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Abstract. Two network structures of derivative contracts are explored

in a two-period model. The structures represent a bilaterally-cleared

OTC market and a centrally-cleared market. An initial bankruptcy

induces counterparties to trade with price impact. The two market

structures yield different price impact and volatility. A large market-

induced bankruptcy yields two destabilizing phenomena in bilateral mar-

kets: checkmate and hunting. Checkmate occurs when a counterparty

cannot expect to prevent impending bankruptcy. Hunting occurs when

counterparties push markets further than necessary, inducing further

bankruptcies which may yield profits. The results suggest that bilat-

eral OTC markets have larger externalities (distress volatility) which

can be priced relative to centrally-cleared markets. This may suggest

when and how to encourage markets to transition from bilateral OTC

to central clearing. The results also suggest that limiting leverage ra-

tios may reduce distress, that leverage limits may not vary linearly with

capital, and that in times of distress coordination by market authorities

has value. (JEL: G01, G28, D49 )
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1. Introduction

Systemic crisis is a recurring theme in finance. In the past fifteen years,

crises at Askin Funds, Long-Term Capital Management, Bear Stearns, and

Lehman Brothers have spread beyond those firms to affect markets and firms

worldwide. Of particular interest is the epidemic nature of these crises:

trouble at one firm may spread to other firms. This leads to the idea of

counterparty risk. In the strictest sense, this is the risk to an institution

due to a counterparty defaulting on a contract with that institution. In a

broad/systemic sense, counterparty risk includes how these situations affect

the overall market.

Counterparty risk might seem to be a feature of over-the-counter (OTC)

markets; however, many bonds are traded OTC without any worry of coun-

terparty risk. Derivatives might seem to create counterparty risk since they

are agreements between two parties; however, futures and options are deriva-

tives and the CME and CBOE clearinghouses have never defaulted.

Refco was one of the largest US futures brokers when it went bankrupt in

2005. Such a bankruptcy might induce some anxiety among counterparties;

however, the increase in volatility around Refco’s bankruptcy was small.

Similarly, the near-bankruptcy of Bear Stearns and bankruptcy of Lehman

Brothers in 2007 caused chaos and interruptions in many OTC markets;

however, the CME and CBOE continued to trade without interruption1.

Many derivatives exchanges (including the CME and CBOE) use a central-

ized counterparty while swaps markets do not. That these markets contin-

ued trading while many OTC markets did not suggests counterparty risk

1Melamed (2009) gives the notional of CME contracts held at the time of these incidents
as $761 billion (Bear) and $1.15 trillion (Lehman).
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is a feature of market structure. Specifically: differences in network struc-

ture connecting counterparties may multiply or reduce the systemic effects

of bankruptcy.

I use a two-period model to study the effects of a financial institution bank-

ruptcy. The approach is general enough to be applied to any network struc-

ture and extended to multiple periods. Thus the approach could be used

to design markets which most reduce the undesirable effects (externalities)

studied here.

The model is applied to two market-based network structures which repre-

sent markets with and without a central counterparty. However, the model

excludes the effects of adverse selection on price discovery. This allows us

to study differences in volatility and follow-on bankruptcies due strictly to

market structure.

For these network structures, the model suggests that a central counterparty

stabilizes the market by reducing post-bankruptcy volatility and follow-on

bankruptcies. The model also allows us to predict what these differences

would be for a given initial bankruptcy. This can even be extended to

characterize a market’s susceptibility to follow-on bankruptcies (i.e. market

“criticality”).

2. The Two-Period Network Model

The economy we study has one risky underlying asset. Financial institutions

(counterparties) trade OTC swaps on this asset. The only risk to the n

counterparties is that changes to the risky asset price affect the worth of

their swap contracts. The risk-free rate is assumed to be 0.
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To simplify, we assume there is at most one contract between any two coun-

terparties. (This is akin to netting contracts between counterparties.) The

collection of counterparties and contracts defines a network: counterparties

comprise the nodes of the network and contracts define its edges.

Counterparties are endowed with capital and risk aversion. For simplicity, all

counterparties start with the same capital K and risk aversion λ. Contracts

are endowed with signed sizes. These sizes may be constrained to give the

network a certain topology.

Counterparties begin in equilibrium, holding their desired exposure to the

risky asset, and will seek to return to this exposure if perturbed from it.

Contracts are continually marked-to-market: All gains and losses are real-

ized after each trade in the market. Thus any cashflow which exceeds the

remaining capital results in bankruptcy.

What the exposures mean is important. While we examine only one risky

asset, a more complex world would have multiple risky assets. In that situa-

tion, we could view these exposures in two ways. If they are overall exposures

to risk, counterparties might not seek to return to equilibrium. If they are

positions in only one risky instrument, however, counterparties might hold

counterbalancing positions; in that case, returning to equilibrium might be

more natural. However, neither of these cases diminishes the seriousness of

a capital-depleting cashflow. Even a firm with a counterbalancing position

would surely see the dangers in matching the timing of such large cashflow

movements.

Each trade affects the market by moving prices. This is modeled by a

price impact model with linear permanent component. A counterparty will

therefore trade strategically given expected price impact, trading costs, and
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variance reduction. In the extreme, we can think of this as a no-seppuku

rule: a counterparty will not rehedge completely if that rehedging would

push it into bankruptcy

Trading occurs in a random sequence within a period. Price impact implies

counterparties do not all rehedge at the same price. This leads to high and

low prices “during” each period as well as an increase in market volatil-

ity. These price movements may cause some of the initially-living n − 1

counterparties to go bankrupt.

All trading is done with a counterparty outside the network who has no

concerns about risk or bankruptcy. One could appeal to an influx of liquidity

providers in a crisis as justifying this approach. While that may be true,

this assumption is unsatisfactory and a possible weakness of the model.

The model is a two-period model with trading in periods 1 and 2.

