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Portfolio Optimization Using Forward-Looking
Information

Abstract

In this paper we develop the first estimator of the covariance matrix that relies solely on
forward-looking information. This estimator only uses price information from a cross-section
of plain-vanilla options. In an out-of-sample study for US blue-chip stocks we show that a
minimum-variance strategy based on this fully implied estimator consistently outperforms a
wide range of benchmark strategies, including strategies based on historical estimates, index
investing, and investing according to the 1/N rule. The outperformance is strong in periods
of high information asymmetry, whereas in quiet periods all strategies lead to similar results.
The outperformance can only be reached using a fully implied approach; partially implied
approaches that combine implied moments with historical ones might even perform worse
than purely historical approaches.

JEL Classification: G11, G13, G17



1 Introduction

Selecting an optimal portfolio is a classical problem in finance. Although the solution for the

mean-variance investor is well known since the seminal work by Markowitz (1952), imple-

mentation remains a challenging task. Generally, estimation errors make a simple implemen-

tation based on historical sample moments very unstable (see, for example, Best and Grauer

(1991), Chopra and Ziemba (1993), and Michaud (1989)), and specifically, expected returns

have proved hard to estimate (see Merton (1980)). Facing these implementation limitations,

researchers are paying growing attention to the global minimum variance portfolio (GMVP),

the only efficient portfolio that doesn’t depend on expected returns. The GMVP often leads

to a better out-of-sample performance than a mean-variance optimized portfolio (see, for

example, Ledoit and Wolf (2003) and Jagannathan and Ma (2003)).

Despite the attractiveness of the GMVP, an estimation risk with respect to the covariance

matrix still remains, and several recent papers have suggested ways to reduce estimation

errors. For example, Ledoit and Wolf (2004) impose restrictions on the covariance matrix,

whereas Jagannathan and Ma (2003) as well as DeMiguel, Garlappi, Nogales, and Uppal

(2009) put restrictions on the portfolio weights. Despite all the progress that has been made,

a recent study by DeMiguel, Garlappi, and Uppal (2009) concludes that “ there are still many

miles to go before the gains promised by optimal portfolio selection can actually be realized

out of sample.” Specifically, DeMiguel, Garlappi, and Uppal (2009) base their conclusion on

the finding that the GMVP is unable to beat simple benchmark strategies like investing in

an equally weighted portfolio (1/N-strategy).

Echoing these concerns and the limitations raised by previous research, we suggest a new

approach to estimate the covariance matrix and show that the GMVP based on these esti-

mates is able to beat the 1/N-strategy and other benchmark strategies in an out-of-sample

test. The core idea of our new approach is to rely solely on current option prices when es-

timating the covariance matrix instead of using historical return information. Since option

prices reflect the expectations of market participants about risk, our approach - unlike the

backward-looking approaches used so far - is inherently forward-looking.

Our paper makes two major contributions to the literature. First, we develop a new es-
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timator of the covariance matrix that uses exclusively forward-looking information from a

cross-section of option prices. This estimator requires implied volatilities as well as implied

correlations. While implied volatilities can be easily derived from plain-vanilla options, im-

plied correlations cannot be derived in a similar way since cross-correlation derivatives, like

exchange options and quantos, are usually not available.1 Therefore, we suggest a different

route by developing a model which allows us to derive implied correlations from a cross-section

of plain-vanilla options.

Our second main contribution is to show that the GMVP based on the implied estimates of

the covariance performs extremely well in an out-of-sample study for the US stock market.

In particular, we obtain the following main empirical results: (i) The implied approach

consistently beats all the benchmark strategies: GMVP based on historical estimates of

the covariance matrix, 1/N-strategy, and index investments. (ii) This result is robust and

holds with and without short sales restrictions, with portfolios being rebalanced at different

frequencies, and with transactions costs taken into account. (iii) The superiority of the

implied approach is mostly pronounced in crisis periods, while in quiet periods all strategies

lead to similar results. (iv) The implied approach is superior only if implied variances and

implied covariances are used at the same time. A partially implied approach that combines

implied moments with historical ones can lead to even worse results than the exclusive use

of historical moments.

Our paper relates to two strands of literature. First, we extend the scarce literature on implied

estimation of covariances. Buss and Vilkov (2010) use cross-sectional information from option

prices combined with time series information to estimate correlations. Thus, in contrast to our

paper, their approach is not a fully implied one. Chang, Christoffersen, Jacobs, and Vainberg

(2011) develop a beta estimator based on implied skewness that could be combined with an

implied index variance to obtain fully implied covariances. However, positive definiteness

of the resulting covariance matrix is not guaranteed.2 In contrast, our estimator leads to

a positive definite matrix by construction, which is essential for an application to portfolio

1Siegel (1995) suggests the use of cross-correlation derivatives to estimate implied betas. Campa and
Chang (1998) and Walter and Lopez (2000) analyze the predictive power of implied correlations based on
cross-correlation derivatives.

2We provide empirical evidence in Subsection III 3.3 that the problem is severe.

2



problems.

The second related strand of literature consists of the few papers that have used forward-

looking information from option prices to solve portfolio problems. Kostakis, Panigirtzoglou,

and Skiadopoulos (2011) show that implied distributions can be useful to solve the problem

of how to allocate wealth between a market index and a risk-free asset. However, in this

problem, correlations do not matter and Kostakis, Panigirtzoglou, and Skiadopoulos (2011)

consequently make no attempt to estimate implied correlations. The same holds for the

portfolio allocation problem studied by Jabbour, Peña, Vera, and Zuluaga (2008), who seek

to find a portfolio’s worst case Conditional Value-at-Risk. Aı̈t-Sahalia and Brandt (2008)

study the dynamic consumption and portfolio choice problem of an investor who can invest

in the stock market, the bond market, and in a risk-free asset. They characterize the prop-

erties of consumption and portfolio rules using implied marginal distributions. Since they

do not derive the joint implied distribution, they have to estimate the correlation between

the bond and stock market from historical returns. DeMiguel, Plyakha, Uppal, and Vilkov

(2010) analyze the portfolio selection problem among a set of stocks and provide evidence

on minimum-variance portfolios, but they either combine implied variances with historical

correlations or historical variances with partially implied correlations derived as in Buss and

Vilkov (2010). Thus, DeMiguel, Plyakha, Uppal, and Vilkov (2010) do not consider a fully

implied approach. This is the main difference of our paper, which is the first that presents

and tests a fully implied approach to find the GMVP.

