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Abstract

This paper revisits the traditional return-based style analysis (RBSA) in
presence of time-varying exposures and errors in variables. We apply a
selection algorithm using the Kalman �lter to identify the more appropriate
benchmarks and we compute their corresponding higher moment estimators
(HME), i.e. the measurement error series introducing the (cross) moments of
order three and four. Then, we retain the most signi�cant HME and we add
them to the selected benchmarks. Therefore, we obtain the most relevant
benchmarks with none, some or all their HME as benchmarks explaining
the analysed fund return. We �nally run the Kalman �lter on the principal
components of this set of selected benchmarks to avoid multicollinearity
problems. Analysing EDHEC alternative indexes styles, we show that this
technique improves the factor loadings and permits to identify more precisely
the return sources of the considered fund.

JEL Classi�cation Codes: G11, G12 and C13
Keywords: Style Analysis; Kalman Filter; Errors in Variables; Higher
Moment Estimators



1 Introduction

The investment style of a fund reveals its various sensitivities (or exposures)
to a set of risk factors. This information is also often used for performance
measurement. Return-based style analysis (RBSA) introduced by Sharpe
[1988 and 1992] provides an estimate of the fund�s historical exposures to
style benchmarks. It consists of a constrained linear regression (with con-
stant parameters) of the fund returns on relevant style index returns. The
objective underlying style analysis is to set up a portfolio, composed of dif-
ferent tradable benchmarks, that shares the same exposures to systematic
risk as the evaluated fund (see Lucas and Riepe [1996] among others).

Style-based analysis provides a convenient way to decompose the returns
of managed portfolios into identi�able benchmarks and reproducible strate-
gies. For this to be e¤ective, it is very important to achieve a very high
explanatory power with the return generating model for performance eval-
uation and risk-return analysis. First, the reliability of statistical inference
on the portfolio alpha is contingent on the quality of the model. Second, a
poor model speci�cation leaves many sources of risk unexplained, making it
di¢ cult to reliably assess the risk and return characteristics of the funds.

Mutual funds and hedge funds do not present the same style character-
istics. The transparency of mutual funds allows managers to apply them a
holding-based or characteristic-based style analysis almost indi¤erently (see
Brown and Goetzmann [2003] among others). Unfortunately, hedge fund
operations are essentially opaque and qualitative assessments of investment
styles are likely to be biased, and we have to turn to quantitative techniques
(see Lhabitant [2004], pp.213-228). The explanatory power of RBSA ap-
plied to hedge funds appears to be limited. Indeed, the application of style
analysis to hedge fund returns has met two types of hindrances that have
not made it perfectly e¤ective to date. On the one hand, managers of hedge
funds are usually freer to modify their strategies than the ones of mutual
funds. This results in time-varying risk sensitivities that cannot be captured
by constant risk exposure coe¢ cients. On the other hand, a large body of
the extant literature contends that return-based indexes fail to account for
option-based components in hedge fund returns, i.e. non-linear payo¤ pat-
terns. There is indeed ample evidence (see Glosten and Jagannathan [1994],
Fung and Hsieh [1997 and 2001], and Agarwal and Naik [2000]) that large
gains in regression R-squared can be obtained by additional factors that
use optional strategies. So far, these optional strategies have not yet been
transformed into index-based return factors used in the pure RBSA, even
though some proxies have been proposed in the literature. Moreover, the
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use of option-related benchmarks induces measurement error that may alter
the regression speci�cation and a¤ect the accuracy and consistency of the
estimated style exposures (see notably Samuelson [1970])

In this paper, we provide a framework aiming at jointly addressing the
two issues of style analysis applied to hedge funds. In short, our framework
complements the traditional RBSA with option-related benchmarks using a
Kalman �lter (selection) procedure with a correction for errors in variables
(EIV).

Kalman �lters1 represent a rather natural econometric technique to meet
the �rst di¢ culty listed above. They deal with style changes in a way
that does not depend on arbitrarily chosen window sizes (Lhabitant [2004],
pp.227-228). Indeed, the Kalman �lter is suited to take into considera-
tion the multiple investment style variations of actively managed funds (see
Swinkels and Van Der Sluis [2006] and Corielli and Meucci [2004]), but its
use has been rather limited in the literature due to the limited size of hedge
fund databases2.