At time t = 0, bankruptcy of the n-th counterparty occurs; n − 1 counter-

parties survive. Some or all of the living counterparties may have one of

their contracts (connected edges) eliminated.

At time t = 1, each counterparty trades to maximize mean-variance utility

given its desired exposure, the volatility of the risky asset, and expectations

of others’ actions. Follow-on bankruptcies may occur in period 1.

At time t = 2, all remaining exposures due to the bankruptcy are hedged

with trading again occurring in a random order. While follow-on bankrupt-

cies may occur in period 2, these may result from the constraints inherent

to a two-period model.

2.1. Notation. We introduce notation to express the dynamics of this model:

pt = price of the risky asset at end of period t;
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rt = return of the risky asset in period t;

K = capital of each counterparty at start of period 0;

σ = volatility per period of the risky asset price; and,

qij = exposure of counterparty i via contract with counterparty j 6= i.

Worth noting is that the contract notation implies direction: qij = −qji.

The price impact model is linear in trade size and posits only permanent

price impact. This is done in keeping with Huberman and Stanzl (2004)

to ensure that the model is as simple as possible and arbitrage-free. If we

assume price innovations are iid and have mean zero, we get the expected

price for a trade by counterparty i (absent other trading) as a function of

the quantity rehedged xi:

E(p(xi)) = p0 + πxi︸︷︷︸
permanent

.(1)

The price p1 at the end of period 1 is:

p1 = p0 + σZ1 + π
n−1∑
j=1

xj(2)

where Zt∈{1,2}
iid∼ (0, 1).

While the end-of-period price is unaffected by the ordering of trades within

the period, bankruptcies do depend on the path of prices in a period.

2.2. Network Topologies. While any network topology could be studied,

we consider two market-based extremes. A star network with n contracts

represents a market with a central counterparty; a fully-connected network

with n(n− 1)/2 contracts represents a bilateral OTC market. Examples for

four counterparties are shown in Figure 1.
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Figure 1. The two network structures considered shown for
n = 4 counterparties: a star network connected via a central
counterparty (left) and a fully-connected network (right).

The bankruptcy at t = 0 affects these two topologies in different ways. For

the star (centrally-cleared) network, the initial bankruptcy only invalidates

one contract with the central counter party (CCP). For a fully-connected

(bilateral OTC) network, the initial bankruptcy invalidates contracts with

n− 1 living counterparties.

3. Two-Period Analysis

With a few assumptions we can analyze the effect of the initial bankruptcy

for these two network types. Contract sizes are assumed to have a zero

mean and finite variance: qij
iid∼ (0, η2) for i < j in the fully-connected

network. The star network has contract sizes equal to net exposures in the

fully-connected network. Counterparty i has net exposure of Qi =
∑

j qij =

qi,CCP . Net exposures have expectation 0 and variance (n− 1)η2.

After the initial bankruptcy (t = 1), living counterparties in a star network

have no unwanted exposure; only the central counterparty has unwanted

exposure to the risky asset. For a fully-connected network, each living coun-

terparty i has unwanted exposure of −qin reflecting the subtraction of the

invalidated contract with the bankrupted counterparty.
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Since the informational implications are different, we examine two cases:

small and large initial bankruptcies.

3.1. Small Bankruptcy. We first consider the bankruptcy of a small finan-

cial firm. The small size suggests other counterparties have less information

about the bankrupted firm. Thus bankruptcy may be due to market risk

or idiosyncratic (management-related) factors. This is manifested in the

capital at the start of period 1 being K for each living firm. The only infor-

mation living counterparties have about counterparty n’s market exposure

is their individual contracts with the bankrupted.

3.1.1. Star Network. In a star network, none of the living counterparties

has a broken contract. Therefore none of the living are directly affected by

counterparty risk nor need they rehedge. Since the living counterparties’

contracts incur no default, there is no early signal that any counterparty

has gone bankrupt.

The central counterparty (CCP) takes on the bankrupted’s exposure at time

t = 1. If the CCP rehedges immediately, the permanent price impact will

be for a −Qn-sized trade: ∆p = −πQn.

The CCP has advantages over other counterparties: It knows all counter-

parties’ positions and trades; and, it would have immediate evidence of

predatory trading by a living counterparty. This lets the CCP rehedge to

reduce price impact and avoid causing further bankruptcies.

Also relevant (but not in the model) are the CCP’s operating and contractual

agreements. The CCP might have a contractual claim against counterparties

if it goes bankrupt2. The CCP can also dictate margin and mark-to-market

requirements to penalize large or risky positions. With these agreements,

2The CME clearinghouse uses such a structure.
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living counterparties have even stronger incentives not to move the market

against the CCP. Thus while these details are outside the model, they further

justify the CCP’s trading to reduce price impact and contagion3.

Thus the CCP trades to maximize mean-variance utility:

UCCP (x) = −πx2︸ ︷︷ ︸
period 1
impact

−λσ
2

2
[Q2

n + (Qn + x)2]︸ ︷︷ ︸
variance penalty

−πQn(Qn + x)︸ ︷︷ ︸
period 2 impact

(3)

This yields an optimal period 1 trade size of:

xCCP =
−(π + λσ2)Qn

2π + λσ2
.(4)

Note that without price impact, the optimal policy is to rehedge completely

in period 1 (xCCP = −Qn). As linear price impact π increases, the optimal

trade tends toward an equal split of rehedging between periods 1 and 2. As

volatility (σ) increases, the optimal trade tends to rehedge completely in

period 1.

3.1.2. Fully-Connected Network. In a fully-connected network, bankruptcy

by counterparty n invalidates n − 1 contracts. Each counterparty trades

to rehedge their eliminated contract by the end of period 2. Since the

bankruptcy is small, we ignore high and low prices triggering bankruptcies.