The remainder of the paper is organized as follows. In Section 2 we develop our fully implied

estimator of the covariance matrix. In Section 3 we present our empirical study. Section 4

concludes.

2 A Fully Implied Covariance Estimator

To derive implied covariances from a cross-section of plain-vanilla options, we have to make

two main assumptions. First, we assume that asset returns follow a generalized version of
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the Sharpe (1963) market model with time-varying coefficients:

Rit = αit + βitRmt + εit, ∀ i = 1, . . . , N. (1)

Rit and Rmt denote the returns of the ith asset and the market, respectively. εit is a zero mean

idiosyncratic error term with positive variance that is independent of the market return. In

addition, εit and εjt are independent for all i 6= j. αit and βit are model coefficients. The

index t indicates that these coefficients can be time-varying. In the market model the return

covariances depend only on the beta coefficients and the variance of the market return:

Cov(Rit, Rjt) = βitβjtV ar(Rmt), ∀ i 6= j . (2)

Since the variance of the market return can be implied from traded index options, we are left

with the problem of identifying betas from the prices of plain-vanilla options written on the

individual assets. To solve this problem, we have to make our second assumption, a cross-

sectional restriction on one moment of the return distribution. We choose the second moment

and assume that the same proportion ct of total variance is systematic for all assets. Note

that the proportion ct can vary over time. Under this assumption, β2
itV ar(Rmt) = ctV ar(Rit)

and V ar(εit) = (1 − ct)V ar(Rit) with 0 ≤ ct < 1, i.e., stocks with a higher total variance

have both a higher beta and a higher idiosyncratic variance. This assumption fits well

with empirical evidence well known since Fama and MacBeth (1973). Our cross-sectional

restriction guarantees that the covariance matrix is positive definite. The return variance of

the ith asset equals

V ar(Rit) = β2
itV ar(Rmt) + (1− ct)V ar(Rit). (3)

Solving for βit leads to

βit = c
1/2
t

(
V ar(Rit)

V ar(Rmt)

)1/2

. (4)

Since the market beta equals one, we can use the weights witm of the different assets i =
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1, . . . , N in the market portfolio to identify the parameter ct:

N∑
i=1

witm βit =
N∑
i=1

witm c
1/2
t

(
V ar(Rit)

V ar(Rmt)

)1/2

= 1

⇔ ct =
V ar(Rmt)(∑N

i=1witm V ar(Rit)1/2
)2 . (5)

Substitution of ct from equation (5) into equation (4) and substitution of the resulting betas

into equation (2) finally leads to

Cov(Rit, Rjt) =
V ar(Rit)

1/2 V ar(Rjt)
1/2(∑N

i=1witm V ar(Rit)1/2
)2 V ar(Rmt), ∀ i 6= j. (6)

Equation (6) shows that the covariances are functions of individual asset variances and the

variance of the market only. No cross-moments appear. Therefore, we can use implied

volatilities from plain-vanilla options written on individual assets and the market index to

obtain a fully implied covariance estimate.

The estimator (6) is just one version of a whole class of implied estimators. Estimators

based on higher moments can also be constructed. In Section III 3.3 we present two alter-

native versions of the estimator, a skewness-based and a kurtosis-based one, and analyze

their performance. Compared to the variance-based estimator, skewness- and kurtosis-based

estimators have the disadvantage that they do not guarantee a positive definite covariance

matrix. However, they do not imply a constant correlation of ct between all assets, as does

the variance-based estimator according to equations (5) and (6).

Options provide moments under the risk-neutral measure, whereas portfolio selection requires

moments under the physical measure. However, we make no attempt to risk-adjust implied

moments in our study. Rubinstein (1994) provides examples of how the risk-neutral and

physical distributions of the market are related. He concludes that the difference lies mainly

in a mean shift and the distributions are similar in shape. Moreover, even if the shape of the

distribution is changed, the GMVP is not affected as long as the proportional variance risk

premia are the same for all assets. Ultimately, it is an empirical question of how valuable
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implied moments from option prices are for investment strategies3 - a question which is

addressed in the section to come.

3 Empirical Study

3.1 Data and Portfolio Strategies

Our sample consists of stocks included in the Dow Jones Industrial Average. We use daily

prices (adjusted for dividends and stock splits) of all stocks that had been index components

over the period from January 1998 to October 2009, which is our out-of-sample period. In

addition, we use stock prices from January 1993 to December 1997 to estimate covariance

matrices for historical benchmark strategies. The data source is Datastream. Table 1 provides

information on the stock price data for the out-of-sample period. It shows annualized average

excess log-returns, return volatilities, and the period for which the stocks have been included

in the index.4

[ Insert Table 1 about here ]

Table 1 shows that excess returns of stocks included over the whole period range from -4.8%

to 9.5% p.a. and volatilities from 20% to 40%. The Dow Jones Index itself has an excess

return of 1%. The index volatility is 17.7%, providing evidence for potential diversification

benefits.

To estimate the covariance matrix we use model-free implied moments, i.e., we do not rely

on a particular valuation model. The idea goes back to the seminal paper by Breeden

and Litzenberger (1978), who show that the whole risk-neutral return distribution can be

recovered from option prices if a continuum of strike prices is available.5 We apply the

approach of Bakshi, Kapadia, and Madan (2003) to derive model-free implied variances

3A large literature shows that implied volatilities are useful to predict future realized volatilities. See
Poon and Granger (2003) and Poon and Granger (2005) for surveys and Busch, Christensen, and Ørregaard
Nielsen (2011) for a recent study that uses state-of-the-art benchmark predictors.

