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Abstract
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1. Introduction

This paper sets out to help explain the empirical puzzle, why estimates of asset
correlations based on equity prices tend to be considerably higher than correlation
estimates from default rates. Since correlation estimates arguably constitute the
most important factor driving the credit risk of a loan portfolio, sorting out the
empirical puzzle is highly important for credit risk modelling.

We explore the hypothesis that the empirical puzzle is created by the use of different
data sets which require also different estimation methodologies. For this purpose we
compare the accuracy of estimating asset correlations from default rates and from
stock prices in a clinical simulation study. This setup avoids typical limitations
of comparing asset correlation estimates from historical default rates and equity
returns. More precisely, the sample of firms for which stock prices are available is
typically too small for a meaningful comparison with the corresponding default rates
because default events are rare. Even if default rates are available for a sufficiently
large sample of firms, this sample typically includes non-listed firms which precludes
estimating their asset correlation from equity returns. In a simulation study both
equity prices and default rates are instead generated consistently, i. e. by the same
data generating process (DGP).

Our results may also give guidance in which circumstances equity returns and in
which default rates are more appropriate for the estimation of asset correlations.
Finding that differences in estimation methodologies cannot explain the variation in
the correlation estimates would suggest that the previously observed differences are
instead caused by other reasons, for example, by sample mismatches.

It is not obvious from the outset if the estimation from stock prices or from default
rates is more efficient. On the one hand defaults are rare events which require a
longer time interval between two observation dates compared to equity data which
are available on a daily basis. As a consequence, time series of default rates are
based on yearly counted defaults and often contain not more than ten to twenty
observations. As they cover a relatively long time period, they are vulnerable to
regime shifts, for example structural breaks in the evolution of the economy or the
introduction of a new bankruptcy code. On the other hand, trading activities can
generate additional noise in the stock prices. In this case, correlation estimates based
on market prices may be perturbed by factors unrelated to credit risk, for example
a sudden drop in the demand or the supply of assets.

The key advantage of a simulation study is the possibility to estimate correlations
from stock prices and default rates consistently since both time series are generated
by the same DGP, based on the same model. In order to avoid an inadvertently
preferential treatment of stock returns, perturbations of stock prices from factors
unrelated to credit risk also need to be accounted for. More precisely, we introduce
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stochastic, mean-reverting correlations as model error in the stock returns while still
employing an estimation methodology based on a Merton-type model that assumes
constant correlations. Although this model error affects also the estimation from
default rates, we expect that its effect is smaller than for equity prices. Therefore,
this procedure should provide a more realistic comparison between the correlation
estimation from default rates and from stock prices.

For the estimation of asset correlations from stock prices we employ the usual esti-
mation methodologies from the literature. In the case of correlation estimation from
default rates, various methodologies have been applied in the literature. The most
general approach would be to use model-free estimation techniques, employed first
by Lucas (1995) and later refined by De Servigny and Renault (2002). However,
it has been noted, for example by Gordy and Heitfield (2000), that a model-based
estimation may provide more efficient estimates, given the model describes the true
DGP well enough. Therefore, we employ the asymptotic single risk factor (ASRF)
model4 which is consistent with a Merton-type model and which has gained great
popularity as theoretic foundation of the internal ratings based approach in the
Basel II framework.5

Grundke (2007) includes a comprehensive overview of the numerous empirical work
on the estimation of asset correlations, which has so far produced quite diverse re-
sults. De Servigny and Renault (2002) compare sample default correlations and
default correlations inferred from a factor model, which uses empirical equity cor-
relations as proxies for the asset correlation. They find that the link between both
default correlation estimates, although positive as expected, is rather weak, which
adds to the puzzle that we intend to explain. The result is robust against replac-
ing the Gaussian copula by a t–copula. Furthermore, the volatility of the riskless
interest rates appears not to have a direct impact on asset correlations. The au-
thors neither give an explanation for the weak link between default-rate based and
stock price-based correlation estimates nor do they test the assumption that equity
correlations are good proxies for asset correlations. Roesch (2003) reports to our
knowledge the lowest estimates of asset correlations which are estimated from de-
fault frequencies of German corporates in a factor model and vary between 0.5% and
3.5%, dependent on the business sector.6 Duellmann and Scheule (2003) employ a
similar sample of German firms but differentiated between buckets characterized by
size and default probability. The correlation estimates for the buckets considerably
vary between one and fourteen percent. Dietsch and Petey (2004) use samples of

4See Gordy (2001).
5See Basel Committee on Banking Supervision (2005). The ASRF model provides under certain

assumptions an asymptotic justification that capital charges for single exposures are portfolio
invariant as they add up to the capital charge of the total portfolio. For the purpose of estimating
asset correlations we do not need this asymptotic argument but we still refer to the model as the
ASRF model because it has become widely known under this name.

6Modelling the (unconditional) default probabilities as time-varying and driven by macroeco-
nomic factors may have contributed to the relatively low correlation estimates.
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French and German firms and obtain results which are between those of Roesch and
those of Duellmann and Scheule.

Lopez (2002) instead estimates asset correlations from stock prices. For this pur-
pose he employs a version of the ASRF model which is calibrated to the multi-factor
model of the KMV Portfolio Manager software. His correlation estimates for a sam-
ple of medium and large US corporates lie between 10 and 26 percent.7 In the
Basel II framework the asset correlation parameter depends on the probability of
default (PD) and for medium-size corporate borrowers also on firm size. Depend-
ing on the PD and neglecting the regulatory size adjustment, the asset correlation
varies between twelve and twenty four percent. Although the asset correlation is
a supervisory set parameter, it was originally calibrated to the economic capital of
credit portfolios of large international banks which motivates their inclusion in the
list of previous empirical results. In summary the above mentioned studies show
that correlation estimates vary considerably. They are usually higher if they are
based on stock prices than if they are based on default-rates. In this paper we will
explore possible explanations for this result.

The paper is organized as follows. In Section 2 we present the Merton-type credit risk
model together with the DGP both for the stock prices as well as for the time series
of default rates. The model and the DGP form the basis of our simulation study.
Section 3 comprises the estimation from stock prices and Section 4 from default rates.
The simulation results including a comparison of the estimation methodologies and
an analysis of a model error in the form of stochastic asset correlations are presented
in Section 5. Section 6 summarizes and concludes.