Each living counterparty chooses xi to maximize Markowitz mean-variance

utility. This is the same as minimizing price impact (affecting exposure and

the traded amount) plus the penalized variance of the unhedged exposure

3Further research should examine when these incentives break down and members act
against a CCP.
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(x− qin):

Ui(x) = −πx2︸ ︷︷ ︸
period 1
impact

−λσ
2

2
[q2
in + (x− qin)2]︸ ︷︷ ︸

variance penalty

−πqin(qin − x)︸ ︷︷ ︸
period 2 impact

(5)

When each counterparty knows nothing about the other counterparties’ ex-

posures, the optimal period 1 trade size is

xi =
(π + λσ2)qin

2π + λσ2
.(6)

The sequencing of trades in periods 1 and 2 increases price volatility of the

risky asset. The price volatility in periods 1 and 2 comes from equation (1)

and the variation in contract sizes:

Var(pt∈(0,1]) = σ2 + π2(n− 1)

(
π + λσ2

2π + λσ2

)2

η2︸ ︷︷ ︸
added variance

;(7)

Var(pt∈(1,2]) = σ2 +

︷ ︸︸ ︷
π2(n− 1)

(
π

2π + λσ2

)2

η2 .(8)

3.2. Large Market-Induced Bankruptcy. While the bankruptcy of a

large financial firm could come from mismanagement or fraud, we consider

bankruptcies known or suspected to arise from market risk. Bankruptcies

suspected of arising from market risk are also considered because strategic

issues in exiting a large position cast doubt on legitimate claims of misman-

agement. (Living counterparties may suspect market risk is to blame despite

legitimate claims of mismanagement.)

3.2.1. Initial Bankruptcy. To study the effect of a market-induced bank-

ruptcy, we impose an exogenous market return shock in period 0, r0, such
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that bankruptcy occurs for the most exposed counterparty (labeled counter-

party n for convenience). Mathematically, this means: K+Qnr0 ≤ 0 where

Qnr0 < Qir0 for all i < n. For ease of exposition, we assume Qn is positive

and r0 is negative.

While living counterparties may not know Qn, they can infer it from the

market return preceding counterparty n’s bankruptcy4. With initial capital

of K, the living counterparties estimate Qn as Q̂n = E(Qn|K +Qnr0 ≤ 0).

Evaluating this expectation requires weak distributional assumptions and

extreme value theory.

For iid normal Qi’s, we estimate the initial large bankruptcy exposure (see

Appendix A.1) as:

Q̂n = E(Qn|K +Qnr0 ≤ 0)(9)

=
−K
r0

+
η
√
n− 1

cn(1− e−e−cnκ1−dn )

∞∑
k=1

(−1)k+1e−k(cnκ1+dn)

kk!
(10)

where cn = 1√
2 log(n)

, dn =
√

2 log(n)− log log(n)+log(16 tan−1(1))

2
√

2 log(n)
, and κ1 is the

standardized maximum possible exposure of a living counterparty. If Qn is

not known, κ1 = −K
r0η
√
n−1

.

Note that Q̂n is a function of r0. Even if we know Qn, analysis involving

both Qn and r0 should use Q̂n to be consistent with r0 and to allow for

comparisons between different network structures.

3.2.2. Follow-On Bankruptcies. Since the broken contract is large, trading

in periods 1 and 2 might cause follow-on bankruptcies. All broken contracts

must be (in expectation) rehedged, and counterparties’ mark-to-market pay-

ments depend on price impact and their positions subject to that impact.

4Till (2006) infers Qn, albeit using different methods.
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Follow-on bankruptcies come from counterparties with exposures less than

κ1 = −K
r0η
√
n−1

and greater than κ2(Q̂f ) which depends on the market struc-

ture. (Details are in Appendix A.2.)

We then solve for the equilibrium follow-on exposure Q̂f :

Q̂f = E(Qf |K +Qnr0 ≤ 0)(11)

=
(n− 1)3/2η

Φ(κ1)
(φ(κ2(Q̂f ))− φ(κ1))(12)

where Φ and φ are the standard normal cdf and pdf.

A natural question is how sensitive follow-on bankruptcies are to an initial

bankruptcy. One measure of the market’s fragility or susceptibility to dis-

tress is the elasticity of distress exposure,
∂ log(Q̂f )

∂ log(Q̂n)
; another measure is the

elasticity of distress pervasiveness, ∂ log(b̂)

∂ log(Q̂n)
.

A valid criticism of these elasticities is that counterparties going bankrupt

with very little exposure would require a very large drop in the price of

the risky asset — an unlikely event. To account for this, we can look at

elasticities weighted by the likelihood of such a precipitating r0. Thus we

would examine the likelihood-weighted elasticity of distress exposure to see

what size of initial bankruptcy is of greatest likely concern.

3.2.3. Star Network. For a star network, only the CCP holds a broken con-

tract. Thus only the CCP learns immediately of default. While such a

default would become public knowledge quickly, the CCP also sees preda-

tory trading immediately and can punish it.

Since only the CCP must rehedge, we can ignore low prices due to rehedging

volatility. The additional unwanted exposure incurred by all counterparties

due to follow-on bankruptcies, Q̂f , then results from counterparties with
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exposures between κ1 and κ2(Q̂f ) where

κ2(Q̂f ) =
−Kp0

η
√
n− 1(p0r0 − π(Q̂n + Q̂f ))

.(13)

Since there are no worries about low prices and the CCP trades a fraction

of the total trade ν = π+λσ2

2π+λσ2 ∈ [0, 1] in period 1, we may ignore the period

1 versus 2 distinction.

3.2.4. Fully-Connected Network. In a fully-connected network, each living

counterparty immediately detects default. Thus each living counterparty

must trade to rehedge. This not only pushes the market further; the varia-

tion in rehedging trades also increases the volatility of the risky asset. That

volatility also creates price extremes that are likely to be greater than the

trading range from the rehedging of a CCP. A comparison of possible price

paths (Figure 2) shows the difference in range.
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Figure 2. Possible price paths from $30 to $24 due to re-
hedging by a centralized counterparty (left) and OTC market
participants (right).