4For the calculation of excess returns, we used the zero rates provided by the IvyDB data base. Interest
rates provided by IvyDB are derived from BBA LIBOR rates and settlement prices of CME Eurodollar
futures. We interpolate them with a cubic spline to get the appropriate yield.

5See, for example, Britten-Jones and Neuberger (2000), Carr and Madan (2001), Jiang and Tian (2005),
and Vanden (2008) for more recent theoretical and empirical research on model-free implied moments.
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which we then put into equation (6) to obtain implied covariance estimates. As our data

source we use the volatility surfaces provided by IvyDB. They deliver Black-Scholes implied

volatilities for a variety of strike prices and maturity buckets. These surfaces are available

for all individual stocks and the Dow Jones Index.

When implementing our trading strategy, we use a monthly rebalancing frequency for the

portfolio in the base case. We choose the first trading day after the expiration day of options

contracts at CBOE since liquid options with a time to maturity of about 30 days exist then.

For this maturity bucket, we select all out-of-the-money put and call options and fit a cubic

spline to obtain a smooth volatility curve for each stock and the index.6 Outside the available

range of strike prices, we assume that the volatility curve is flat. Then, we select 1000 equally

spaced strike prices on the interval [0.003 · Si, 3 · Si], where Si denotes the current spot price

of the ith asset. For these 1000 strike prices we convert back the implied volatilities into

European option prices via the Black-Scholes formula. To do so, we use the matching spot

prices and the risk-free interest rates provided by IvyDB. Based on these option prices we

calculate the model-free implied moments following Bakshi, Kapadia, and Madan (2003).

For every month in the out-of-sample period, we set up GMVPs which differ in the way

the covariance matrices are estimated. The first GMVP strategy is based on fully implied

estimates of the covariance matrix (Implied). Another two GMVP strategies serve as histor-

ical benchmarks. The first one uses daily returns of the preceding 60 days to estimate the

covariance matrix (Hist 60D). The second strategy uses monthly returns of the preceding

60 months (Hist 60M). Since both strategies employ the same number of observations, they

allow us to look at the consequences of using more or less recent information. A natural

hypothesis is that the Hist 60D strategy performs more like the implied one, which is based

on current market information only. As further benchmarks, we consider three passive strate-

gies for which no estimates are needed. The first one follows the construction of the Dow

Jones Industrial Average and uses a price weighting of the 30 stocks (Pass DJ). The second

strategy uses a capital weighting (Pass CW) and the third gives equal weights to all stocks

(Pass 1/N).

6Using out-of-the-money options diminishes the price effect of a potential early exercise of American
options, which reduces model risk with respect to the early exercise premium. Moreover, out-of-the money
options are usually much more liquid than in-the-money options.
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For each strategy and every month in our out-of-sample period we calculate the excess log-

return and the realized volatility. Realized volatility is calculated as the volatility of the daily

returns within the particular month.

3.2 Main Results

3.2.1 The Unrestricted GMVP and the Role of Short-sales Constraints

Table 2 shows the average realized volatilities (σ) and average realized excess returns (R) of

the different portfolio strategies. For ease of interpretation, annualized values are provided.

The p-values in brackets refer to tests of significant differences between the implied strategy

and the five benchmark strategies.

When looking at the unrestricted GMVP (Short Sales Allowed) we see that the implied

strategy has a volatility of 16.5%. This value is clearly smaller than the ones obtained from

the benchmark strategies. The differences in volatility are statistically significant at least

at a five percent level. Since no statistically significant difference exists for mean returns,

the implied strategy beats all benchmark strategies with respect to the risk-return trade off.

Interestingly, the historical strategies do not outperform the passive ones in terms of volatility

reduction. Therefore, variance minimization based on historical covariance matrices would

be less attractive out of sample, which is in line with previous findings in DeMiguel, Garlappi,

and Uppal (2009).

[ Insert Table 2 about here ]

It is well documented that short-sales constraints often improve the out-of-sample perfor-

mance of portfolio strategies based on historical parameter estimates since they prevent

extreme stock positions.7 This happens in our sample as well. The volatilities decline from

19.1% to 14.9% (Hist 60D) and from 20% to 15.7% (Hist 60M) when short-sales restric-

tions are introduced. Nevertheless, the implied estimator remains superior. With respect to

average returns, there is still no significant difference between any of the strategies.

7See, for example, Frost and Savarino (1988), Grauer and Shen (2000), and Jagannathan and Ma (2003).

8



3.2.2 The Effects of Crisis

Implied moments are derived from current option prices and are not based on historical

information. Therefore, one expects the implied strategy to perform particularly well in crisis

periods for two reasons. First, the information flow is high in crisis periods. This could make

historical information less valuable leading to superiority of the implied approach, which relies

solely on current data. Second, informed investors can better exploit their private information

in options markets than in spot markets.8 Therefore, one expects to see a higher fraction of

informed investors in the options market during periods of high information asymmetry. This

would make option prices particular informative, again suggesting that the implied strategy

performs particularly well in crisis periods. In quiet market periods, however, when no major

events occur and the information asymmetry is low, implied moments might not have a big

advantage over historical ones. We test these hypotheses now. In doing so, we concentrate

on strategies with short-sales constraints because of their superior performance.9

The sample period between 1998 and 2009 contains two major stock market crisis. The

first crisis is the burst of the Dot-com bubble; the second one the global financial crisis.

Therefore, we divide the whole out-of-sample period into “ crisis periods ” and “ non-crisis

periods ”. The burst of the Dot-com bubble began in March 2000, when the NASDAQ index

lost almost nine percent of its value in just six days. As the end of the Dot-com crisis we

choose April 2003, the month when the stock market started its recovery. As the starting

point of the global financial crisis, we use June 2007, the month when the problems of two

of Bear Stearns’ hedge funds became public, and we consider the whole remaining sample

period until October 2009 a crisis period. This classification leaves us with 67 observations in

crisis periods and 75 observations in non-crisis periods. Table 3 provides the average realized

volatilities and excess returns of all strategies for crisis and non-crisis periods.