To deal with EIV brought by the in�ation of index benchmarks, we
introduce additional instrumental regressors3 that address the presence of
measurement errors. These variables are computed with the (cross) sam-
ple moments of order three and four of the benchmarks initially selected.
For this purpose, we use the technique presented by Dagenais and Dagenais
[1997] to correct for errors in variables using instrument variables account-
ing for the higher moments of the selected benchmarks returns. Indeed,
estimation applications incorporating higher moment estimators (HME) are
particularly well suited to hedge fund return series (see Coën and Hübner
[2006]), mainly when the implementation aims at characterizing dynamic
variations of the exposures.

We also apply a factor analysis to the selected style benchmarks and
HME in order to avoid multicollinearity problems and to identify the under-
lying risk factors. We �nally run the Kalman �lter on this ultimate factor
series.

For these applications, we are confronted with a well-known, although
seldom recognized paradox: inference based on the Kalman �lter and fac-
tor analysis techniques is based on the normality assumption for the return
series, while we explicitly acknowledge that we seek to capture non-linear

1The Kalman �lter is an e¢ cient recursive �lter that estimates the state of a dynamic
system from a series of noisy measurements.

2Capocci and Hübner [2004] have shown that data prior to 1994 is quite unreliable due
to large survivorship and back�ll biases, and should not be used for statistical inference.

3We only take the most signi�cant ones.
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behaviors in the return generating process. Therefore, our empirical ap-
plication does not focus on the statistical properties of the estimators, but
rather on their empirical predictive capacity. The acid test of the quality of
our approach is thus related to the quality of the resulting predictions of
returns.

This procedure appears to provide new insights on the returns of hedge
fund strategies. As a result, we can evaluate the risk related to the ana-
lyzed fund but also its expected return. Knowing the expected returns of
each selected benchmark and using the Kalman �lter assumption that the
loadings are locally stationary, i.e. we can use the current style exposures as
predictors of the one period ahead style exposures, we have all the required
information to compute the fund expected return. Out-of-sample tests on
hedge fund indexes indicate a signi�cant improvement over static (OLS) and
dynamic (Kalman) versions of RBSA.

The paper proceeds as follows. In Section 2, we explain the methodol-
ogy to identify the most relevant benchmarks of the RBSA with a selection
algorithm using the Kalman �lter. We introduce in Section 3 the Dagenais
and Dagenais HME corresponding to the (cross) skewness and kurtosis of
the selected benchmarks. Section 4 describes the Kalman �lter algorithm
applied to select the best HME combination added to the selected bench-
marks. In Section 5, we compute the factors of the selected benchmarks and
HME to eliminate potential multicollinearity between the explanatory vari-
ables. We run an ultimate Kalman �lter on these factors and we transform
the resulting estimates (valid for the factors) into exposures estimates for
the selected benchmarks and HME. We �nally compute the analysed fund
expected return from the expected returns of each selected benchmark using
the results of this composite model. Section 6 provides a backtesting study
through an illustration. The last Section concludes.

2 Benchmark Selection

Selecting a wrong benchmark is one of the most frequent errors in portfo-
lio management (see for instance Buetow et al. [2000]). Benchmarks are
reference portfolios that simultaneously describe the diversity of risks taken
by the fund during the analyzed period and de�ne the fund�s underlying
management strategy. To avoid selection problems, we introduce an iter-
ative procedure using the Kalman Filter and identifying the most relevant
benchmarks using a principle related to stepwise regression.

Through style analysis, we want to dynamically replicate the fund re-
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turn by a portfolio composed of selected benchmarks. On the one hand, we
impose that the sum of the benchmark weights in the replicating portfolio
is equal to one in order to give them the interpretation of portfolio weights.
Furthermore, the loadings must be positive or null because we do not allow
short selling of the selected benchmarks (Ter Horst, Nijman and De Roon
[2004]). On the other hand, Fung and Hsieh [1997] and Brown and Goetz-
mann [2003], among others, report that the sensitivities of hedge funds to
style exposures are time-varying. To account for this property, we compute
the following constrained Kalman �lter (with (1) being the measurement
equation, (2) being the transition equation and (3) the two constraints) to
deduce the exposure values at each time t of the historical series, i.e. for
t = 0; : : : ; T (see Doran [1992]):

Rt = w0;t +

kX
i=1

wi;t:R
i
t + "t; (1)

wj;t+1 = wj;t + �j;t+1; for j = 0; :::; k (2)
kX
i=1

wi;t = 1 and wi;t � 0; for i = 1; :::; k (3)

where Rt represents the fund�s historical return at time t, w0;t is the time-
varying intercept of the RBSA at time t, k is the number of selected bench-
marks (asset class factors), Rit represents the historical return of the bench-
mark i at time t, "t re�ects idiosyncratic noise at time t and wi;t represents
the weight (or exposure) of the benchmark i at time t. In addition, the error
terms are distributed according to (4).

