

S/K≤0.92 0.4071 0.2299 0.1894 0.1791 0.2514
0.92<S/K≤0.94 0.3163 0.2034 0.1760 0.1831 0.2197
0.94<S/K≤0.96 0.2213 0.1792 0.1770 0.1881 0.1914
0.96<S/K≤0.98 0.1784 0.1741 0.1833 0.1958 0.1829
S/K>0.98 0.1715 0.1829 0.1900 0.2028 0.1868
All 0.2589 0.1939 0.1831 0.1898 0.2064

Panel D: Average delta of call option contracts
DTM≤30 30<DTM≤91 91<DTM≤182 DTM>182 All

S/K≤0.92 0.2316 0.2302 0.2724 0.3726 0.2767
0.92<S/K≤0.94 0.2329 0.2549 0.3121 0.4268 0.3067
0.94<S/K≤0.96 0.2381 0.2984 0.3832 0.4827 0.3506
0.96<S/K≤0.98 0.2996 0.3843 0.4608 0.5319 0.4191
S/K>0.98 0.4422 0.4976 0.5377 0.5771 0.5136
All 0.2889 0.3331 0.3932 0.4782 0.3733

Note to Table: This table reports the summary statistics of out-of-the-money S&P 500 call option
contracts in our sample, from January 1, 1996 to December 31, 2011. The implied volatilities and
the deltas are from the OptionMetrics volatility surface data set. S denotes the price of the S&P
500 index, K the option strike price, and DTM denotes the number of calendar days to maturity.
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Table 2: S&P 500 Index Put Option Data Characteristics by Moneyness and Maturity

Panel A: Number of put option contracts
DTM≤30 30<DTM≤91 91<DTM≤182 DTM>182 All

S/K≤1.02 10,776 13,499 13,463 5,904 43,642
1.02<S/K≤1.04 7,163 10,951 12,018 5,008 35,140
1.04<S/K≤1.06 3,699 8,083 10,399 5,317 27,498
1.06<S/K≤1.08 1,248 5,334 8,105 3,908 18,595
S/K>1.08 385 3,173 5,591 3,588 12,737
All 23,271 41,040 49,576 23,725 137,612

Panel B: Average price of put option contracts
DTM≤30 30<DTM≤91 91<DTM≤182 DTM>182 All

S/K≤1.02 18.7121 30.3521 44.9423 63.5550 39.3904
1.02<S/K≤1.04 13.9689 25.4113 40.1731 59.5418 34.7738
1.04<S/K≤1.06 12.7334 21.7862 34.1231 55.3294 30.9930
1.06<S/K≤1.08 14.0224 20.8254 30.5229 44.3883 27.4397
S/K>1.08 16.1005 20.9994 30.9259 43.7921 27.9545
All 15.1075 23.8749 36.1375 53.3213 32.1103

Panel C: Average implied volatility of put option contracts
DTM≤30 30<DTM≤91 91<DTM≤182 DTM>182 All

S/K≤1.02 0.1929 0.1933 0.1992 0.2121 0.1994
1.02<S/K≤1.04 0.2194 0.2134 0.2158 0.2127 0.2153
1.04<S/K≤1.06 0.2646 0.2314 0.2233 0.2313 0.2376
1.06<S/K≤1.08 0.3342 0.2599 0.2367 0.2200 0.2627
S/K>1.08 0.4255 0.2904 0.2583 0.2343 0.3021
All 0.2873 0.2377 0.2266 0.2221 0.2434

Panel D: Average delta of put option contracts
DTM≤30 30<DTM≤91 91<DTM≤182 DTM>182 All

S/K≤1.02 -0.3931 -0.3988 -0.3931 -0.3631 -0.3870
1.02<S/K≤1.04 -0.2860 -0.3221 -0.3403 -0.3334 -0.3204
1.04<S/K≤1.06 -0.2348 -0.2699 -0.2932 -0.3060 -0.2760
1.06<S/K≤1.08 -0.2194 -0.2395 -0.2579 -0.2612 -0.2445
S/K>1.08 -0.2175 -0.2209 -0.2431 -0.2547 -0.2341
All -0.2702 -0.2902 -0.3055 -0.3037 -0.2924

Note to Table: This table reports the summary statistics of out-of-the-money S&P 500 put option
contracts in our sample, from January 1, 1996 to December 31, 2011. The implied volatilities and
delta are from the OptionMetrics volatility surface data set. S denotes the price of the S&P 500
index, K the option strike price, and DTM denotes the number of calendar days to maturity.
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Table 3: Market Parameter Estimates

