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Abstract

We study the motives and effects of return misreporting in the hedge fund industry, and find

the following results. First, misreporting is most prevalent in young funds, in funds that have

strong flow-performance relation, and during months of positive capital flows. These empirical

findings are consistent with a simple model where hedge fund managers have two motives to

misreport returns: attraction of larger capital flows in the future and wealth transfer from the

new investors to the old investors in the fund. Second, under mild conditions, return misre-

porting decreases the estimates of funds’ risks and increases estimates of risk-adjusted returns.

Ex post estimates of volatility are lower and estimates of alpha and autocorrelation higher for

funds with lower quality of reported returns.
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1 Introduction

The hedge fund industry has grown at a ferocious pace over the past 15 years with the

most recent estimates putting the total assets under management at about 2 trillion

dollars. At the same time, hedge fund related frauds have become more common

and concerns over the veracity of reported returns more strident. Recent research

shows that hedge funds do misreport their returns and estimates the wealth transfer

due to misreported returns to be between 1 and 2 billion dollars between the years

1994 and 2005 (Bollen and Pool, 2009).

Bollen and Pool (2009) show that the distribution of hedge fund returns displays

a discontinuity around zero: The amount of small positive returns far exceeds the

amount of small negative returns. They show that this is a result of deliberate

misreporting rather than skill, similar discontinuity in underlying assets or strategies,

or database biases. They argue that reporting a small positive return instead of a

small negative one has a positive effect on the fund’s capital flows. They also show

that no misreporting takes place right before an audit and that misreporting is

more prevalent in the population of funds for which it is easier to misvalue assets

(e.g. funds investing in distressed securities). Bollen and Pool (2009) concentrate

on identifying the phenomenon of misreporting and some fixed characteristics that

govern the possibility of a fund to misreport its returns. In this paper we extend

their work and contribute to the literature in three ways.

First, we extend the analysis of Bollen and Pool (2009) regarding the motives for

misreporting by presenting a simple model of a hedge fund manager’s return reporting

problem and by testing the model predictions empirically. Two motives to misreport

returns arise from the model: attraction of future capital flows and wealth transfer.

Attraction of future flows is already mentioned as the motive for misreporting by

Bollen and Pool (2009). In addition, by overstating returns, and hence asset values,

during periods of positive capital flows a fund manager can overcharge new investors

for their shares resulting in a wealth transfer from new investors to old investors.

Likewise, understating returns and asset values during negative capital flows will

result in too little being paid out to the leaving investor and a value transfer to the

remaining ones.
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Comparing the discontinuities in the distributions of various sub-samples of hedge

fund returns, we find empirical evidence of both of these motives. Hedge funds with

strongly performance-dependent capital flows misreport returns more than those

with weaker flow-performance relation. Also, misreporting is more prevalent during

months of capital inflows than during months of outflows.

The second contribution of the paper deals with the effects of misreporting on

ex post performance measurement. Under relatively mild conditions misreporting

induces a negative bias to risk estimates such as volatility and beta and a positive

bias to alpha and return autocorrelation estimates. We show this to be the case

empirically. Using various measures for the quality of reported returns, we find that

lower return volatility, higher alpha, and higher return autocorrelation are related to

misreporting.

Third, in order to formally test whether the prevalence of misreporting differs

between two sub-samples of return data, we extend the methodological framework

developed by Bollen and Pool (2009). The original framework focuses on identifying

discontinuities in hedge fund return distributions that the authors argue and show

to be a result of deliberate return misreporting. We introduce formal tests for the

existence of such discontinuity in one sample of return data and for the difference in

discontinuities in two samples of return data. This extended framework may prove

useful in other applications as well. One example could be testing for differences in

earnings management in various sub-samples of corporate earnings data.

In addition to Bollen and Pool (2009), this paper is related to a number of pa-

pers examining misreporting, return smoothing, and other suspicious patterns in

hedge fund returns. Getmansky, Lo, and Makarov (2004) document large positive

autocorrelations in hedge fund returns and provide innocuous explanations such as

time-varying expected returns, time-varying leverage, fee structures, and illiquidity

of assets. In an earlier paper, Bollen and Pool (2008) study conditional serial cor-

relations of hedge fund returns and find some evidence that hedge fund managers

delay reporting losses but fully report gains. Asness, Krail, and Liew (2001) find that

hedge fund returns are smoother during low benchmark returns, consistent with more

return misreporting during months of low actual returns. Agarwal, Daniel, and Naik

(2007) document that hedge fund returns in December are significantly higher than
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during other months. This ’Santa effect’ is more pronounced for funds with higher

incentives, as measured by the ’delta’ of the fund manager’s compensation contract.

Bollen and Pool (2010) show that suspicious patterns in hedge fund returns can be

used to predict fraud. Finally, Cumming and Dai (2010) use a simplified version

of the Bollen and Pool (2009) framework to provide evidence that the regulatory

environment affects hedge funds’ return misreporting.

Misreporting by hedge funds is also studied from different angles by two interesting

recent papers. Using unique data on due diligence reports, Brown, Goetzmann,

Liang, and Schwarz (2010) find that a large fraction of hedge funds use internal

pricing which might also facilitate misreporting of returns. Cici, Kempf, and Puetz

(2010) study the SEC filings and show that hedge fund advisors intentionally misprice

their stock positions providing direct evidence that hedge funds do misreport asset

values.

The rest of the paper is organized as follows. Sections 2 and 3 contain the the-

oretical part of the paper with the former describing fund managers’ incentives to

misreport returns and the latter focusing on the effects of misreporting. Section 4

describes the data and methodology, Sections 5 and 6 present results and robustness

checks, respectively, and Section 7 concludes the paper.

2 When Should Hedge Fund Managers Misreport?

Here, we consider the return reporting problem of a risk neutral hedge fund manager

in a model with discrete and finite time horizon. Figure 1 illustrates the timing of

the model. At time t = 0 the hedge fund is launched with A0 units of assets under

management. We simplify by normalizing A0 to one. The fund manager holds an ω0

share of the fund and outside investors hold the rest, i.e. 1 − ω0. Each period, the

fund’s return, rt, is a random draw from a normal distribution with µr mean and σ2
r

variance. Note that the true returns are completely independent of any action taken

by the manager.

[Insert Figure 1 here]
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The events at times t = 1 and t = 2 happen sequentially as follows. First, outside

investors submit their subscriptions or redemptions after which the fund manager

observes the return on the fund’s existing assets. Following the observation of the

flows and actual returns, the fund manager chooses what return he will report to

outside investors. The capital flow at time t = 1, f1 is exogenous and random but flow

at time t = 2 is a deterministic function of the return reported at t = 1: f2 = b0+brr̃1,

where r̃1 = r1 +m is the reported return at t = 1, m is the amount of misreporting,

and br > 0 measures the strength of the fund’s flow-performance relation. Such

positive dependence of flows on past returns is documented in e.g. Agarwal, Daniel,

and Naik (2004), Getmansky (2005), Fung, Hsieh, Naik, and Ramadorai (2008), and

Wang and Zheng (2008)).

At time t = 3 a final return is realized. The fund managers charges a management

fee equal to φA3 from the fund, where A3 is the fund’s assets under management at

time t = 3. The net-of-fees assets are then divided among the fund manager and

outside investors according to their ownership in the fund. The management fee and

the ownership stake in the fund represent the only sources of consumable income for

the fund manager.

In this setting, the fund manager only has discretion over what returns to report

in times t = 1 and t = 2. Let us further assume that any misvaluation of assets

resulting from misreported returns at t = 1 must be corrected at t = 2. Thus,

the fund manager’s problem reduces to choosing the amount of misreporting, m at

t = 1. Misreporting returns, i.e. choosing m 6= 0, has three distinct effects on the

fund manager’s expected income.

