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1 Introduction

The development of successful asset allocation strategies requires the construction of

portfolios that perform well out-of-sample, provide diversification benefits, and are

cheap to maintain and monitor. When setting up quantitative portfolio selection strate-

gies, the problem is then one of statistical model selection and estimation, that is the

identification of the assets in which to invest and the determination of the optimal weight

for each asset. In 1952, Harry Markowitz laid the foundation for modern portfolio the-

ory by introducing the mean-variance optimization framework. Assuming that asset

returns are normally distributed, such model requires only two input estimates: the vec-

tor of expected returns and the expected covariance matrix of the assets. Solving the

quadratic optimization problem, by minimizing the portfolio expected risk, for a given

level of expected return, the investor can then find the optimal portfolio allocation. Al-

though Markowitz’s model has been widely criticized, it is the backbone of the vast

majority of portfolio optimization frameworks and is still largely used in practice, espe-

cially in fintech companies as part of their robo-advisory (see e.g. Kolm et al. (2014)).

One of the major shortcomings of the mean-variance approach is the fact that optimized

weights are highly sensitive to estimation errors and to the presence of multicollinearity

in the inputs. In particular, it is acknowledged that estimating the expected returns is

more challenging, than just focusing on risk minimization and thereby looking for the

portfolios with minimum risk, i.e. the so-called global minimum variance portfolios

(GMV) (Merton 1980, Chopra and Ziemba 1993, Jagannathan and Ma 2003). But even

in the GMV set-up, the sample covariance matrix might exhibit estimation error that

can easily accumulate, especially when dealing with a large number of assets (Michaud

1989, Ledoit and Wolff 2003, DeMiguel and Nogales 2009, Fan et al. 2012).

2



Furthermore, as a result of multicollinearity and extreme observations, the Markowitz

set-up often leads to undesirable and unrealistic extreme long and short positions, which

can hardly be implemented in practice, due to regulatory and short selling constraints

(Shefrin and Statman 2000, DeMiguel et al. 2009b, Boyle et al. 2012, Roncalli 2013).

An ideal portfolio then has conservative asset weights, which are stable in time, to avoid

high turnover and transaction costs, while still promoting the right amount of diversifi-

cation and being able to control the total amount of shorting.

A natural approach to solve this problem is to extend the Markowitz optimization frame-

work by using a penalty function on the weight vector, typically given by the norm, and

whose intensity is controlled by a tuning parameter λ. Probably, the most recent suc-

cessful approach using convex penalty functions, that can explicitly control for the total

amount of shorting, while avoiding to invest in the entire asset universe, is the Least

Absolute Shrinkage and Selection Operator (LASSO) introduced by Tibshirani (1996).

In the portfolio context, the LASSO framework typically relies on adding to the Markowitz

formulation a penalty proportional to the `1-Norm1 on the asset weight vector (Brodie

et al. 2009, DeMiguel et al. 2009a, Carrasco and Noumon 2012, Fan et al. 2012).

DeMiguel et al. (2009a) provide a general framework that nests regularized portfolio

strategies based on the `1-Norm with the approaches introduced by Ledoit and Wolff

(2003) and Jagannathan and Ma (2003). Furthermore, the authors advocate their supe-

rior performance in an out-of-sample setting. Brodie et al. (2009) and Fan et al. (2012)

show that the LASSO (a) results in constraining the gross exposures, (b) can be used to

implicitly account for transaction costs, and (c) sets an upper bound on the portfolio risk

depending just on the maximum estimation error of the covariance matrix. Moreover,

1Let w = [w1,w2, ....,wk]′ be the portfolio weight vector, then the `q-Norm is defined as: ||w||q =

(
∑k

i=1 |wi|
q)

1
q , with 0 < q < ∞. If q = 1, then `1 =

∑k
i=1 |wi| (LASSO), while for q = 2 we have

||w||2 = (
∑k

i=1 w2
i )1/2 (RIDGE). Note that `q with 0 < q < 1 is not a norm but a quasi norm.
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the shrinkage covariance estimation of Jagannathan and Ma (2003), obtained by adding

a no-short sale constraint (the so-called GMV long-only (GMV-LO)), can be considered

a special case of the LASSO.