2. The Simulation Model

Selecting the Merton Model as the underlying model of the DGP is motivated by the
fact that it provides a structural link between default events and stock price returns.
More specificly we use a multi-firm extension of the Merton (1974) model with N
identical firms. Furthermore, this extension is consistent with the ASRF model.8

Later, the model is perturbed by a model error due to stochastic correlations in the
DGP.

7This asset correlation levels are confirmed by Zeng and Zhang (2001), also estimating from
KMV data.

8See Pitts (2004).
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2.1. Asset Value Model and Data Generating Process

In the following we consider a portfolio of N homogenous firms. In the Merton
(1974) model the asset value of every firm i is assumed to follow under the physical
measure P a geometric Brownian motion of the form

dVi,t = µVi,t dt + σVi,t dWi,t, (1)

where Vi,t denotes the asset value at time t of firm i, µ the drift and σ the volatility
parameter of the stochastic process. Since we assume all firms to be homogenous,
µ, σ and the initial firm value Vi,0 = V0 are identical for every firm. In order to
capture dependencies between firms, the Brownian motion Wi,t is decomposed into
two independent Brownian motions, Xt and Bi,t:

dWi,t =
√

ρ dXt +
√

1− ρ dBi,t. (2)

Equation (2) gives the standard representation of a single factor model and explains
why the parameter ρ is commonly referred to as the asset correlation. Note that
the model assumes that the asset correlation ρ is the same for all pairs of firms.
This assumption is typical for empirical studies as it allows this parameter to be
estimated from a cross section of firms.

Simulating the time-continuous asset value process requires an appropriate discreti-
sation. The common Euler scheme only gives good numerical results if the drift of
the diffusion coefficients is constant. Since we allow later on for stochastic corre-
lations, the use of a higher order scheme is recommended.9 Starting with constant
correlation, the asset value of firm i at time t + ∆t is defined as follows:

Vi,t+∆t = Vi,t + Vi,t(r + σλ)∆t + Vi,t σ
√

∆tWi,t + Vi,t
1

2
σ2∆t(W 2

i,t − 1), (3)

with Wi,t =
√

ρXt +
√

1− ρBi,t.

In Merton-type models, the equity value Ei(Vi,t, h) of firm i at time t represents a
call option on the firm’s asset value Vi,t with the time to maturity h. It is given by
the well-known Black and Scholes (1973) formula:

Ei(Vi,t, h) = Vi,t Φ(d1)− e−r hD Φ(d2) (4)

with d1 =
log

(
Vi,t

D

)
+ (r + 1

2
σ2) h

σ
√

h
and d2 = d1 − σ

√
h.

9In Kloeden and Platen (1992), chapter 10, the Milshtein scheme is recommended for short time
intervals as it increases the order of strong convergence from 0.5 in the Euler scheme to 1. The
increase in convergence is loosely spoken caused by accounting for the second order term of the
Itô-Taylor Expansion.
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While the asset values are simulated from the DGP given by equation (3), the
corresponding equity values, which are the basis of the correlation estimation, are
inferred from equation (4).

Equation (4) requires that the riskless short-term interest rate r is deterministic.
This implicit assumption can be motivated inter alia by the findings of De Servigny
and Renault (2002) that interest rate volatility does not significantly affect asset
correlations, the estimation of which is the purpose of our study. The assumption of
a constant risk horizon h and a constant debt value D is justified as the estimation
of asset correlations from stock prices does not depend on h and D, given that debt
is deterministic.

2.2. Simulation of Default Events

The default rates need to be simulated in line with the DGP from the previous
subsection. For this purpose, they are based on a portfolio of N borrowers whose
asset values follow the DGP given by equation (3). Borrower-dependent PDs can
negatively affect correlation estimates as standard models assume some kind of PD
homogeneity across borrowers. In order to study the best case in terms of estimation
accuracy, all firms in the portfolio are assigned the same PD.

Since borrowers can only either default or survive, holding the set of borrowers fixed
introduces a survivorship bias. More precisely, the credit quality of the borrowers
in the sample slowly increases over time as the borrowers with a negative evolution
of their asset values drop out which also causes the sample size to decline.10 In
order to control for these effects, we do not use a fixed set of borrowers but assume
a homogeneous portfolio in which borrowers are reassigned every year to rating
classes defined by fixed PDs. This procedure is implemented in the simulations by
setting asset values and portfolio size back to the original values V0 and N from the
beginning of the first year.

The number of defaulted firms is given in every year by the number of firms of which
the asset values falls below the outstanding debt value D at the end of the year.
The default probability PD at time t of a default at time t+h given the information
about the firm value for each firm in the homogeneous portfolio is consistent with
the Merton (1974) model and given by

PD = P(Vi,t+h < D) = P
(

Vi,t exp

[
(µ− σ2

2
) · h + σ(Wi,t+h −Wi,t)

]
< D

)
,

10See Duan et al. (2003).
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which leads to

PD = P

Wi,t+h −Wi,t√
h

<
log

(
D

Vi,t

)
− (µ− σ2

2
)h

σ
√

h

 = Φ

(
c√
h

)
(5)

with

c =
log

(
D

Vi,0

)
− (µ− σ2

2
)h

σ
. (6)

Following standard procedure, the risk horizon h is in our simulation constant and set
to one year. As the one–year default probability of each firm equals the probability
that the asset return Wi,t+h−Wi,t of the period with length h falls below the distance-
to-default c, counting these events in every simulation run provides the numerator
of the default rate of the portfolio. Note that with the static risk horizon h, cases in
which the asset value falls below the default threshold before the end of the period
but the borrower is “cured” before the year end, are not counted as defaults. This
is a restriction of the standard implementation of the Merton model which we copy
in order to be consistent with empirical work on correlation estimation.

2.3. Stochastic Asset Correlation

Comparing estimates of asset correlations from equity prices and default rates may
be considered as giving an undue preference to the first method. The reason is it
uses much more observations since stock prices are available with a higher frequency
than default rates. In order to balance this effect we introduce a misspecification
that is likely to appear also in real equity prices but which affects the estimation
from default rates less.

For this purpose we allow for stochastic asset correlations. The results can also
contribute to answer the question how fluctuations in asset correlations over time
affect the estimation accuracy given that their stochastic nature is not accounted
for in the estimation method.