First, reporting higher than realized returns has a positive effect on the t = 2

flows which in turn increases the size of the fund at t = 3 and the management fee

charged by the manager. The monetary increase in management fee resulting from

misreporting by m is equal to1

φbrm(1 + r3). (1)

1See Appendix A for the derivation of the results.
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Note that r2 and r3 are unknown by the time the manager is making his misreporting

decision. Since br > 0, overstating returns will always have a positive effect on future

flows and management fees. This flow effect of fund performance is what Bollen and

Pool (2009) argue is the main motive return misreporting.

Second, overstating returns while flows are positive results in a transfer of wealth

from the new investors to the existing ones, including the fund manager. This is

because the new investors overpay for their share in the fund when assets are over-

valued. Similarly, understating the fund’s asset value when flows are negative leads

to a wealth transfer from those investors who are leaving the fund to those who stay.

The t = 3 net-of-fees value of this wealth transfer to the fund manager is equal to

mf1ω0(1 + r2)(1 + r3)(1− φ)

1 + r1 +m+ f1

. (2)

It is obvious from (2) that whenever misreporting (m) and capital flows (f1) have the

same sign, the fund manager is extracting value from the subscribing or redeeming

investors.

This effect of capital flows inducing misreporting with the same sign can also be

seen as a form of an anti-dilution levy. Flows, especially large ones, may result in

significant trading costs that are borne by all investors in the fund, not just the sub-

scribing or redeeming investors. To compensate for such dilution of fund value, some

mutual funds charge (or reserve the right to charge at fund manager’s discretion)

the subscribing or redeeming investor an anti-dilution levy which is remitted to the

fund.2 Though not completely unheard-of, such practice is rare in the hedge fund

industry.3 However, in face of larger redemptions or subscriptions, fund managers

may be inclined to collect such levy by misreporting asset values. Misreporting re-

turns in the same direction as capital flows are can then be seem as a kind of an

undisclosed anti-dilution levy.

Finally, the fund manager might be caught for misreporting. We assume that this

happens with a probability 1−exp(−κm2), where κ is the parameter that governs the

2Note that management fees, performance fees, subscription fees, and redemption fees are all paid to the fund
manager whereas the anti-dilution levy is paid to the fund itself.

3For example, in July 2009 the London based hedge fund company Polar Capital Partners imposed an redemption
fee on its Forager fund to protect staying investors in face of large outflows from the fund.
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likelihood of being caught. If the manager is caught for misreporting, he is subjected

to a fixed penalty, c. The expected penalty of being caught for misreporting by m is

then (
1− e−κm2

)
c (3)

We have now outlined the three channels through which misreporting affects the

fund manager’s consumption. Being risk neutral, the manager chooses m∗ that

maximizes the expected value of the sum of the three effects:

m∗ = argmax
m

{
φbrm(1 + µ) +

mf1ω0(1 + µ)2(1− φ)

1 + r1 +m+ f1

−
(

1− e−κm2
)
c

}
. (4)

The first order condition of (4) is

φbr(1 + µ) +
f1ω0(1 + µ)2(1− φ)

1 + r1 +m∗ + f1

− m∗f1ω0(1 + µ)2(1− φ)

(1 + r1 +m∗ + f1)2
− 2cκm∗

eκm∗2 = 0. (5)

No simple closed form solution exists for (5).4 To examine the fund manager’s

optimal strategy, we fix the model parameters and solve numerically for m∗. Figure

2 presents the optimal levels of misreporting for varying levels of capital flows (f1),

flow performance relations (br), capture likelihoods (κ), and penalties (c).5

Generally, greater flows result in a greater amount of misreporting. The only

exception to this occurs when the fund manager does not have an ownership stake

in the fund (ω0 = 0) or ignores the value transfer effects. In such a case, due

to linear flow-performance relation, the optimal amount of misreporting is positive

and equal for all values of capital flows. A fund manager that does not charge a

management fee (φ = 0) misreports only to steal from the subscribing or redeeming

investors. Hence, he overstates returns during positive flows, understates returns

4This is mainly due to the m∗e−κm
∗2

term. Other alternative definitions of the penalty function, such as a simple
quadratic one, would help to resolve this particular problem but still result in a complicated closed form solution
and potentially multiple solutions and imaginary solutions.

5We do not study the effect of true return, r1, on misreporting. This is because our methods of identifying
misreporting are based either on discontinuity in the distribution of reported returns around zero return or individual
funds’ full return history. Hence, we cannot empirically test the prevalence of misreporting at different levels of true
returns. Theoretically, it might be interesting to examine how different forms of flow-performance relations and
fund managers’ preferences affect the relation between true returns and misreporting. However, such examination is
beyond the scope of this paper.
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during negative flows, and reports truthfully during zero flows. These results provide

for an empirical identification strategy. Any misreporting we observe during zero

flows must be driven by the fund managers’ wish to attract future flows. Further,

if we observe misreporting to be larger during positive flows than it is during zero

flows, the difference is driven by value transfer motives. Same is true for smaller

misreporting during negative flows.

Stronger flow performance relation (i.e. higher br) leads to higher misreporting

in a nearly linear fashion. This we can also test empirically by identifying funds

whose future flows depend on past performance particularly strongly or weakly and

comparing the misreporting propensity in these two sub-samples of funds.

Likelihood of being caught (governed by κ) and the penalty imposed for captured

misreporter (c) serve as substitutes to each other decreasing optimal misreporting

towards zero. Also this prediction can be tested empirically by comparing misreport-

ing between funds that differ in their likelihood of being caught for misreporting or

in the penalty they are likely to suffer if caught misreporting. The results in Bollen

and Pool (2009) that there is no misreporting right before an audit and that funds

with more transparent assets misreport less are manifestations of higher capture

probability decreasing misreporting.

3 Effects of Misreporting

We now abstract from the three-period setup above to study the effects of misre-

porting on the measures of risk and risk adjusted returns. Let us assume a simple

return generating process and see how misreporting biases estimates of return volatil-

ity, autocorrelation, as well as fund betas and alphas. The true returns on a fund

(rt) are generated by an exposure to a risk factor (λt) and an idiosyncratic term

(εt): rt = α + βλt + εt, where λt ∼ N(µλ, σ
2
λ) and εt ∼ N(0, σ2

ε). Since λt and εt

are independent random draws, the true returns follow a normal distribution with

µr = α + βλµλ mean, σ2
r = β2σ2

λ + σ2
ε variance, and zero autocorrelation.6

Again, the reported returns are the sum of true returns and misreporting: r̃t =

6Let us also assume that β ≥ 0 and µλ > 0, i.e. the fund has a non-negative exposure to a risk factor with
positive expected return.
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rt + mt, where mt is the amount of misreporting. The amount of misreporting is

not necessarily i.i.d. but can depend on its own history as well as current and past

returns. Actually, it is quite reasonable to assume that true returns and misreport-

ing are negatively correlated, i.e. that fund managers overstate returns when true

returns are low, and eliminate the thus generated misvaluation when true returns are

high (Bollen and Pool, 2008, 2009). Negative correlation between mt and rt could

also imply that the simple correlation between mt and λt is negative, i.e. funds

misreport positively during low factor returns.7 Evidence in Asness, Krail, and Liew

(2001) suggests that more misreporting happens during low benchmark returns. It

is also reasonable to assume the standard deviation of misreporting (σm) is rather

low compared to the standard deviation of the true returns (σr)

To rule out Ponzi schemes, we require that in the long run the expected cumulative

amount of misreporting must be zero, E(
∑∞

t=0 mt) = 0. First of all, this condition

implies that the unconditional expectation of mt is zero and the expected value of

reported returns is equal to the expected value of true returns, µr̃ = µr. Second,

the no-Ponzi constraint implies that mt is negatively autocorrelated as following an

overstating of returns the fund manager needs to correct for misvaluation by under-

stating returns in a later period. If mt is negatively autocorrelated and negatively

correlated with rt, we should expect the simple correlation between mt and rt−1 to

be positive.