Panel A: Parameter Estimates (Physical) - Joint Estimation

κ1κ1κ1 κ2κ2κ2 θ1θ1θ1 θ2θ2θ2 σ1σ1σ1 σ2σ2σ2 ρ1ρ1ρ1 ρ2ρ2ρ2 λ1λ1λ1 λ2λ2λ2

1.4271 3.5874 0.0026 0.0171 0.0855 0.3496 -0.6918 -0.2173 -1.0798 -1.0355
9.38E-02 8.26E-02 1.12E-02 5.10E-03 8.93E-03 1.09E-02 3.47E-02 3.91E-02 5.55E-02 4.39E-02

Panel B: Parameter Estimates (Risk Neutral) - Options-based Estimation

κ̃1κ̃1κ̃1 κ̃2κ̃2κ̃2 θ̃1̃θ1̃θ1 θ̃2̃θ2̃θ2 σ1σ1σ1 σ2σ2σ2 ρ1ρ1ρ1 ρ2ρ2ρ2

0.2267 2.9137 0.0590 0.0100 0.0958 0.5678 -0.9135 -0.4934
4.73E-02 3.16E-02 6.01E-03 3.37E-03 9.75E-03 1.03E-02 2.85E-02 3.83E-02

Note to Table: This table reports the structural parameter estimates of the S&P 500 Index for the two-factor
stochastic volatility model. The reported results in Panel A are from the joint estimation using the daily S&P
500 index returns and options data. Structural parameters in Panel B are estimated using only options data.
In both panels, we use 10% OTM call and put options over the period 1996-2011. As in Proposition (1), κ̃1 =
κ1+λ1, κ̃2 = κ2+λ2, θ̃1 = k1θ1

k1+λ1
, θ̃2 = k2θ2

k2+λ2
. Therefore, risk neutral parameters from joint estimation are κ̃1 =

0.3473, κ̃2 = 2.5520, θ̃1 = 0.0106, θ̃2 = 0.0240. Standard errors are reported below the parameter estimates
and computed by the outer product of gradient matrix evaluated at the optimum parameter estimates.
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Table 4: Goodness of Fit

Option Based Estimation Joint Estimation

Num-
ber of
Obs.

Vega
RMSE

IV
RMSE

IVRMSE/
Avg. IV

Vega
RMSE

IV
RMSE

IVRMSE/
Avg. IV

Panel A: Goodness of Fit - Call Option Contracts
DTM≤30 28,640 1.2956 2.7171
30<DTM≤91 59,366 0.8695 2.5104
91<DTM≤182 81,220 0.6913 2.3505
DTM>182 38,872 0.8943 2.6032
All 208,098 0.8846 0.9132 4.4244 2.5299 2.5637 12.4210

Panel B: Goodness of Fit - Put Option Contracts
DTM≤30 23,271 1.6193 2.8857
30<DTM≤91 41,040 1.0712 2.4509
91<DTM≤182 49,576 0.8342 2.4941
DTM>182 23,725 1.0440 2.5256
All 137,612 1.1064 1.1167 4.5879 2.5877 2.6389 10.8418

Panel C: Goodness of Fit - All Option Contracts
DTM≤30 51,911 1.4497 2.7946
30<DTM≤91 100,406 0.9571 2.4835
91<DTM≤182 130,796 0.7486 2.4180
DTM>182 62,597 0.9538 2.5665
All 345,710 0.9790 0.9992 4.4428 2.5566 2.5939 11.5335

Note to Table: This table reports in-sample goodness-of-fit for our two-factor stochastic volatil-
ity model over the entire sample, 1996 through 2011 for various maturities. We also report
in-sample fit for calls and puts separately. All numbers are in percentage points. We compute
the Vega-weighted root mean squared error (Vega RMSE) along with the implied volatility root
mean squared error (IVRMSE). We also report the ratio of IVRMSE over the average implied
volatility. To provide a basis for caparison the left panel reports pricing errors based on the
option data and the right panel reports those of joint estimation.
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Table 5: Subsample Parameter Estimates

κ1κ1κ1 κ2κ2κ2 θ1θ1θ1 θ2θ2θ2 σ1σ1σ1 σ2σ2σ2 ρ1ρ1ρ1 ρ2ρ2ρ2 λ1λ1λ1 λ2λ2λ2

Panel A: Joint Estimation:1996 - 2003

1.2138 3.2780 0.0033 0.0195 0.0855 0.3220 -0.6514 -0.2985 -1.1008 -0.9755
9.62E-02 8.59E-02 1.19E-02 5.44E-03 1.02E-02 1.03E-02 3.29E-02 3.89E-02 5.92E-02 3.95E-02