"t v NID(0; �2� ) and �j;t v NID(0; �2j;�); j = 0; :::; k: (4)

Building on this traditional Kalman �lter, we propose a selection proce-
dure that follows similar principles to the linear stepwise regression analysis.
The procedure consists of starting with a very large number of (potentially
adequate) benchmarks (> k) and running the Kalman �lter presented above
using the benchmarks taken separately, i.e. one by one. Initially, we �nd
the �rst benchmark that minimizes the mean-squared error (MSE) of the
Kalman �lter4. The MSE of the Kalman �lter is simply the mean-squared

4The R-squared is not a valid �tting measure in this case because we do not use an
ordinary least squares approximation but a constrained Kalman �lter.
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di¤erence between the return estimate from the Kalman �lter and the true
return at each time t (therefore 1

T+1 :
PT
t=0 "

2
t ). This is a measure of the �t-

ting power of the Kalman �lter with the selected benchmarks. We repeat the
procedure to select a second benchmark (from the remaining benchmarks)
minimizing the MSE of the new Kalman �lter integrating the �rst bench-
mark chosen. We proceed with this incremental procedure until we have
the desired number k of selected benchmarks. In analogy with the heuris-
tic stopping rule with many PCA approaches, we stop the procedure, and
therefore �x the parameter k, when the improvement of the optimal Kalman
�lter MSE is less than 5%. Eventually, these k benchmarks correspond to
the style exposures of the analyzed fund and explain the greatest part of its
return behavior over time. This results in a k-factor model which is used
to determine the fund asset mix. Note that the benchmarks selected for a
speci�ed fund can change from one period to another.

3 Errors in Variables

Once the benchmarks are selected, we want to create the corresponding
HME (considered as additional benchmarks). We use the method developed
by Dagenais and Dagenais [1997] and applied by Coën and Hübner [2006]
thereby creating new regressors accounting for the estimated measurement
errors using the higher moments, i.e. the (cross) skewness and the (cross)
kurtosis. To compute the measurement error series corresponding to each
selected benchmark, we use the following formulas (6 to 8) and we run k
(arti�cial) ordinary least squares regressions (5):

SB = (i; z1; z2):�̂ + Ŵ (5)

with

f = (In �
ii0

n
):SB; (6)

z1 = f � f; (7)

z2 = f � f � f � 3f:(E[f
0f

n
] � Ik) (8)

where n is the number of observations, i is a (n�1) vector where the elements
are all one, In and Ik are identity matrix of order n and k respectively, SB
denotes a (n � k) matrix containing the k selected benchmarks, � is the
Hadamard element-by-element matrix multiplication operator, the matrix
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f stands for the matrix SB calculated in mean deviation, �̂ is a (n � k)
matrix containing estimators and Ŵ is a (n � k) matrix standing for the
estimated matrix of error terms. We run k arti�cial regressions to have k
series of error terms (the k columns of Ŵ ). In addition, we know from the
least squares approximation that the mean of the residual series is null, i.e.
E[Ŵ ] = 0.

4 Higher Moment Estimator Selection

We have initially k selected benchmarks with their k corresponding measure-
ment error series. We run the Kalman �lter on the k selected benchmarks
plus each possible combination of the error series to compute the MSE of
each combination5. All the possible selections can be enumerated because
it is simply a combination without repetition of i (for i = 0; : : : ; k) elements
chosen from k elements (see combinatorial analysis). We run the follow-
ing constrained Kalman �lter (with (9) being the measurement equation,
(10) being the transition equation and (11) the three constraints) for each
possible combination and for t = 0; : : : ; T :

Rt = w0;t +

kX
i=1

�
wi;t:R

i
t + wk+i;t:W

i
t

�
+ "t; (9)

wj;t+1 = wj;t + �j;t+1; for j = 0; :::; 2k (10)
kX
i=1

wi;t = 1 ,
2kX

i=k+1

wi;t = 0 and wi;t � 0; for i = 1; :::; k (11)

where Rt represents the fund�s historical return at time t, w0;t is the time-
varying intercept of the RBSA at time t, k is the number of selected bench-
marks, Rit represents the historical return of the benchmark i at time t, W

i
t

corresponds to the historical measurement error series of the benchmark i at
time t (computed in Section 3), "t re�ects idiosyncratic noise at time t, wi;t
represents the weight of the benchmark i at time t and wk+i;t represents the
measurement error series of the benchmark i at time t. The value of wk+i;t
is set to zero if the measurement error series related to the benchmark i is
not selected.