We should expect more follow-on bankruptcies in fully-connected networks

for three reasons. First, extreme prices beyond the CCP rehedging price

range will result in more counterparties being (expectationally) unable to

pay mark-to-market. Second, counterparties with a small exposure will be
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driven by unwanted variance and may hedge completely in period 1. Third,

the fraction of hedging in period 1 ν enters κ2 and thus the follow-on expo-

sure equation (12) in a way that creates a Prisoner’s Dilemma situation.

If the overall fraction of the total rehedge traded in period 1 is ν, the overall

impact incurred for OTC markets will have three components. Two com-

ponents, ν/2 and (1 − ν)/2, are due to the random sequence of trading in

periods 1 and 2 implying that each counterparty expects half of the other

trades in that period to occur first. The third component, (1 − ν)ν, is due

to the position to be hedged in period 2 which incurs all impact of period 1

trading. The total impact is then 1
2 + ν − ν2 which varies between 1/2 (ν =

0 or 1) and 3/4 (ν = 1/2). If we assume risk aversion (λ > 0), we would

hope to be able to restrict our attention to the sub-interval ν ∈ [1
2 , 1].

Trading by multiple counterparties with differing exposures creates high and

low prices. Since we consider rehedgers who (net) sell, we estimate the low

price and see how that effects follow-on bankruptcies. The low price is driven

by the running sum of trades. That is approximated by a Brownian bridge,

a Brownian motion tied to end at −(Q̂n + Q̂f ) and can be handled by time

inversion. (See Appendix A.3 for details.)

Thus the expected low quantity Sn−1 of cumulated trades over trading pe-

riods 1 and 2:

E(Sn−1|Sn−1 = −(Q̂n + Q̂f )) =

− (Q̂n + Q̂f )− η
√
n− 12 tan−1(1)φ

(
Q̂n + Q̂f

η
√
n− 1

)
,

(14)

and κ2(Q̂f ) for this market structure:

κ2(Q̂f ) =
−Kp0/[η

√
n− 1]

p0r0 − πE(Sn−1|Sn−1 = −(Q̂n + Q̂f ))
.(15)



THE EFFECT OF MARKET STRUCTURE ON COUNTERPARTY RISK 15

This allows us to determine Q̂f from (12).

If we were to solve the n − 1-player game, we would have to solve an opti-

mization of each player’s mean-variance utility given the others’ trades. This

optimization then yields the period 1 fraction of trade ν. Initial simulations

suggest that heterogeneous rehedging needs — in particular the presence of

long and short rehedgers — can yield values of ν in excess of 1 and even of

the order ν = 1.5−−2.

3.2.5. Destabilizing Phenomena. Such multi-player games reveal two phe-

nomena of interest. While one phenomenon is unfortunate, the other is

undesirable and may greatly destabilize the market. While these phenom-

ena are always possible, they may easily affect or become the equilibrium

solution in the large market-induced bankruptcy case.

The first of these phenomena is checkmate: when any action (or inaction)

by a counterparty cannot be expected to avoid bankruptcy. Checkmate is

unfortunate for the ensnared counterparty; they cannot hedge in such a way

as to expect to stay in business by the end of period 2. Since the checkmated

counterparty cannot expect to stay in business, it may be in their interest

to do nothing in hopes of randomly avoiding period 2 bankruptcy5. A nec-

essary condition for checkmate is that closing the position would result in

bankruptcy:

(16) −πQ2
n/p0 +K < 0⇔ Qn >

√
Kp0/π.

Proposition 1 (Checkmate). In a fully-connected network, there is a Qn ∈

(0,∞) such that for some k < n and any finite xk we expect bankruptcy in

period 1: E(π
∑

j<n xjQk|F1) > K −Qkr0.

5A checkmated counterparty might even seek to become “Too Big to Fail,” in effect taking
the market hostage to seek more favorable liquidation terms.
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What Proposition 1 means is that a large enough initial bankruptcy may

result in an expected follow-on bankruptcy in period 1 despite the best

efforts of the checkmated counterparty. This implies that policies restricting

or taxing excess leverage might reduce distress (in this case, the number

of market participants operating in checkmate). Note, however, that the

leverage ratio implying checkmate varies with 1/
√
K.

The second phenomenon is hunting : when other counterparties expect to

profit by inducing follow-on bankruptcies. This means some counterparties

act to push prices further in a particular direction to make money. Normally,

this is not possible in a market with price impact as we assume here. The

invalidation of contracts with the bankrupted counterparty, however, makes

profits possible.

Proposition 2 (Hunting). In a fully-connected network of 3 or more coun-

terparties, there is a Qn ∈ (0,∞) such that for all exposures of Qn or greater,

bankruptcy has a positive expected payoff for two or more other counterpar-

ties.

A sketch of the proof for n = 3 offers insight into how hunting works.

Proof. Assume counterparty 3 is checkmated. Let Q1, Q2 < 0 < Q3 be such

that Q1 + Q2 = −Q3. Without loss of generality, we assume q13 = Q1,

i.e. counterparties 1 and 2 have no exposure to one another. For π > 0,

counterparties 1 and 2 trade Q1 and Q2 to replicate their counterparty 3

exposure, causing losses to counterparty 3: π(Q1 +Q2)Q3/p0 +K < 0. Note

that the market impact of trading by counterparties 1 and 2 is expected to

bankrupt counterparty 3.

The positive expected profit from such a strategy is due to the random

ordering of trading. The first “hunter” to trade receives a mark-to-market
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profit due to the second hunter’s trading. The expected profit is E(PLi) =

πQ1+Q2

2p0
Qi. If counterparty 3 goes bankrupt, all contracts with counterparty

3 are canceled. The exposure of the hunting counterparties reverts from 2Qi

back to Qi.