Panel B: Joint Estimation (2003 - 2011)

1.1274 4.2337 0.0069 0.0289 0.0793 0.4675 -0.5102 -0.3086 -1.0684 -1.0351
5.02E-02 3.85E-02 4.81E-03 3.03E-03 1.09E-02 1.33E-02 2.96E-02 3.71E-02

Panel C: Options-based Estimation (1996-2003)

0.1794 2.6176 0.0437 0.0104 0.0912 0.3732 -0.8891 -0.4434
8.97E-02 8.01E-02 1.08E-02 4.76E-03 8.57E-03 1.16E-02 4.13E-02 3.47E-02 5.36E-02 5.27E-02

Panel D: Options-based Estimation (2003-2011)

0.1117 3.4731 0.0623 0.0247 0.0837 0.6692 -0.7550 -0.6497
4.14E-02 2.97E-02 6.13E-03 3.48E-03 8.84E-03 9.15E-03 2.73E-02 3.86E-02

Note to Table: This table reports the structural parameter estimates of the S&P 500 Index for the two-factor
stochastic volatility model over two subsample periods. The first subsample is from January 1996 to December
2003 and the second one is from January 2004 to December 2011. The point estimates in Panel A and Panel
B are from the joint estimation using the daily S&P 500 index returns and options data. Entries in Panel C
and Panel D are estimated using only options data. In both panels, we use OTM call and put options up to
10% moneyness over the period 1996-2011. Standard errors are reported below the parameter estimates and
computed by the outer product of gradient matrix evaluated at the optimum parameter estimates.
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Table 6: Subsample Goodness of Fit (1996-2003)

Option Based Estimation Joint Estimation

Num-
ber of
Obs.

Vega
RMSE

IV
RMSE

IVRMSE/
Avg. IV

Vega
RMSE

IV
RMSE

IVRMSE/
Avg. IV

Panel A: Subsample Goodness of Fit (1996-2003) - Call Option Contracts
DTM≤30 14,267 1.2355 2.9061
30<DTM≤91 30,414 0.8397 2.8784
91<DTM≤182 39,160 0.7194 2.7826
DTM>182 18,237 0.7593 3.0274
All 102,078 0.8514 0.8846 4.5041 2.8787 2.9137 12.8697

Panel B: Subsample Goodness of Fit (1996-2003) - Put Option Contracts
DTM≤30 11,775 1.5167 3.3108
30<DTM≤91 20,282 1.1038 2.9729
91<DTM≤182 24,137 0.8742 2.9596
DTM>182 11,528 1.0111 2.9025
All 67,722 1.1006 1.1067 4.7416 3.0462 3.1389 11.9169

Panel C: Subsample Goodness of Fit (1996-2003) - All Option Contracts
DTM≤30 26,042 1.3698 3.1091
30<DTM≤91 50,696 0.9542 2.9218
91<DTM≤182 63,297 0.7820 2.8691
DTM>182 29,765 0.8655 2.9682
All 169,800 0.9586 0.9792 4.5567 2.9592 3.0055 12.2725

Note to Table: This table reports in-sample goodness-of-fit for our two-factor stochastic volatil-
ity model over the entire sample, 1996 through 2011 for various maturities. We also report
in-sample fit for calls and puts separately. All numbers are in percentage points. We compute
the Vega-weighted root mean squared error (Vega RMSE) along with the implied volatility
root mean squared error (IVRMSE). We also report the ration of IVRMSE over the average
implied volatility. To provide a basis for caparison the left panel reports pricing errors based
on the option data and the right panel reports those of joint estimation.
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Table 7: Subsample Goodness of Fit (2004-2011)

Option Based Estimation Joint Estimation

Num-
ber of
Obs.

Vega
RMSE

IV
RMSE

IVRMSE/
Avg. IV

Vega
RMSE

IV
RMSE

IVRMSE/
Avg. IV

Panel A: Subsample Goodness of Fit (2004-2011) - Call Option Contracts
DTM≤30 14,373 1.3526 2.5715
30<DTM≤91 28,952 0.8998 2.1570
91<DTM≤182 42,060 0.6640 1.9298
DTM>182 20,635 0.9985 2.0532
All 106,020 0.9155 0.9471 4.1833 2.2014 2.3017 10.1665