[ Insert Table 3 about here ]

Table 3 clearly shows that volatility is higher in the crisis periods than in the non-crisis

periods, which indicates that our definition of crisis periods is sensible. When looking at crisis

8See, for example, Kumar, Sarin, and Shastri (1992), Easley, O’Hara, and Srinivas (1998), Chakravarty,
Gulen, and Mayhew (2004), Cao, Chen, and Griffin (2005), and Pan and Poteshman (2006).

9Allowing for short sales leads to qualitatively identical results.
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periods, we clearly see that the implied strategy is best in terms of realized volatility and

the passive strategies are worst. The historical strategies are in-between, with the strategy

using 60 previous trading days delivering a significantly lower (1% significance level) volatility

than the one that uses the last 60 months. This ordering of the strategies suggests that it

is crucial to adapt quickly to new information in times of crisis. Therefore, the implied

estimator performs best.

The non-crisis periods provide a different picture of the performance of various strategies.

Implied and historical strategies lead to almost identical volatilities. Only the passive strate-

gies have a somehow higher volatility than the other ones, but the disadvantage is much

smaller than in the crisis periods. Thus, in quiet periods it makes no big difference how one

estimates the covariance matrix.

3.2.3 The Contribution of Implied Variances and Implied Correlations

Using current market information to estimate the covariance matrix leads to a lower portfolio

volatility. We now analyze the contribution of implied variances and implied correlations

to this volatility reduction. In Table 4 we compare realized portfolio volatilities for the

fully implied approach with two partially implied approaches. The first is based on implied

variances and historical correlations, and the second approach combines historical variances

with implied correlations. For the historical estimates, we use the returns of the previous 60

days and 60 months, respectively.

The upper part of Table 4 partly repeats results from Tables 2 and 3 for the implied strategy.

In addition, it includes p-values which refer to tests of significant differences between the

numbers obtained from the fully implied approach and the partially implied approaches

which are shown in the lower part of the table.

[ Insert Table 4 about here ]

Most importantly, Table 4 shows that the fully implied strategy delivers the lowest volatilities,

most pronounced in crisis periods. The differences in volatility between the fully implied

approach and the partially implied approaches are significant at the 1%-level.
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The strategy that combines historical variances with implied correlations generally delivers

the highest realized volatilities. They are in some cases even higher than the ones resulting

from a fully historical approach.10 This result shows that using implied moments can even

be harmful if we combine them with historical ones.

If we use implied variances together with historical correlations, we see that some of the

improvement of the implied strategies can be attributed to implied variances. However,

for crisis periods, this partially implied approach still leads to worse results than the fully

implied one. Only the joint use of implied variances and implied correlations allows implied

information to exploit their full potential.

3.3 Robustness Checks

In this section, we run three robustness tests: First, we consider alternative implied covariance

estimators based on higher moments. Second, we test whether our results still hold if we

change the rebalancing frequency. Third, we check whether our main conclusions remain

valid if we take transactions costs into account.

3.3.1 Alternative Implied Covariance Estimators

The implied covariance estimator of Section 2 was derived from a linear factor model and a

cross-sectional restriction on the proportion of systematic variance. Within the same frame-

work, we can derive alternative implied estimators based on higher moments. We just have to

replace the assumption concerning the proportion of systematic variance with a correspond-

ing assumption about how systematic risk affects higher moments. We will demonstrate the

approach based on the third and fourth moments.

(i) Skewness-Based Estimator of Covariances:11 We now assume that the proportion of

systematic return skewness is equal for all assets.12 Denote this proportion by cSkewt . Then,

10Compare the results for the Hist 60D and the Hist 60M strategy in Tables 2 and 3.
11When referring to skewness and kurtosis, we mean the third and fourth central moment without any

re-scaling or normalization.
12Note that the assumption by Chang, Christoffersen, Jacobs, and Vainberg (2011) that the proportion of

systematic skewness equals 100% is a special case.
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the return skewness of the ith asset is

Skew(Rit) = β3
itSkew(Rmt) + (1− cSkewt )Skew(Rit), (7)

and solving for βit leads to

βit = (cSkewt )1/3
(
Skew(Rit)

Skew(Rmt)

)1/3

. (8)

Again, the proportion cSkewt can be identified from the condition that the market beta equals

one. Solving for cSkewt and substitution of the solution into equation (8) provides the beta

coefficients and finally leads to the following covariances:

Cov(Rit, Rjt) =
Skew(Rit)

1/3Skew(Rjt)
1/3(∑N

i=1witmSkew(Rit)1/3
)2 V ar(Rmt), ∀ i 6= j . (9)

Equation (9) provides our first alternative implied estimator of covariances.

(ii) Kurtosis-Based Estimator of Covariances: Another way to estimate covariances is to use

fourth moments. Assume that the proportion of systematic kurtosis is equal for all N assets

and denote this proportion by cKurt
t . Based on this assumption we can derive our second

alternative implied estimator of covariances as

Cov(Rit, Rjt) =
Kurt(Rit)

1/4Kurt(Rjt)
1/4(∑N

i=1witmKurt(Rit)1/4
)2 V ar(Rmt), ∀ i 6= j . (10)

However, note that the skewness- and kurtosis-based estimators might not lead to a positive

definite covariance matrix since the implied beta estimates together with the implied stock

and index volatilities can induce a negative idiosyncratic variance. This is the main disad-

vantage of using higher moments as compared to the variance-based estimator of Section 2,

which guarantees the positive definiteness of the resulting covariance matrix.