Stochastic asset correlations are not the only way to produce estimation noise and –
if systematic – to influences default correlations. Stochastic volatility of asset values
offers an alternative approach which can also be motivated by empirical findings in
stock markets.11 In this case, equation (4) which relates asset values to equity values
no longer holds which implies a considerable technical burden for the simulation
analysis to generate equity values. Therefore, we prefer stochastic asset correlations
which do not affect (4).

11See Bakshi et al. (1997).
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The case of stochastic asset correlations is implemented as follows. The deterministic
asset correlation ρ in equation (2) is replaced by a stochastic variable ρt such that
the stochastic innovations dZi,t are given by

dWi,t =
√

ρt dXt +
√

1− ρt dBi,t. (7)

Consistency with the case of a deterministic correlation ρ suggests that the long-
run mean of the stochastic correlation equals ρ. For this purpose, we impose an
Ornstein-Uhlenbeck process for the stochastic asset correlation with long term mean
θ = ρ. Given that asset correlations – contrary to interest rates – are not necessarily
positive, we assume the following Vasicek process under the physical measure P:

dρt = κ(ρ− ρt)dt + σρdZt. (8)

The parameter κ denotes the mean reversion parameter and σρ the volatility of
the mean reversion process. The stochastic innovations dXt, dBi,t and dZt are at
any time t pairwise independent increments of Brownian motions. Following the
Milshtein scheme given in equation (3), the stochastic process of the asset correlation
in discrete form is given by

ρt+∆t = ρt + κ(ρ− ρt)∆t + σρ

√
∆t Zt. (9)

3. Correlation Estimation from Stock Prices

Asset correlations can be estimated from stock price returns or from default rates.
The first approach is presented in the following section, the second in Section 4.

The estimation from stock prices is based on the structural model described in
Section 2. We differentiate between a direct estimation method which estimates
asset correlations directly from equity returns and an indirect and conceptually
better founded method, which requires in the first step to estimate the asset returns
from which in the second step asset correlations are estimated.

Following Duan et al. (2003), asset correlations are approximated in the first, direct
method by pairwise equity correlations, which are estimated from stock returns.
Estimating asset correlations directly from equity prices is quite common in empirical
studies and can be motivated by the equivalence of using equity and asset values in
the limiting case when the length of the time horizon approaches zero. Using equity
returns to estimate asset correlations has nevertheless been often criticized because
it ignores the leverage in the capital structure. This is, however, considered a lesser
concern for high-grade borrowers.12 Since correlation estimation from market prices

12See Mashal et al. (2003).
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competes with an estimation from default rates particularly for less risky borrowers
for which default events are even more scarce, we focus exactly on this segment for
which the leverage argument should be a lesser concern.

The second, indirect estimation method consists of two steps. In the first step, the
asset values are estimated from stock prices and liabilities and transformed into
log-returns. In the second step, the asset correlations are estimated from the asset
returns of the first step. This procedure was also employed by Lopez (2002), Pitts
(2004) and Duellmann et al. (2007) who obtained the asset values of non–financial
companies from the MKMV model. We employ instead the classic Merton (1974)
model but follow the MKMV method of estimating asset values from equity prices
and balance sheet information. As given in Bohn and Crosbie (2003), MKMV uses
a two step algorithm with m iteration steps to estimate the asset value and its
standard deviation σ from a time series of equity values.

(1.) Set m = 0 and use σ̂(0) = 0.3 as a starting value, with r, T, D given exogenously.

(2.) Compute V̂
(m+1)
i,t = BS−1(Ei,t, σ̂

(m)) from the Black/Scholes formula BS(.),
given by equation (4), for all t.

(3.) Compute the standard deviation σ̂(m+1) of the logarithmic asset value changes.

(4.) Stop if |σ̂(m+1) − σ̂(m)| ≤ ε, else increase m by one and return to (2.).

The algorithm produces Maximum Likelihood (ML) estimates of the volatility and
the asset value13 and is superior to the method employed before by Jones et al.
(1984).14

After having estimated the asset values in the first step and following Pitts (2004),
a random effects model15 is employed in the second step to estimate the asset cor-
relations. Besides the time-dependent random effect X̃t and the idiosyncratic dis-
turbance term B̃i,t, the only explanatory variable in the parsimonious model is a
firm-dependent intercept ai for every firm:

∆ log[Vi,t] = ai + σXX̃t + σBB̃i,t, where X̃t, B̃i,t ∼ iid. N (0, 1). (10)

Since we assume a homogenous portfolio, ai is constant across firms. Pitts (2004)
uses the ML estimates from the random effects model to estimate the asset correla-
tion by taking into account that σ̂2

X corresponds to σ2∆tρ and σ̂2
B to σ2∆t(1− ρ) in

equation (3). The asset correlation estimator ρ̂ is then given by

ρ̂ =
σ̂2

X

σ̂2
X + σ̂2

B

. (11)

13See Duan et al. (2004).
14See Duan et al. (2003) for a discussion of the ML estimation in this context.
15See Hsiao (2003) for further details on random effects models.

8



Following the common procedure that asset correlations are directly estimated from
equity returns, we apply the random effects estimator as well directly to stock price
returns.

As an alternative to the random effects estimator, asset correlations are additionally
estimated by the mean of the pair-wise correlations of all firms:

ρ̂PW =
2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

corr[log[ ~Ei], log[ ~Ej]], (12)

where ~Ei denotes the vector that collects the equity returns of firm i over time.

Summarizing, we employ two approaches for the estimation of asset correlations,
both for those estimated from equity returns and for those estimated from asset
returns (the latter being inferred before from equity returns). The first approach is
based on the sample correlation of a time series of equity or asset returns and the
second approach is based on the random effects model.

Finally, we replace the constant asset correlation by a stochastic variable which
follows an Ornstein-Uhlenbeck process. Since we investigate this case as an example
of model risk and a robustness check, we do not account for this feature in the
parameter estimation.

4. Asset Correlation Estimation from Default Rates

4.1. Estimation of Asset Correlation Within the ASRF Frame-
work

In Section 2.2 we have outlined how default events in the Merton Model can be
simulated to be consistent with the ASRF model. This section describes the ML
and the Method-of-Moments (MM) methodologies which we employ to estimate
asset correlations from sampled default rates.