We are now in a position to compare the return volatility, autocorrelation, beta,

and alpha estimates based on the reported returns to the true ones based on the

true returns. The standard deviation of reported returns is less than that of the true

returns when correlation between the true return and the amount of misreporting is

sufficiently low:8

Cor(rt,mt) < −
σm
2σr

. (6)

Naturally, if misreporting is high during periods of low returns and vice versa this

shrinks the distribution of reported returns and lowers the estimated standard devi-

7Negative correlation between mt and rt, however does not necessarily lead to a negative correlation between mt
and λt. One example of such a case is if fund manager overstates returns only when true return is low due to a low
idiosyncratic return.

8Appendix B contains the derivation of the results in this section.
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ation.

If mt is negatively autocorrelated and positively correlated with rt−1 the autocor-

relation of reported returns is positively biased when

Cor(mt, rt−1)

Cor(mt,mt−1)
< −σm

σr
. (7)

This condition holds as long as there is sufficient amount of positive correlation

between mt and rt−1 and the standard deviation of misreporting is sufficiently low

compared to the standard deviation of returns.9

Misreporting also affects estimated factor exposures and abnormal returns. This,

naturally, happens when the amount of misreporting is correlated with the factor

returns (λt). Beta estimate is negatively and alpha estimate positively biased when

Cor(mt, λt) < 0. (8)

When fund managers overstate returns during low factor returns this results in too

low beta estimates and too high alpha estimates. Above we argued that negative

correlation between mt and λt is the most likely case.

The most likely case of misreporting, i.e. one where returns are overstated during

low true returns and understated during high true returns, now leads an econometri-

cian to infer to fund as having lower than actual risk (negatively biased variance and

beta estimates), generate higher than actual abnormal return (positively biased al-

pha estimate), and generate persistent returns (positively biased autocorrelation).10

We will test these implication in Section 5.2 by comparing ex post measures of risk

and return to our fund level measures of misreporting.

9Appendix B also describes the conditions for the more unlikely cases where the correlations are both positive,
both negative, and when Cor(mt,mt−1) > 0 and Cor(mt, rt−1) < 0.

10Note that the same biases can be generated by other sources of return smoothing such as illiquidity exposure
(Getmansky, Lo, and Makarov, 2004).
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4 Data and Methodology

4.1 Data

The data used in this study are from TASS database and contains monthly return

and assets under management (AUM) figures for a total of 9,714 active and inactive

hedge funds from March 1977 through December 2008. Following Bollen and Pool

(2009), we exclude observations with zero returns and consecutive observations with

return of 0.0001. Further, we exclude observations where the fund’s AUM does not

change from the previous month as in these cases the reported AUM is unlikely to

represent the true value. After these eliminations we are left with 352,709 fund-month

observations.11

In addition to the return data, we need data on the monthly flows of new invest-

ments into the funds. The net flow of capital (ft) is calculated for each fund each

month (t) based on the funds’ self reported AUM (At) and returns (rt) as

ft =
At − At−1(1 + rt)

At−1

. (9)

4.2 Methodology

We use two differing methodologies to measure misreporting. First, we follow and

extend the pooled distribution method used by Bollen and Pool (2009). This method

is useful and efficient for identifying misreporting in large samples containing at least

tens of thousands of return observations. However, this method is not suitable for

measuring misreporting at individual fund level due to the low number of observa-

tions per fund. Hence, in the second part of the empirical section, we use several

fund level measures of return suspiciousness to identify misreporting.

4.2.1 Pooled Distributions

Our methodology to identify return misreporting in large samples is based on Bollen

and Pool (2009). In simple terms, the idea is to compare empirical return distribu-

tion of a large pool of hedge funds to a fitted continuous nonparametric distribution.

11For a more detailed description of the TASS database, see e.g. Getmansky (2005).
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If the empirical distribution exhibits discontinuities not reproduced by the fitted dis-

tribution, there is a reason to suspect return misreporting. The most likely candidate

for the point of discontinuity is around zero return. Similar methodology has been

used by e.g. Burgstahler and Dichev (1997) and Degeorge, Patel, and Zeckhauser

(1999) to study earnings management by corporations.

To study return misreporting, we first construct the pooled distribution, a his-

togram, of hedge fund returns. An important step here is to choose an appropriate

bin width. Too narrow bins may bias us to identify discontinuities where there are

none whereas too wide bins prevent us from identifying existing discontinuities. Fol-

lowing Silverman (1986) and Bollen and Pool (2009) we set the bin width equal

to

α1.364 min

(
σ,
Q3 −Q1

1.340

)
N−

1
5 , (10)

where σ is the standard deviation of observed returns, Q3 and Q1 are the third and

first quartiles of the returns, N is the number of observations and α is a scaling

parameter set equal to 0.776 corresponding to a normal distribution. The top panel

of Figure 3 presents the return histogram of all funds in the TASS database. The

highlighted bins surrounding zero do exhibit some degree of discontinuity: The bin

left of zero has far less observations than the bin right of zero.

[Insert Figure 3 here]

Next, we fit a nonparametric continuous distribution to the histogram. Still fol-

lowing Bollen and Pool (2009), we employ a Gaussian kernel with a density estimate

at point r defined as

f̂(r;h) =
1

Nh

N∑
j=1

φ

(
xj − r
h

)
, (11)

where h is the chosen bandwidth of the kernel, N is the number of observations, φ is

the density of standard normal distribution, and xj are the pooled return data. Since

we are using a Gaussian kernel and assumed normal distribution above when setting

the bin width, the optimal bandwidth (h) is equal to the optimal bin width in (10).

The solid line in the top panel of Figure 3 plots the fitted Gaussian kernel density

for the pooled return histogram of all TASS funds. The kernel distribution fits the
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actual rather well except for the fact that it cannot fully reproduce the discontinuity

around zero return.

Bollen and Pool (2009) us a z test to investigate difference between the empirical

and fitted densities in any given bin. Since such a test indicates that the empirical

density in the bin left (right) of zero is significantly lower (higher) than the fitted

density they conclude that the return distribution is discontinuous around zero.12

However, since we are interested in the differences in the discontinuities between

sub-samples of return data, we develop a single number measures for the degree of

discontinuity and the difference in discontinuities. Further, we also develop formal

tests to examine the statistical significance of the discontinuity and difference in

discontinuities.