Note that the constraints corresponding to the selected benchmarks are
not modi�ed. However, the unique constraint established for the measure-

5We can select no, some or all error series.
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ment error series imposes that the sum of their weights at each time t is
null.

We save the combination that minimizes the MSE of the Kalman �lter.
The �nal number of benchmarks kf (i.e. the number of selected benchmarks
k plus the number of selected measurement error series kf �k) is comprised
between k and 2k (included).

5 Predictive Capacity

Like for OLS estimation, our constrained dynamic style analysis produces
estimators based on the variance-covariance matrix of the regressors.6 Unfor-
tunately, given the large number of candidate benchmarks and HME, many
of them are likely to exhibit serious multicollinearity. Even though this issue
does not a¤ect the explanatory power of the model, it is likely to in�uence
the stability of the regression coe¢ cients as well as the quality of statistical
inference based thereupon, such as with the procedure proposed by Lobosco
and DiBartolomeo [1997]. Such issues may a¤ect the quality of return pre-
dictions based on the model, and thus the generation of conditional expected
returns based on the Kalman �lter analysis.

In order to avoid these multicollinearity problems (see Agudo and Gi-
meno [2005] among others) for the next steps in the procedure, we express
the selected benchmarks and HME data in terms of factors. This type of
analysis allows us to detect the structure in the relationships between the
explanatory variables. Note that we do not reduce the dimension of the data
because we need to come back to the initial dataset for explanatory conve-
nience. We �rstly establish the variance-covariance matrix of the selected
benchmarks and the selected HME. We compute then the eigenvectors of
this variance-covariance matrix. The corresponding eigenvalues are not re-
quired because we do not want to reduce the data dimension. The factor
matrix of the selected benchmarks and the associated HME, noted �, is
computed with the following formula:

� = (eigenvectors0:D0)0 (12)

where eigenvectors is a (kf�kf ) matrix columns represent the eigenvectors,
D is a (n� kf ) matrix containing the k selected benchmarks returns series

6We apply this procedure even though we may be lead to empirically reject the normal-
ity hypothesis of the return series. This is the reason why, in this paper, we do not focus
on the statistical signi�cance of the coe¢ cients, but rather on the predictive capacity of
the model.
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and the kf � k selected HME series sorted by column and � is a (n � kf )
matrix containing the kf orthogonal factors which are linear combinations
of the selected benchmarks returns and the selected HME (see Corielli and
Meucci [2004]). We get back to the initial data using the inverse transfor-
mation formula because we keep all the factors or, in other words, all the
eigenvectors.

Then, we run an ultimate Kalman �lter on these factors to obtain the
exposures of the fund to the factors at each time t (
i;t for i = 1; : : : ; kf ).
We impose three constraints on these exposures in order to respect the non
negativity and the unitary sum assumptions for the selected benchmarks
weights (wi;t for i = 1; : : : ; k) and the null sum for the selected measurement
error series (or HME) weights (wi;t for i = k + 1; : : : ; kf ) at each time t.
Thereby, we run the following Kalman �lter (13 and 14) for t = 0; : : : ; T
with the following three constraints (15 and 16):

Rt = 
0;t +

kfX
i=1


i;t:�
i
t + "t; (13)


j;t+1 = 
j;t + �j;t+1; for j = 0; :::; kf (14)

(eigenvectors0:VB)
0:�t = 1 and (eigenvectors0:VHME)

0:�t = 0 (15)

eigenvectors:�t � K (16)

where �it stands for the column i of � at time t, VB represents a (kf � 1)
column vector of k ones then kf � k zeros, VHME represents a (kf � 1)
column vector of k zeros followed by kf � k ones, �t is the column vector of
the 
i;t for i = 1; : : : ; kf and K is a column vector of order kf with k zeros
followed by kf � k minus in�nity. As previously, we do not constraint 
0;t,
the time-varying intercept of the RBSA at time t.