In principle, default correlations can be estimated directly from observed default
events as in Lucas (1995) and then reverted back into asset correlations. However,
to improve estimation efficiency we make use of the model structure in the estimation
procedure. From equation (3) follows for the probability of default:

PD = P
(

Wi,t+h −Wi,t√
h

<
c√
h

)

= P

√ρ
(

=∆Xt︷ ︸︸ ︷
Xt+h −Xt)√

h
+

√
1− ρ

(

=∆Bi,t︷ ︸︸ ︷
Bi,t+h −Bi,t)√

h
<

c√
h

 . (13)
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The law of large numbers implies that the default rate of the time period from t to
t + h converges for large portfolios and long time series to the conditional default
probability

P
(

Wi,t+h −Wi,t√
h

<
c√
h

∣∣∣∣ ∆Xt = x

)
= P

(
∆Bi,t√

h
<

c−√ρx
√

h
√

1− ρ

)
= g(x; ρ, c), (14)

which is obviously a function depending on the realization x given ρ and c.

Since ∆Bi,t is an increment of a Brownian motion, it follows that
∆Bi,t√

h
is standard

normal distributed. Therefore, we get for the conditional default probability

g(x; ρ, c) = Φ

(
c−√ρx
√

h
√

1− ρ

)
.

The corresponding density of the default frequency DFt is given in the limit by

f(DFt; ρ, PD) =

√
1− ρ

ρ
exp

(
−(1− 2ρ)δ2

t − 2
√

1− ρδtγ + γ2

2ρ

)
, (15)

where δt = Φ−1(DFt) and γ = Φ−1(PD). (16)

Note that the time intervals for which the series of default frequencies (DFt)t=1,...,T

is computed do not overlap.

Maximizing the log-likelihood function

LL(PD, ρ, DF1, . . . , DFT ) =
T∑

t=1

log [f(DFt; ρ, PD)] (17)

leads to the following ML estimator:16

ρ̂ =
m2

T
− m2

1

T 2

1 + m2

T
− m2

1

T 2

P̂D = Φ(T−1
√

1− ρ̂ m1)

m1 =
T∑

t=1

δt, m2 =
T∑

t=1

(δt)
2. (18)

The estimator is called the Asymptotic Maximum Likelihood (AML) estimator as
it requires a large bucket of firms and a long time series.

Besides the ML methodology, Gordy (2000) also employs an MM estimator for the
expected default rate p̄ and the asset correlation ρ. It is based on matching the

16The standard errors of the estimator are given in the Appendix of Duellmann and Trapp
(2004).
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first and second moment of g(X) with the empirical first and second moment of the
default rates:17

E[g(X)] = p̄ (19)

E[g(X)2] = Φ2(Φ
−1(p̄), Φ−1(p̄), ρ), (20)

where Φ2(.) denotes the cumulative bivariate Gaussian distribution function. The
left hand side of (20) is computed by the sample variance of the default frequencies
and ρ is backed out numerically. We refer to this estimation as the Asymptotic
Method-of-Moments (AMM) estimator.18

5. Comparative Static Analysis

5.1. Simulation Setup and Performance Measures

The different methodologies to estimate asset correlations are analyzed in a compar-
ative static analysis. Its setup is designed to be fair to both estimation methodologies
while minimizing the computational workload to the extent possible. The asset cor-
relation estimators are applied to the same homogeneous portfolio of firms in each
simulation run. Stock prices and default rates are generated consistently. In order
to achieve generality of the results, the model parameters of the simulated portfo-
lio, namely the asset correlation ρ, the probability of default PD, the number of
borrowers or portfolio size N and the length of the time series Y are varied in the
comparative static analysis. The parameter values of the DGP are shown in Table 1.

The range of asset correlations is mainly motivated by the parameter values in the
risk weight functions for wholesale credit exposures in Basel II and previous empirical
results.19

The default probabilities cover rating grades from BBB to B+. As the accuracy of
an estimation from default rates is expected to decline with lower PDs due to the
scarcity of default events, borrowers with higher ratings than BBB should only be
considered if this estimation method still performs well in this credit category.

The minimum of 5 years for the length of the time series of default rates is inspired
by the regulatory minimum requirements in Basel II for the estimation of PDs. The
maximum of 40 years is close to the maximum length that is currently available in
the industry, e. g. in rating agency databases.

17See Gordy (2000).
18For further reference see Appendix C of Gordy (2000).
19See Basel Committee on Banking Supervision (2005), para 272 and for previous empirical

results Section 1.
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Table 1
Parameter Values of the Data Generating Process

This table shows the 24 parameter sets of asset correlation, length of time
series and default probability which were used for the data generating
processes.

Values Number of values
Asset correlation ρ 10% and 25% 2
Length of time series Y 5, 10, 20 and 40 years 4
Probability of default PD 0.5%, 1.2% and 2.03% 3

24 combinations

For each of the possible twenty-four different parameter combinations, 10,000 simu-
lations are run. The parameters of the asset value process which are the same for all
simulation runs are V0 = 1, 000, σ = 0.3, µ = 0.12 and r = 0.03, which is constant
for all maturities. The debt value D is a free parameter and calibrated to the desired
PD by means of equation (5). The portfolio size N is set to 5,000 borrowers, which
is enough for a meaningful estimation of default rates while still being realistic for
portfolios of real banks.

Asset returns are simulated for weekly time intervals. Since defaults are rare events,
the generated default rates are calculated on a yearly basis. In order to ensure
consistency between default rates and stock prices, the yearly default rates are gen-
erated from the same asset returns. For this purpose, the weekly random asset
returns Wi,t+∆t −Wi,t are summed up in every year and divided by

√
52 to obtain

the standardized yearly asset returns. The default rates are computed by counting
how often negative yearly asset returns reach or exceed the distance-to-default, given
by equation (6).

It turns out that the performance of an estimation from stock prices does not further
improve if weekly stock prices are simulated for more than fifty firms and over more
than two years. Therefore, we employ for the correlation estimation from market
prices only a subset of fifty firms and two years of market prices, notwithstanding
that we use the full sample of 5,000 firms and 40 years for the generation of default
rates.