Our measure of discontinuity is based on the observed and fitted densities in the

two bins neighboring zero return. According to the DeMoivre-Laplace theorem the

number of observations in bin k is asymptotically normally distributed with mean

Npk and variance Npk(1− pk). The probability pk of an observation residing in bin

k is given by the definite integral of the estimated kernel density along the bounds

of the bin (rLk to rUk ):

pk =

∫ rUk

rLk

f̂(r;h)dr. (12)

Due to the discontinuity, there are X+1 − Np+1 more observations in bin just

right of zero than is expected based on the kernel density estimate. Likewise, the are

Np−1 −X−1 too few observations just left of zero. The total amount of ’misplaced’

observations, hence, is X+1 −Np+1 +Np−1 −X−1. Since this number is dependent

on the sample size, we divide it by the expected number of observations in the two

bins. Hence, our measure of discontinuity, DC, is given by

DC =
X+1 −X−1 −N(p+1 − p−1)

N(p+1 + p−1)
. (13)

Under no misreporting and a continuous return distribution, the relative amount of

12The lower panel of Figure 3 plots the z test statistics for the difference between observed and fitted densities for
each of the bins in the histogram.
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misplaced observations has expected value of zero and variance equal to

D2(DC) =
[p+1 + p−1 − (p+1 − p−1)2]

N(p+1 + p−1)2
. (14)

Hence, the z statistic for testing the existence of discontinuity, zDC , is given by

zDC =
DC√
D2(DC)

∼ N (0, 1). (15)

The full sample has a DC of 7.2%. The associated zDC-statistic is equal to 10.9

which is statistically significant at any reasonable level and a clear evidence that the

return distribution is discontinuous around zero return.

Next, to investigate differences in the prevalence of misreporting, we compare the

DC figures of different subsets of hedge fund return data. Under the assumption of

discontinuity being equal in the two sub-samples i and j, the difference between the

DC figures, DDC = DC(i) − DC(j), follows a normal distribution with zero mean

and variance equal to the sum of the variances of the individual DC figures. Hence,

our asymptotic test statistic for the difference in discontinuities is given by

zaDDC =
DC(i) −DC(j)√

D2(DC(i)) +D2(DC(j))
∼ N (0, 1). (16)

We also employ a more flexible, simulation based, approach to test whether the

discontinuity is stronger in one sub-sample than the other. We draw 5,000 random

pairs of sub-samples whose sample sizes correspond to those we are testing. We

calculate the differences in the degree of discontinuity for each of the pairs and use

the mean, DDCs, and variance, D2(DDCs), of simulated DDC’s to form a simulated

test statistic for the difference in discontinuity:

zsDDC =
DDC −DDCs√

D2(DDCs)
∼ N (0, 1). (17)

We use the tests of differences in discontinuities when testing empirically the

predictions laid out in Section 2 regarding when fund managers should misreport

returns. We split the full sample of hedge fund returns in sub-samples according to
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capital flow, strength of flow-performance relation, and risk of being caught misre-

porting and test whether the discontinuities in return distributions differ among the

sub-samples.

4.2.2 Return Quality

The pooled distribution method described above is useful for detecting discontinu-

ities, i.e. misreporting, in large samples of returns. However, due to low number

of return observations per fund, the pooled distribution method cannot be used to

detect misreporting at the level of individual funds. To properly test the effect of

misreporting on ex post performance metrics, we use three different fund level mea-

sures for return quality: kink in the return distribution, fraction of unique return

figures, and correlation with benchmark returns. These measures are based on those

presented in Bollen and Pool (2010) with the exception that we use continuous mea-

sures of return quality whereas Bollen and Pool (2010) use binary ’performance flags’

of statistically significant return suspiciousness. In Section 5.2 below, we regress fund

level measures of risks and returns on these three measures of return quality.

The first measure, kink, is a simplified version of the pooled distribution method

described above. For each individual fund, we create a histogram of the full time

series of returns using (10) to calculate the optimal bin size. Rather than fitting a

kernel distribution, we next make the simplifying assumption that the density in the

bin left of zero should be approximately equal to the average of the densities of the

neighboring bins. Denoting by X−2, X−1, and X+1 the amount of observations in

the two bins left of zero and the bin right of zero, we calculate kink as

kink = min

(
X−1 − 1

2
(X−2 +X+1)

1
2
(X−2 +X+1)

, 0

)
. (18)

This measure tells how many fewer observations are there in the bin left of zero than

would be expected if the density of that bin was equal to the average of neighboring

bins’ densities. This number is then divided by the average number of observations

in bins −2 and +1 to arrive at a relative measure. The truncation at zero is made to

ensure that we do not infer a fund with more than expected amount of observation
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in bin −1 to have high quality returns.13

Our second measure, unique, is simply the number of unique return observations

divided by the total number of observations. This is motivated by Straumann (2008)

who finds that hedge fund data exhibits too few unique returns. A low fraction of

unique returns is suspicious given that the returns are mostly reported with two

decimals of a percent.

Our third, and final, measure of return quality is correlation with other asset

classes as misreporting might decrease estimates of correlation between fund returns

and the risk factors (see Section 3 above). We calculate our return suspiciousness

measure ’correlation’ as the adjusted R-squared of the optimal factor model for

each fund. Starting from a model with ten factors we exclude factors one-by-one

to maximize the Akaike Information Criterion (AIC) of the model. Optimal factor

model then is the one with highest AIC.14,15

All three return quality measures are defined so that a high value signals high

quality of returns and low value signal more suspicious returns and a higher likelihood

of misreporting. Table 1 shows the discontinuity and difference in discontinuity

measures for sub-samples of low (bottom quartile) and high (top quartile) return

quality funds.

[Insert Table 1 here]

Low value of kink is associated with a much stronger discontinuity in the return

distribution than high kink. This result indicates that kink as a fund level measure

of return quality is related to misreporting on the sub-sample level. The same also

holds for unique, but not for correlation. The discontinuities in return distributions

are very actually similar for high and low correlation funds. This indicates that kink

and unique may be better measures of return quality than correlation. However, we

13The truncation does not have a material quantitative or qualitative effect on the results.
14The factors are are the three Fama and French (1993) equity risk factors, the five Fung and Hsieh (2001) trend

following factors, and two bond market factors (return on Barclays US Aggregate index, and the return difference of
Barclays US Corporate AAA and Barclays US Corporate BAA indexes). Data for the Fung and Hsieh (2001) factors
are available at http://faculty.fuqua.duke.edu/ dah7/DataLibrary/TF-FAC.xls.

15Note that low factor model fit is not necessarily indication of misreporting but may also reflect fund manager’s
skill and informational advantages to pursue profitable idiosyncratic trading strategies. Actually Titman and Tiu
(2008) and Sun, Wang, and Zheng (2009) find that hedge fund performance is negatively related to factor model
R-squared. However, Bollen and Pool (2010) show that low model fit is associated with hedge fund frauds.
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choose to use correlation as a measure for return quality as Bollen and Pool (2010)

find low correlation to be associated with an elevated risk of fraud.

5 Results

We first examine the empirical validity of the predictions laid out in Section 2 on

when hedge fund managers should misreport returns. Second, we study whether

misreporting has an impact on fund level performance metrics as is predicted in

Section 3.

5.1 When Do Hedge Fund Managers Misreport?

Capital flow. The first prediction of the solution to the simple misreporting problem

is that the fund managers should misreport more during positive capital flows than

during negative ones. Overstating returns, and hence asset values, during months of

positive flows leads the new investor to overpay for her share in the fund. However,

overstating returns and asset values during negative net flows results in the fund

overpaying the redeeming investor. Hence fund managers should overstate returns

more during months of positive net flow and overstate less, or even understate, during

negative net flow months.

We test the empirical validity of this prediction by splitting the sample into three

sub-samples. The first sub-sample contains the fund-month observations where net

capital flow is significantly negative (less than -1%), the second sub-sample contains

those where net flow is practically zero (between -1% and 1%), while the third con-

tains observations with significantly positive net flows (over 1%). This split is not

constant and a fund may belong to one group in one month and another group in

the next month. Figure 4 presents the return histograms and Table 2 presents the

test statistics for the three sub-samples.