In order to convert the 
i;t to real exposures of the fund to the selected
benchmarks and HME, i.e. the wi;t (for i = 1; : : : ; kf ), we need to use the
following transformation equation:

weights = (eigenvectors:�)0 (17)

where weights is a (n � kf ) matrix containing the weight (or exposure)
estimates of each selected benchmark and HME at each time t, eigenvectors
is a (k � kf ) matrix whose columns represent an eigenvectors (identical to
the matrix deduced supra) and � stands for the (kf � n) matrix with the
exposures of the fund to the factors at each time t (
i;t for i = 1; : : : ; kf ).
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Finally, we can compute the fund return in one period using the es-
timated current exposures (wi;T and wk+i;T ) if we assume that they are
identical to those in one period (wi;T+1 and wk+i;T+1). Indeed, the tran-
sition equation of the Kalman �lter justi�es this assumption because the
process noise is assumed to be drawn from a zero mean multivariate normal
distribution. In other words, the Kalman assumes that Et(wi;t+1) = wi;t.
Concerning the independent term 
0;T+1, we suggest to compute an average
over all the sample (E[
0;t] for t = 0; : : : ; T ) or an average over the �last�
period�s because this parameter exhibits larger movements than the expo-
sures. Knowing the expected return of each selected benchmark, we have
all the information to compute the fund expected return equation:

E[RT+1] = 
0;T+1 +

kX
i=1

�
wi;T+1:E[R

i
T+1] + wk+i;T+1:E[W

i
T+1]

�
(18)

where wi;T+1 and wk+i;T+1 represent the future exposures of the fund to
the benchmark i or its measurement error respectively. As previously men-
tioned, the value of wk+i;T+1 is set to zero if the measurement error series
related to the benchmark i is not selected. Furthermore, we know that
E[W i

T+1] is equal to zero by construction (see Section 3), we have therefore
the following simpli�ed expression of the fund expected return:

E[RT+1] = 
0;T+1 +
kX
i=1

wi;T+1:E[R
i
T+1]. (19)

This predictor can be compared against the ones produced by a con-
strained static style analysis as in Sharpe [1992] and a dynamic Kalman
�lter analysis similar to Swinkels and Van Der Sluis [2006] with stepwise
benchmark selection.

6 Empirical Application

To illustrate the usefulness of our approach, we consider the 14 EDHEC
alternative indexes for the 2000-2006 period, a total of 78 months. The
Table 1 exhibits a summary statistics of the indexes monthly returns7. The
columns contain information about the mean, the standard deviation, the

7These data are available on www.edhec-risk.com.
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skewness (standardized), the excess kurtosis (standardized), the minimum,
and the maximum of the monthly returns8.

Table 1: EDHEC Alternative Indexes Monthly Returns - Descriptive statistics

Hedge Fund Strategy Mean Std. Dev. Skewness X-Kurtosis Min Max

Convertible Arbitrage 0.0059 0.0107 -0.5134 1.2030 -0.0316 0.0344

CTA Global 0.0066 0.0273 0.0010 -0.4275 -0.0543 0.0682

Distressed Securities 0.0106 0.0116 -0.0099 -0.1787 -0.0209 0.0360

Emerging Markets 0.0112 0.0239 -0.5547 -0.3280 -0.0462 0.0586

Equity Market Neutral 0.0055 0.0045 0.2466 1.4167 -0.0082 0.0210

Event Driven 0.0080 0.0125 -0.7462 1.1287 -0.0300 0.0341

Fixed Income Arbitrage 0.0056 0.0047 -0.0605 1.7290 -0.0092 0.0207

Global Macro 0.0070 0.0124 0.5557 0.4386 -0.0178 0.0472

Long/Short Equity 0.0057 0.0172 -0.3952 -0.4800 -0.0389 0.0381

Merger Arbitrage 0.0050 0.0085 -1.0734 2.3275 -0.0267 0.0272

Relative Value 0.0062 0.0089 -0.3346 1.3511 -0.0221 0.0333

Short Selling 0.0048 0.0476 0.5073 0.9912 -0.1135 0.1657

Funds of Funds 0.0051 0.0105 -0.1722 -0.4179 -0.0205 0.0286

Multi Strategy 0.0076 0.0075 0.1129 0.4114 -0.0137 0.0304

As acknowledged by a growing literature, the two �rst moments are
insu¢ cient to provide a good description of risk. The descriptive statistics
(reported in Table 1) and the normality tests that we performed on each
variable9 support this view. Consequently, we can reject the hypothesis of
returns normality. This suggests that higher moments of the regressors are
highly likely to in�uence the EDHEC indexes performance measurement.