If counterparty 3 does not go bankrupt, the hunting may continue or hunters

may unwind their trades at no cost (since the market impact model is

arbitrage-free). �

3.2.6. A Separating Equilibrium? We can also examine a fully-connected

network from another perspective. Since we have multiple players, we can

expect that there are multiple equilibria for how people would trade. One

possible equilibrium is for rehedgers to separate themselves with buyers and

sellers trading in different periods. We can see this by considering a large

market drop which induces those who are long to sell.

Since the sellers are at risk of going bankrupt, they will sell in period 1

hoping to trade at the beginning of the period and not going bankrupt.

This generates the typical “race for the exits.” However, with only sellers in

period 1, those whose sales are executed at the end of the period are likely

to go bankrupt. Meanwhile, buyers wait to trade in period 2 at the lowest

prices after sellers have bankrupted one another and pushed the market

down.

In the extreme case, the buyers in period 2 would not even need to trade:

bankruptcies in period 1 would annul their contracts and leave them flat.

This possibility alone might support such an equilibrium.

With these sorts of dynamics, the period 2 trade is difficult to calculate.

However, the result is the maximum distress in terms of volatility, low price,
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and follow-on bankruptcies. Thankfully, we can find the low price with only

the net period 1 trade (which is easier to calculate).

We can think of the trades from buyers and sellers xi as adding up to some

total trade quantity Q̄ < 0. The question then is, what is the sum of all the

sell trades? Mathematically, we want to know:

E(
n−1∑
i=1

[xi]
−|

n−1∑
i=1

xi = Q̄ < 0).(17)

Unfortunately, this is a tricky question to answer. However, we can take an

approximate answer by finding the expected sum of the absolute value of

n−1 standard normal variables for a distribution with mean µ = −Q̄/((n−

1)3/2η).

This is just (see Appendix A.5):

E(

n−1∑
i=1

[xi]
−|E

n−1∑
i=1

xi = Q̄ < 0). =(18)

=(n− 1)3/2ηφ(−µ) + Q̄(1− Φ(−µ)).(19)

4. Examples

To get an idea of what different bankruptcies look like, we consider a mar-

ket with n = 10 counterparties, each having capital K of $1 million. Note

that for a large bankruptcy these are very conservative assumptions: a mar-

ket with counterparties having large exposures is likely to have more than

10 well-connected counterparties and, we generally expect trades to incur

temporary impact — which would exacerbate the price extremes.

The risky asset has a price of $50, daily price volatility of $0.95 (equivalent

to a 30% annual return volatility), and trades 5 million units daily. For the
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risky asset’s price impact, we have that π = 2 × 10−6. Risk aversion is a

daily λ = 1 × 10−6. These parameter values are in line with examples in

Almgren and Chriss (2001).

4.1. Small Bankruptcy Example. To see the effect of a small bank-

ruptcy, we consider a market where counterparties hold contracts with ex-

posure standard deviations of $100,000.

In this case, the period 1 price impact is −$0.20 and the period 2 price

impact is −$0.17. The price volatility increases to $1.30 in period 1 and

$1.11 in period 2 . These are equivalent to return volatility increasing from

30% annualized to 41% and 35% annualized.

4.2. Large Bankruptcy Example. To get an idea of what a large financial

bankruptcy looks like, we consider an example for n = 10 counterparties,

each having capital K of $1 million. The counterparties hold contracts

equivalent to OTC contracts with a standard deviation η of (also) $1 million.

We assume the CCP trades ν = 0.5 of the expected rehedge in period 1;

however, for the CCP market structure, the results are not sensitive to ν.

The risky asset has a price of $50 and daily price volatility of $0.95 (equiva-

lent to a 30% annual volatility). For the risky asset’s cash market liquidity,

we have that π = 2 × 10−6 and λ = 1 × 10−6. These parameter values are

in line with examples in Almgren and Chriss (2001).

This gives us the plot of follow-on bankruptcy exposure Q̂f due to initial

bankruptcy size Q̂n shown in Figure 3.

We first consider the convex hull enclosing the central clearing market line

C and the bilateral OTC market lines P and S. If buyers and sellers in the

bilateral OTC market traded together and split their trades over periods
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Figure 3. Follow-on bankruptcy exposure Q̂f (left) and

count b̂ (right) versus initial bankruptcy size Q̂n for n = 10
counterparties, each with capital K = $1 million, holding
equivalent contracts with sd(exposure) = $1 million. Line S
is for an OTC market separating equilibrium where sellers
and buyers trade in different periods. Line P is for an OTC
market with pooled buying and selling and overtrading by
an amount typical from simulations (1.75×). Line C is for a
market with central clearing.

1 and 2 without trying to profit from one another (as for line P ), their

behavior would yield a line identical to C. However, simulations yielded

an equilibrium where individuals behaved in a way that would yield line P .

Thus we can think of the convex hull generated by lines C, P , and S as the

envelope of distress defining the space of possible distress equilibria.

Since P results from one equilibrium and S results from another, we can-

not ignore the difference between bilaterally-cleared (OTC) and centrally-

cleared markets. Further, that C lies at the bottom of the envelope makes

clear that distress is more likely and more destructive in markets without a

central counterparty.

We can also note that the expected notional of contracts anulled by follow-on

bankruptcies, Q̂f , is not monotonically increasing for the separating equilib-

rium S. This is because the total amount to be rehedged (i.e. including Qn)
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is monotonically increasing; but, for larger bankruptcies, the initial failure

dominates the total annulled exposure. It also suggests that for mid-sized

bankruptcies, the uncertainty about the effect may increase the expected

amount to rehedge; however, for very large bankruptcies the uncertainty

about the net rehedge decreases.

While the separating equilibrium S yields much greater follow-on bank-

ruptcy exposure, it may well yield fewer expected follow-on bankruptcies

than for pooled trading P . This suggests a “boiled frog” scenario: traders

who panic may lose more in total; but, they may slightly increase their

probability of survival. Traders who panic less (trading in periods 1 and

2; line S) incur mark-to-market losses from period 1 trading and incur half

the losses (expectationally) in period 2. In other words, more traders may

find themselves checkmated in period 2. This seeming paradox also lends

support to the possibility of an equilibrium as for line S.