Next to the LASSO penalty, Brodie et al. (2009) and DeMiguel et al. (2009b) also con-

sider a portfolio with an `2-Norm penalty on the weight vector, known in statistical

literature as RIDGE (Hoerl and Kennard 1988). Although, the RIDGE penalty stabi-

lizes the mean-variance optimization, as it controls for multicollinearity, the shape of

the penalty does not promote sparsity, leading to portfolios with an undesirably large

number of active positions (Carrasco and Noumon 2012).

Despite its appealing properties, the LASSO has reported shortcomings of (a) large bi-

ased coefficient values (Gasso et al. 2010, Fastrich et al. 2015), of (b) reduced recovery

of sparse signals when applied to highly dependent data, like crisis periods (Giuzio

and Paterlini 2016), and of (c) randomly selecting among equally correlated coefficients

(Bondell and Reich 2008). Moreover, it is ineffective in the presence of no short selling

(i.e. wi ≥ 0) and an imposed budget constraint (i.e.,
∑k

i=1 wi = 1), as the `1-Norm is then

just equal to 1.

To overcome these limitations, non-convex penalties, like the `q-Norm, the LOG and the

SCAD penalty have recently gained increased attention in the portfolio literature (Gasso

et al. 2010, Fastrich et al. 2014, 2015, Xing et al. 2014, Chen et al. 2016). Among these

penalties, the `q-Norm with 0 < q < 1 has shown remarkable theoretical and empirical

properties, compared to the classic LASSO (Saab et al. 2008, Fastrich et al. 2014, Chen

et al. 2016, Giuzio and Paterlini 2016). In particular, Fernholtz et al. (1998) show that

the `q-Norm can be interpreted as a portfolios measure of diversification. As such, the

`q - Norm attains its maximum for an equally weighted portfolio and its minimum for a

portfolio completely invested in one single asset. The resulting allocations outperform
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those based on the LASSO, especially in the presence of highly dependent data. How-

ever, from an optimization standpoint, adding non-convex penalties to the minimum

variance framework results in optimization problems that are NP-hard. Thus, solutions

are typically computed by relying on heuristics or local optimizer, which might not be

efficient and are not guaranteed to converge to the global optimum.

In this paper, we focus on the class of convex penalty functions and extend the literature

on regularization methods in various ways:

First, we introduce the Sorted `1 Penalized Estimator (SLOPE), as a new penalty func-

tion within the mean-variance portfolio optimization framework. The SLOPE penalty

takes the form of a sorted `1 - Norm, in which each asset weight is penalized indi-

vidually using a vector of tuning parameters, λS LOPE = (λ1, λ2, . . . , λk), where λ1 ≥

λ2 ≥ ... ≥ λk ≥ 0. This sequence of λS LOPE values is decreasing, and the largest

weight corresponds to the highest regularization parameter, such that SLOPE penalizes

the weights according to their rank magnitude. In a 2-dimensional setting the penalty

takes an octagonal shape (see Figure 1), is singular at the origin and promotes the group-

ing of variables, that is some asset weights are assigned the same coefficient value. The

penalty thus combines the two favorable properties of the `1-Norm and the `∞-Norm2,

which promote sparsity and the grouping of variables, respectively. So far, the study of

SLOPE has mostly focused on orthogonal settings and on genetic applications, where it

is used to choose relevant genes from a large group of possible explanatory factors. Our

work shows that in portfolio optimization, together with an added budget constraint (i.e.∑k
i=1 wi = 1), SLOPE continues to shrink the active weights, even when short sales are

restricted (i.e. wi ≥ 0, ∀ i = 1, ..., k). Consequently, it spans the diversification frontier

from the GMV-LO up to the equally weighted (EW) portfolio.

2Given a weight vector w with k elements, the `∞ = ||w||∞ = max(w1, .....,wk).
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Second, we introduce a new optimization algorithm to solve the mean-variance portfo-

lio problem with the sorted `1 regularization and linear constraints on the asset weights.

The algorithm uses the ideas of variable splitting and the Alternating Direction Method

of Multipliers (ADMM) framework (Powell 1969, Hestenes 1969, Boyd et al. 2011).

Using a mathematically equivalent reformulation of the original problem, the algorithm

can use existing implementations of proximal operators (Parikh and Boyd 2014), asso-

ciated with the `1, the sorted `1, and even other regularizers. Furthermore, Section 6.1

of the Appendix shows that the ADMM provides a more efficient alternative for solv-

ing the LASSO optimization problem, then the state-of-art Cyclic Coordinate Descend

(CyCoDe) algorithm.