We consider a large set of 118 potential style benchmarks selected among
the literature (reported in the Appendix). We take the major equity, bond,
commodity, real estate, exchange and interest indices over all the continents
(see Capocci, Corhay and Hübner [2005] and Fung and Hsieh [2002] among
others). We also incorporate the Fama and French factors [1993] and the
additional momentum factor proposed by Carhart [1997]. We take into
consideration the potential impact of hedge fund stale prices (and return
smoothing) by taking lagged values (one month and two months) of several
main benchmarks (see Okunev and White [2006] and Getmansky, Lo and

8We assume to have a population and not a sample of the returns, i.e. we do not use a
correction term to compute the standard deviation, the skewness and the excess kurtosis.

9The results from the Jarque-Bera, Lilliefors, Anderson-Darling, Cramer-von Mises,
Watson and Anderson-Darling tests are available on demand.
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Makarov [2004]). We compute several spreads on di¤erent indices according
to Fung and Hsieh [2002].

We select some particular benchmarks as the coskewness and the cokur-
tosis with basic benchmarks (see Lhabitant [2004] p.199 and Kraus and
Litzenberger [1976])10, the US implied volatility index VIX (see Hübner and
Papageorgiou [2006]) and some swap instruments (see Okunev and White
[2006] and Agarwal and Naik [2000]).

We include option-based factors computing at-the-money, out-of-the-
money and in-the-money put and call options on several major indices (see
Okunev and White [2006], Hübner and Papageorgiou [2006], Agarwal and
Naik [2000], Henriksson and Merton [1981] and Glosten and Jagannathan
[1994]). The moneyness is �xed at 5% and the maturity is equal to one
month according to the results empirically derived by Diez de los Rios and
Garcia [2005]. Finally, we use the Fung-Hsieh lookback straddles (see Fung
and Hsieh [2001]) and we create other synthetic look-back straddles on dif-
ferent indices (see Fung and Hsieh [2002] and Goldman, Sosin and Gatto
[1979]). Indeed, these (nonlinear) instruments explain a large part of the
nonlinear patterns of the EDHEC indexes returns.

In order to validate the composite model, we compare the results accu-
racy obtained according to (a) the traditional method, i.e. a multiple linear
regression (an ordinary least squares) with the two constraints of non nega-
tivity and unitary sum of the exposures, (b) a general Kalman �lter run with
the same constraints and (c) our composite Kalman-HME-factor model. We
test a walk-forward using the usual technique of out-of-sample forecasting.
We take a sliding window of 30 months and we repeat the process estima-
tion moving forward the window until there are no more data to test. The
results accuracy of the three models is judged based on the out-of-sample
test results, i.e. the prediction error of the considered model.

The following three tables contain the results from the OLS (Table 2),
the general Kalman �lter (Table 3) and the composite (Kalman-HME-factor)
model (Table 4) on all the potential benchmarks. The MSE here expresses
the di¤erence between the expected return estimate from the considered
model and the true expected return for each sub-period of the sliding win-
dow. We expose for each model the root mean-squared error (RMSE) which
is simply the squared root of the MSE, the minimum, the maximum and the
standard deviation of the prediction errors.

10We could have included some other moment-related variables (for instance �high skew
minus low skew�portfolio returns) ensuring that these benchmarks are tradable.
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Table 2: Results from the OLS

Hedge Fund Strategy RMSE Min Max Std. Dev.

Convertible Arbitrage 0.0231 -0.0454 0.0667 0.0222

CTA Global 0.0422 -0.0751 0.1311 0.0418

Distressed Securities 0.0251 -0.0482 0.0594 0.0242

Emerging Markets 0.0284 -0.0697 0.0812 0.0284

Equity Market Neutral 0.0293 -0.0648 0.0996 0.0286

Event Driven 0.0434 -0.0938 0.1280 0.0431

Fixed Income Arbitrage 0.0254 -0.0487 0.0686 0.0253

Global Macro 0.0359 -0.0884 0.0866 0.0358

Long/Short Equity 0.0321 -0.0705 0.1021 0.0321

Merger Arbitrage 0.0270 -0.0549 0.0851 0.0270

Relative Value 0.0278 -0.0626 0.1110 0.0277

Short Selling 0.0423 -0.0980 0.0978 0.0420

Funds of Funds 0.0282 -0.0609 0.0856 0.0279

Multi Strategy 0.0234 -0.0612 0.0536 0.0232

Table 3: Results from the General Kalman Filter

Hedge Fund Strategy RMSE Min Max Std. Dev.