Finally, we allow for stochastic asset correlations in the DGP in order to account
for model risk. This model error affects only the DGP but is not accounted for
in the parameter estimation. This “robustness check” requires specifying the mean
reversion parameter κ and the volatility σρ in equation (8). The parameters of the
stochastic asset correlation process are set to ρ ∈ {0.1, 0.25}, κ = 1 and σρ = 0.085.
The values of the mean ρ are given by the constant asset correlations used before.
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The parameters κ and σρ are set such that the asymptotic 90% confidence interval of
the stochastic correlation is given by ρ± 10%.20 The value of one for κ corresponds
with a half-life time of 0.7 years.21

The following two indicators are used to measure the estimation performance of
the two asset correlation estimators based on stock prices and also for the three
estimators based on default rates in each of the 24 parameter settings:

Bias = 1
S

∑S
s=1 ρ̂s − ρ,

Root mean squared error: RMSE =
√

1
S

∑S
s=1(ρ̂s − ρ)2.

The root mean squared error (RMSE) is a hybrid measure which brings together
the bias and the standard deviation of the estimator.

The performance analysis of the asset correlation estimators is structured as follows:
The estimators based on default rates are analysed in subsection (5.2), followed by
the estimators which require stock prices in subsection (5.3). In subsection (5.4) the
robustness of our results is explored in the presence of a model error introduced by
stochastic asset correlations.

5.2. Performance Results of Estimators Based on Default
Rates

The performance measures bias and RMSE of estimations from default rates are
listed in Table 2, given an asset correlation of 10%. The PD varies between 0.5%
and 2.03% and the sample length for yearly default rates varies between 5 and 40
years. For every PD and sample length, bias and RMSE are given for the AML and
the AMM estimator.

Considering first a sample length of 40 years, the bias is less than a percentage point
with a varying sign, dependent on the PD and the estimation method. For shorter
sample lengths the bias becomes increasingly negative, indicating that the estimator
is biased downwards in small samples. For the shortest time series of only 5 years,
the bias increases up to three percentage points (for the AMM estimator) which is
quite substantial given the true asset correlation is only 10%. The results indicate
that the correlation estimators based on default rates are substantially downward
biased in small samples.

The RMSE also increases if the sample length is gradually reduced from its maximum
value of 40 years. An RMSE that is roughly 50% of the true asset correlation value

20The confidence level is obtained from the asymptotic distribution of ρt for t → ∞ which is

given by N
(
ρ,

σ2
ρ

2κ

)
.

21The half-life time is given by the formula − ln(0.5)
κ .
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Table 2
Bias and RMSE of the AML and AMM Estimator With a True Asset

Correlation of 10%

This table shows the bias and RMSE of asset correlation estimates for the
Asymptotic Maximum Likelihood (AML) method and the Asymptotic
Method of Moments (AMM), separately for three default probabilities
(PD) and four sample lengths Y of yearly default rates.

PD = 0.5% PD = 1.2% PD = 2.03%
AML AMM AML AMM AML AMM

Bias
Y = 5 -.0137 -.0290 -.0167 -.0246 -.0191 -.0214
Y = 10 -.0005 -.0179 -.0047 -.0144 -.0077 -.0126
Y = 20 .0048 -.0103 .0003 -.0081 -.0016 -.0064
Y = 40 .0072 -.0055 .0034 -.0037 -.0011 -.0029
RMSE
Y = 5 .0554 .0512 .0566 .0533 .0554 .0548
Y = 10 .0414 .0439 .0417 .0450 .0407 .0452
Y = 20 .03 .0374 .0301 .037 .0295 .0364
Y = 40 .0224 .0309 .0221 .0291 .0215 .0281

for the highest PD of 2.03% reveals the limitations if asset correlations need to be
estimated from default rates.

Comparing the two estimation methods, the AMM estimates are more strongly
biased downwards than the AML estimates. The lower downward bias of the AML
method becomes more visible for shorter sample lengths and for lower PDs. For the
RMSE as performance measure, the differences are ambiguous. Although for sample
lengths of 10–40 years the AML estimator has the lower RMSE, the difference is
smaller in relative terms than in the case of the bias. Furthermore, in the 5-years
case, the AMM method performs slightly better in terms of RMSE than the AML
estimator but the difference is arguably immaterial in practice.

Figure 1 shows the distribution function of the estimation errors for the AML and
the AMM estimator, given an asset correlation of 10%. It reveals that the downward
bias is stronger with the AMM estimator. Furthermore, the distribution of this esti-
mator is much less symmetric and positively skewed. The last finding indicates that
erroneously high correlation estimates occur more often with the AMM rather than
the AML method. The superior performance of the AML estimator, in particular
its lower downward bias, is plausible as it makes better use of the model structure.
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Figure 1. Distribution of the Estimation Errors of the AML and the
AMM Method

This figure shows the interpolated distribution function of errors in as-
set correlation estimates, both for the Asymptotic Maximum Likelihood
(AML) method and the Asymptotic Method of Moments (AMM). The
DGP is characterized by an asset correlation of 0.1, a time series of 10
yearly default rates, 5,000 homogenous borrowers and a PD of 1.2%.
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In order to measure the impact of the level of the true correlation parameter, Figure 2
shows the sample density distribution of the estimation error of the AML estimator,
given asset correlations of 10% and 25%. Both density distributions clearly show
that the bias strongly depends on the value of the correlation parameter. For the
higher correlation of 25%, the mean bias is stronger and estimates are much more
scattered than for a correlation of 10%. These results signal a strong dependence of
the estimation performance on the true asset correlation.

Table 3 describes the performance of both estimators, given an asset correlation of
25%. Compared with the results in Table 2 for a correlation of 10%, the downward
bias strongly increases. Even for the longest sample length of 40 years the bias
rises to 5 percentage points, also depending on the estimation method. For shorter
time series the negative bias increases in absolute terms as expected and it is higher
for lower PDs than for higher PDs. For the shortest time series of 5 years it can
increase to 13 percentage points or around 50% of the true asset correlation. Again,
the bias also depends on the estimation method, with the AML method coming out
as superior in all parameter constellations.

The results for the bias also hold qualitatively if the RMSE is considered as per-
formance indicator. The higher correlation increases the number of defaults, which
could raise the expectation that the performance improves over Table 2. However,
this is not the case as, for example for 5 years, the RMSE is still roughly 50% of the
true correlation value.