We can also see the elasticities of distress exposure and pervasiveness: the

percentage changes in Q̂f and b̂ for a percentage change in Q̂n (see Figure 4).

From a policy perspective, we should consider the absolute sensitivity of

follow-on bankruptcy exposure Q̂f to the initial bankruptcy Q̂n: i.e. ∂Q̂f/∂Q̂n.

Figure 5 shows that both OTC market lines (pooled buyers and sellers, line

P ; separated buyers and sellers, line S) and the central counterparty line (C)

have intervals where they are greater than 1. In these intervals, a counter-

party who could affect the initial bankruptcy size would generate rehedging

(due to follow-on bankruptcies) in excess of their effect on Q̂n. This suggests

that hunting is more than just an abstract or theoretical concept.

This plot suggests that distress (follow-on bankruptcies) are most likely to

be destructive for initial bankruptcies by counterparties having exposure of
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Figure 4. Elasticities of distress exposure Q̂f (left) and dis-

tress pervasiveness b̂ (right) with respect to an initial bank-

ruptcy of size Q̂n. Plots are for n = 10 counterparties each
with capital K = $1 million and holding positions equivalent
to OTC contracts with sd(exposure) = $1 million. Plots are
for a central counterparty, pooled OTC buyers and sellers,
and separated buyers and sellers (lines C, P , and S).

Figure 5. Sensitivity of distress exposure Q̂f to an initial

bankruptcy of size Q̂n, i.e. ∂Q̂f/∂Q̂n. Plot is for n = 10
counterparties each with capitalK = $1 million and positions
equivalent to OTC contracts with sd(exposure) = $1 million.
Lines C, P , and S correspond to a market with a central
counterparty, pooled OTC buyers and sellers, and separated
buyers and sellers.

$11–$14 million to one risky asset with a capital base of $1 million. While

few firms hold one asset, anecdotal accounts and conditional correlations
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from Pesaran and Pesaran (2010) suggest some banks in the credit crisis

saw the correlation of their assets reach levels of 0.7 or more. A correlation

of 0.7 implies we can explain R2 = 0.72 = 0.49 (49%) of the variance. Thus

one risky asset having $11–$14 million of exposure could be thought of as

similarly destructive to assets of $22–$28 million which become correlated

at a level of 0.7. This suggests leverage ratios of 22–28 may be modal levels

at which financial distress occurs. That is especially troubling since most

investment banks have leverage ratios at least this great.

This suggests that policies which restrict or tax leverage ratios beyond 22 (or

so) may reduce distress and volatility externalities — even in markets with

a central counterparty. Another possibility might be to auction permits to

exceed some base leverage ratio and then allow financial companies to trade

these permits (as is done with emissions permits). Aggressive investments

banks with leverage ratios of 30–35 would thus be penalized relative to banks

which earn similar profits on lower leverage.

5. Conclusion

We have shown that different network structures of exposures and mark-

to-market payments can yield different market effects when an exogenous

shock is introduced and trades have price impact. These effects are apart

from any concerns about adverse selection and are due strictly to market

structure.

The bankruptcy of a small non-financial firm increases the volatility of a

risky asset held by the failed firm. Further, we can model this increased

volatility as a function of exposures to the failed counterparty and mar-

ket impact parameters. The bankruptcy of a large financial firm is shown

to be more destructive: counterparties may be checkmated (unable to avoid
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expected bankruptcy), and counterparties may hunt the weak (seek to bank-

rupt counterparties) for positive expected profit. In the extreme case, buyers

and sellers may separate when they trade, causing greatly increased follow-

on bankruptcies, market swings, and volatility.

Both of these cases, small and large bankruptcies, have policy implications

for market structures. In the large bankruptcy case, one example suggests

that leverage ratios in the mid-20’s may be modal for distress and may cause

the most destruction relative to the size of the initial bankruptcy. This is

especially troubling since many investment banks have leverage ratios in the

20’s to low 30’s.

These models suggest that distress and rehedging leads to increased volatil-

ity. That increased volatility is clearly an externality. Using an aggregate

risk-aversion parameter, that externality may be priced to estimate the cost

of differing market structures under stress.

The results also suggest there is a benefit to trading on centrally-cleared

(and perhaps even exchange-traded) markets versus bilaterally-cleared OTC

markets. However, bilateral markets have small startup costs and are thus

important for financial innovation. If we could price the evolution of that

flexibility, we might know more about when to offer incentives for trading

to migrate from bilaterally-cleared to centrally-cleared markets. Given that

the recently-passed Dodd-Frank financial reform bill encourages such tran-

sitions, these findings may help policymakers determine when is the best

time to move markets to central clearing.

These results also suggest that monitoring exposures and capital levels is

critical. The monitoring allows us to see how many players are in a network
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and how connected the network is. That lets us infer when checkmate and

hunting are likely or possible.

Finally, hunting poses a Prisoner’s Dilemma situation: counterparties col-

lectively hurt themselves by rehedging to avoid losses from other rehedgers.

This suggests a possible reason for concerted action by market authorities

in periods of sever distress. One could view the Federal Reserve’s forcing 15

consortium banks to collectively takeover LTCM as such an action.

More work should be done to study counterparty risk. Having all trading

occur with an external counterparty outside of the network is unsatisfactory

and various fixes could be explored. In particular, we should study the

marginal effect of adding a market maker concerned about adverse selection

when trading.

We might also consider analyzing other network structures, especially “small

world” networks. We should explore the possibility of counterparties collud-

ing to trade with one another and trigger mark-to-market profits. The game

could be changed to end when follow-on bankruptcies cease. We could study

what happens if counterparties’ risk aversions change as follow-on bankrupt-

cies occur. We could also allow new counterparties to enter the network if

certain return or price levels are breached.

