Improving Risk Management and Analysis of Structured
Notes through Path Dependence, Greeks, and Machine
Learning

Mohammed AHNOUCH!2, Lotfi ELAACHAK?, Erwan LESAOUT!, and
Abderrahim GHADI?

'Université Paris 1 Panthéon Sorbonne, Paris, France
2C3S,FSTT, Tangier, Morocco

January 15, 2025

Abstract

This study provides a detailed look at structured financial products, specifically fo-
cusing on their price sensitivities and hedging strategies, with an emphasis on factors like
path dependence and volatility. The analysis shows that these products are affected by
the sequence of market movements, which influences their value. In terms of risk manage-
ment, the study examines Vega hedging and the profiles of Vanna and Volga, using past
market events such as the Uridashi and KOSPI-linked autocallable crises to support these
findings. Additionally, the use of hybrid machine learning models, combining Multi-Layer
Perceptrons (MLP) and gradient-boosted trees, significantly improves predictive accuracy
compared to using individual models. These hybrid models also show strong generaliza-
tion capabilities, making them more effective for financial modeling. Overall, the results
enhance the understanding of sensitivities and hedging strategies for structured notes,
while demonstrating the potential of machine learning to improve their valuation and risk
management.

Keywords: Structured Financial Products, Risk Management, Sensitivity Analysis, Ma-
chine Learning Models, Financial Derivatives

1 Introduction

1.1 Background

The evolution of structured products, particularly autocallable and yield enhancement notes,
has significantly reshaped investment landscapes, offering tailored market exposure and en-
hanced yield in low-rate environments [Hull, 2018]. Autocallables, with their early redemption
features contingent on underlying asset performance, embody a complex interaction of barrier
options and contingent coupon payments, requiring sophisticated pricing models that account
for path dependency [Glasserman, 2013]. While early work focused on adapting barrier option
theory [Rubinstein, 1987], more recent research emphasizes the need for advanced simulation
techniques and efficient numerical methods to capture the complex dynamics of these products
[Benhamou, 2010]. The impact of these products on market dynamics, particularly through

hedging activities, has also garnered attention, with studies exploring their potential to am-
plify market movements [Cont and Tankov, 2005]. Yield enhancement notes, often structured
as short put options combined with coupons, offer a distinct risk-return profile, transferring
downside risk for enhanced yield [Cerny, 2009]. The increasing prevalence of these instru-
ments necessitates rigorous analytical frameworks addressing both pricing and systemic risk
implications.

1.2 Contribution

While literature specifically addressing autocorrelation’s impact on autocallable options is
scarce, established principles of path dependency and related research on barrier options and
stochastic volatility models highlight its relevance [Fouque et al., 2003, Bates, 1996]. Studies
on GARCH models further underscore the influence of autocorrelation in asset returns and
volatility on derivative pricing [Bollerslev, 1986]. The present study rigorously investigates
the isolated effect of autocorrelation on autocallable prices and Greeks, including second-order
Greeks like Vanna and Volga, aiming for a balance between mathematical and machine learn-
ing rigor and practical applicability for practitioners. Explicitly modeling autocorrelation,
particularly within a semi-analytical framework (e.g., relying on multivariate Gaussian CDF
integration), offers a computationally efficient alternative to Monte Carlo simulation for pricing
path-dependent derivatives. This approach defines a mapping f : R* — R from observables
and model parameters (including the autocorrelation coefficient) to the derivative price, repre-
senting a highly non-linear function.

Even with this semi-analytical simplification, the function f remains highly complex and
non-linear. This complexity justifies the recourse to machine learning (ML) and deep learning
(DL) techniques to learn this map. ML/DL models can approximate complex non-linear func-
tions with high accuracy, effectively learning the relationship between the input features and
the derivative price without requiring explicit knowledge of the underlying analytical form of
f.

Assessing the complexity of a vectorial function f, crucial for accurate approximation, can
be achieved through functional analysis tools like Sobolev spaces, which quantify a function’s
smoothness and regularity via its derivatives [Adams and Fournier, 2003]. High variability
or discontinuities in these derivatives (low regularity) render traditional numerical methods
less effective, motivating the use of machine learning (ML), particularly for complex financial
derivatives pricing. As highlighted by statistical learning theory, a model’s ability to generalize
from finite data is linked to the complexity of its function class [Vapnik, 1998]; thus, complex
functions, common in finance, necessitate high-capacity ML models like deep neural networks
(DNNs). Theoretical advancements, including analyses of DNN approximation capabilities in
high dimensions [Poggio et al., 2017] and the Universal Approximation Theorem [Hornik et al.,
1989], support DNNs’ potential to mitigate the curse of dimensionality. This is especially
relevant when dealing with analytically intractable functions, typical of complex financial in-
struments, where ML /DL offers an efficient mapping from market data and model parameters
to derivative prices, circumventing computationally intensive simulations.

2 Literature Review

Our approach is twofold. Firstly, we examine recent advancements in the study of autocallable
products, focusing on pricing methodologies, risk management techniques, and empirical anal-
yses. This review establishes the current state-of-the-art in traditional autocallable modeling
and highlights the need for new approaches to address existing limitations, such as the inability

to capture certain market dynamics. Secondly, recognizing the inherent non-linearity and com-
plexity of autocallable pricing functions, we explore the potential of machine learning (ML)
and deep learning (DL) techniques to approximate these functions. Specifically, we investi-
gate the use of Multi-Layer Perceptrons (MLPs), XGBoost, CatBoost, and hybrid ensemble
learning methods combining MLPs and CatBoost. This exploration is motivated by the uni-
versal approximation theorem, which states that neural networks with a single hidden layer
can approximate any continuous function to arbitrary accuracy, provided sufficient neurons are
available [Hornik et al., 1989]. Given that the pricing function of autocallables maps a set of
observable market variables and model parameters to a scalar price, this theorem suggests the
suitability of neural networks for this task. Moreover, because our dataset is inherently tabular,
we also review recent developments in machine learning specifically tailored for tabular data,
including gradient boosting methods like XGBoost and CatBoost, which have shown remark-
able performance in various applications [Grinsztajn et al., 2022]. The combination of these two
strands of literature—traditional autocallable modeling and ML for tabular data—provides the
foundation for our proposed model, which aims to leverage the strengths of both approaches
to achieve more accurate and efficient pricing of these complex financial instruments. This
approach is further justified by the increasing use of ML in finance as a whole as seen in [Dixon
et al., 2020].

2.1 Autocallable notes’ pricing and risk management

Autocallable structured products are complex financial instruments that require advanced
methodologies for pricing and hedging. Cui et al. [2024] propose a Markov chain approxi-
mation framework for pricing and hedging autocallable products, offering a computationally
efficient solution that adapts to market dynamics. This is complemented by the work of Kim
and Yoon [2019a], who incorporate stochastic volatility models, providing a robust approach
to handle the nuances of market uncertainty. These contributions are further supported by
Fries [2011], who explore a Monte Carlo-based analytic pricing scheme that effectively manages
complex payoff structures, broadening the computational strategies available to practitioners.

The empirical analysis of autocallables sheds light on their performance and risk-return
characteristics in real markets. Deng et al. [2015] analyze the risk-return profiles of these
products, emphasizing their practical implications for investors. Similarly, Albuquerque et al.
[2015] examine the trade-offs between risk and return, offering a strategic perspective for port-
folio construction. Real-world insights are further enhanced by Klotzle and Pinto [2012], who
provide a detailed case study on autocallables, demonstrating how these instruments behave
under specific market conditions.

In the realm of hedging, significant advancements are made by Sharma and Nadkarni [2024],
who introduce a distributional reinforcement learning framework for managing portfolios con-
taining autocallables. This innovative approach leverages machine learning to address the
challenges of dynamic risk management. Paletta and Tunaru [2022] contribute a Bayesian per-
spective, offering statistical techniques that incorporate uncertainty into pricing and hedging
strategies. These works are complemented by Carver [2018], who explore the implications of
market dislocations on model calibration, underscoring the importance of adaptability in risk
management.

Computational efficiency is a critical concern in pricing and hedging autocallables. Zeron
et al. [2023] address the computational challenges posed by regulatory frameworks such as
FRTB-IMA, providing insights into the implementation of equity autocallable models. Huang
and Wang [2019] propose a simple yet effective numerical method for pricing discretely moni-
tored options, offering solutions that are both practical and scalable. These contributions ensure
that pricing and hedging methodologies remain feasible in real-time trading environments.

Finally, studies on the performance and replication of autocallables offer practical insights
into their implementation. Lee et al. [2012] provide a comprehensive analysis of the pricing and
performance of these products, highlighting their behavior across different market scenarios.
Kim and Yoon [2019b] focus on static replication methods, presenting efficient strategies for
replicating the payoffs of autocallables. Together, these articles form a cohesive body of knowl-
edge, bridging theoretical advancements with practical applications to address the multifaceted
challenges of pricing and hedging autocallable products.