Summarizing, we find that estimates from default rates are typically downward
biased. This negative bias increases with shorter sample lengths, high correlations,
lower PDs, and if the AMM-estimator is used instead of the AML-estimator. The
level of the true correlation parameter also has a strong impact on the estimation
performance. Increasing the asset correlation from 10% to 25% reveals not only a
stronger downward bias, but also that the estimates are more dispersed. This finding
confirms the need to consider not only the bias but also the RMSE when evaluating
the small sample properties of the estimators.

5.3. Performance Results of Estimators Based on Stock Prices

As described in Section 3, we employ a direct and an indirect estimation method to
infer asset correlations from market prices. The direct method uses equity returns
whereas the indirect method requires first inferred asset returns from which asset
correlations are estimated in a second step.

The two performance measures for the direct method, bias and RMSE, are shown in
Table 4. We consider again three PDs and two asset correlation values. Furthermore,
asset correlations are estimated by the mean of pairwise sample correlations of equity

16



Figure 2. Histogram of Estimation Errors if the AML Method is Applied
to Default Rates, Given Asset Correlations of 0.1 and 0.25

This figure shows histograms of errors in asset correlation estimates for
the Asymptotic Maximum Likelihood (AML) method, given asset corre-
lations in the DGP of 0.1 in the first panel and 0.25 in the second panel.
The DGP is characterized by a time series of 10 yearly default rates,
5,000 homogenous borrowers and a PD of 1.2%.
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Table 3
Bias and RMSE of the AML- and AMM-Estimator With a True Asset

Correlation of 25%

This table shows the bias and RMSE of asset correlation estimates for the
Asymptotic Maximum Likelihood (AML) method and the Asymptotic
Method of Moments (AMM), separately for three default probabilities
(PD) and four sample lengths Y of yearly default rates.

PD = 0.5% PD = 1.2% PD = 2.03%
AML AMM AML AMM AML AMM

Bias
Y = 5 -.0891 -.1287 -.0623 -.1089 -.0528 -.0937
Y = 10 -.0683 -.0964 -.0345 -.0751 -.0276 -.0645
Y = 20 -.0564 -.0682 -.0228 -.0498 -.0142 -.0402
Y = 40 -.0504 -.0435 -.0168 -.0316 -.0067 -.0225
RMSE
Y = 5 .1236 .1464 .1147 .1373 .1150 .1333
Y = 10 .0929 .1220 .0790 .1139 .0807 .1119
Y = 20 .0729 .1013 .0552 .0951 .0564 .0932
Y = 40 .0605 .0856 .0399 .0796 .0394 .0748

Table 4
Bias and RMSE of Asset Correlation Estimates as Pairwise Stock Price

Correlations and Based on the Random Effects Model

This table shows the bias and RMSE of asset correlation estimates from
stock returns. They are estimated by pairwise sample correlations (PW)
and a random effects model (RE) based on six DGPs with three default
probabilities (PD) and two asset correlation values ρ. The generated
samples consist of two years of weakly stock returns of 50 firms.

N = 50 PD = 0.005 PD = 0.012 PD = 0.0203
T = 2y PW RE PW RE PW RE
ρ = 0.1 Bias -.0024 -.0094 -.0028 -.0106 -.0031 -.0113

RMSE .0150 .0171 .0149 .0175 .0150 .0180
ρ = 0.25 Bias -.0059 -.0201 -.0059 -.0218 -.0065 -.0236

RMSE .0283 .0338 .0285 .0349 .0282 .0356
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Figure 3. Distribution of Estimation Errors Based on Stock Prices

This figure shows the interpolated distribution function of errors in asset
correlation estimates, both for pairwise sample correlations and a ran-
dom effects model. The DGP is characterized by an asset correlation of
0.1, a time series of 2 years of weekly stock returns of 50 firms and a PD
of 1.2%.
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returns and from the random effects model. Comparing these two methods first, we
find that the sample correlations are biased and have a lower RMSE for all three
PDs and both asset correlation values. This observation is confirmed by Figure 3
which presents the cumulative distribution of estimation errors.

Although the mean sample correlation of equity returns is still downward biased, bias
and RMSE are by far smaller than in the case of using default rates for the estimation
of asset correlations. Consider, for example, the case of an asset correlation of 25%
and a PD of 0.5%. According to Table 3, even with the longest sample length of 40
yearly default rates, the RMSE of the AML estimator is still 0.06% or double the
RMSE of the correlation estimates based on equity returns in Table 4. The superior
performance of the estimation from market prices also depends on the parameters of
the DGP. It becomes ceteris paribus more pronounced with higher PDs and higher
asset correlations.

Whereas Table 4 presents the estimators’ performance for the direct method, Table 5
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Table 5
Bias and RMSE of the Asset Correlation Estimates Based on Asset

Returns.

This table shows the bias and RMSE of asset correlation estimates from
asset returns. They are estimated by pairwise sample correlations (PW)
and a random effects model (RE) based on six DGPs with three default
probabilities (PD) and two asset correlation values ρ. The generated
samples consist of 2 years of weakly stock returns of 50 firms.

N = 50 PD = 0.005 PD = 0.012 PD = 0.0203
T = 2y PW RE PW RE PW RE
ρ = 0.1 Bias -.0013 -.0005 -.0015 -.0006 -.0016 -.0007

RMSE .0148 .0149 .0148 .0148 .0149 .0149
ρ = 0.25 Bias -.0030 -.0011 -.0037 -.0017 -.0031 -.0010

RMSE .0277 .0278 .0278 .0279 .0278 .0279

gives the corresponding performance indicators for the indirect estimation method,
based on inferred asset returns. Comparing first the results of the sample correlation
estimates with those of the random effects model, we find that the latter method is
superior in terms of bias but that both methods are nearly indistinguishable in terms
of RMSE. Given the small absolute values of the downward bias for both methods,
the difference in the bias is immaterial.

The similar performance of both indirect estimation methods based on asset returns
contrasts with the results for the asset correlation estimation from equity returns,
given in Table 5, where the sample correlations emerged as the superior estimation
method.

Considering that the indirect method of using inferred asset returns instead of eq-
uity returns is the theoretically better founded method, its superior performance
is plausible. The random effects model applied to the asset returns exploits the
model structure of the DGP better than the other methods. Therefore, it should
be expected to be at least as good as the other methods. If equity returns are used
instead of asset returns the input data to the estimation are already misspecified.
The consequence is that estimators are more robust against model errors if they
pose less assumptions about the underlying model as, for example, in this case the
mean sample correlation.