[Insert Figure 4 and Table 2 here]

First of all, the amount of discontinuity in the zero capital flow sub-sample, 7.9%,

establishes the level of misreporting that is not driven by the wealth transfer con-
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siderations. This level is statistically significant (zDC statistic equal to 8.3) and of

same magnitude that we find for the full sample, 7.2%.

The discontinuity is weakest, 5.0%, for the negative flow sub-sample and strongest,

9.8%, for the positive flow sub-sample. The degree of discontinuity is significantly

smaller in the negative flows sub-sample than in the other two indicating that hedge

fund managers reduce misreporting when faced with negative capital flows. We

argue that this is done to attenuate the negative wealth effects that overstating

returns during capital outflows has on the remaining shareholders in the fund. The

difference in the discontinuities between the positive flow and zero flow sub-samples

is of the predicted sign (discontinuity is stronger during month of positive flow) but,

using a one-sided test, only significant at a 10% level (the asymptotic and simulated

zDCC statistics are equal to 1.4 and 1.5, respectively). This provides some, although

weak, evidence that some hedge fund managers use misreported returns and asset

values as means to extract wealth from new fund investors.

Flow-performance relation. The second implication of the model is that fund

managers who face more strongly performance-dependent flows should misreport

more. We use two differing proxies for the performance-dependence of capital flows:

a regression based strength of flow-performance relation and fund age.

Our regression based measure for the fund-specific strength of the flow-performance

relationship is measured by br in

ft = b0 + brrt−1 + εt, (19)

where ft is the net capital flow to the fund during month t and rt−1 is the fund’s

return during month t − 1. Funds with a top (bottom) quartile br coefficient are

classified as having a strong (weak) flow-performance relation.16 Figure 5 presents

the return histograms and Table 3 gives the test statistics for the two groups of funds.

[Insert Figure 5 and Table 3 here]

Reported returns of the funds in both categories exhibit statistically significant

discontinuity. The value of our DC measure is 5.7% for funds with weak flow-

1624 months of data are required to estimate the flow-performance relation for a fund, a requirement that is met
by 4,912 out of 9,714 funds.
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performance relation and almost twice as large, 10.4%, for the strong flow-performance

relation funds. The difference in the discontinuities is statistically significantly dif-

ferent from zero with asymptotic and simulated zDDC statistics equal to 2.7 and

2.9, respectively. This result is in line with the theoretical prediction that stronger

performance-dependence of flows leads the fund managers to misreport returns more

often to improve future capital flows.17

Our second proxy for the performance-dependence of future capital flows is the

fund age. Manager of a newly launched fund is in a similar situation as a young

employee in Holmstrom (1999) who should extract higher effort in order to build

reputation as the market has diffuse priors of her type. Similarly, the manager of a

newly launched fund needs to build a successful track record for his fund to signal

high ability and attract new investors. Agarwal, Daniel, and Naik (2004) show that

flows into younger hedge funds are, indeed, more sensitive to recent performance

than flows in to older funds.18 Hence, we argue that fund age presents itself as a

suitable proxy for performance-dependence of flows in a broader sense than br above.

We divide the hedge fund return data into two sub-samples: young funds and

old funds. A fund is considered to be young when it has been less than three years

since its inception. Funds with more than three years since inception are considered

old.19,20 Anecdotal evidence suggests that many institutional investors require funds

to have a three-year track record before considering investment in the fund. Hence

the first three years of the fund’s life is the most crucial time for building an attractive

performance history. Figure 6 presents the return histograms and Table 4 presents

the test statistics for the young and old fund sub-samples.

[Insert Figure 6 and Table 4 here]

Again, both groups display significant amount of discontinuity: 10.3% for young

funds and 6.1% for the old funds. The difference in discontinuities is also statistically

very significant with associated zDDC statistics equal to 3.4 and 3.8. Interestingly, the
17The strength of flow-performance relation may vary systematically across fund styles. Hence, we repeat the

analysis by ranking funds within style categories instead of across all funds. The results are quantitatively and
qualitatively unchanged from those presented in Figure 5 and Table 3.

18This is also true for the mutual fund industry, see Chevalier and Ellison (1997).
19Note that the split into young and old funds is not fixed. A fund belongs to the young group for the first three

years of operations and is then moved to the old group.
20The results are quantitatively and qualitatively the same if we used other cut-offs, such as two or four years.
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level of discontinuity in the young funds sub-sample is very close to that in the strong

flow-performance sub-sample in Table 3 above. Also, DC for old funds is close to that

of the funds with weakly performance-dependent flows. These results provide further

empirical support to our theoretical prediction that the performance-dependence of

capital flows positively affects hedge fund managers’ propensity to misreport returns.

Risk of Being Caught. Third, and quite expectedly, our model predicts that

managers misreport less when likelihood of being caught or the penalty of being

caught is higher. Bollen and Pool (2009) show that there is no discontinuity in

return distribution during months prior to audit whereas significant discontinuity

prevails during other months, and that funds with more transparent assets exhibit

less discontinuity than funds with opaque assets. Both of these findings support

the hypothesis that likelihood of being caught misreporting lowers the propensity to

misreport.

We extend these analyses using the fund domicile as a proxy for both the likelihood

of being caught and the expected penalty if caught. We divide the fund domiciles

in two categories: offshore financial centers (OFCs) and non-OFCs.21 We argue that

being domiciled in an OFC may offer fund managers a more lax legal and regulatory

environment to report untruthful returns. Figure 7 presents the return histograms

and Table 5 presents the test statistics for the OFC and non-OFC hedge funds.

[Insert Figure 7 and Table 5 here]

Contrary to our expectations, discontinuities in the two domicile categories are

surprisingly similar: DC measure is equal to 7.9% for OFC funds and 7.8% for

non-OFC funds. The zDDC statistics for the difference are practically equal to zero.

Hence, it seems that domicile in a non-OFC country does not provide for sufficient

risk of being caught or expected penalty to hinder hedge fund managers from misre-

porting returns.22

21In accordance with IMF staff assessment (http://www.imf.org/external/np/ofca/ofca.asp), we classify the
following hedge fund domiciles as OFCs: Andorra, Anguilla, Bahamas, Bermuda, Cayman Islands, Cook Islands,
Gibraltar, Guernsey, Isle of Man, Jersey, Liechtenstein, Malaysia, Netherlands Antilles, Samoa, and British Virgin
Islands.

22US domiciled funds represent 53% of the non-OFC funds and 72% of the non-OFC return observations. Respec-
tively, Cayman Islands is by far the largest OFC domicile corresponding to 55% of funds and return observations.
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5.2 Effects of Misreporting

In Section 3 above, we show that under fairly mild conditions return misreporting

will induce a negative bias to ex post risk estimates and hence a positive bias to ex

post risk-adjusted return estimates. We study the validity of these predictions by

regressing fund level measure of risks and risk-adjusted returns on the three measures

of return quality introduced in Section 4.2.2. Note that low return quality measure

is associated with higher likelihood of misreporting.

First, Table 6 gives the results of regressing fund return volatility and autocorre-

lation on the measures of return quality. Return volatility has a highly significant

positive association with return quality. This provides support for our hypothesis

that funds who misreport returns, i.e. are more likely to have lower return quality,

exhibit lower ex post volatility of reported returns.

[Insert Table 6 here]

Also, in line with our prediction, return autocorrelation is negatively and signif-

icantly related to two measures of quality: kink and unique. However, contrary to

what we expected, return autocorrelation and correlation with other asset classes are

positively and very significantly related. Hence the evidence here provides partial

support for our prediction that misreporting induces a positive bias in the autocor-

relation estimates.