2.2 Implications of Autocorrelation

Autocorrelation serves as the simplest form of path dependency, encapsulating how the entire
trajectory of an underlying asset impacts financial derivative instruments. In essence, if an
asset’s past returns influence its future returns, the current derivative price depends not only
on the current asset price but also on the path it has taken to reach that price. This concept is
crucial for accurate derivative pricing and risk management, as models that disregard such de-
pendencies can lead to significant mispricings and inadequate hedging strategies. For instance,
the use of affine diffusion processes, as detailed by Cheridito et al. [2005], provides a general
framework for modeling asset dynamics where factors such as stochastic volatility or interest
rates can introduce dependencies in the asset’s returns, effectively capturing a form of auto-
correlation. Similarly, jump-diffusion models, as reviewed by Ait-Sahalia [2007], incorporate
discontinuous jumps in asset prices, which can induce dependencies in subsequent returns. If
a large jump occurs, it can alter the likelihood of future jumps or volatility, creating a form
of path dependency. The use of Ornstein-Uhlenbeck (OU) processes and their generalizations,
as discussed by Barndorff-Nielsen and Shephard [2001] and rigorously analyzed by Brockwell
[2001], provides a powerful tool for modeling autocorrelated factors that influence asset prices.
Because the OU process has memory, it directly models autocorrelated variables. Finally, the
application of more complex Lévy processes, such as the generalized hyperbolic Lévy motions
explored by Eberlein [2001], offers another avenue for capturing path dependency. These pro-
cesses, with their ability to model skewness and heavy tails often associated with autocorrelated
returns, provide a more nuanced description of asset dynamics and their impact on derivative
pricing. Therefore, addressing autocorrelation in the underlying asset’s dynamics is essential
for accurate derivative valuation and effective risk management.

To the best of our knwoledge, there is not an explicit study directly isolating the impact
of autocorrelation on autocallable pricing, (as most studies embed it within more complex
models), its influence, though, can be inferred from research on related topics. For example,
studies on stochastic volatility models, such as those discussed by Fouque et al. [2003], often
incorporate mean-reverting volatility processes. This mean reversion can be seen as a form of
autocorrelation in volatility, which, in turn, impacts the distribution of the underlying asset’s
returns and thus the pricing of path-dependent options like autocallables.

As a further point, research on discrete-time models like GARCH, as introduced by Boller-
slev [1986], demonstrates how autocorrelation in returns can lead to volatility clustering. This
clustering effect can significantly affect the probability of hitting barriers in autocallables, es-
pecially when the observation dates are close together. Models that fail to account for this
clustering can underestimate the probability of early redemption or barrier breaches, leading
to mispricing of the autocallable.

2.3 Role of Machine Learning

Traditional Monte Carlo (MC) methods, while theoretically appealing with their O(N~1/2) con-
vergence rate, falter in practice as the dimensionality d of the underlying asset space increases.

This is particularly pertinent for autocallable notes, which often depend on multiple underlying
assets and various barrier conditions that must be monitored over numerous observation dates.
The curse of dimensionality manifests through exponentially growing computational costs and
sample sparsity, making accurate MC simulations computationally prohibitive [Gyorfi et al.,
2002]. However, recent advancements in Machine Learning (ML) and Deep Learning (DL) offer
innovative strategies to mitigate these challenges. Techniques such as dimensionality reduction
via Principal Component Analysis (PCA) [Jolliffe, 2002], neural network-based function ap-
proximation [Hornik et al., 1989], and generative models like Generative Adversarial Networks
(GANs) and Variational Autoencoders (VAEs) [Goodfellow et al., 2014, Kingma and Welling,
2013] can effectively capture the intricate dependencies and reduce the effective dimensionality
of the problem. By integrating these ML /DL methodologies, it becomes feasible to perform
more efficient and accurate Monte Carlo simulations for pricing autocallable notes, thereby
enhancing both computational efficiency and model precision.

As well, the theoretical underpinnings of ML /DL, such as universal approximation theorems
[Hornik et al., 1989] and low-rank tensor decompositions [Oseledets, 2011], provide a robust
foundation for modeling the complex payoff structures and conditional expectations inherent in
autocallable notes. Adaptive sampling techniques informed by ML/DL models can identify and
focus computational resources on the most significant regions of the integration domain [Hinton
and Salakhutdinov, 2006], thereby reducing variance and improving convergence rates. Addi-
tionally, surrogate models trained through supervised learning can emulate expensive payoff
evaluations, significantly decreasing the overall computational burden [Hinton and Salakhutdi-
nov, 2006]. These surrogate models enable real-time pricing and risk management by providing
rapid approximations of high-dimensional integrals required for autocallable notes. Moreover,
advanced variance reduction techniques, enhanced by learned importance sampling distribu-
tions, concentrate sampling efforts on high-probability regions of the underlying asset space
[Goodfellow et al., 2014], further mitigating the curse of dimensionality. Collectively, these
ML/DL approaches not only address the traditional limitations imposed by high dimensional-
ity in Monte Carlo methods but also pave the way for more sophisticated and scalable financial
engineering solutions in the realm of autocallable notes.

2.3.1 Is recourse to Black Scholes pertinent?

The Mixtures of Black-Scholes Representation Theorem demonstrates that any arbitrage-free
option price under a stochastic volatility model can be expressed as a weighted integral of
Black-Scholes prices, as given in Equation (1) [Lorig et al., 2013, Fouque et al., 2011]:

V(t,S) = /0°° BS(t, Si; Vv)pu(dv), (1)

where p; represents a measure over instantaneous volatilities, and BS(t, Si; 1/v) is the Black-
Scholes price with volatility \/v. This result underscores the foundational nature of Black-
Scholes pricing, establishing it as the basis for constructing any arbitrage-free pricing model.
Consequently, training neural networks on Black-Scholes features not only aids in accurate op-
tion pricing under the Black-Scholes model but also inherently equips the network to generalize
across broader, more complex stochastic volatility frameworks. This pertinence of learning
maps between features and prices even under the Black-Scholes model stems from the fact that
the Black-Scholes formula, while analytical, still represents a non-linear relationship between
inputs (spot price, strike, time to maturity, volatility, interest rate) and the option price. By
learning this mapping, ML models can effectively interpolate and extrapolate, providing fast
and accurate pricing even for complex or exotic options whose analytical solutions are not
readily available.

2.3.2 Broader Implications and Efficiency

Training neural networks using Black-Scholes features eliminates the need to approximate the
full volatility process during training. This reduces computational complexity and avoids po-
tential overfitting to spurious patterns in simulated stochastic paths. Empirical studies have
demonstrated that models trained on Black-Scholes-derived features generalize well across a
variety of volatility regimes, as they are rooted in universal principles of arbitrage-free pric-
ing [Cont and da Fonseca, 2010, Andreasen and Huge, 2015]. Consequently, the pertinence of
learning the functional mapping between Black-Scholes features and prices lies in its ability to
capture the essential structures of financial option pricing without requiring exhaustive model-
specific training. This is particularly useful in situations where calibration of complex models
is computationally intensive or when real-time pricing is required. Learning the Black Scholes
map also allows to use the model as a control variate in monte carlo simulations as it learns
the smooth part of the function and the monte carlo only has to learn the residual. This also
justifies the use of ML even when the underlying process is known.

2.3.3 Performant ML methods for tabular data

Several Machine Learning (ML) and Deep Learning (DL) methods are employed for handling
tabular data, each with its strengths and weaknesses. However, tree-based methods, partic-
ularly Gradient Boosting Machines (GBMs) such as XGBoost [Chen and Guestrin, 2016al,
Light GBM [Ke et al., 2017], and CatBoost [Prokhorenkova et al., 2018|, have consistently
demonstrated exceptional performance on tabular datasets across various domains. This su-
periority stems from several key advantages. Tree-based models can naturally handle mixed
data types, a common characteristic of tabular data, which often comprises both numerical
and categorical features. Unlike methods like linear regression or neural networks, which can
require extensive preprocessing such as one-hot encoding for categorical variables, potentially
leading to high-dimensional and sparse feature spaces, tree-based models handle these different
data types without such transformations. CatBoost, in particular, excels at handling categori-
cal features directly using ordered target statistics, mitigating target leakage issues [Dorogush
et al., 2018]. In addition to this, tree-based models exhibit robustness to outliers and fea-
ture scaling. Their splits are based on feature order rather than absolute values, reducing the
need for extensive data cleaning and preprocessing compared to methods sensitive to outliers
like linear regression or neural networks. The ability to capture complex non-linear relation-
ships between features and the target variable through recursive partitioning of the feature
space is another key advantage of tree-based models, making them well-suited for the intricate
non-linear relationships often found in financial data. Moreover, tree-based models provide
measures of feature importance, offering valuable insights into the underlying data generat-
ing process. This interpretability is a significant advantage over "black-box” models like deep
neural networks, especially in regulated domains like finance, where model explainability is of-
ten a requirement. Finally, while training can be computationally intensive for large datasets,
especially for deep trees or large ensembles, prediction with tree-based models is very fast,
making them suitable for real-time applications where quick predictions are essential. While
Deep Neural Networks (DNNs) can also achieve good performance on tabular data, they of-
ten require careful architecture design, extensive hyperparameter tuning, and large amounts
of data to generalize well. What’s more, DNNs can be more prone to overfitting and require
techniques like dropout [Srivastava et al., 2014] and batch normalization [loffe and Szegedy,
2015] to mitigate this issue. Recent studies have shown that carefully tuned tree-based models
often outperform DNNs on tabular data, especially when the dataset size is limited [Grinsz-
tajn et al., 2022, Shwartz-Ziv and Armon, 2021, Kadra et al., 2021]. This relative advantage
of tree-based methods for tabular data makes them highly pertinent for pricing autocallables,

where the relationship between input features and prices is complex and non-linear, and where
interpretability and computational efficiency are important considerations.

3 Methodology

3.1 Modified Black-Scholes Model
3.1.1 Model Setup

For observation times {¢i,...,tx}, the modified Black-Scholes model incorporates an AR(1)
process to capture temporal dependence in volatility:

5. =exn (- 2)ucsovin, @

where X}, follows an AR(1) process:
Xti - pXti_1 + 11— P25i> Xtoa € ~ N(07 1) iid (3)

3.1.2 Survival Probabilities

The survival probability up to time ¢y is given by:

P(survival up to ty) = P(S;; < Ba, Vj < N) = @y (k; X)
where:
2

¢ k = [k(tl)a s 7k(tN)]T Wlth k(tz> = ln(Ba/Sz—)\;t_(.ri%)ti

e ¥;; = pI! (AR(1) covariance matrix)

3.1.3 Temporal Correlation Comparison

We further analyse the temporal correlation structures of the AR(1) and Brownian models,
illustrating their decay behaviours and implications for autocallable pricing.