Finally, Figure 4 compares the distribution of estimation errors of the AML method
based on default rates with the estimation based on the sample correlation of asset
returns. It shows the substantially higher downward bias and also the fatter tails of
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Figure 4. Distribution of Estimation Errors Based on Default Rates and
From Asset Returns

This figure shows the interpolated distribution function of errors in asset
correlation estimates, for the pairwise sample correlations and the AML
estimator. The DGP is characterized by an asset correlation of 0.1, a
time series of 10 years of default rates (2 years of weekly stock returns)
for 5,000 firms (50 firms) and a PD of 1.2%.
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the estimation errors, produced by the AML method.

Summarizing, we find that both, the direct estimation from equity returns and
the indirect estimation from asset returns are superior to an estimation of asset
correlations from default rates, both in terms of the bias and the RMSE. This holds
even if a relatively short sample of two years of weekly equity returns is compared
with a sample comprising 40 years of yearly default rate observations. Comparing
the direct and the indirect estimation method we find that the indirect estimation
is superior. The better performance depends also on the true parameters of the
DGP. With increasing PDs and higher asset correlations, the out–performance of
the direct estimation method becomes more visible.

These results hold in the absence of a model error, i. e. if the estimation is based
on data generated from the model of the DGP. In the following section we explore,
how robust they are against a model error, more specifically if asset correlations are
no longer constant over time but follow an Ornstein-Uhlenbeck process.

5.4. Estimation Performance Under Stochastic Correlations

There is substantial evidence in the literature that asset correlations fluctuate over
time.22 If correlations follow a mean-reverting process with a sufficiently short half-
life, the randomness may have a stronger effect on correlation estimates from stock
prices as they rely on a much higher data frequency compared with correlation
estimates from default rates. If this hypothesis proves to be true, the result from the
previous section that correlation estimation from default rates is strictly preferable
may no longer hold.

It can be argued that accounting only for the model error of a mean-reverting process
of the asset correlations unduly benefits the estimation from default rates relative to
the estimation from market prices. Since the required time series of default rates are
typically long, estimation from default rates is arguably much more susceptible to
structural brakes, introduced for example by changes in the legal framework, which
are not considered. Given that the estimation from market prices has emerged as
clearly superior in the case of a correctly specified model, it seems, however, justified
to focus on a model error that affects mainly the already superior estimation method.
In this case the results can be considered also as a robustness check for the superiority
of the estimation from market prices.

Table 6 presents the correlation estimates, based on default rates, employing the
AML and the AMM method. Since the asset correlation is stochastic, we assume an
average correlation of 10% for the DGP to facilitate a comparison with results in the
previous section for a constant asset correlation. For five and 10 years the results

22See, for example, Longin and Solnik (1995), Ang and Chen (2002) or Duellmann et al. (2007).
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Table 6
Bias and RMSE of the AML and AMM Estimator With a Mean Asset

Correlation of 10% and Stochastic Asset Correlations

This table shows the bias and RMSE of asset correlation estimates for the
Asymptotic Maximum Likelihood (AML) method and the Asymptotic
Method of Moments (AMM), separately for three default probabilities
(PD) and four sample lengths Y of yearly default rate observations. The
asset correlations of the DGP follow an Ornstein-Uhlenbeck process with
mean 0.1.

PD = 0.5% PD = 1.2% PD = 2.03%
AML AMM AML AMM AML AMM

Bias
Y = 5 -.0128 -.0312 -.0145 -.0269 -.0161 -.0226
Y = 10 -.0005 -.0205 -.0005 -.0156 -.0036 -.0129
Y = 20 .0057 -.0123 .0016 -.0080 .0041 -.0053
Y = 40 .0095 -.0052 -.0021 -.0020 .0075 -.0009
RMSE
Y = 5 .0600 .0551 .0644 .0579 .0649 .0615
Y = 10 .0454 .0497 .0504 .0524 .0502 .0547
Y = 20 .0340 .0445 .0379 .0462 .0382 .0470
Y = 40 .0260 .0388 .0288 .0400 .0287 .0380

are ambiguous but for 20 and 40 years the bias is higher in the case of stochastic
correlations. The RMSE is always higher in this case but the difference is below one
percentage point. The sensitivity of the estimation performance to PD and to the
number of years is similar to the previous results in Table 2. The better performance
if asset correlations are estimated from equity returns instead of from default rates
is confirmed by Figure 5 for the case of stochastic correlations.

Table 7 corresponds with Table 6 but with an average asset correlation of 25% in
the DGP. Although both bias and RMSE increase, the sensitivity to PD, the length
of the time series and the estimation method (AMM or AML) is similar.

Summarizing, introducing mean-reverting asset correlations increases the RMSE if
the estimation is based on default rates but not substantially. This result supports
the hypothesis that a mean-reverting asset correlation has only a minor impact on the
estimation performance. Estimation performance, measured by RMSE, substantially
improves for longer time series, particularly for low correlations.

Table 8 shows bias and RMSE if pairwise asset correlations are estimated from stock
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Figure 5. Distribution of Estimation Errors for Stochastic Asset Correla-
tions Estimated From Default Rates and by Equity Return Correlations

This figure shows the interpolated distribution function of errors in asset
correlations which were estimated from default rates with the Asymp-
totic Maximum Likelihood (AML) method and from stock returns by
pairwise sample correlations. The DGP is characterized by an asset cor-
relation of 0.1, a time series of 10 years of default rates (2 years of weekly
stock returns) for 5,000 firms (50 firms) and a PD of 1.2%.
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Table 7
Bias and RMSE of the AML and AMM Estimator With a Mean Asset

Correlation of 25% and if Asset Correlations are Stochastic

This table shows the bias and RMSE of asset correlation estimates for the
Asymptotic Maximum Likelihood (AML) method and the Asymptotic
Method of Moments (AMM), separately for three default probabilities
(PD) and four sample lengths Y of yearly default rate observations. The
asset correlations of the DGP follow an Ornstein-Uhlenbeck process with
mean 0.25.