Table 7 presents the results of regressing hedge fund alphas on the measures of

return quality. In Panel A the dependent variable is the alpha from a ten factor

model while in Panel B the dependent variable is the alpha from a parsimonious

model where non-significant factors are excluded to maximize model AIC. 23,24

[Insert Table 7 here]

Two of the return quality measures, kink and correlation, are significantly nega-

tively associated with fund alphas while the coefficient of unique is not different from
23The factors are are the three Fama and French (1993) equity risk factors, the five Fung and Hsieh (2001) trend

following factors, and two bond market factors (return on Barclays US Aggregate index, and the return difference of
Barclays US Corporate AAA and Barclays US Corporate BAA indexes). Data for the Fung and Hsieh (2001) factors
are available at http://faculty.fuqua.duke.edu/ dah7/DataLibrary/TF-FAC.xls.

24Since the factors are USD based, we only run the regressions for funds that report their returns in USD to be
sure that the factor loadings are appropriately measured.
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zero except in the model where the parsimonious model alpha is regressed on unique

only. Altogether, these results support our prediction that misreporting biases alpha

estimates positively.

All the results presented in this section are also of economically significant magni-

tude. A one standard deviation decrease in kink, for example, will decrease volatility

estimate by 0.32% (which corresponds to 11% of the cross sectional standard devi-

ation of the estimated volatilities), increase autocorrelation by 0.034 (14% of cross

sectional variation) and increase alpha by 0.65% (7% of cross sectional variation).

These effects are sizeable enough to affect investment decisions based on ex post

performance measures.

6 Robustness checks

Derolles and Gourieroux (2009) show that the discontinuity around zero in the hedge

fund return distributions can be due to performance fees charged by the funds. The

performance fee is usually charged as a fixed percentage of fund’s positive return over

a high-water mark. In most cases the high-water mark is defined as the fund’s highest

historical net asset value (NAV). Such a performance fee scheme shrinks the return

distribution asymmetrically by moving the positive returns towards zero while having

no effect on the negative returns. This asymmetric shrinking of return distributions

may then result in a discontinuity in observed return distributions which might not

be captured by a continuous non-parametric distribution.

To check that our results are not driven by performance fees, we repeat our anal-

yses for a sub-sample that only contains those fund-month observations where the

beginning-of-month NAV is strictly below the highest historical NAV of the fund. In

these cases the potential performance fees would not be applied to the full positive re-

turn, but only to that part for which the NAV exceeds its historical maximum. Hence

the return distributions will not be shrunk at zero and any discontinuity around zero

return will not be due to performance fees.

Table 8 reproduces the analyses above for the sub-sample of 211,457 observations

that should be clear of any performance fee induced discontinuity around zero return.

[Table 8 here]
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According to Table 8 our results are not driven by the performance fees charged

by the hedge funds. The full sample exhibits very strong discontinuity showing that

there really is misreporting as Bollen and Pool (2009) argue. Also, most of the

results for the sub-samples are quantitatively and qualitatively very similar to those

presented above. However, there are two exceptions. First, though discontinuity

is increasing in capital flows, the discontinuity in the negative flows sub-sample is

not statistically significantly smaller than in the zero and positive flow sub-samples.

Second, the discontinuity is somewhat larger for the non-OFC domiciled funds than

for those domiciled in OFCs. The statistical significance of this result, however, is

weak.

7 Conclusions

In this paper we extend the literature on hedge fund return misreporting in three

ways. First, we deepen the analysis of the fund managers’ motives to misreport

returns. We show that misreporting is more prevalent in funds whose capital flows

are strongly dependent on past performance, in young funds, and during months of

capital outflows. All these findings are consistent with a simple model where fund

manager misreports to attract future flows and to extract wealth from subscribing

and redeeming investors. Second, we show that misreporting affects ex post perfor-

mance measurement. As we predict, misreporting is associated with lower estimates

of the riskiness of the fund and higher estimates of risk adjusted returns and re-

turn persistence. Third, we extend the methodology of identifying misreporting and

testing for differences in misreporting in different sub-samples of return data.

Our results bear significance for investors and academics alike. Misreporting biases

ex post performance measures and makes the misreporting funds appear as more

attractive investments than they are in reality. Also, misreported returns, and asset

values, result in a wealth transfer between trading and non-trading investors in the

fund.25 Investors, both trading and non-trading, should be aware of this effect and its

impact on their wealth. Interestingly, we also find that fund domicile does not affect

25Trading investors are those who place either subscriptions or redemptions to the fund during the month in
question. Non-trading investors are then those that do not change their investment in the fund.
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the misreporting propensity: Funds domiciled in overseas financial centers (OFC)

misreport as much as those domiciled in non-OFCs. This makes return misreporting

relevant also to those investors who, mistakenly, rely on the stricter regulation of

onshore funds to prevent such practices.

Our results also suggest that any analysis of the relation between hedge fund

returns, flows, age, and flow-performance relation may be biased by the fact that

fund managers’ propensity to manage reported returns are affected by the flows,

low-performance relation and age. Finally, our relatively simple methodology to

identify differences in misreporting may prove useful in other applications as well.

One example of such is the study of differences in earnings management in various

sub-samples of corporate earnings data.
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Appendix A: Derivation of Results in Section 2

Management fee. We first investigate how misreporting at t = 1 affects the man-

agement fee charged at t = 3. Under truthfully reported returns the t = 2 flow

would be equal to b0 + brr1, whereas under misreporting it is b0 + br(r1 + m). The

difference between the two is equal to brm. The change in t = 2 flow will change the

management fee by

φbrm(1 + r3). (20)

Wealth transfer. Misreporting during non-zero capital flows leads to transfer

of wealth between the new and old shareholders in the case of inflows and between

leaving and remaining shareholders in the case of outflows. We analyze each of these

cases separately and show that the wealth transfer is the same in both cases.

In the case of an inflow (f1 > 0) and under fair reporting, the new shareholder

should get

f1

A1 + f1

=
f1

1 + r1 + f1

(21)

stake of the fund’s assets. Due to misreporting, she gets a stake equal to

f1

1 + r1 +m+ f1

. (22)

The difference between these stakes is equal to

f1

1 + r1 + f1

− f1

1 + r1 +m+ f1

=
mf1

(1 + r1 + f1)(1 + r1 +m+ f1)
(23)

and the monetary value of the difference (wealth transfer from new shareholder to
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old ones) is (
mf1

(1 + r1 + f1)(1 + r1 +m+ f1)

)
(A1 + f1) (24)

=

(
mf1

(1 + r1 + f1)(1 + r1 +m+ f1)

)
(1 + r1 + f1) (25)

=
mf1

1 + r1 +m+ f1

. (26)

The manager’s share of this monetary wealth transfer will grow to a net-of-fees value

of

mf1

1 + r1 +m+ f1

ω0(1 + r2)(1 + r3)(1− φ) (27)

by time t = 3.