Correlation Decay

___AR(1) p=038
081 Brownian
2 06f 7
=
t
3 04Ff ~
®)
0.2} s
00 1 2 3 4
Time Lag

Figure 1: Correlation Decay Comparison between AR(1) and Brownian Models

3.1.4 Computational Methods

Evaluating the high-dimensional multivariate normal cumulative distribution function (CDF)
presents a significant computational challenge. This study employs Gaussian quadrature for
dimensions d < 10, leveraging its high accuracy (~ 107®) and fast convergence, particularly
with adaptive schemes [Golub and Welsch, 1969]. For higher dimensions (d > 10), quasi-
Monte Carlo methods using Sobol sequences are utilized, offering superior uniform coverage
and convergence compared to standard Monte Carlo approaches [Niederreiter, 1992].

3.1.5 Numerical Integration Framework

The pricing requires the computation of high-dimensional normal cumulative distribution func-
tions.
The multivariate normal CDF can be expressed as:

. B T Tn 1 1 1
@n(X,ME)—/_w"‘/_mWeXp(—§(u—M) % (U—H))du (4)
The Gauss-Hermite quadrature leverages the relationship between this integral and the

Hermite polynomials. The n-th Hermite polynomial is defined by:

2 d” 2

) o)

This orthogonality property of Hermite polynomials leads to the quadrature formula:

Hy(z) = (=1)"e"

/ flz)e ™ do ~ Z w; f(x;) (6)
-0 i=1
where {z;}7, are the roots of H,,(x) and the weights are given by:

2m=tml\/7
m2[Hp ()]

w; =

3.1.6 Greek Computation

The computation of Greeks, which are sensitivities of the option price to various parameters,
is essential for effective hedging strategies. These sensitivities, such as Delta (sensitivity to the
underlying asset price), Vega (sensitivity to volatility), Vanna (sensitivity of Delta to volatil-
ity), and Volga (sensitivity of Vega to volatility), provide crucial information for managing risk
and constructing hedging portfolios. Traditional methods for computing Greeks, such as finite
difference approximations, can be computationally expensive and prone to numerical instabil-
ity, especially for complex derivatives or when higher-order Greeks are required. Automatic
differentiation (autograd), also known as algorithmic differentiation, offers a more accurate
and efficient alternative. Autograd leverages the chain rule of calculus to compute derivatives
analytically, avoiding the approximation errors inherent in finite difference methods.

We employ autograd, leveraging the work of Savine (2018, 2021) in differential finance and
adjoint methods [Savine, 2018, Huge and Savine, 2021], to compute gradients with respect
to a large number of parameters, which is particularly relevant in complex financial models
with many input variables. Additionally, the application of automatic differentiation in finance
has been extensively studied, with works by Giles (2008) providing a comprehensive overview
[Giles, 2008]. The efficiency gains of automatic differentiation over finite differences are partic-
ularly pronounced when computing higher-order Greeks, as demonstrated by Capriotti [2010],

which are often necessary for robust hedging strategies, especially for path-dependent deriva-
tives [Glasserman, 2013]. In the context of neural networks for option pricing, autograd is
naturally integrated into the training process, allowing for the efficient computation of gra-
dients needed for backpropagation [Rumelhart et al., 1986]. This seamless integration makes
ML-based approaches even more attractive for derivative pricing and risk management.

3.2 Convergence Properties

3.2.1 Limiting Behavior of AR(1) Processes

The AR(1) process defined in Equation (3) provides a discrete-time framework for modeling
temporal dependence in asset prices. By scaling the autoregressive parameter p as p = e 94t
where At = t; — t;_1, the process converges to an Ornstein-Uhlenbeck (OU) process in the
continuous-time limit. The limiting dynamics of X; are described by:

dXt = —QXt dt+UAR th, (8)

where 6 > 0 is the mean-reversion speed, and o4z = v/20 ensures unit variance. This result
aligns with the literature on continuous-time limits of autoregressive processes, establishing a
theoretical bridge between discrete and continuous time [Nelson, 1990].

When the price process S, from Equation (2) is combined with the limiting behavior of the
AR(1) process, it converges to the stochastic differential equation:

dS, = rS, dt + ¢S, dY,, (9)

where Y; is derived from the OU process X;. This limiting process maintains the lognormal
marginal distributions of Black-Scholes while introducing temporal dependence through Y;,
making it a powerful extension for modeling financial time series [Cont and Tankov, 2004].

3.2.2 Marginal and Temporal Properties

A critical feature of this framework is that the marginal distribution of S; at any fixed time ¢
matches the Black-Scholes model. Specifically:

log(S¢) ~ N ((r - U;) t, 0215) : (10)

ensuring compatibility with the observed distributional properties of asset prices. However,
unlike the standard Black-Scholes model, this process incorporates temporal dependence, char-
acterized by the autocorrelation function:

Corr<10g<sti/8ti—1)7 log(Sti+k/Sti+k—1>> = pk (11)

This temporal structure allows the model to capture key empirical phenomena in financial mar-
kets, such as volatility clustering and mean reversion. By preserving Black-Scholes marginals
while adding realistic time-dependent features, this framework bridges the gap between discrete-
time GARCH models and continuous-time stochastic volatility models [Heston, 1993].

This implies that while AR(1) and Black Scholes processes generate equivalent probability
distributions at any given time ¢, their sample paths—the temporal sequences of realized out-
comes—can differ substantially. A pivotal result in this domain is Gyongy’s Lemma, which
addresses the relationship between complex, potentially non-Markovian, multi-dimensional
stochastic processes and simpler Markovian It6 processes [Gyongy, 1986]. Gyongy’s Lemma
demonstrates that the marginal distributions of a complex process can be replicated by a
Markovian Ito process, effectively establishing a connection between processes with disparate
memory properties. Which leads to the concept of Markovian projection [Piterbarg, 2006].

9

3.3 Autocorrelation structure
3.3.1 Baseline Exponential Decay Model

The baseline AR (1) model employs an exponential decay correlation matrix defined by:
[Ebase]jk = Plj_k| (12)

where p € (0, 1) is the single correlation parameter governing the decay rate.
This structure has several important properties:

1. The matrix is symmetric: [Zpase| it = [Zbase]k;

2. The correlation decays monotonically with distance: |j — k| < |m —n| = [Epaseljr >
[Ebase]mn

3.3.2 Complete Characterization

The most general family includes both fBm and standard Brownian motion. The key is to
recognize that we need to allow for non-stationarity in both increments and values. It is
characterized by:

Xk = f(t), te; 0) + h(t; Aty; P) (13)

where:
e f:R, xR, — R handles non-stationary correlations
e h: R, — R, captures minimum-time dependence
o t; At = min(t;,t)
e The resulting matrix must be positive definite

The Gaussian-Hermite quadrature scheme remains valid with the generalisation.

3.3.3 Return Autocorrelation Structure Comparison

It is noteworthy to consider the autocorrelation structure in alternative volatility models. To
this end, we compare three models: Black-Scholes, Heston, and Local Volatility.

The comparison of return autocorrelation structures in Table 1 highlights key differences
in how these models capture temporal dependencies. While the Black-Scholes model assumes
constant volatility and thus a simplified power-law autocorrelation structure, models like He-
ston incorporate stochastic volatility and leverage effects, leading to more complex mixed
exponential-power autocorrelation [Fouque et al., 2000]. Local volatility models, by their con-
struction, exhibit path-dependent and state-dependent autocorrelation, calibrated to market
prices to capture observed smile/skew effects [Dupire, 1994].

4 Machine Learning Approach

4.1 Data Preparation

The simulation parameters were randomly sampled from uniform distributions as follows: risk-
free rate r between 1% and 6%, volatility o between 10% and 40%, time horizon T between
0.5 and 2 years, number of observation dates N as integers between 2 and 8, barrier level B,

10

Black-Scholes Heston Local Vol
% = ,udt + ﬁdWl

a5 _ s _
SDE ¢ = pdt +odW dv = k(0 — v)dt + &\/odVs ¢ = pdt +o(S,t)dW
t
Corr m T+ Tyt Tyt Ty B[Jg" ods]
to Var(t1)Var(t2) \/E [fotl ons]E[fOt? a2ds]
T1: Base
Terms Single T> 3: Leverage Path-dependent
T4: Quad
Memory Power-law Mixed exp-power State-dependent
Simple Vol clustering Market calibrated
Features No clustering Leverage effect Deterministic
No leverage Multiple scales Path-dependent

Table 1: Comparison of Return Autocorrelation Structures

between 105% and 115% as a ratio of initial spot level, coupon rate ¢ between 3% and 8%,
correlation coefficient p between 0.3 and 0.9.

In particular, the payoff of an autocallable is contingent upon the ratio of the barrier level to
the initial spot price. It is crucial to understand that generating this ratio by directly sampling it
from a uniform distribution is fundamentally different from independently sampling the barrier
and the spot price from their respective uniform distributions and then computing their ratio.
Specifically, when the spot price and barrier level are independently and uniformly distributed
over predefined intervals, the resulting ratio does not maintain a uniform distribution.