More thinking is also needed on the risk of any swap position. This paper

does not allow counterparties to go bankrupt because of mark-to-market

payments on their desired exposures (swap positions). However, the timing

of cashflows matters; and, mark-to-market payments can induce bankruptcy,

even for pure hedgers.
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Appendix A. Derivations for Large Market-Induced

Bankruptcy

A.1. Expected Exposure for First Bankruptcy. We assume the Qi are

normally distributed and use the Gumbel extreme value distribution for the

maximum (Qn) distribution. Since the Qi’s are iid we have

E(Qn|K +Qnr0 ≤ 0) = η
√
n− 1

∫∞
κ1
xcne

−cnx−dne−e
−cnx−dn

dx∫∞
κ1
cne−cnx−dne−e

−cnx−dndx
(20)

= η
√
n− 1

∫∞
cnκ1+dn

u−dn
cn

e−ue−e
−u
du

1− e−e−cnκ1−dn
(21)

=
η
√
n− 1

cn

(∫∞
cnκ1+dn

ue−ue−e
−u
du

1− e−e−cnκ1−dn
− dn

)
.(22)

where κ1 = −K
r0η
√
n−1

, cn = 1√
2 log(n)

, and6 dn =
√

2 log(n)− log log(n)+log(16 tan−1(1))

2
√

2 log(n)
.

The integral of u over the partial domain of the Gumbel distribution cannot

be found in closed form. Therefore, we note that

∫ ∞
a

ue−ue−e
−u
du = γ −

∫ a

−∞
ue−ue−e

−u
du = γ +

∫ ∞
e−a

log(v)e−vdv(23)

= γ − log(v)e−v ]∞e−a +

∫ ∞
e−a

e−v

v
dv(24)

= γ − ae−e−a + E1(e−a)(25)

= γ − ae−e−a + (−γ − log(e−a)−
∞∑
k=1

(−1)ke−ka

kk!
)(26)

= a− ae−e−a −
∞∑
k=1

(−1)ke−ka

kk!
.(27)

6The arctangent function is used to preserve π for the permanent impact parameter. A
single appearance of a transcendental number should not curtail a convenient consonance.
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This then gives us

E(Qn|K +Qnr0 ≤ 0) =
η
√
n− 1

cn

(∫∞
cnκ1+dn

ue−ue−e
−u
du

1− e−e−cnκ1−dn
− dn

)
(28)

=
η
√
n− 1

cn

(
a− ae−e−a +

∑∞
k=1

(−1)k+1e−ka

kk! ]cnκ1+dn

1− e−e−cnκ1−dn
− dn

)
(29)

= η
√
n− 1

(
κ1 +

∑∞
k=1

(−1)k+1e−cnκ1−dn

kk!

cn(1− e−e−cnκ1−dn )

)
(30)

=
−K
r0

+
η
√
n− 1

cn(1− e−e−cnκ1−dn )

∞∑
k=1

(−1)k+1e−k(cnκ1+dn)

kk!
.(31)

A.2. Exposure to Follow-On Bankruptcies. The number of follow-on

bankruptcies b has expectation b̂ = E(b|K +Qnr0 ≤ 0) of:

(32) b̂ = (n− 1)

∫ κ1
κ2
φ(z)dz∫ κ1

−∞ φ(z)dz
= (n− 1)

(
1− Φ(κ2)

Φ(κ1)

)

where κ2 = −K/[η
√
n−1]

r0−π(Q̂n+Q̂f )( 1
2

+ν−ν2)
, and φ,Φ are the standard normal pdf and

cdf.

Note that the bounds κ1 and κ2 are assumed to be of the same sign. This fails

if the direction of aggregate trading is opposite that needed for aggregate

rehedging. This situation is ignored since trading in that manner would be

suboptimal.

We also have that the expected exposure of a bankrupted counterparty is

E(Q|K +Qnr0 ≤ 0) =
η
√
n− 1

∫ κ1
κ2
zφ(z)dz∫ κ1

κ2
φ(z)dz

.(33)

The additional unwanted exposure, Q̂f = E(Qf |K + Qnr0 ≤ 0), due to

follow-on bankruptcies then follows from integration by parts and Wald’s
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Formula:

Q̂f = E(Q|K +Qnr0 ≤ 0)E(b|K +Qnr0 ≤ 0)(34)

=
η
√
n− 1

∫ κ1
κ2
zφ(z)dz∫ κ1

κ2
φ(z)dz

(n− 1)

∫ κ1
κ2
φ(z)dz∫ κ1

−∞ φ(z)dz
(35)

=
(n− 1)3/2η

Φ(κ1)

∫ κ1

κ2

zφ(z)dz =
(n− 1)3/2η

Φ(κ1)
(φ(κ2)− φ(κ1)).(36)

A.3. Expectation of Minimum Price. To find the maximum amount

sold, we note that each trade is normally-distributed in size. Also, the

order of trading is random, i.e. uniformly distributed across the (n − 1)!

different permutations. Let x′i be the i-th trade, or x′i = xρ(i) if ρ is a

permutation operator. Then, we let Sn′ =
∑n′

i=1 x
′
i, Sn = minn′∈{1,...,n} Sn′ ,

and Sn = maxn′∈{1,...,n} Sn′ .

Since the beginning and ending positions are tied down, we can model the

sum of trades Sn as a Brownian bridge and use time inversion to handle

our ending position. Starting from Karatzas and Shreve (1991), equation

(4.3.40), we get

(37) P (Sn−1 ≥ m|Sn−1 = Q̂n + Q̂f ) = e
−2

m(m−(Q̂n+Q̂f ))

(n−1)η2 .