In the case of an outflow (f1 < 0), the leaving shareholders should, under fair

reporting, sell

− f1

1 + r1

(28)

shares in the fund, leaving a total of

1 +
f1

1 + r1

(29)

shares outstanding. Due to misreported asset values, they end up selling

− f1

1 + r1 +m
(30)

shares with the number of outstanding shares equal to

1 +
f1

1 + r1 +m
. (31)

The manager owns ω0 shares. Hence, under truthful reporting, his ownership stake
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in the fund would be

ω0

1 + f1
1+r1

(32)

whereas it is

ω0

1 + f1
1+r1+m

(33)

under misreported asset values. The difference of the two ownership shares is equal

to

ω0

1 + f1
1+r1+m

− ω0

1 + f1
1+r1

=
mf1

(1 + r1 + f1)(1 + r1 +m+ f1)
ω0 (34)

The total value of the fund at t = 1 is 1 + r1 + f1. Hence, the monetary value of the

difference in manager’s ownership at t = 1 is

mf1

(1 + r1 + f1)(1 + r1 +m+ f1)
ω0(1 + r1 + f1) =

mf1

1 + r1 +m+ f1

ω0 (35)

which will grow to net-of-fees value of

mf1

1 + r1 +m+ f1

ω0(1 + r2)(1 + r3)(1− φ) (36)

at time t = 3. This is equal to the wealth transfer in the case of inflows (27).
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Appendix B: Derivation of Results in Section 3

Return volatility. The variance of r̃t is equal to

σ2
r̃ = σ2

r + σ2
m + 2Cor(rt,mt)σrσm, (37)

which is less than σ2
r when

Cor(rt,mt) < −
σm
2σr

. (38)

Autocorrelation. The first order autocorrelation of r̃t is

ρr̃ =
Cov(r̃t, r̃t−1)

σ2
r̃

(39)

=
Cor(mt, rt−1)σrσm + Cor(mt,mt−1)σ2

m

σ2
r + σ2

m + 2Cov(rt,mt)
, (40)

where we get from (39) to (40) by the assumption of i.i.d. true returns. If Cor(mt,mt−1)

and Cor(mt, rt−1) are both negative the autocorrelation is also negative. The au-

tocorrelation is positive (i.e. greater than that of the true returns) when both

Cor(mt,mt−1) and Cor(mt, rt−1) are positive. If Cor(mt,mt−1) < 0 and Cor(mt, rt−1) >

0 the autocorrelation is positive when

Cor(mt, rt−1)

Cor(mt,mt−1)
> −σm

σr
, (41)

and if Cor(mt,mt−1) < 0 and Cor(mt, rt−1) > 0 the autocorrelation is positive when

Cor(mt, rt−1)

Cor(mt,mt−1)
< −σm

σr
. (42)

Alpha and beta. The estimated factor exposure based on the reported returns
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is equal to

β̃ =
Cov(r̃t, λt)

σ2
λ

(43)

=
Cor(rt, λt)σr + Cor(mt, λt)σm

σλ
(44)

= β +
Cor(mt, λt)σm

σλ
. (45)

The estimated alpha of the fund then becomes

α̃ = µr̃ − β̃µλ (46)

= α− Cor(mt, λt)σm
σλ

µλ. (47)

Beta is negatively alpha positively biased when

Cor(mt, λt) < 0. (48)
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Table 1: Return quality and return distributions. This table presents the return distribution
discontinuities for hedge funds with different levels of return quality. Kink measures return quality
as the difference between realized and expected amount of return observations just left of zero
return. Unique is the proportional amount of unique return observations. Correlation is the R2 of a
parsimonious factor model on the funds returns. Discontinuity measures the degree of discontinuity
around zero return. Difference in discontinuity presents the differences in the discontinuity measure
across the different sub-samples. Asymptotic and simulated z test statistics are given in parentheses
and brackets, respectively. Figures significant at a 5% significance level are bolded.

Discontinuity Differences in
Low High discontinuity

Kink 25.13% -3.67% 28.80%
(20.05) (-3.14) (16.81)

[17.22]

Unique 9.61% 4.25% 5.36%
(9.05) (3.33) (3.23)

[3.58]

Correlation 9.04% 8.94% 0.10%
(7.84) (6.93) (0.06)

[0.13]
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Table 2: Capital flows and return distributions. This table presents the return distribution
discontinuities for three pools of monthly hedge fund return observations: those with a negative
capital flow, those with zero capital flow, and those with a positive capital flow. Discontinuity
measures the degree of discontinuity around zero return. Difference in discontinuity presents the
differences in the discontinuity measure across the different sub-samples. Asymptotic and simulated
z test statistics are given in parentheses and brackets, respectively. Figures significant at a 5%
significance level are bolded.

Negative Zero Positive
Discontinuity 5.03% 7.86% 9.80%

(4.48) (8.27) (9.40)

Differences in discontinuity
wrt. zero -2.84%

(-1.99)

[-2.00]

wrt. positive -4.77% -1.93%
(-3.11) (-1.37)

[-3.44] [-1.52]

Observations 83,789 144,515 124,405
Bin width 0.28% 0.23% 0.22%

33



Table 3: Flow-performance relation and return distributions. This table presents the return
distribution discontinuities for two pools of monthly hedge fund return observations: those with a
weak flow-performance relation and those with a strong flow-performance relation. The strength
of flow-performance relation is measured by the impact of past returns on capital flows. Flow-
performance relation in the bottom (top) quartile is classified as weak (strong). Discontinuity
measures the degree of discontinuity around zero return. Difference in discontinuity presents the
differences in the discontinuity measure across the different sub-samples. Asymptotic and simulated
z test statistics are given in parentheses and brackets, respectively. Figures significant at a 5%
significance level are bolded.

Weak Strong
Discontinuity 5.72% 10.39%

(4.64) (8.49)

Differences in discontinuity
wrt. strong -4.68%

(-2.69)

[-2.89]

Observations 74,620 74,717
Bin width 0.33% 0.35%

34



Table 4: Fund age and return distributions. This table presents the return distribution
discontinuities for two pools of monthly hedge fund return observations: those of young funds
and those old funds. A fund is classified as young (old) when it has been less (more) than three
years since its launch. Discontinuity measures the degree of discontinuity around zero return.
Difference in discontinuity presents the differences in the discontinuity measure across the different
sub-samples. Asymptotic and simulated z test statistics are given in parentheses and brackets,
respectively. Figures significant at a 5% significance level are bolded.

Young Old
Discontinuity 10.33% 6.07%

(11.19) (7.26)

Differences in discontinuity
wrt. old 4.26%

(3.42)

[3.80]

Observations 159,742 192,967
Bin width 0.21% 0.22%
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Table 5: Fund domicile and return distributions. This table presents the return distribution
discontinuities for two pools of monthly hedge fund return observations: those of funds domiciled
in an overseas financial center (OFC) and those of funds domiciled in a non-OFC. Discontinuity
measures the degree of discontinuity around zero return. Difference in discontinuity presents the
differences in the discontinuity measure across the different sub-samples. Asymptotic and simulated
z test statistics are given in parentheses and brackets, respectively. Figures significant at a 5%
significance level are bolded.

OFC Non-Ofc
Discontinuity 7.93% 7.77%

(9.00) (8.92)

Differences in discontinuity
wrt. non-OFC 0.16%

(0.12)

[0.01]

Observations 169,815 182,894
Bin width 0.23% 0.21%
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Table 6: Return quality, volatility, and autocorrelation. This table presents the results of
cross-sectional regressions of estimates of hedge fund return volatilities and autocorrelations on
measures of return data quality. Kink measures the degree to which the density of small negative
returns differs from from an expected density. Unique is the number of unique return figures
reported divided by the total number of reported returns. Correlation is the adjusted R2 of a
parsimonious factor model. For each measure, a lower value indicates more suspicious reported
returns. The dependent variable is the return standard deviation in Panel A and first-order return
autocorrelation in Panel B. Fund category dummies are included in all specifications. Incremental
R2 gives the difference between the adjusted R2 of the model and that of a model containing only
the fund category dummies. Heteroscedasticity consistent t-statistics are reported in parenthesis,
and figures significant at a 5% significance level are bolded. The sample includes all hedge funds
and the sample size in all models is 8,113.