Using the model-free implied skewness and kurtosis from Bakshi, Kapadia, and Madan (2003),

we provide empirical evidence on the severity of this problem for our data set. The skewness-

based estimator leads to a negative or very small positive (less than 5% of total variance)
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idiosyncratic variance 259 times (out of 4260 times).13 The problem is much less severe for

the kurtosis-based estimator. In our sample, this estimator does not lead to a negative or

very small idiosyncratic variance in a single case. This finding suggests that the variance-

based and kurtosis-based estimators are more promising than the skewness-based estimator.

Martellini and Ziemann (2010) provide complementary evidence on this issue for historical

moment estimates by showing that odd moments are much more difficult to estimate than

even ones. Ultimately, however, the crucial question is how the GMVPs resulting from

different estimators perform out of sample.

Table 5 presents results for the portfolio strategies using implied covariance estimators based

on the second (Imp Var), third (Imp Skew), and fourth moment (Imp Kurt), respectively.

[ Insert Table 5 about here ]

For all periods (full sample, periods of crisis, periods of no crisis), the variance-based and

the kurtosis-based estimator show almost identical results. In contrast, the skewness-based

estimator always leads to a higher realized volatility. The difference is statistically significant.

These results indicate that the implementation problems of the skewness-based estimator

translate into a poor performance of the corresponding portfolio strategy.

3.3.2 Quarterly Rebalancing

As a second robustness check we repeat our analyses using quarterly rebalancing. We now

extract implied moments from options with a remaining time to maturity of 91 days. Table 6

shows the results. They are based on 142 overlapping three-months periods. Again, we

report annualized values of the average realized volatilities and excess returns. The p-values

of the significance tests are based on the heteroscedasticity and autocorrelation consistent

estimator by Newey and West (1987) with two lags, which accounts for the autocorrelation

caused by the overlapping intervals.

13In these cases, we construct the implied covariance matrix by using an adjusted beta that ensures an
idiosyncratic variance equal to 5% of total variance. This adjustment is likely to reduce the precision of
the covariance estimates based on skewness. If we make the assumption of zero idiosyncratic skewness,
as in Chang, Christoffersen, Jacobs, and Vainberg (2011), the situation becomes even worse. The implied
idiosyncratic variance would be negative or very small in 1389 cases. Due to the great number of necessary
adjustments, we do not consider this case any further.
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[ Insert Table 6 about here ]

Table 6 shows that our main results are not changed when using quarterly rebalancing. The

implied strategies perform better than the benchmark strategies, particularly in times of

crisis.14 Thus, the performance of the implied approach is robust to a change from monthly

to quarterly rebalancing.

3.3.3 Transactions Costs

As our third robustness check we repeat our analysis, but now take transactions costs into

account. Since the implied approach adapts quickly to new information, implied strategies

might cause a higher turnover and, thus, higher transactions costs than historical ones. This

might deteriorate the performance of the implied strategies.

To get a first impression of the trade intensity of the strategies we calculate the average

turnovers. We measure average turnover as the average fraction of the portfolio that has to

be traded (purchased and sold) at a rebalancing date. This fraction is within the interval

[0, 2] when short sales are not allowed. Table 7 shows the average turnover for different

strategies and periods.

[ Insert Table 7 about here ]

As expected, the passive strategies and the historical strategy based on 60 months have the

lowest turnover. The strategies using more recent information lead to higher turnovers, but

the implied strategies do not cause a higher turnover than the historical strategy based on

the previous 60 days.

We now quantify the effect of transactions costs on the expected returns and volatilities of

different portfolio strategies. To do so, we need to specify the level of transactions costs.

Venkataraman (2001) reports average quoted and realized spreads for a group of 40 major

US stocks that were traded on NYSE between July 1997 and March 1998, which includes

the beginning of our sample period. The quoted spread equals 24 bp and the realized spread

16 bp. Jain (2003) provides spread information for the period from January to April 2000.

14Again, the skewness based estimator is the worst within the group of implied estimators. It fails to beat
the historical estimator based on 60 days, but performs better than the other benchmark strategies.

14



He reports an average quoted spread of 20 bp and a realized spread of 16 bp for the 25 NYSE

stocks with the highest market capitalization. Roll, Schwartz, and Subrahmanyam (2007)

construct a liquidity index and show that there was a further decrease in transactions costs

after the reduction of the minimum tick-size from eights to cents in January 2001. Based

on the evidence from the literature, we consider 20 bp a conservative estimate of the spread

during our sample period and choose a halfspread of 10 bp as percentage transactions costs

in our study.

As expected, the transactions costs mainly influence the average return. Given the trans-

actions costs estimate of 10 bp we find that the volatilities of all trading strategies change

by less than one basis point. None of the reported realized volatilities from previous tables

would have to be changed after adjusting for transactions costs. Therefore, we report in

Table 8 only the effect of transactions costs on average returns.

[ Insert Table 8 about here ]

Obviously, the mean returns are lower now, but the differences between the strategies remain

insignificant. Thus, our main results remain valid even when considering transactions costs.

4 Conclusions

In this paper, we develop the first fully implied estimator of the covariance matrix. Our

basic idea is to obtain estimates of the covariance matrix solely from current prices of plain-

vanilla options. These prices reflect market expectations about the return distributions of

the underlying assets. Therefore, the approach is forward-looking and differs fundamentally

from the backward-looking approach that uses time series of returns. We show that one can

set up different versions of the new estimator. They differ with respect to the moment of the

implied distribution they use to obtain the covariance matrix. We implement versions based

on the second to fourth moment, but recommend use of the variance based one. This is the

only one which guarantees that the resulting implied covariance matrix is positive definite.