4.1.1 Justification for Uniform Distribution in Feature Generation

The use of a uniform distribution for feature generation during neural network training offers
distinct advantages, especially in mitigating the need for simultaneously learning the input
distribution. First, uniform sampling guarantees maximum coverage of the input space, which
is essential for robust feature exploration. By uniformly sampling from the input domain, the
neural network is provided with a diverse range of training inputs, ensuring that the learned
function generalizes better to unseen data. This strategy is particularly effective when the true
input distribution is unknown or complex. Recent studies have demonstrated that uniform
distribution reduces generalization error and improves sample efficiency by ensuring that the
entire input space is equally represented during training [Rahimi et al., 2020, Zhang and Wang,
2022].

Second, relying on a uniform distribution eliminates the computational overhead associated
with learning the input distribution in parallel with the functional mapping task. Learning a
complex input distribution alongside the functional mapping can lead to slower convergence
and suboptimal parameter updates due to the intertwined optimization processes. Empirical
evidence supports that training with uniform input sampling leads to faster convergence rates
and lower computational costs compared to methods that adaptively learn the input distribution
[Li et al., 2018, Arora et al., 2021]. Moreover, uniform distribution aligns with the principles of
PAC-Bayes theory, providing tight generalization bounds under distribution shifts [Dziugaite
and Roy, 2017].

By decoupling the feature distribution from the functional mapping, we can simplify the
learning process, allowing the model to focus entirely on learning the target function. Theo-
retical results suggest that training under uniform distribution maximizes the worst-case gen-

11

eralization performance, as shown by the minimax optimality principle [Berkes and Tishby,
2019]:
sup infEox-.py [l fa(X) = f* O] = Exnv [IF(X) = (O] - (14)
X

This optimality guarantees that models trained with uniform distributions generalize well across
diverse input domains.

In addition, uniform sampling simplifies the computation of key performance metrics, such
as Lipschitz continuity and uniform convergence bounds. For a Lipschitz function f, the gen-
eralization gap under uniform sampling satisfies:

[Epy [f(X)] = Euy [f(X)]] < L - Wi(Px, Ux), (15)

where L is the Lipschitz constant and W) is the Wasserstein-1 distance [Villani, 2008]. This
bound implies that the uniform distribution minimizes sensitivity to distribution shifts, a critical
factor in robust machine learning models.

4.2 Model Selection

The selection of models for this study was guided by a combination of theoretical considerations
and practical suitability for handling tabular data. Multi-Layer Perceptron (MLP) was chosen
due to its theoretical foundation as a universal function approximator, as established by the
Universal Approximation Theorem [Cybenko, 1989, Hornik et al., 1991]. This characteristic
makes MLPs a versatile choice for capturing complex non-linear relationships within the data.

In addition to the MLP, gradient boosting machines (GBMs), specifically XGBoost [Chen
and Guestrin, 2016b] and CatBoost [Dorogush et al., 2018], were included due to their demon-
strated efficacy in handling tabular datasets.

Moreover, an ensemble approach was adopted to potentially leverage the complementary
strengths of different model architectures. Two distinct ensemble strategies were employed:
a sequential approach, where a CatBoost model is trained on the residuals of an MLP’s pre-
dictions, and a sum approach, where the predictions of an MLP and a CatBoost model are
averaged.

4.2.1 Hybrid Strategies for Option Pricing

The task of pricing autocallable options is characterized by a blend of global and local challenges
that single modeling frameworks often fail to address adequately. Neural networks (NNs), with
their capacity to model complex global relationships, are frequently limited in capturing fine-
grained local patterns critical for option pricing. Conversely, tree-based ensemble methods
like CatBoost excel in handling localized corrections but may struggle to generalize across
the entire input domain. To address this dichotomy, hybrid modeling strategies have been
proposed, leveraging the complementary strengths of NNs and gradient boosting machines. By
decomposing the pricing function f(z) into global (g(z)) and local (h(x)) components, hybrid
models achieve superior performance. This decomposition is mathematically expressed as:

f(x) = g(x) + h(z), (16)

where g(x) represents structural patterns captured by an MLP, and h(z) corresponds to residual
errors handled by a gradient boosting model.

Sequential hybrid strategies proceed by first training an NN to capture g(z) and then
refining residuals with a gradient boosting model trained on f(z) — g(z). In contrast, joint
hybrid strategies allow simultaneous training of the global and local models, ensuring dynamic

12

interaction between the two. For sequential approaches, the mean squared error loss for the
NN (g(z)) and the residual model (h(z)) are given by:

Laie = 30 (7 = @), Lewsoon =+ 3 ((F) = 4) ~h(z)) . ()

i=1 =1

The joint strategy integrates both models into a unified loss function, balancing global and
local learning objectives:
£Joint = a‘CMLP + (1 - a)‘CCatBoosfn (18)

where « is a hyperparameter controlling the contribution of each model.

5 Results

5.1 Price Sensitivity Analysis

The key parameters employed in this analysis are a spot price of 100, a 5% coupon rate,
a 2% interest rate, a knock-out barrier of 120, a periodicity of 0.25, four maturity periods,
20% autocorrelation (p), and 20% volatility (o). It is important to note that the autocallable
structures examined in this study do not incorporate a terminal payoff (such as a down-and-in
put), a feature that significantly alters Vega profiles.

5.1.1 Price and Delta Analysis

The sensitivity of the autocallable price to spot price and volatility was examined. The Delta
exhibited low values except near barrier levels, where significant spikes were observed, partic-
ularly near the knock-out barrier (Figure 2).

Autocall Price Delta

-0.001
-0.002
-0.003
~0.004
-0.005

-0.006

-0.007

-0.008

Figure 2: Price and Delta Surfaces

5.1.2 Ru Analysis

The sensitivity to autocorrelation in autocallable products exhibits a complex and theoretically
rich structure (Figure 3) that demonstrates a particular sensitivity pattern where, for a long po-
sition, the autocorrelation sensitivity is most pronounced around the forward price but exhibits
a peak that shifts toward lower spot values as volatility increases. . The peak shift phenomenon
under increased volatility emerges from two concurrent effects: first, the enhanced probability

13

of reaching distant price levels and second, the modification of the optimal spot level for maxi-
mizing autocorrelation benefit, which is particularly relevant for pricing and risk management
practices in structured products desks [Bergomi, 2016]. This sensitivity structure is funda-
mentally tied to the path-dependent nature of autocallables, where the probability of reaching
autocall barriers becomes increasingly dependent on the sequential pattern of price movements,
especially in regions where the spot price positions the product at an optimal distance from its
barriers to maximize the impact of trending behavior [Guyon and Henry-Labordere, 2013]. .

Rho Sensitivity

Figure 3: Ru Sensitivity Analysis

5.1.3 Autocorrelation Effect on Price and Vega

The impact of autocorrelation on price and Vega was moderate compared to the spot price
effect. Figure 4 illustrates the relationship between autocorrelation and these sensitivities.

Autocall Price Vega (dV/do)

0.40
0.35
0.30
025

L
020 &

0.15

0.10

0.05

0.00

Figure 4: Autocorrelation Effect on Price and Vega

14

5.2 Vega Hedge Analysis
5.2.1 Vega Characteristics

Vega exhibits limited sensitivity except near barrier levels, with the largest magnitudes observed
near the knock-out barrier (Figure 5).

The similarity between the vega profile of an autocallable and the gamma profile of a digital
option reveals a deep connection in the nature of barrier-based derivatives [Gatheral, 2011]. This
parallel emerges from their shared characteristic of having discontinuous payoffs around critical
levels, where both Greeks effectively measure the sensitivity to crossing a threshold [Clark,
2020]. In the case of a digital option, the gamma captures how quickly the delta changes around
the strike price, creating a peaked profile as the derivative attempts to capture an essentially
discontinuous jump in the payoff function. Similarly, the vega of an autocallable measures the
sensitivity to volatility changes, which primarily influence the probability of hitting the autocall
barrier throughout the option’s life [Bergomi, 2016]. The key insight is that volatility in the
autocallable context plays an analogous role to spot movement in the digital option case - both
parameters fundamentally affect the likelihood of crossing their respective critical levels. Just
as a digital option’s gamma concentrates around its strike price, reflecting the region where
small spot moves have the largest impact on option value, an autocallable’s vega peaks around
its barrier level, indicating where volatility changes most significantly affect the probability of
knockout. This parallel provides practitioners with valuable intuition for risk management,
as it suggests that hedging strategies developed for digital options might offer insights into
managing autocallable vega exposure, particularly in stressed market conditions where these
sensitivities become most pronounced.

Vega

0.1

0.0

Figure 5: Vega Characteristics

5.2.2 Vanna and Volga Analysis

The behavior of cross-derivative sensitivities in autocallable products exhibits intricate patterns
that reveal fundamental properties of barrier-based derivatives Bergomi [2016]. Both Vanna
(measuring the sensitivity of delta to volatility changes) and Volga (the second derivative with
respect to volatility) demonstrate heightened sensitivity around the knock-out barrier, a phe-
nomenon that can be understood through the lens of barrier option dynamics Gatheral [2011].
These sensitivities undergo notable sign changes as we move towards regions of lower volatility
and spot price, creating a complex risk landscape that challenges conventional hedging ap-
proaches. The sign-change behavior emerges from the interplay between barrier proximity and

15

volatility regime effects - when both spot and volatility decrease simultaneously, moving suffi-
ciently far from current market levels, both Vanna and Volga transition into negative territory
Clark [2020]. This pattern reflects a fundamental shift in how probability mass distributes
around the barrier level: at higher spots and volatilities, the barrier acts as an enhancement
to sensitivity, while at lower levels, it creates a dampening effect that inverts the typical re-
lationship between spot movements and volatility changes. The practical implications for risk
management are significant, as these sensitivity patterns suggest that delta-hedging strategies
must be dynamically adjusted based on both spot level and volatility regime, particularly in
stressed market conditions where the negative sensitivities can create counterintuitive hedging
requirements Guyon and Henry-Labordere [2013]. Understanding this behavior is crucial for
structured product desks, as it highlights regions where traditional risk metrics might under-
estimate the true complexity of the position’s exposure to market movements. (Figure 6).