PANEL A: Return volatility
(1) (2) (3) (4)

Kink 1.33 1.25
(10.70) (10.13)

Unique 5.14 4.16
(14.75) (12.18)

Correlation 1.48 1.33
(8.54) (7.62)

Adjusted R2 0.666 0.667 0.666 0.674
Incremental R2 0.004 0.005 0.004 0.012

PANEL B: Return autocorrelation
(1) (2) (3) (4)

Kink -0.14 -0.13
(-9.71) (-8.92)

Unique -0.10 -0.16
(-2.39) (-3.77)

Correlation 0.24 0.24
(17.81) (17.85)

Adjusted R2 0.504 0.494 0.516 0.527
Incremental R2 0.011 0.000 0.023 0.034
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Table 7: Return quality and alphas. This table presents the results of cross-sectional regres-
sions of hedge fund alphas on measures of return data quality. Kink measures the degree to which
the density of small negative returns differs from from an expected density. Unique is the number
of unique return figures reported divided by the total number of reported returns. Correlation is
the adjusted R2 of a parsimonious factor model. For each measure, a lower value indicates more
suspicious reported returns. The dependent variable in Panel A is the intercept term in a 10-factor
model where the factors are the three Fama and French (1993) equity risk factors, the five Fung and
Hsieh (2001) trend following factors, and two bond market factors (return on Barclays US Aggre-
gate index, and the return difference of Barclays US Corporate AAA and Barclays US Corporate
BAA indexes). In Panel B, the dependent variable is the intercept term in a parsimonious factor
model resulting from exclusion of non-significant factors to achieve the highest Akaike Information
Criterion. Fund category dummies are included in all specifications. Incremental R2 gives the
difference between the adjusted R2 of the model and that of a model containing only the fund cat-
egory dummies. Heteroscedasticity consistent t-statistics are reported in parenthesis, and figures
significant at a 5% significance level are bolded. The sample includes all hedge funds reporting
returns in USD and the sample size in all models is 5,772.

PANEL A: Alpha (full factor model)
(1) (2) (3) (4)

Kink -0.27 -0.27
(-4.46) (-4.53)

Unique -0.10 0.15
(-0.85) (1.25)

Correlation -0.37 -0.38
(-5.90) (-5.96)

Adjusted R2 0.212 0.209 0.213 0.216
Incremental R2 0.003 0.000 0.004 0.007

PANEL B: Alpha (parsimonious factor model)
(1) (2) (3) (4)

Kink -0.26 -0.26
(-4.58) (-4.57)

Unique -0.22 0.02
(-1.99) (0.19)

Correlation -0.38 -0.38
(-6.17) (-6.15)

Adjusted R2 0.201 0.198 0.203 0.206
Incremental R2 0.003 0.000 0.005 0.008
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Table 8: Robustness checks. This table reproduces the the z-statistics presented in Tables 2-5
for a sub-sample containing only those fund-month observations where the beginning-of-month net
asset value is strictly below the fund’s highest historical asset value. This sub-sample should be clear
of potential performance fee induced discontinuity around zero return (Derolles and Gourieroux,
2009). Figures significant at a 5% significance level are bolded.

DC zDC Obs. Bin width
All funds

All funds 4.88% 6.35 211,457 0.25%

Capital flow
Negative 5.11% 4.11 61,214 0.34%
Zero 5.46% 5.05 93,368 0.29%
Positive 6.67% 5.09 56,875 0.31%

Flow-performance relation
Weak 3.97% 2.83 48,604 0.41%
Strong 8.85% 6.24 46.071 0.45%

Fund age
Young 7.85% 7.06 85,924 0.28%
Old 3.30% 3.49 125,533 0.29%

Fund domicile
OFC 4.43% 4.39 107,501 0.27%
Non-OFC 6.75% 6.59 103,956 0.30%
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Figure 1: Timing of the model. This figure presents the timing of the model. The decision
variable to be chosen by the fund manager is the return reported at t = 1.

t = 0 t = 1 t = 2 t = 3

0) Fund launched
1a) Flow realized
1b) Return realized
1c) Return reported

2a) Flow realized
2b) Return realized
2c) Return reported
3) Return realized and fund liquidated
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Figure 2: Comparative statics. This graphs presents the optimal levels of misreporting (m∗)
for varying levels of capital flows (f1), flow performance relations (br), capture likelihoods (κ), and
penalties (c)

Flow
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m
*

ω0 > 0, φ > 0
ω0 > 0, φ = 0
ω0 = 0, φ > 0

Flow−performance relation

br

m
*

Likelihood of capture

κ

m
*

Penalty if captured

c

m
*
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Figure 3: Return distribution, full sample. This figure gives the distribution monthly returns
on all hedge funds. The top panel gives the histogram of returns with fitted Gaussian kernel
density estimate given by the solid line. The bottom panel gives the standard normal test statistics
measuring the statistical significance of the difference between the actual density and estimated
density in each bin. The dash line gives the 1% critical values. Bins neighboring zero return are
highlighted.

Densities

−20 −17 −14 −11 −8 −5 −2 +2 +5 +8 +11 +14 +17 +20

0%
1%

2%
3%

4%

●
●

●
● ●

●
●

●

●

●

●
● ●

●

●
●

●
● ●

●

●

● ●
● ● ●

● ●
●

●

● ●

●

●

● ●
●

●
●

●

−1
0

−5
0

5
10

●

●

z−statistics

−20 −17 −14 −11 −8 −5 −2 +2 +5 +8 +11 +14 +17 +20

42



Figure 4: Capital flows and return distributions. This figure gives the distribution monthly
returns on hedge funds in three sub-samples according to capital flows. The top panel gives the
distribution for fund-month observations where capital flow is negative, the middle panel gives the
distribution for observations where capital flow is zero, and the bottom panel gives the distribution
for positive flow observations. The left panel gives the histogram of returns with fitted Gaussian
kernel density estimate given by the solid line. The right panel gives the standard normal test
statistics measuring the statistical significance of the difference between the actual density and
estimated density in each bin. The dash line gives the 1% critical values. Bins neighboring zero
return are highlighted.
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Figure 5: Flow-performance relation and return distributions. This figure gives the distri-
bution monthly returns on hedge funds in two sub-samples according to flow-performance relation
of the funds. The top panel gives the distribution for the funds with weak flow-performance relation
and the bottom panel gives the distribution for strong flow-performance relation funds. The left
panel gives the histogram of returns with fitted Gaussian kernel density estimate given by the solid
line. The right panel gives the standard normal test statistics measuring the statistical significance
of the difference between the actual density and estimated density in each bin. The dash line gives
the 1% critical values. Bins neighboring zero return are highlighted.
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Figure 6: Fund age and return distributions. This figure gives the distribution monthly returns
on hedge funds in two sub-samples according to fund age. The top panel gives the distribution for
young funds (less than three years since inception) and the bottom panel gives the distribution for
old funds (more than three years since inception). The left panel gives the histogram of returns
with fitted Gaussian kernel density estimate given by the solid line. The right panel gives the
standard normal test statistics measuring the statistical significance of the difference between the
actual density and estimated density in each bin. The dash line gives the 1% critical values. Bins
neighboring zero return are highlighted.
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Figure 7: Fund domicile and return distributions. This figure gives the distribution monthly
returns on hedge funds in two sub-samples according to fund domicile. The top panel gives the
distribution for funds domiciled in overseas financial centers (OFC) and the bottom panel gives
the distribution for fund domiciled in non-OFCs. The left panel gives the histogram of returns
with fitted Gaussian kernel density estimate given by the solid line. The right panel gives the
standard normal test statistics measuring the statistical significance of the difference between the
actual density and estimated density in each bin. The dash line gives the 1% critical values. Bins
neighboring zero return are highlighted.
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