PD = 0.005 PD = 0.012 PD = 0.0203
AML AMM AML AMM AML AMM

Bias
Y = 5 -.0895 -.1293 -.0612 -.1093 -.0545 -.0970
Y = 10 -.0674 -.0962 -.0353 -.0767 -.0265 -.0603
Y = 20 -.0560 -.0672 -.0219 -.0495 -.0120 -.0403
Y = 40 -.0514 -.0454 -.0157 -.0305 -.0052 -0.0225
RMSE
Y = 5 .1248 .1477 .1155 .1388 .1177 .1351
Y = 10 .0931 .1235 .0804 .1178 .0831 .1151
Y = 20 .0728 .1042 .0562 .0998 .0579 .0963
Y = 40 .0612 .0888 .0402 .0839 .0411 .0808
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Table 8
Bias and RMSE of Estimates From Pairwise Stock Prices if Correlations

are Stochastic

This table shows the bias and RMSE of asset correlation estimates from
stock returns. They are estimated by pairwise sample correlations (PW)
based on six DGPs with three default probabilities (PD) and two as-
set correlation values ρ which follow Ornstein-Uhlenbeck processes with
mean 0.1 and 0.25.

N = 50 PD = 0.005 PD = 0.012 PD = 0.0203
T = 2y PW PW PW
ρ = 0.1 Bias -.0016 -.0014 -.0020

RMSE .0371 .0370 .0370
ρ = 0.25 Bias -.0046 -.0060 -.0066

RMSE .0465 .0455 .0463

returns. Although the indirect estimation based on asset returns instead of stock
returns is better founded in theory, the results from the previous section indicate
that the differences between both cases are minor. Given the substantially lower
computational burden, we apply only the direct method that uses stock prices as
input. We do not present the results for the random effects model with stock price
data as this model already proved to be inferior when applied to stock returns in
the case of a constant correlation.

The numbers in Table 8 show a clear deterioration in the estimation performance,
measured by RMSE, compared with Table 4. For an asset correlation of 0.25, a
sample length of 20 years and a PD of 1.2%, the RMSE increases, for example, from
0.0285 to 0.0455. The bias instead stays nearly unaffected.

Figure 6 compares the estimation errors if the asset correlation is estimated by
pairwise equity return correlations both without and with stochastic correlation. It
confirms the finding of a higher dispersion of errors if the asset correlation follows a
stochastic process.

Summarizing, the observed stronger increase in the RMSE for the estimation from
market prices compared with the estimation from default rates confirms our ex-
pectation. Our results indicate that choosing between the use of market prices or
default rates as data basis of the correlation estimation requires taking into account
a trade-off: The closer the Merton model describes real world processes, the better
estimates based on market prices perform. If the model is instead miss-specified, for
example as it is agnostic to the stochastic character of asset correlations, the superi-
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Figure 6. Distribution of Estimation Errors Both Without and With
Stochastic Correlations.

This figure shows the interpolated distribution function of errors in asset
correlations which were estimated from stock returns by pairwise sample
correlations. The DGP is characterized by an asset correlation of 0.25,
a time series of 10 years for 5,000 firms and a PD of 1.2%.

0

2000

4000

6000

8000

10000

12000

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

Estimation Error

O
b
s
e
rv

e
d
 E

s
ti
m

a
te

s

Mean Pair Wise Correlation Mean Pair Wise Correlation stoch corr

27



ority over an estimation from default rates diminishes. The reason is the estimation
from default rates requires less assumptions on model structure which renders it
more robust against model miss-specifications.

6. Summary and Conclusions

Linear factor models, based on the classic Merton (1974) model, have become a
cornerstone of credit risk modelling in the literature as well as in industry practice.
In this model framework, default dependencies are typically captured by asset cor-
relations. These key parameters of a model are usually estimated either from time
series of stock prices or default rates. In this paper we explore to which extent differ-
ences in small sample properties of the respective estimators are responsible for the
substantial diversity in empirical estimates of asset correlations. For this purpose,
we carry out a comprehensive simulation study in which the time series of default
rates and stock prices of realistic length are generated from the same model, i. e.
the same DGP. Furthermore, we introduce a model error in the form of stochastic,
mean-reverting asset correlations. We compare the performance of the estimators
from default rates with those from stock prices, using the bias and the RMSE as
benchmarks. Our main findings are:

• Estimates from default rates are typically downward biased. This negative
bias increases with shorter sample lengths, high correlations, lower PDs, and
if the AMM-estimator is used instead of the AML-estimator.

• The level of the true correlation parameter has a strong impact on the estima-
tion performance. Increasing the asset correlation from 10% to 25% increases
not only the downward bias, but also produces more scattered estimates, par-
ticularly in the tails.

• Both, the direct estimation of asset correlations from equity returns and the
indirect estimation from asset returns are superior to an estimation from de-
fault rates, both in terms of bias and RMSE. This holds even if a relatively
short sample of two years of weekly equity returns is compared with a sample
comprising 40 years of yearly default rate observations.

• Comparing the direct and the indirect estimation method we find that the
indirect estimation based on inferred asset returns is superior. The better
performance depends also on the true parameters of the DGP. With increasing
PDs and higher asset correlations, the out–performance of the direct estimation
method becomes more visible.

• If the constant asset correlation is replaced in the DGP by an Ornstein-
Uhlenbeck process, the superiority of an estimation from equity prices instead
of default rates diminishes but does not disappear.
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These findings have implications for the interpretation of empirical studies of asset
correlations and for future risk modelling:

1. Our results indicate that different small sample properties may have con-
tributed to a large extent to the differences in correlation estimates which
emerged in previous empirical studies.

2. If time series of market prices of equity and default rates are available, it is
generally recommendable to estimate asset correlations from market prices.

3. We have observed relatively high RMSEs even in a clinical study in which the
model is correctly specified which is unlikely in practical applications. This
finding strongly advocates that care must be taken if correlation estimates
are applied in credit risk modelling. The simulation setup used in this paper
presents a way to quantify the estimation error.

Introducing a model error through stochastic, mean-reverting correlations is cer-
tainly only one of many plausible alternatives. Other causes of model errors which
are also plausible given results from other empirical work, are, for example, a t-
distribution of asset returns following Mashal et al. (2003) or a cross-sectional diver-
sity of asset correlations, inspired by Duellmann et al. (2007). A more comprehensive
analysis of the effect of various model errors is left for further work.
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