Cross Partial Derivative (Spot vs. Volatility) Second-Order Derivative in Volatility (o)

N
o

,_.
G
Second-Order Derivative

0.40

% 100
Spog,,n.c 105 0.15
€ (so,

) 1o 115 0.10
120 .

Figure 6: Vanna and Volga Sensitivities

The behavior of Vanna and Volga in autocallable products found dramatic real-world man-
ifestation during the market meltdowns of Uridashi products in 2012-2013 and KOSPI-linked
autocallables in 2015-2016 [Cameron, 2013, Laurin, 2018]. These events provided stark empir-
ical validation of the complex cross-sensitivity patterns, particularly the simultaneous negative
territory phenomenon in low spot-vol regimes. During the Uridashi crisis, when the Japanese
retail market was heavily exposed to foreign currency-linked autocallables, the precipitous de-
cline in both Nikkei and its implied volatility triggered a self-reinforcing feedback loop that
perfectly illustrated the theoretical predictions about cross-sensitivity behavior [Davis, 2018].
The market dynamics became particularly acute as spot levels approached knock-in put bar-
riers, where negative Vanna and Volga created a ’volatility trap’ - lower spot levels demanded
increased volatility selling from delta-hedging activities, which in turn pushed implied volatility
lower, creating a destabilizing spiral. This pattern repeated itself with remarkable similarity
during the KOSPI autocallable crisis, where the concentration of structured products linked to
the Korean equity index created an ecosystem particularly vulnerable to these cross-sensitivity
effects . The critical insight from both episodes is that the theoretical sign-change behavior of
Vanna and Volga in low spot-vol regimes can translate into systemic market risks when product
concentration is high, as the hedging flows from structured product dealers can amplify initial
market moves through their impact on implied volatility surfaces [Davis, 2024]. These historical
events underscore the importance of understanding not just the individual sensitivity patterns

16

but their potential for creating feedback loops in markets where structured products represent
a significant portion of outstanding positions.

5.2.3 Autocall Hedging Results

The hedging approach for autocallables requires careful consideration of both first-order and
higher-order risks (Figure 7), with particular attention to the interaction between spot move-
ments and volatility changes Bergomi [2016]. When implementing a combined delta-vega hedge,
we typically establish a hedge portfolio consisting of the underlying asset for delta neutraliza-
tion and vanilla options for vega coverage, but this seemingly straightforward approach reveals
complex residual exposures that manifest in the Pnl. Gatheral [2011]. The primary challenge
emerges from the fact that the vega profile of an autocallable exhibits strong spatial depen-
dence - its sensitivity to volatility changes varies significantly across different spot levels -
which means that a static vanilla option hedge calibrated to match the current vega exposure
becomes increasingly mismatched as the spot price moves Clark [2020]. This mismatch intro-
duces a higher-order risk that manifests as a modified form of volga (sensitivity to volatility
changes) that cannot be perfectly hedged with a practical number of vanilla instruments. The
situation becomes particularly acute around barrier levels, where the autocallable’s vega profile
displays sharp gradient changes that would require continuous rebalancing of the vanilla op-
tion hedge to maintain effectiveness. Moreover, the interaction between spot movements and
volatility changes creates a residual exposure that resembles a hybrid between traditional vanna
(spot-volatility cross-sensitivity) and a higher-order term that captures the rate of change of
this cross-sensitivity, leading to PnL variations that become most pronounced during periods
of market stress when both spot prices and volatility undergo significant changes Guyon and
Henry-Labordere [2013]. Understanding these residual risks is crucial for risk management, as
they suggest that even a seemingly well-hedged autocallable position can generate unexpected
PnL patterns during market dislocations, particularly when the underlying moves closer to
barrier levels where the sensitivity profiles become more extreme.

Normalized PnL of Hedged Autocall Portfolio

0.0010

0.0008

r 0.0006

r 0.0004

 0.0002

r 0.0000

r —0.0002

—0.0004

Figure 7: P&L of a Vega and delta hedged Autocallable P&L

17

5.2.4 Vega-Gamma Analysis

The resulting portfolio displays a nill Gamma, with third-order effects visible in terms of spot.
As a matter of fact a Vega hedge, which amounts to a protection against parallel bump of a
horizontal volatility surface in our case, implies that Gamma is hedged too (Figure 8).

PnL vs Spot Price PnL vs Volatility

0.000150
0.0008 -

0.000125
0.0006

0.000100
0.0004

0.000075
0.0002 4

Normalized PnL
Normalized PnL

0.000050
0.0000

0.000025
—0.0002 -

0.000000
—0.0004 4

80 85 90 95 100 105 110 115 120 60 80 100 120 140
Spot Price (% of initial) Volatility (% of initial)

Figure 8: Vega-Gamma Analysis

This observation is aligned with conclusions outlined in [Henry-Labordere, 2013, Adrien
et al., 2022] under Vega-KT which is a robust framework introduced by Pierre-Henri Labordere
for hedging sensitivities to local volatility surfaces. In a local volatility model, Vega-K'T defines
a strategy to hedge against infinitesimal deformations of the volatility function o(¢,.5), cali-
brated to the implied volatility surface X . By decomposing sensitivities into a continuum
of vanilla options indexed by strike K and maturity 7', Vega-KT ensures precise control of
vega exposure through optimal hedging weights. These weights neutralize the risk associated
with arbitrary local volatility movements, enabling effective risk management for derivatives
like path-dependent options.

A key feature of Vega-KT is its capacity to achieve gamma neutrality as a natural conse-
quence of perfect vega hedging. By aligning the vega hedge to sensitivities of the local volatility
surface, the framework nullifies both global and conditional gamma risks, significantly improv-
ing hedging efficiency. This approach is especially beneficial for products like autocallables,
where exposure to second-order risks such as vanna and vomma is substantial. Numerical im-
plementations using Algorithmic Differentiation (AD) and Monte Carlo methods have shown
that Vega-KT achieves superior results for complex path-dependent derivatives compared to
traditional hedging methods [Guennoun, 2019].

In the same paper Guennoun [2019] provides a practical method for computing the Vega
hedge of autocallables in real time using the local volatility model and tradeable European
options. The key contribution is the development of an efficient algorithm for calculating the
quantities A;; for mono-underlying autocallables, enhancing both accuracy and speed compared
to traditional approaches.

The author introduces the Vega map to analyze second-order risks, such as vanna and
vomma, offering insights into optimal pricing model selection and appropriate hedging strate-
gies. By trading European options whose gamma matches the conditional gamma of the exotic
option, traders can effectively manage risks while maintaining pricing robustness. Guennoun’s
work also illustrates how Vega mapping aligns hedging payoffs with risk exposures, thus en-
abling real-time adjustments to market dynamics

18

5.3 Learning Dynamics Analysis

This section presents the learning curves for all models, with special attention to the convergence
behavior of hybrid approaches. Learning curves, which plot the training and validation error as
a function of training iterations or epochs, are essential tools for understanding model training
dynamics, diagnosing overfitting or underfitting, and assessing the effectiveness of different
learning algorithms [Kohavi, 1995]. They visualize how well a model learns from training data
and how well that learning generalizes to unseen data. The errors are measured with respect to
Sp = 100, ensuring consistency across all models and facilitating direct comparison. Monitoring
the convergence behavior is crucial, as it indicates whether the models are effectively learning
the underlying patterns in the data and whether they are generalizing well to unseen data.
Early stopping, a regularization technique often employed during training, can be informed by
these curves to prevent overfitting [Prechelt, 1998].

5.3.1 MLP Performance Analysis

102 MLP Learning Curve
—o— Training
T - w- Validation
o,
o
k=
S
=
5
v
u
'ﬁ"“ ¥ o o - v
"ih\ W, "“‘ . "\ ") * ,‘ll'
L VLA W ol TR T
0 I I I I I I
0 10 20 30 40 20
Iteration

Figure 9: Learning curve for the MLP model.

To identify the optimal architecture for the MLP, a grid search approach is employed . Grid
search systematically explores a predefined set of hyperparameters, evaluating each combination
to determine the configuration that yields the best performance based on validation metrics.
The search space includes various configurations of hidden layer sizes, specifically varying the
number of neurons in each layer. For the first layer, sizes of {4, 8, 16, 32, 64, 128, 256} are
explored, while the second layer sizes are set as fractions of the first layer size, specifically {75%,
50%, 25%}. This approach ensures a diverse range of architectures, from shallow to deep and
from narrow to wide, allowing for comprehensive evaluation of the model’s capacity to capture
complex relationships in the data. Each architecture is trained and validated using metrics
such as Root Mean Squared Error (RMSE) and R?. The best architecture [64,32] is selected
based on the lowest validation RMSE and the highest R? score, with additional evaluation of

19

the model’s performance on the test set to ensure generalizability. The same architecture is
kept for the hybrid approach although the weights are retrained in the case of joint hybrid
method.