We test the quality of this new estimator by analyzing the out-of-sample performance of

a corresponding global minimum variance (GMVP) strategy. We compare its performance
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with several benchmark strategies, namely GMVP strategies based on historical estimates,

1/N-strategy, and index investments. Using a sample of US blue chips we get the following

main results: (i) Our implied approach consistently beats all the benchmark strategies. (ii)

This superior result is very robust. It holds no matter whether short sales are allowed or not,

it does not depend on the rebalancing frequency of the portfolios, and it does not change

when reasonable transactions costs are taken into account. (iii) The superiority of the implied

approach results from its superiority in crisis periods, i.e., adapting to current information

is particularly useful when the speed of information flow is high. (iv) The superiority of the

implied approach can only be reached when implied variances and implied covariances are

used at the same time. A partially implied approach that combines implied moments with

historical ones can lead to even worse results than the exclusive use of historical moments.

Although our paper is only a first step, it suggests that we can do better than the simple

1/N-strategy by using forward-looking instead of historical information. The natural next

step would be to combine the fully implied covariance matrix suggested in this paper with

option-implied information about expected returns. This would allow us to go beyond the

GMVP and possibly reach an even better out-of-sample performance. We believe that this

is a promising avenue for further research since several recent papers like Ang, Bali, and

Cakici (2010), Bali and Hovakimian (2009), Conrad, Dittmar, and Ghysels (2009), Cremers

and Weinbaum (2010), DeMiguel, Plyakha, Uppal, and Vilkov (2010), Rehman and Vilkov

(2010), and Xing, Zhang, and Zhao (2010) have shown that option-implied information has

predictive power for expected returns.
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Table 1: Average Excess Returns and Realized Volatilities of Individual Stocks and the Dow
Jones Index.

Tickers R σ Period

UTX 0.095 0.282 01/98 - 10/09
CAT 0.07 0.337 01/98 - 10/09
MCD 0.063 0.270 01/98 - 10/09
XOM 0.063 0.250 01/98 - 10/09
WMT 0.056 0.275 01/98 - 10/09
IBM 0.047 0.280 01/98 - 10/09

MMM 0.041 0.246 01/98 - 10/09
HPQ 0.035 0.390 01/98 - 10/09
JNJ 0.034 0.206 01/98 - 10/09
PG 0.022 0.230 01/98 - 10/09

AXP 0.022 0.367 01/98 - 10/09
JPM 0.012 0.389 01/98 - 10/09
BA -0.002 0.321 01/98 - 10/09
KO -0.026 0.228 01/98 - 10/09
DIS -0.033 0.328 01/98 - 10/09
AA -0.038 0.399 01/98 - 10/09

MRK -0.039 0.291 01/98 - 10/09
DD -0.043 0.295 01/98 - 10/09
GE -0.048 0.295 01/98 - 10/09

DJ Index 0.010 0.177 01/98 - 10/09

TRV 0.227 0.208 06/09 - 10/09
UK 0.181 0.393 01/98 - 11/99
MO 0.090 0.270 01/98 - 02/08
CVX 0.063 0.282 01/98 - 11/99

T 0.047 0.219 11/05 - 10/09
CSCO 0.040 0.273 06/09 - 10/09
HON 0.026 0.323 01/98 - 02/08
VZ 0.018 0.205 04/04 - 10/09

KFT -0.004 0.241 09/08 - 10/09
CVX -0.015 0.360 02/08 - 10/09

IP -0.027 0.340 01/98 - 04/04
MSFT -0.061 0.304 11/99 - 10/09

HD -0.064 0.326 11/99 - 10/09
INTC -0.073 0.395 11/99 - 10/09
PFE -0.108 0.236 04/04 - 10/09
SBC -0.136 0.331 11/99 - 11/05
EK -0.144 0.333 01/98 - 04/04
C -0.192 0.406 01/98 - 06/09
T -0.205 0.412 01/98 - 04/04
S -0.253 0.370 01/98 - 11/99

MTLQQ -0.326 0.462 01/98 - 06/09
GT -0.342 0.322 01/98 - 11/99

BAC -0.463 0.779 02/08 - 10/09
AIG -0.653 0.332 04/04 - 09/08

This table shows average excess returns and realized volatilities of individual stocks and the Dow Jones Index
for the period from January 1998 to October 2009. Calculations are based on daily data and annualized
values are reported. All stocks that are in the index during the full period are included in the upper part of
the table. The lower part of the table lists all other stocks together with the periods when they have been in
the index.
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Table 2: Out-of-Sample Volatilities and Excess Returns of the Portfolio Strategies.

Short Sales Allowed Short Sales not Allowed

σ R σ R

Implied

0.165 -0.019 0.143 0.014
(0.000) (0.368) (0.010) (0.328)

(0.000) (0.556) (0.000) (0.731)

(0.017) (0.630) (0.000) (0.904)

(0.000) (0.876) (0.000) (0.515)

(0.000) (0.676) (0.000) (0.906)

Hist 60D 0.191 0.025 0.149 -0.009
Hist 60M 0.200 0.013 0.157 0.005

Pass DJ 0.177 0.010 0.177 0.010
Pass CW 0.185 -0.009 0.185 -0.009
Pass 1/N 0.190 0.009 0.190 0.009

This table shows average realized out-of-sample volatilities (σ) and excess returns (R) of different portfolio
strategies. Portfolios are rebalanced monthly and annualized values of volatilities and returns are reported.
The out-of-sample period starts in January 1998 and ends in October 2009, i.e., the number of observations
is 142. Columns 2 and 3 refer to the case when short sales are allowed, Columns 4 and 5 to the case with
short-sales constraints. The numbers in brackets are p-values for tests of significant differences between
the implied strategy (Implied) and the benchmark strategies: GMVP using historical estimates over the
last 60 days (Hist 60D), GMVP using historical estimates over the last 60 months (Hist 60M), and passive
investments using a price weighting (Pass DJ), capital weighting (Pass CW), and equal weighting (Pass 1/N),
respectively.
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Table 3: Out-of-Sample Volatilities and Excess Returns of the Portfolio Strategies in Periods
of Crisis and Periods of no Crisis.