Panel B: Subsample Goodness of Fit (2004-2011) - Put Option Contracts
DTM≤30 11,496 1.7181 2.4266
30<DTM≤91 20,758 1.0383 1.9112
91<DTM≤182 25,439 0.7944 1.9656
DTM>182 12,197 1.0741 2.0348
All 69,890 1.1121 1.1437 4.3421 2.0802 2.1294 8.0843

Panel C: Subsample Goodness of Fit (2004-2011) - All Option Contracts
DTM≤30 25,869 1.5259 2.5109
30<DTM≤91 49,710 0.9601 2.0487
91<DTM≤182 67,499 0.7159 1.9459
DTM>182 32,832 1.0273 2.0445
All 175,910 0.9982 1.0297 4.2046 2.1480 2.2348 9.1255

Note to Table: This table reports goodness-of-fit for our two-factor stochastic volatility model
over the subsample from January 2004 through December 2011 for various maturities. We also
report in-sample fit for calls and puts separately. All numbers are in percentage points. We
compute vega-weighted root mean squared error (Vega RMSE) along with implied volatility
root mean squared error (IVRMSE). We also report the ration of IVRMSE over the average
implied volatility. To provide a basis for caparison the left panel reports pricing errors based
on the option data and the right panel reports those of joint estimation.
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Table 8: Out of Sample Goodness of Fit (2004-2011)

Option Based Estimation Joint Estimation

Num-
ber of
Obs.

Vega
RMSE

IV
RMSE

IVRMSE/
Avg. IV

Vega
RMSE

IV
RMSE

IVRMSE/
Avg. IV

Panel A: Out of Sample Goodness of Fit (2004-2011) - Call Option Contracts
DTM≤30 14,373 1.4764 2.7853
30<DTM≤91 28,952 0.9372 2.2801
91<DTM≤182 42,060 0.6902 1.9978
DTM>182 20,635 1.0797 2.1189
All 106,020 0.9753 0.9985 4.4103 2.2201 2.3907 10.5596

Panel B: Out of Sample Goodness of Fit (2004-2011) - Put Option Contracts
DTM≤30 11,496 1.8064 2.5780
30<DTM≤91 20,758 1.1048 1.9984
91<DTM≤182 25,439 0.8359 1.9856
DTM>182 12,197 1.1153 2.1478
All 69,890 1.1708 1.2142 4.6097 2.1259 2.2087 8.3853

Panel C: Out of Sample Goodness of Fit (2004-2011) - All Option Contracts
DTM≤30 25,869 1.6313 2.6952
30<DTM≤91 49,710 1.0105 2.1670
91<DTM≤182 67,499 0.7485 1.9932
DTM>182 32,832 1.0931 2.1297
All 175,910 1.0573 1.0893 4.4480 2.1831 2.3201 9.4737

Note to Table: This table reports out-of-sample goodness-of-fit for our two-factor stochastic
volatility model over the period from January 2004 through December 2011 for various ma-
turities. We also report out-of-sample fit for calls and puts separately. All numbers are in
percentage points. Out-of-sample daily spot persistent and transient variance components are
filtered with Particle Filter method given the in-sample structural parameter estimates over
the period January 1996 through December 2003. The Vega RMSE along with the IVRMSE
are computed given in-sample structural parameters and filtered variance components. We also
report the ratio of IVRMSE over the average implied volatility. To provide a basis for capari-
son the left panel reports pricing errors based on the option data and the right panel reports
those of joint estimation.
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Figure 1: The S&P 500 Index Spot Variance Components Paths

1996 1998 2000 2002 2004 2006 2008 2010 2012
0

0.02

0.04

0.06

0.08

0.1

Panel A: Persistent Variance Component

1996 1998 2000 2002 2004 2006 2008 2010 2012
0

0.05

0.1

0.15

0.2

Panel B: Transient Variance Component

Note to Figure: We plot time series of risk-neutral spot variances for the S&P 500 index in
the two-factor stochastic volatility model. Panel A shows time series of persistent variance
component and Panel B shows time series of transient variance component. The blue plots
are based on the Particle Filter method using data from both S&P 500 index and option
markets (joint estimation). The red plots are filtered spot variances using data from S&P
500 option market only.
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Figure 2: The S&P 500 Index Total Spot Variance Path Versus VIX
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Note to Figure: We plot time series of risk-neutral total spot variance for the S&P 500
index by combining persistent and transient variance components of the two-factor stochastic
volatility model. The blue plots in Panel A is based on the Particle Filter method using data
from both S&P 500 index and option markets (joint estimation). The blue plot in Panel B
is based on data from S&P 500 option market only. Red plots in both panels are time series
of the VIX option implied volatility index.
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