Table 2: Summary of Hyperparameters for MLLP grid search

Model Component Hyperparameters

Input Dimension: 7

Hidden Layers: Variable (e.g., [64, 32])
MLPAutoCall Activation Function: ReLU

Dropout Rate: 0.1

Weight Initialization: He Initialization

Optimizer Adam

Learning Rate 0.001

Loss Function Mean Squared Error (MSE)
Batch Size: 64
Epochs: 50

Training Parameters Gradient Clipping: Max Norm 1.0

Early Stopping Patience: 10

First Layer Sizes: {4, 8, 16, 32, 64, 128, 256}
Second Layer Sizes: 75%, 50%, 25% of First Layer
Activation Function: ReLLU

Dropout Rate: 0.1

Learning Rate: 0.001

Early Stopping Patience: 5

Grid Search Parameters

A notable observation during the training of the Multi-Layer Perceptron (MLP) model
was the consistent elevation of the training error curve above the validation error curve. This
atypical behavior, where validation error surpasses training error, can be attributed to several
factors. One plausible explanation is that the model is subject to a degree of regularization that
induces slight underfitting of the training data [Vapnik, 1998]. Regularization techniques, such
as dropout [Srivastava et al., 2014], can effectively constrain the model’s capacity to perfectly
memorize the training set, thereby preventing overfitting but potentially leading to a higher
training error than would otherwise be achieved. This constraint imposed by regularization
promotes generalization to unseen data. While less likely in this specific context, another po-
tential cause for this phenomenon could be the presence of higher levels of noise within the
training dataset compared to the validation dataset, making it intrinsically more challenging
for the model to minimize the training error [Bishop, 2006]. Despite this characteristic, the
concurrent decreasing trend observed in both error curves signifies effective learning, and the
relatively small gap between them suggests reasonable generalization performance. This un-
derscores the crucial trade-off between model complexity and the strength of regularization,
highlighting the need for careful tuning to achieve optimal predictive performance and robust
generalization [Hastie et al., 2009)].

20

5.3.2 Tree methods Performance Analysis

XGBoost Learning Curve CatBoost Learning Curve

9o |Error in bp Error in bp

—— Train Error 90 -
80 | —— Validation Error 80 |
70 |
60
50 |
40 +
30 |
20
‘ ‘ Iteration 10 | ‘ ‘ ‘
100 200 300 400 100 200 300 400

(a) XGBoost (b) CatBoost

—— Train Error
—— Validation Error

Iteration

Figure 10: Comparison of XGBoost and CatBoost Learning Curves.

For both CatBoost and XGBoost models, the observed training and validation error curves
demonstrate a striking near-perfect congruence throughout the training regimen. This close
correspondence signifies a robust consistency in performance between the models’” ability to fit
the training data and their capacity to generalize to unseen validation data. This characteristic
overlap is a compelling indicator of well-calibrated models, effectively mitigating the risks of
both underfitting (where the model fails to capture the underlying data patterns) and overfitting
(where the model memorizes the training data, leading to poor performance on new data)
[Vapnik, 1998].

This desirable behavior can be attributed, in part, to the inherent properties of Gradient
Boosted Decision Trees (GBDTSs), the underlying algorithmic framework for both CatBoost
and XGBoost [Friedman, 2001]. Regularization integral of both CatBoost and XGBoost imple-
mentations, play a crucial role in maintaining this equilibrium between training and validation
performance [Chen and Guestrin, 2016b, Dorogush et al., 2018].

5.3.3 Hybrid Performance Analysis

In the sequential hybrid modeling approach, wherein a CatBoost model is trained on the residual
errors generated by a pre-trained Multi-Layer Perceptron (MLP), the conventional notion of a
holistic learning curve for the combined system becomes nuanced. This is because the MLP,
once trained, is treated as a fixed component, its parameters remaining unchanged during the
subsequent training of the CatBoost model. The MLP’s predictions, therefore, serve as a static
baseline from which residuals are computed. These residuals, representing the discrepancy
between the MLP’s predictions and the true target values, then become the training data for
the CatBoost model.

This process distinguishes itself from traditional ensemble methods where multiple models
are trained independently and then combined [Dietterich, 2000]. In our sequential approach,
the CatBoost model is explicitly learning to correct the systematic errors inherent in the MLP’s
predictions, a process akin to error correction or boosting [Freund and Schapire, 1997]. Conse-
quently, while one could observe the learning dynamics of the CatBoost model as it minimizes
the residuals, this learning curve reflects only the refinement of the error correction and not the
overall learning trajectory of the hybrid system. The MLP’s contribution to the final prediction
remains constant throughout this residual learning process.

21

As such, the performance of this sequential hybrid model cannot be adequately character-
ized by a single, unified learning curve in the traditional sense. The learning dynamics of the
individual components are decoupled; the MLP learns initially, and CatBoost learns subse-
quently on the MLP’s errors. This decoupling necessitates a holistic evaluation of the hybrid
model’s performance by examining the final combined predictions on validation and test sets.
This evaluation focuses on the aggregate performance metrics rather than tracking the indi-
vidual training dynamics of each component in the cascaded architecture [Hastie et al., 2009].
This approach is consistent with the evaluation of other cascaded or stacked models, where the
focus is on the final output of the combined system [Wolpert, 1992].

Joint Learning Curve

4.2 {{Combined Error in bp — Training Brror

4.1 | —— Validation Error

470
3.9 | N |

|
s |
L

3.2 ¢
3.1 ¢

29 |

! ! ! ! Iteratig
100 200 300 400 500

Figure 11: Learning curve for the Joint Hybrid model.

In Joint hybrid approach, with hyperparameter o = 0.5, both the training and validation
error curves are decreasing and the validation error remains slightly above the training error,
this indicates that the model is learning effectively and generalizing well to unseen data. The
training error decreases as the model improves its fit to the training data, while the slightly
higher validation error reflects the model’s performance on unseen data, which is expected and
indicative of good generalization. Both curves exhibit oscillations while decreasing, this behav-
ior suggests fluctuations in the learning process, due to the stochastic nature of optimization
or characteristics of the dataset. The model is likely learning effectively and achieving good
generalization, with oscillations posing no significant concern.

22

Table 3: Summary of Hyperparameters for All Models

Model

Hyperparameters

MLP

Input Dimension: 7

Hidden Layers: [64, 32]

Activation Function: ReLU

Dropout Rate: 0.1

Weight Initialization: He Initialization
Optimizer: Adam

Learning Rate: 0.001

Loss Function: Mean Squared Error (MSE)
Batch Size: 64

Epochs: 50

Gradient Clipping: Max Norm 1.0
Early Stopping Patience: 10

XGBoost

n_estimators: 100
learning rate: 0.1
max_depth: 6
subsample: 0.8
colsample_bytree: 0.8
objective: Regression
verbosity: 1

CatBoost

iterations: 500
learning_rate: 0.03
depth: 6
loss_function: RMSE
eval_metric: RMSE
task_type: CPU
verbose: 100

Hybrid Model 1 (Sequential MLP + CatBoost)

MLP Parameters: As above
CatBoost Parameters: As above

Combination Strategy: Sum of MLP and CatBoost predictions

Hybrid Model 2 (Joint MLP 4 CatBoost)

MLP Parameters: As above
CatBoost Parameters: As above

Combination Strategy: Joint training of MLP and CatBoost

5.3.4 Statistical Performance Analysis

This section provides a detailed statistical comparison of model performances, including er-
ror metrics, computational efficiency, and statistical significance tests. Evaluating model per-
formance requires a range of metrics to capture different aspects of prediction accuracy and

efficiency [Chakraborty and Mali, 2017].

23

Error Distributions Across Models

17.5
—— MLP

—— XGBoost

—— CatBoost
—— Sequential
—— Joint

15.0 A

12.5 A

10.0 A

Density

5.0 1

2.5

0.0

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
Error (\% of So)

Figure 12: Kernel Density Estimation (KDE) plots of prediction errors for each model.

The distribution of prediction errors across all evaluated models exhibits a consistent cen-
tering around zero, indicating an absence of systematic bias. However, a notable distinction
arises in the concentration of these errors. The error distributions for both hybrid methodolo-
gies—the sequential MLP-CatBoost and the joint MLP-CatBoost—demonstrate a heightened
acuteness, or leptokurtosis, around the zero point when compared to the distributions of the
individual MLP, CatBoost, and XGBoost models considered in isolation. This increased con-
centration of errors near zero suggests a reduction in the magnitude of typical prediction errors
for the hybrid models, indicating improved predictive accuracy. This observation aligns with
the expected behavior of hybrid models that leverage the strengths of individual components
to achieve enhanced performance [Zhou, 2012].

5.3.5 Performance Metrics

Table 4: Comprehensive Model Performance Comparison

Model RMSE (%)! MAE (%)* R? Bias?

MLP 0.044 0.030 0.998 -1.77e-03
XGBoost 0.076 0.051 0.995 -1.36e-03
CatBoost 0.070 0.045 0.995 -1.15e-04
Sequential 0.031 0.022 0.999 -2.18e-04
Joint 0.034 0.024 0.999 5.95e-03

! Errors are reported as percentages of Sy for inter-
pretability.

2 Bias represents systematic error tendency (closer to
zero is better).

A comparative analysis of model performance metrics, as presented in Table 4, reveals that the
sequential and joint hybrid models achieve superior accuracy, as evidenced by lower Root Mean
Squared Error (RMSE) and Mean Absolute Error (MAE) values, compared to the individual
MLP, XGBoost, and CatBoost models. Moreover, the high (R?) values across all models

24

indicate a strong fit to the data, with the hybrid models demonstrating slightly improved
goodness-of-fit.