Periods of Crisis Periods of no Crisis

σ R σ R

Implied

0.167 -0.036 0.120 0.059
(0.003) (0.262) (0.747) (0.885)

(0.000) (0.513) (0.599) (0.718)

(0.000) (0.335) (0.015) (0.187)

(0.000) (0.174) (0.001) (0.318)

(0.000) (0.355) (0.008) (0.123)

Hist 60D 0.178 -0.078 0.121 0.055
Hist 60M 0.195 -0.065 0.122 0.069

Pass DJ 0.231 -0.093 0.128 0.104
Pass CW 0.243 -0.122 0.131 0.094
Pass 1/N 0.256 -0.104 0.129 0.112

This table shows average realized out-of-sample volatilities (σ) and excess returns (R) of different portfolio
strategies in periods of crisis and periods of no crisis. Crisis periods are March 2000 to April 2003 and June
2007 to October 2009 (67 observations). Non-crisis periods are January 1998 to February 2000 and May
2003 to May 2007 (75 observations). Portfolios are rebalanced monthly and annualized values of volatilities
and returns are reported. The numbers in brackets are p-values for tests of significant differences between
the implied strategy (Implied) and the benchmark strategies: GMVP using historical estimates over the
last 60 days (Hist 60D), GMVP using historical estimates over the last 60 months (Hist 60M), and passive
investments using a price weighting (Pass DJ), capital weighting (Pass CW), and equal weighting (Pass 1/N),
respectively.
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Table 4: Performance of GMVPs Based on Fully Implied and Partially Implied Estimates
of the Covariance Matrix.

Full Sample Periods of Crisis Periods of no Crisis

σ R σ R σ R

Implied Correlations - Implied Variances

0.143 0.014 0.167 -0.036 0.120 0.059
(0.055) (0.313) (0.010) (0.075) (0.783) (0.477)

Implied (0.003) (0.517) (0.000) (0.146) (0.518) (0.394)

(0.000) (0.971) (0.000) (0.833) (0.004) (0.949)

(0.000) (0.888) (0.000) (0.778) (0.000) (0.894)

Historical Correlations - Implied Variances

60D 0.147 -0.008 0.176 -0.100 0.120 0.077
60M 0.150 -0.001 0.183 -0.092 0.119 0.082

Implied Correlations - Historical Variances

60D 0.150 0.013 0.177 -0.041 0.126 0.062
60M 0.164 0.010 0.192 -0.047 0.138 0.063

This table shows average realized out-of-sample volatilities (σ) and excess returns (R) of portfolio strategies
based on fully implied and partially implied estimates of the covariance matrix. The out-of-sample period
starts in January 1998 and ends in October 2009, i.e., the number of observations is 142 for the full sample.
Crisis periods are March 2000 to April 2003 and June 2007 to October 2009 (67 observations). Non-crisis
periods are January 1998 to February 2000 and May 2003 to May 2007 (75 observations). Historical variances
and correlations are estimated from daily returns of the preceding 60 days (60D) or from monthly returns of
the preceding 60 months (60M). Portfolios are rebalanced monthly and annualized values of volatilities and
returns are reported. The numbers in brackets are p-values for tests of significant differences between the
fully implied strategy (implied correlations - implied variances) and the partially implied strategies (historical
correlations - implied variances; implied correlations - historical variances).
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Table 5: Out-of-Sample Volatilities and Excess Returns of the Portfolio Strategies for Dif-
ferent Implied Covariance Estimators.

Full Sample Periods of Crisis Periods of no Crisis

σ R σ R σ R

0.143 0.014 0.167 -0.036 0.120 0.059
Imp Var (0.000) (0.761) (0.001) (0.804) (0.014) (0.511)

(0.107) (0.275) (0.155) (0.904) (0.338) (0.177)

Imp Skew 0.150 0.019 0.176 -0.043 0.127 0.076
Imp Kurt 0.143 0.016 0.167 -0.036 0.121 0.063

This table shows average realized out-of-sample volatilities (σ) and excess returns (R) of portfolio strategies
based on different implied covariance estimators. Annualized values of volatilities and returns are reported.
The out-of-sample period starts in January 1998 and ends in October 2009, i.e., the number of observations
is 142 for the full sample. Crisis periods are March 2000 to April 2003 and June 2007 to October 2009
(67 observations). Non-crisis periods are January 1998 to February 2000 and May 2003 to May 2007 (75
observations). The numbers in brackets are p-values for tests of significant differences between the Imp Var
strategy and the alternative implied strategies (Imp Skew, Imp Kurt).
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Table 6: Out-of-Sample Volatilities and Excess Returns of the Portfolio Strategies for Quar-
terly Rebalancing.

Full Sample Periods of Crisis Periods of no Crisis

σ R σ R σ R

Imp Var

0.150 0.006 0.175 -0.045 0.126 0.052
(0.077) (0.190) (0.053) (0.114) (0.595) (0.694)

(0.014) (0.693) (0.000) (0.620) (0.972) (0.899)

(0.006) (0.981) (0.000) (0.574) (0.134) (0.230)

(0.007) (0.631) (0.000) (0.317) (0.036) (0.362)

(0.061) (0.926) (0.001) (0.544) (0.163) (0.254)

Imp Skew

0.156 0.015 0.185 -0.049 0.129 0.074
(0.871) (0.097) (0.926) (0.192) (0.597) (0.283)

(0.094) (0.374) (0.005) (0.635) (0.243) (0.378)

(0.003) (0.765) (0.000) (0.554) (0.304) (0.475)

(0.001) (0.433) (0.000) (0.312) (0.057) (0.774)

(0.046) (0.735) (0.002) (0.521) (0.326) (0.445)

Imp Kurt

0.150 0.007 0.176 -0.044 0.126 0.053
(0.084) (0.168) (0.059) (0.093) (0.604) (0.673)

(0.013) (0.654) (0.000) (0.592) (0.979) (0.935)

(0.006) (0.958) (0.000) (0.559) (0.138) (0.236)

(0.006) (0.609) (0.000) (0.305) (0.038) (0.374)

(0.057) (0.907) (0.001) (0.531) (0.165) (0.261)