Third, we are, to our knowledge, the first to investigate the properties of SLOPE under

a realistic factor model, which assumes that all assets can be represented as linear com-

bination of a small number of hidden risk factors, as e.g. in Fan et al. (2008). In the

set-up of classical multiple regression, in which the explanatory variables are assumed

independent, Bogdan et al. (2013, 2015) and Su and Candès (2016) provide extensive

evidence of SLOPE’s superior model selection and estimation properties. Further evi-

dence for these properties are provided by the results of Bellec et al. (2016a) and Bellec

et al. (2016b), which show that contrary to LASSO, SLOPE is asymptotically optimal

for the general class of design matrices satisfying the modified Restricted Eigenvalue

condition.

Moreover, Bondell and Reich (2008) and Figueiredo and Nowak (2014) investigate the

properties of SLOPE and its predecessor OSCAR (Octagonal Shrinkage and Selection

Operator, Bondell and Reich (2008)) in the situation, when regressors are strongly cor-

related. Bondell and Reich (2008) apply OSCAR to agricultural data, showing that the

method successfully forms predictive clusters, which can then be analyzed according to
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their individual characteristics. Figueiredo and Nowak (2014) illustrate the “clustering”

properties of the ordered weighted `1 - Norm (OWL) in the linear regression framework

with strongly correlated predictors, providing further simulation and theoretical results.

However, none of these works addresses the interesting situation, in which the correla-

tion structure results from the dependency of the explanatory variables on a few hidden

factors and on financial real-world data.

Recently, Xing et al. (2014) applied the OSCAR to the mean-variance portfolio opti-

mization, together with a linear combination of the `1- and the `∞-Norms. They advo-

cate the method for its ability to identify portfolios that attain higher Sharpe Ratios and

lower turnovers compared to those resulting from traditional approaches like the GMV

and the GMV-LO portfolios. However, they do not point out the clumping property of

the OSCAR. With SLOPE, we consider a generalized framework that nests the GMV,

the GMV-LO, the LASSO, the `∞ - Norm and the approach of Xing et al. (2014).

In this paper, we analyze the properties of SLOPE, with both simulated and real world

data. The purpose of the simulations is to investigate the properties of our new penalty,

when the data generating mechanism is completely known, so that the results can be

compared to the so-called oracle solution. These simulations show that SLOPE re-

duces the estimation errors in the portfolio weights and groups assets depending on

the same risk factors together. This grouping behavior then allows the investor to se-

lect individual constituents from the clusters, for example based on her preferences

and asset-specific properties, enabling her to develop new investment strategies such as

SLOPE-MV, which we introduce in Section 4.1.

For the real world data analysis, we use monthly returns of the 10- and 30-Industry

portfolios (Ind), as well as the 100 Fama French (FF) portfolios formed on Size and

Book-to-Market, and which cover the period from 1970 to 2017. Furthermore, we con-
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sider daily returns of the S&P 100 (SP100) and S&P 500 (SP500) from 2004 to 2016.

Our results show that the risk of the SLOPE portfolio is comparable to or smaller than

the risk of the LASSO portfolio. Also, we observe that SLOPE outperforms the LASSO,

yielding better risk- and weight diversification measures. In fact, the sorted `1- Norm is

able to span the entire risk-diversification frontier, starting from the GMV, via the GMV-

LO up to the EW. The investor can then select the portfolio with the risk-diversification

trade-off that best fits her preferences.

The above mentioned characteristics establish SLOPE as a new attractive portfolio con-

struction alternative, capable of controlling short sales and identifying groups of assets.

It thereby offers the possibility to implement individual views, which goes beyond the

standard statistical shrinkage or regularization approaches.

The paper is structured as follows: Section 2 introduces our methodology and discusses

the properties of SLOPE. Section 3 analyses the behavior of SLOPE in simulated envi-

ronments, while Section 4 focuses on the empirical results. Section 5 concludes.

2 Sparse Portfolio Selection via the Sorted `1-Norm

Markowitz (1952) pioneered the idea that investors should consider both risk and return,

instead of just focusing on those assets that offered the largest increase in value given

today’s prices. Central to his argument is the notion of diversification, i.e. not only the

individual securities’ risk are important, but also their relationship with other assets that

is how does the performance of an asset moves with or against the performance of the

other assets in the market.