Convertible Arbitrage 0.0188 -0.0137 0.0492 0.0113

CTA Global 0.0286 -0.0605 0.0622 0.0278

Distressed Securities 0.0136 -0.0231 0.0282 0.0112

Emerging Markets 0.0220 -0.0455 0.0503 0.0217

Equity Market Neutral 0.0051 -0.0116 0.0115 0.0051

Event Driven 0.0125 -0.0216 0.0278 0.0124

Fixed Income Arbitrage 0.0063 -0.0063 0.0135 0.0048

Global Macro 0.0140 -0.0286 0.0277 0.0138

Long/Short Equity 0.0181 -0.0397 0.0326 0.0172

Merger Arbitrage 0.0091 -0.0235 0.0170 0.0090

Relative Value 0.0093 -0.0165 0.0232 0.0087

Short Selling 0.0349 -0.0871 0.0783 0.0349

Funds of Funds 0.0110 -0.0269 0.0239 0.0110

Multi Strategy 0.0098 -0.0182 0.0269 0.0089
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Table 4: Results from the Composite Model

Hedge Fund Strategy RMSE Min Max Std. Dev.

Convertible Arbitrage 0.0113 -0.0244 0.0300 0.0113

CTA Global 0.0267 -0.0558 0.0633 0.0267

Distressed Securities 0.0102 -0.0265 0.0136 0.0101

Emerging Markets 0.0205 -0.0426 0.0515 0.0205

Equity Market Neutral 0.0049 -0.0092 0.0134 0.0049

Event Driven 0.0232 -0.0829 0.1134 0.0231

Fixed Income Arbitrage 0.0048 -0.0126 0.0160 0.0048

Global Macro 0.0139 -0.0291 0.0259 0.0138

Long/Short Equity 0.0161 -0.0398 0.0324 0.0158

Merger Arbitrage 0.0079 -0.0259 0.0162 0.0077

Relative Value 0.0078 -0.0208 0.0170 0.0078

Short Selling 0.0334 -0.0837 0.0724 0.0323

Funds of Funds 0.0104 -0.0253 0.0179 0.0103

Multi Strategy 0.0084 -0.0222 0.0177 0.0083

We observe in these results tables that the composite model accuracy
exceeds on average the accuracy of the style analysis using the OLS or the
general Kalman �lter. Indeed, all the parameters assessing the predictive
power of the three approaches present the composite model as globally supe-
rior. We note that the �interval error�(the di¤erence between the maximum
error and the minimum error) of the OLS is larger than the �interval error�
of the other two speci�cations. Furthermore, the mean standard deviation
of the OLS and the general Kalman �lter is higher than the composite model
mean standard deviation.

To investigate our remarks, we plot for each test (48 tests for each ED-
HEC alternative index, i.e. 672 predictions per method), the di¤erence
between the absolute prediction error of the composite model and the ab-
solute prediction error of the OLS (Graph 1) or the general Kalman �lter
(Graph 2). All the points lying on the left (respectively on the right) of the
vertical axis (representing a di¤erence equal to zero between the predictive
power of each model) mean that the composite model is more (respectively
less) accurate in predicting the expected return then the OLS or the general
Kalman �lter.
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Graph 1: The Composite Model Absolute Prediction Error minus the OLS Absolute

Prediction Error (by Hedge Fund Strategy)
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Graph 2: The Composite Model Absolute Prediction Error minus the General Kalman

Filter Absolute Prediction Error (by Hedge Fund Strategy)

We observe from the graphs that the majority of the points (70.98%
for Graph 1 and 59.97% for Graph 2) lie on the left of the vertical axis
meaning that the composite model performs on average better in predicting
the future returns of the analyzed EDHEC indexes. However, we easily
note that some strategies show better results than others. To investigate
this point, we plot, for each model prediction, the box-and-whisker diagram
to indicate graphically the statistical distribution. We categorize the 14
EDHEC alternative indexes in three main groups: the directional (Graph
3), the non-directional (Graph 4) and the other strategies (Graph 5).
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Graph 3: Prediction Error of The Directional Strategies (According to Each Model)
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Graph 4: Prediction Error of The Non-Directional Strategies (According to Each Model)
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Graph 5: Prediction Error of The Other Strategies (According to Each Model)

We note that the CTA Global, Emerging Markets, Long/Short Equity
and Short Selling strategies have large interquartile range and whiskers.
The mean prediction error is closer to zero with the composite index for
all strategies except for the Short Selling strategy. On the one hand, the
Emerging Markets index is the one that displays the largest variability of
returns, and the CTA index is known to display the poorest �t with a linear
style analysis. These outlying behaviors probably explain the relatively poor
�t of the procedure. On the other hand, it sounds obvious that the two
strategies integrating short positions do not meet the positivity constraint
for the selected benchmarks weights. Indeed, if we impose that the weights
are negative or null for Short Selling index and if we control the weights
between -1 and 1 for the Long/Short Equity index, we would obtain better
results.