Hist 60D 0.155 -0.019 0.185 -0.085 0.128 0.042
Hist 60M 0.161 -0.004 0.199 -0.069 0.126 0.055

Pass DJ 0.182 0.004 0.235 -0.093 0.132 0.094
Pass CW 0.189 -0.016 0.248 -0.125 0.135 0.084
Pass 1/N 0.193 0.001 0.258 -0.104 0.133 0.096

This table shows average realized out-of-sample volatilities (σ) and excess returns (R) of different portfolio
strategies for quarterly rebalancing. Annualized values of volatilities and returns are reported. The out-of-
sample period starts in January 1998 and ends in October 2009, i.e., the number of observations is 142 for the
full sample. Crisis periods are March 2000 to April 2003 and June 2007 to October 2009 (67 observations).
Non-crisis periods are January 1998 to February 2000 and May 2003 to May 2007 (75 observations). The
numbers in brackets are p-values for tests of significant differences between the respective implied strategy
(Imp Var, Imp Skew, or Imp Kurt) and the benchmark strategies: GMVP using historical estimates over
the last 60 days (Hist 60D), GMVP using historical estimates over the last 60 months (Hist 60M), and
passive investments using a price weighting (Pass DJ), capital weighting (Pass CW), and equal weighting
(Pass 1/N), respectively. Quarterly returns are calculated for every month of the out-of-sample period leading
to overlapping returns. Therefore, p-values are based on the heteroscedasticity and autocorrelation consistent
estimator by Newey and West (1987) with two lags.
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Table 7: Average Turnover of Different Strategies

Monthly Rebalancing Quarterly Rebalancing
Full Periods of Periods of Full Periods of Periods of

Sample Crisis no Crisis Sample Crisis no Crisis

Imp Var 0.672 0.655 0.688 0.618 0.573 0.657
Imp Skew 0.956 0.865 1.039 0.835 0.756 0.904
Imp Kurt 0.709 0.671 0.743 0.623 0.580 0.661

Hist 60D 0.745 0.685 0.800 1.208 1.097 1.306
Hist 60M 0.187 0.211 0.165 0.333 0.354 0.315

Pass DJ 0.016 0.022 0.010 0.050 0.071 0.031
Pass CW 0.023 0.028 0.018 0.072 0.089 0.057
Pass 1/N 0.060 0.068 0.053 0.110 0.124 0.098

This table shows the average turnover of different portfolio strategies for different periods and both monthly
and quarterly rebalancing. Average turnover is the average fraction of the portfolio that has to be traded
(purchased and sold) at a rebalancing date. The full sample covers the period from January 1998 to October
2009. Crisis periods are March 2000 to April 2003 and June 2007 to October 2009. Non-crisis periods are
January 1998 to February 2000 and May 2003 to May 2007.

28



Table 8: Out-of-Sample Excess Returns of the Portfolio Strategies Adjusted for Transac-
tions Costs

Monthly Rebalancing Quarterly Rebalancing
Full Periods of Periods of Full Periods of Periods of

Sample Crisis no Crisis Sample Crisis no Crisis

Imp Var 0.006 -0.044 0.051 0.003 -0.047 0.050
(0.311) (0.259) (0.847) (0.152) (0.099) (0.621)

(0.905) (0.591) (0.557) (0.728) (0.633) (0.849)

(0.908) (0.402) (0.120) (0.981) (0.590) (0.204)

(0.666) (0.214) (0.220) (0.666) (0.329) (0.328)

(0.932) (0.413) (0.076) (0.962) (0.559) (0.226)

Imp Skew 0.008 -0.053 0.064 0.012 -0.051 0.070
(0.309) (0.440) (0.505) (0.083) (0.177) (0.257)

(0.823) (0.721) (0.865) (0.424) (0.662) (0.439)

(0.957) (0.473) (0.172) (0.830) (0.577) (0.400)

(0.609) (0.256) (0.359) (0.478) (0.329) (0.700)

(0.973) (0.466) (0.078) (0.792) (0.543) (0.373)

Imp Kurt 0.007 -0.044 0.054 0.004 -0.046 0.051
(0.278) (0.261) (0.757) (0.134) (0.080) (0.603)

(0.853) (0.595) (0.627) (0.689) (0.606) (0.884)

(0.949) (0.407) (0.140) (0.997) (0.575) (0.209)

(0.634) (0.219) (0.255) (0.644) (0.317) (0.339)

(0.966) (0.418) (0.089) (0.942) (0.546) (0.233)

Hist 60D -0.018 -0.087 0.046 -0.024 -0.089 0.037
Hist 60M 0.003 -0.068 0.067 -0.006 -0.070 0.054

Pass DJ 0.009 -0.093 0.104 0.004 -0.093 0.094
Pass CW -0.010 -0.122 0.094 -0.016 -0.125 0.084
Pass 1/N 0.009 -0.104 0.112 0.001 -0.104 0.096

This table shows average excess returns adjusted for transaction costs (R) of different portfolio strategies
for different periods and both monthly and quarterly rebalancing. Percentage transactions costs are 10 bp.
The full sample covers the period from January 1998 to October 2009. Crisis periods are March 2000 to
April 2003 and June 2007 to October 2009. Non-crisis periods are January 1998 to February 2000 and May
2003 to May 2007. The numbers in brackets are p-values for tests of significant differences between the
respective implied strategy (Imp Var, Imp Skew, or Imp Kurt) and the benchmark strategies: GMVP using
historical estimates over the last 60 days (Hist 60D), GMVP using historical estimates over the last 60 months
(Hist 60M), and passive investments using a price weighting (Pass DJ), capital weighting (Pass CW), and
equal weighting (Pass 1/N), respectively. Quarterly returns are calculated for every month of the out-of-
sample period leading to overlapping returns. Therefore, the p-values for quarterly returns are based on the
heteroscedasticity and autocorrelation consistent estimator by Newey and West (1987) with two lags.
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