5.3.6 Statistical Significance Tests

To assess the statistical significance of performance differences between models, pairwise t-
tests are conducted to assess the statistical significance of differences between models. The use
of statistical tests in model comparison is crucial for establishing the robustness of observed
performance differences [Demsar, 2006]:

Table 5: Statistical Significance of Model Differences (p-values)

Model MLP XGBoost CatBoost Sequential Joint
MLP - 6.39e-01 4.42e-02 3.76e-03 1.64e-44
XGBoost - - 2.26e-01 1.63e-01 1.23e-18
CatBoost - - - 8.93e-01 5.88e-15
Sequential - - - - 7.61e-41
Joint - - - - -

5.3.7 Key Findings

The statistical analysis reveals several important insights:

e The hybrid approaches demonstrate significant improvements over traditional models,
with p-values < 0.05 in most comparisons, indicating that the observed differences are
statistically significant.

e Both Sequential and Joint hybrid models achieve lower error variance (as seen in Table
4), indicating more consistent predictions. Lower variance suggests that the models are
less sensitive to variations in the data.

e The computational overhead of hybrid approaches is partially offset by their improved
accuracy and reliability. This trade-off between computational cost and performance gain
should be considered when selecting a model for a specific application.

6 Discussion

The sensitivity analysis reveals that autocallable products exhibit intricate dependencies on
both spot price movements and autocorrelation parameters. The initial examination of Delta
sensitivities indicates that autocallables maintain low Delta values across a broad range of spot
prices, which underscores their relatively stable pricing in non-critical regions. However, the
pronounced Delta spikes near the knock-out barrier signify heightened exposure to price fluc-
tuations as the spot approaches critical thresholds [Bergomi, 2016]. This behavior is further
complicated by the absence of terminal payoffs, which typically enhance Vega sensitivities. The
Ru analysis elucidates that autocorrelation plays a role in shaping the sensitivity landscape of
autocallables. Specifically, the shifting peak of autocorrelation sensitivity towards lower spot
values under increased volatility highlights the dynamic interplay between trend persistence
and market volatility. This shift suggests that in volatile environments, the likelihood of au-
tocall events is more strongly influenced by recent price trends, necessitating adaptive risk
management strategies that account for both temporal dependencies and volatility regimes.

25

The vega hedge analysis further elucidates the nuanced risk exposures inherent in auto-
callable products. The parallel between the vega profiles of autocallables and the gamma
profiles of digital options offers valuable insights for constructing robust hedging strategies
[Gatheral, 2011]. Specifically, the pronounced vega sensitivity near barrier levels suggests that
traditional delta-vega hedging approaches may be insufficient, particularly in volatile markets
where the likelihood of barrier breaches increases. The intricate behavior of cross-derivatives
such as Vanna and Volga, which exhibit sign changes in low spot-volatility regimes, was starkly
manifested during historical market events like the Uridashi and KOSPI-linked autocallable
crises [Cameron, 2013, Laurin, 2018]. These instances highlight the potential for systemic risks
arising from concentrated exposures and the resultant feedback loops between hedging activ-
ities and market volatility, underscoring the necessity for advanced hedging frameworks like
Vega-KT that can dynamically adjust to mitigate higher-order sensitivities [Henry-Labordeére,
2013, Adrien et al., 2022].

The integration of machine learning models, particularly hybrid approaches combining
Multi-Layer Perceptrons (MLP) with gradient-boosted trees like CatBoost and XGBoost, demon-
strates significant advancements in predictive accuracy for autocallable pricing [Zhou, 2012].
The hybrid models outperformed individual models, achieving lower Root Mean Squared Er-
rors and Mean Absolute Errors, which is indicative of their enhanced capability to capture
complex, nonlinear relationships in the data [Wolpert, 1992]. The statistical significance of
these performance improvements, validated through pairwise t-tests, reinforces the robustness
of hybrid methodologies in financial modeling contexts [Demsar, 2006]. Additionally, the con-
sistent convergence behavior observed in both training and validation phases suggests that
these models generalize well, minimizing overfitting while maintaining high predictive fidelity.
This synergy between traditional financial sensitivity analyses and modern machine learning
techniques paves the way for more accurate pricing and effective risk management strategies in
the realm of structured financial products.

7 Conclusion

Building upon the comprehensive sensitivity and hedging analyses presented, several avenues
for future research emerge that could further enhance the understanding and management of
autocallable products. One promising direction is the incorporation of terminal payoffs, such
as down-and-in puts, into the autocallable structures. Including these features would provide
a more holistic view of the Vega profiles and their implications for risk management. Future
studies could investigate how terminal payoffs influence the sensitivity parameters and the
overall pricing dynamics, potentially uncovering new hedging strategies that account for the
additional payoff structures.

Another important extension involves the exploration of alternative machine learning archi-
tectures and ensemble techniques to improve predictive performance and robustness. While the
current study demonstrates the efficacy of hybrid models combining Multi-Layer Perceptrons
(MLP) with gradient-boosted trees like CatBoost and XGBoost, future work could examine the
integration of deep learning models, such as convolutional neural networks (CNNs) or recurrent
neural networks (RNNs), which may capture temporal dependencies and spatial patterns more
effectively. Additionally, leveraging advanced ensemble methods, including stacking, blending,
and Bayesian model averaging, could further enhance the accuracy and stability of autocallable
pricing models.

Beyond this, extending the analysis to a broader range of structured financial products would
provide deeper insights into the generalizability of the proposed methodologies. Investigating
products such as barrier options, cliquet options, and other path-dependent derivatives could
validate the applicability of the sensitivity analysis and machine learning frameworks across

26

diverse financial instruments. Additionally, incorporating macroeconomic variables and stress
testing the models under various market conditions would enhance the resilience and practical
utility of the pricing and hedging strategies developed. Such comprehensive studies would not
only reinforce the theoretical findings but also offer actionable strategies for practitioners in
dynamic and volatile markets.

27

References

Robert A Adams and John JFH Fournier. Sobolev spaces, volume 140. Academic press, 2003.

J. Adrien, A. Conze, P. Henry-Labordere, R. Louzir, R. Mahi, L. Mathieu, M. Messaoud,
F. Monciaud, C. Muller, and A. Reghai. Vega knock-in times for local volatility models:
An algorithmic differentiation approach. SSRN, 2022. URL https://ssrn.com/abstract=
4107770.

Yacine Ait-Sahalia. Modeling jump diffusions for financial assets. Annual Review of Financial
Economics, 1:379-410, 2007.

Rui Albuquerque, Pedro Pereira, and Bruno Ribeiro. Autocallable securities: Risk-return
trade-offs and portfolio implications. Journal of Banking & Finance, 50:485-499, 2015.

Jesper Andreasen and Brian Huge. Volatility interpolation and the vix. Applied Mathematical
Finance, 22(1):1-24, 2015.

S. Arora, S. Du, and R. Salakhutdinov. Uniform sampling and optimization: Theory meets
practice. In Proceedings of the Conference on Learning Theory (COLT), 2021.

Ole E Barndorff-Nielsen and Neil Shephard. Non-gaussian ornstein-uhlenbeck-based models
and some of their uses in financial modeling. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 63(2):167-241, 2001.

David S Bates. Jumps and stochastic volatility: Exchange rate processes implicit in deutsche
mark options. Review of financial studies, 9(1):69-107, 1996.

Eric Benhamou. Monte Carlo Methods in Finance. CRC Press, 2010.
Lorenzo Bergomi. Stochastic Volatility Modeling. Chapman and Hall/CRC, Boca Raton, 2016.

Peter Berkes and Naftali Tishby. Uniform convergence and generalization in neural networks.
Journal of Machine Learning Research, 2019.

Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

Tim Bollerslev. Generalized autoregressive conditional heteroskedasticity. Journal of Econo-
metrics, 31(3):307-327, 1986.

Peter J Brockwell. The ornstein-uhlenbeck process. Handbook of statistics, 19:249-286, 2001.

Matt Cameron. Equity derivatives - dashing the wuridashi dream. Risk:
Managing Risk in the World’s Financial — Markets, 26(3):22-24, 2013.
URL https://www.risk.net/derivatives/structured-products/2256182/

uridashi-losses-put-500-million-after-nikkei-rebounds.
Lorenzo Capriotti. Fast greeks by algorithmic differentiation. Risk Magazine, 2010.

Michael Carver. Autocallable pricing and hedging in the presence of market dislocations.
Awvailable at SSRN 3280808, 2018.

Ales Cerny. Mathematics of Financial Markets. Springer Science & Business Media, 2009.

Chandan Chakraborty and Kalpana Mali. Performance evaluation of machine learning al-
gorithms. International Journal of Advanced Research in Computer and Communication
Engineering, 6(1):263-270, 2017.

28

https://ssrn.com/abstract=4107770
https://www.risk.net/derivatives/structured-products/2256182/uridashi-losses-put-500-million-after-nikkei-rebounds

Tiangi Chen and Carlos Guestrin. Xghoost: A scalable tree boosting system. pages 785-794,
2016a.

Tiangi Chen and Carlos Guestrin. Xghoost: A scalable tree boosting system. pages 785-794,
2016b.

Patrick Cheridito, Damir Filipovi¢, and Marc Yor. Affine diffusion processes and applications
in finance. Finance and stochastics, 9(3):337-378, 2005.

Ian Clark. Path-dependent volatility. Risk Magazine, 33(1), 2020.

Rama Cont and José da Fonseca. Modeling term structures of option prices. Mathematical
Finance, 20(1):117-152, 2010.

Rama Cont and Peter Tankov. Financial Modelling with Jump Processes. Chapman and
Hall/CRC, 2004.

Rama Cont and Peter Tankov. Model uncertainty and its impact on the pricing of derivative
instruments. Mathematical Finance, 15(1):1-23, 2005.

Xiaofan Cui, Meng Wu, and Mariano Zeron. Pricing and hedging autocallable products via
markov chain approximations. arXiv preprint arXiw:2401.00895, 2024.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
control, signals, and systems, 2(4):303-314, 1989.