Overall, these results emphasize the improvement in the exposures esti-
mates brought by the composite model through its selection procedure and
higher moment incorporation. The applications of this type of analysis can
be useful for the determination of the (time-varying) expected returns of
di¤erent strategies. Obviously, this type of analysis should be applied to
individual funds for screening and allocation decisions. The possibility to
disaggregate the analysis at the single fund or portfolio level is the major
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challenge to be met by our composite approach.

7 Conclusions

The main contribution of this article is to propose and illustrate a com-
prehensive technique to identify the time-varying exposures of a fund to
di¤erent appropriate benchmarks and measurement errors. The Kalman �l-
ter utilization and the higher moment estimators proposed by Dagenais and
Dagenais [1997] produce increases in the explanatory power of the RBSA
(Sharpe [1988 and 1992]) for the sample test that we analyzed. Speci�cally,
we compared the prediction error of the composite model to the predic-
tion error of two ordinary methods using the EDHEC alternative indexes.
Through two main selection algorithm (the selection of the benchmarks and
the selection of the HME), we compute the expected return series of each
EDHEC index.

The �ndings of this article suggest that the model developed improves
the accuracy of the traditional prediction using the RBSA. The selection al-
gorithm permits to avoid irrelevant benchmarks and the factor analysis ob-
viates the potential multicollinearity between the selected benchmarks. Fur-
ther research should focus on obtaining more accurate initial benchmarks.
In addition, the algorithm that we propose brings other improvements for
the measurement error series selection.

The application scope of our approach seems to be very large. On the
one hand, the risk management can identify the risk exposures of a speci�ed
fund but also the e¤ect of the benchmarks higher moments. On the other
hand, the management can optimize its portfolio using the expected returns
provided by the model.

We view our contribution as a �rst step towards dynamic style analysis
in presence of errors in variables and faced with a huge number of potential
benchmarks. We aim at improving the benchmark (or asset class) selection,
the time-varying exposure estimates to the di¤erent risk sources (including
the higher moments) and, ultimately, the assessment of the fund expected
return.
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Appendix: Benchmarks by Asset Class

Equity
RUSSELL 3000, S&P 500 COMPOSITE, NASDAQ 100, DJ STOXX EUR, MSCI

EUROPE, NIKKEI 300, MSCI EM, MSCI WORLD EX US

High Yield
ML US HIGH YIELD MASTER II.

Bond
LEHMANMUNICIPAL BOND, JPM EUROPE GOVT BOND, JPM US GOVT.BOND,

JPM JAPAN GOVT.BOND, LEHMAN US AGGREGATE CORP BAA, LEHMAN US

CREDIT BOND INDEX

Commodity
S&P GSCI Commodity, S&P GSCI Precious Metal, S&P GSCI Agriculturl

Mortgage
LEHMAN MBS HYBRID ARM

Real Estate
DJTMWESTERN EUROPE REAL ESTATE, DJTMWORLD REAL ESTATE,

FTSE W US REAL ESTATE

Swap
SWAP Index

Lag 1 and 2
RUSSELL 3000, S&P 500 COMPOSITE, NASDAQ 100, SMB, HML, WML, DJ

STOXX EUR, MSCI EUROPE, NIKKEI 300, ML ASIA/ PACIFIC CONV.BND, MSCI

EM

Interest Rate
US TREASURY COMPOSITE >10 YR, US TREAS.BILL 3M, FED FUND

EFFECTIVE, LEHMAN US TREASURY: 7-10 Y

Fama French
SMB and HML

Carhart
WML

Co-moment
Co-Skewness and Co-kurtosis

Spread
ML US HIGH YIELD MASTERII., LEHMAN US AGG. CORPORATE BAA,

FHA, CONV MORTGAGE, SWAP RATE, ML GLOBAL 300 CONVERTIBLE, CITI-

GROUP.WORLDGOVT.BOND, Moody�s Baa - US Treasury 10y

Option (Put/Call atm and otm)
S&P500, RUSSELL3000, Nasdaq100, MSCI World EX.US, VIX, STRADDLE

HY-TRSY, STRADDLE CDY-TRSY, CBOE VIX
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Fung-Hsieh factors
Bond lookback straddle, Currency Lookback Straddle, Commodity Lookback

Straddle, Short Term Interest Rate Lookback Straddle, Stock Index Lookback Straddle

Currency
Trade Weighted Exchange Index: Broad
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