Integrating this gives us the expected exceedance of the high beyond an

ending trade of Q̂n + Q̂f . (This is the opposite of what we are doing; but,

the development here eases comparison with Karatzas and Shreve’s formula.)
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Thus we have that

E(Sn−1|Sn−1 = Q̂n + Q̂f )− (Q̂n + Q̂f ) =(38)

=

∫ ∞
Q̂n+Q̂f

e
−2

m(m−(Q̂n+Q̂f ))

(n−1)η2 dm(39)

=

∫ ∞
Q̂n+Q̂f

e
−2

m2−m(Q̂n+Q̂f )+(Q̂n+Q̂f )
2/4−(Q̂n+Q̂f )

2/4

(n−1)η2 dm(40)

= η
√
n− 1e

− 1
2

(
Q̂n+Q̂f
η
√
n−1

)2 ∫ ∞
Q̂n+Q̂f

e
−2

(
m−(Q̂n+Q̂f )

η
√
n−1

)2

dm(41)

= η2(n− 1)e
− 1

2

(
Q̂n+Q̂f
η
√
n−1

)2 ∫ ∞
0

e−2v2dv.(42)

This implies, via symmetry, that

E(Sn−1|Sn−1 = −(Q̂n + Q̂f )) =

−(Q̂n + Q̂f )− (n− 1)η22 tan−1(1)φ

(
Q̂n + Q̂f

η
√
n− 1

)
.

(43)

A.4. Derivatives of the Expected Utility Function. We first note that

∂κ2

∂xi
=

Kπ

(n− 1)η(r0 + π(xi + ŷi))2
, and(44)

∂κ2

∂ŷi
=

Kπ

(n− 1)η(r0 + π(xi + ŷi))2
(45)

We also note that

∂b̂

∂xi
= −(n− 1)

φ(κ2)

Φ(κ1)

∂κ2

∂xi
=
−Kφ(κ2)

ηπx2
i

, and(46)

∂b̂

∂ŷi
= −(n− 1)

φ(κ2)

Φ(κ1)

∂κ2

∂ŷi
=
−Kφ(κ2)

ηπŷ2
i

.(47)
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For mathematical ease, we assumed Qn > 0 and r0 < 0. Thus rehedgers

must sell to recreate canceled positions. Therefore, the sign of the b̂ deriva-

tives makes sense: more selling will increase the expected number of follow-

on bankruptcies.

We can now find derivatives for Q̂f :

∂Q̂f
∂xi

= −(n− 1)2η

Φ(κ1)
κ2φ(κ2)

∂κ2

∂xi
(48)

=
πK2φ(κ2)

ηΦ(κ1)(r0 + π(xi + ŷi))3
(49)

and

∂Q̂f
∂ŷi

= −(n− 1)2η

Φ(κ1)
κ2φ(κ2)

∂κ2

∂ŷi
(50)

=
K2φ(κ2)π

ηΦ(κ1)(r0 + π(xi + ŷi))3
.(51)

Since r0 < 0, these derivatives are negative. Thus more selling will increase

the total exposure cancelled by follow-on bankruptcies.

Finally, we can differentiate player i’s expected utility function with respect

to period 1 trade xi:

∂Ûi
∂xi

=− λσ2

(
Q̂f

n− b̂− 1
− qin + xi

) ∂Q̂f
∂xi

+
Q̂f

n−b̂−1
∂b̂
∂xi

n− b̂− 1
+ 1


−π
(
ŷi
2

+ 2xi

)

−π
2

(
qin + ŷi − Q̂n − Q̂f

n− b̂
n− b̂− 1

) ∂Q̂f
∂xi

+
Q̂f

n−b̂−1
∂b̂
∂xi

n− b̂− 1
+ 1


−π

2

−∂Q̂f
∂xi

−
∂Q̂f
∂xi
− Q̂f

n−b̂−1
∂b̂
∂xi

n− b̂− 1

( Q̂f

n− b̂− 1
− qin + xi

)
.

(52)
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Then we differentiate the expected other players’ utility with respect to the

expected period 1 net trade of others, ŷi:

∂Û(i)

∂ŷi
= −λσ2

(
Q̂n + Q̂f

n− b̂− 2

n− b̂− 1
+ qin + ŷi

)
·(

∂Q̂f
∂ŷi

n− b̂− 2

n− b̂− 1
−

Q̂f

(n− b̂− 1)2

∂b̂

∂ŷi
+ 1

)
− π

(xi
2

+ 2ŷi

)

− π

(
−
∂Q̂f
∂ŷi

n− b̂− 3
2

n− b̂− 1
+

Q̂f

2(n− b̂− 1)2

∂b̂

∂ŷi

)(
Q̂n + qin + Q̂f

n− b̂− 2

n− b̂− 1
+ ŷi

)

− π

(
xi−qin

2
− Q̂n − Q̂f

n−b̂− 3
2

n−b̂−1

)(
∂Q̂f
∂ŷi

n− b̂− 2

n− b̂− 1
−

Q̂f

(n− b̂− 1)2

∂b̂

∂ŷi
+ 1

)
.

(53)

A.5. Expectation of One-Sided Trade Quantities. We start with the

idea of finding the expected sell trades after rehedging a large bankruptcy

by a counterparty who was long the market. This can be thought of as

E(
n−1∑
i=1

[xi]
−|

n−1∑
i=1

xi = Q̄ < 0)(54)

where xi is the amount traded by counterparty i in period 1 and Q̄ is the

amount which would be rehedged if buyer and seller both traded anticipating

bankruptcies.

Instead of solving this, we substitute a similar problem and find the solution

to

E(

n−1∑
i=1

[xi]
−|E

n−1∑
i=1

xi = Q̄ < 0).(55)
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This is much easier if we let µ = − Q̄
(n−1)3/2η

:

E(

n−1∑
i=1

[xi]
−|E

n−1∑
i=1

xi = Q̄ < 0). =(56)

=(n− 1)
√
n− 1η

∫ ∞
0

z√
2π
e−

(z−µ)2
2 dz(57)

=(n− 1)3/2η

∫ ∞
−µ

w + µ√
2π

e−w
2/2dw(58)

=(n− 1)3/2η

(
1√
2π
e−µ

2/2 + µ(1− Φ(−µ))

)
.(59)
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