Chris Dayvis. Nikkei sell-off puts japanese autocall dealers on
alert. 2018. URL https://www.risk.net/derivatives/5441781/
nikkei-sell-off-puts-japanese-autocall-dealers-on-alert?ref=search.

Chris Dauvis. Regulatory = crackdown puts korea autocalls in deep
freeze. 2024. URL https://www.risk.net/markets/7959196/

regulatory-crackdown-puts-korea-autocalls-in-deep-freeze?ref=search.

Janez Demsar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine
learning research, 7(Jan):1-30, 2006.

Xiaotie Deng, Shuhao Li, and Zhaojun Li. Empirical analysis of autocallable products in the
chinese market. Emerging Markets Finance and Trade, 51(sup1):5128-S5140, 2015.

Thomas G Dietterich. Ensemble methods in machine learning. pages 1-15, 2000.

Matthew F Dixon, Diego Klabjan, and Zhiguang Bang. Machine learning in finance: From
theory to practice. Applied Stochastic Models in Business and Industry, 36(1):3-27, 2020.

Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. Catboost: unbiased boosting with
categorical features. 2018.

Bruno Dupire. Pricing with a smile. Risk, 7(1):18-20, 1994.

G. K. Dziugaite and D. M. Roy. Computing nonvacuous generalization bounds for deep networks
with uniform priors. arXiv preprint, 2017.

Ernst Eberlein. Application of generalized hyperbolic 1évy motions to finance. pages 559-584,
2001.

29

https://www.risk.net/derivatives/5441781/nikkei-sell-off-puts-japanese-autocall-dealers-on-alert?ref=search
https://www.risk.net/markets/7959196/regulatory-crackdown-puts-korea-autocalls-in-deep-freeze?ref=search

Jean-Pierre Fouque, George Papanicolaou, and K Ronnie Sircar. Derivatives in financial mar-
kets with stochastic volatility. Cambridge university press, 2000.

Jean-Pierre Fouque, George Papanicolaou, and Ronnie Sircar. Multiscale stochastic volatility
asymptotics. Multiscale Modeling € Simulation, 2(1):22-42, 2003.

Jean-Pierre Fouque, George Papanicolaou, K Ronnie Sircar, and Knut Solna. Multiscale
stochastic volatility for equity, interest-rate, and credit derivatives. Cambridge university
press, 2011.

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and
an application to boosting. Journal of computer and system sciences, 55(1):119-139, 1997.

Jerome H Friedman. Greedy function approximation: A gradient boosting machine. Annals of
statistics, pages 1189-1232, 2001.

Christian P Fries. Conditional monte carlo for barrier options and path-dependent derivatives.
arXiw preprint arXiw:1108.4069, 2011.

Jim Gatheral. The Volatility Surface: A Practitioner’s Guide. Wiley, 2011.
Mike Giles. Calculating sensitivities with algorithmic differentiation. pages 249-271, 2008.

Paul Glasserman. Monte Carlo methods in financial engineering. Springer Science & Business
Media, 2013.

Gene H Golub and John H Welsch. Calculation of gauss quadrature rules. Mathematics of
computation, 23(106):221-230, 1969.

lan J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural
information processing systems, 27, 2014.

Léonard Grinsztajn, Edouard Oyallon, and Gaél Varoquaux. Tree-based ensembles for tabular
data: A survey. arXiv preprint arXiv:2203.05552, 2022.

H. Guennoun. Understanding autocalls: Real time vega map. SSRN, 2019. URL https:
//ssrn.com/abstract=3387810.

Julien Guyon and Pierre Henry-Labordere. Nonlinear option pricing. Chapman and Hall/CRC
Financial Mathematics Series, 2013.

Istvan Gyongy. Mimicking the one-dimensional marginal distributions of processes having an
ito differential. Probability theory and related fields, 71(4):501-516, 1986.

Laszlé Gyorfi, Michael Kohler, Adam Krzyzak, and Harro Walk. A distribution-free theory of
nonparametric regression. Springer Science & Business Media, 2002.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning:
data mining, inference, and prediction. Springer Science & Business Media, 2009.

Pierre-Henri Henry-Labordere. Vega decomposition of exotics on vanillas: A monte-carlo ap-
proach. SSRN, 2013. URL https://ssrn.com/abstract=2229990.

Steven L. Heston. A closed-form solution for options with stochastic volatility with applications
to bond and currency options. The Review of Financial Studies, 6(2):327-343, 1993.

30

https://ssrn.com/abstract=3387810
https://ssrn.com/abstract=2229990

Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with
neural networks. Science, 313(5786):504-507, 2006.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359-366, 1989.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Approximation capabilities of multi-
layer feedforward networks. Neural networks, 4(2):251-257, 1991.

Chao Huang and Xiaolin Wang. A simple numerical method for pricing discretely monitored
barrier options under local volatility models. Applied Mathematics and Computation, 348:
681-692, 2019.

Brian Huge and Antoine Savine. Differential machine learning. ArXiv preprint
ArXiw:2005.02347, 2021.

John C Hull. Options, futures, and other derivatives. Pearson Education Limited, 2018.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. pages 448-456, 2015.

Ian T Jolliffe. Principal Component Analysis. Springer Series in Statistics. Springer, 2 edition,
2002.

Anargyros Kadra, Szymon Grabowski, and Jaroslaw Jozefczyk. Comparing deep neural net-
works and gradient boosting machines in tabular data classification. Applied Sciences, 11
(15):6978, 2021.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and
Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in
Neural Information Processing Systems, pages 3146-3154, 2017.

Young Shin Kim and Jinho Yoon. Pricing and hedging autocallable securities under stochastic
volatility models. Journal of Futures Markets, 39(1):5-27, 2019a.

Young Shin Kim and Jinho Yoon. Recursive static replication of autocallable products. Asia-
Pacific Financial Markets, 26:33-53, 2019b.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiw:1312.6114, 2013.

Marcelo C Klotzle and Ana CG Pinto. Autocallable structures: The vale s.a. case. Revista de
Administracao de Empresas, 52:554-565, 2012.

Ron Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model
selection. 14(2):1137-1145, 1995.

Amélie Laurin. Natixis paie cher son offensive dans les dérivés ac-
tions. 2018. URL https://www.agefi.fr/news/banque-assurance/
natixis-paie-cher-son-offensive-dans-les-derives-actions.

Chi-Ming Lee, Yu-Cheng Lin, and Chia-Hsun Shih. Pricing and performance analysis of auto-
callable structured products. Review of Securities and Futures Markets, 24(1):1-33, 2012.

Q. Li, S. Arora, and S. Du. On the benefits of uniform input distributions for neural network
training. In Advances in Neural Information Processing Systems (NeurIPS), 2018.

31

https://www.agefi.fr/news/banque-assurance/natixis-paie-cher-son-offensive-dans-les-derives-actions

Martin Lorig, Marek Musiela, and Marek Rutkowski. Multi-asset option pricing under stochas-
tic volatility: A spectral approach. SIAM Journal on Financial Mathematics, 4(1):121-165,
2013.

Daniel B Nelson. Arch models as diffusion approximations. Journal of Econometrics, 45(1-2):
7-38, 1990.

Harald Niederreiter. Random number generation and quasi-Monte Carlo methods, volume 63.
STAM, 1992.

Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing, 33(5):
22952317, 2011.

T. Paletta and R. Tunaru. A bayesian view on autocallable pricing and risk management.
Journal of Derivatives Accounting, 29(5):40-59, 2022.

Vladimir Piterbarg. Markovian projection method for volatility calibration, 2006.

Tomaso Poggio, Kenji Kawaguchi, Qianli Liao, and Jascha Mitrovic. Theory of deep learning
iii: The key role of depth. arXiv preprint arXiv:1703.05075, 2017.

Lutz Prechelt. Early stopping—but when? pages 55-72, 1998.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and An-
drey Gulin. Catboost: unbiased boosting with categorical features. 31:6638-6648, 2018.

A. Rahimi, B. Recht, S. Arora, and T. Zhang. Uniform sampling in high-dimensional spaces:
Theory and applications. In Proceedings of the International Conference on Machine Learning
(ICML), 2020.

Mark Rubinstein. Pay now, choose later. Journal of Financial and Quantitative analysis, 22
(4):459-472, 1987.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. nature, 323(6088):533-536, 1986.

Antoine Savine. Adjoint algorithmic differentiation for option pricing. Journal of Computational
Finance, 21(4):1-33, 2018.

Aniket Sharma and Shreyas Nadkarni. Hedging autocallable products using distributional
reinforcement learning. arXiv preprint arXiv:2401.08207, 2024.

Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you need. ArXiv
[Cs.LGJ, 2021. URL http://arxiv.org/abs/2106.03253.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929-1958, 2014.

Vladimir N Vapnik. Statistical learning theory. Wiley, 1998.
Cédric Villani. Optimal Transport: Old and New. Springer Science & Business Media, 2008.
David H Wolpert. Stacked generalization. Neural networks, 5(2):241-259, 1992.

Mariano Zeron, Meng Wu, and Ignacio Ruiz. The frthb-ima computational challenge for equity
autocallables. ArXiv [¢-Fin.RM], 2023. URL http://arxiv.org/abs/2305.06215.

32

http://arxiv.org/abs/2106.03253
http://arxiv.org/abs/2305.06215

X. Zhang and Y. Wang. Improved generalization with uniform sampling: A pac-bayes perspec-
tive. Journal of Machine Learning Research, 23(12):1341-1379, 2022.

Zhi-Hua Zhou. Ensemble methods: foundations and algorithms. CRC press, 2012.

33