Then, given k jointly normally distributed asset returns R1, . . . ,Rk, with expected value

vector µ = [µ1, ..., µk]′ and covariance matrix Σ, the Markowitz (1952) portfolio selec-
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tion problem can be stated as the following optimization:

min
w∈Rk

φ

2
w′Σw − µ′w

s.t.
k∑

i=1

wi = 1
(1)

where σ2
p = wΣw is the portfolio risk, µ′w is the portfolio return and φ > 0 is the coef-

ficient of relative risk aversion (Markowitz 1952, Fan et al. 2012, Li 2015).

Despite the advantage of being a quadratic optimization problem, the standard Markowitz

model is often criticized, as it leads to extreme and unstable optimal portfolio weights.

This results, on the one hand, from the multicollinearity of returns, which increases

especially during crisis periods, and, on the other hand, from input changes, due to ex-

treme data, leading to the consequent accumulation of estimation error in the weights.

Besides shrinkage and robust estimation methods (see e.g., Ledoit and Wolff (2004),

Welsch and Zhou (2007), Kolm et al. (2014)), one of the most recent and interesting

approaches is based on statistical regularization. This approach modifies the optimiza-

tion problem (1), by adding a penalty function, ρλ(w), that depends on the norm of the

asset weights vector, and which is typically chosen to promote sparsity in the optimal

weight vector. An additional parameter λ then controls the impact of ρ(w) and thereby

the amount of shrinkage applied to the weights vector and the level of sparsity.

9



The optimization problem can be stated as:

min
w∈Rk

φ

2
w′Σw − µ′w + ρλ(w)

s.t.
k∑

i=1

wi = 1
(2)

The simplest approach is the LASSO, which considers as a penalty function the `1-

Norm of the asset weights vector (ρλ(w) = λ ×
∑k

i=1 |wi|, with λ being a scalar). The

resulting optimization problem is still convex, while promoting model selection and es-

timation in a single step. From a financial perspective, LASSO is interpreted as a gross

exposure constraint (i.e. a constraint on the total amount of shorting) or a way to account

for transaction costs (Brodie et al. 2009). However, it is not effective in the presence

of both a budget (
∑k

i=1 wi = 1), and a no-short selling (i.e., wi ≥ 0) constraint, as the

`1-norm is then simply equal to 1.

Following, we propose a more general approach that within a single optimization algo-

rithm allows us to encompass the original LASSO, the OSCAR of Bondell and Reich

(2008), and the combination of `1 and `∞ penalties, as proposed in Xing et al. (2014).

In fact, we penalize the weights vector by considering as ρλ(w) the sorted `1-Norm,

defined as:

ρλ(w) :=
k∑

i=1

λi|w|(i) = λ1|w|(1) + λ2|w|(2) + ... + λk|w|(k) (3)

s.t. λ1 ≥ λ2 ≥ . . . λk ≥ 0 and |w|(1) ≥ |w|(2) ≥ . . . |w|(k) ,

where |w|(i) denotes the ith largest element in absolute value of the vector w. The sorted
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`1-Norm was originally introduced in Bogdan et al. (2013, 2015) to construct the Sorted

`1 Penalized Estimator for the selection of explanatory variables in the multiple regres-

sion model. It was also developed independently by Zeng and Figueiredo (2014) as

Ordered Weighted `1 Norm (OWL). To our knowledge, this is the first work in financial

portfolio selection that applies SLOPE and discusses its grouping properties, while also

introducing a new optimization algorithm.

2.1 Geometric Interpretation

Compared to most of the other regularization methods, SLOPE does not rely on a single

tuning parameter λ, but rather on a non-increasing sequence λS LOPE = (λ1, λ2, . . . , λk),

with λ1 ≥ λ2 ≥ . . . ≥ λk ≥ 0. This sequence is aligned to the sorted weight vector,

such that the largest absolute weight is penalized with the largest tuning parameter.

Consequently, the sequence of λ parameters gives a natural interpretation of importance

to the asset weights, besides providing full flexibility in recapturing the profiles of the

`1- and `∞- Norms, as well as of their linear combinations. Figure 1 shows a simple

set-up with two assets and the respective shapes of spheres (i.e. the set points for which

ρλ(w) = c) that we obtain, depending on how the sequence λS LOPE = (λ1, λ2) is chosen.

As shown in Panel (a), if all tuning parameters have the same value, while still being

larger than zero (i.e. λ1 = λ2 > 0), the SLOPE sphere coincides with the well studied

diamond shape of the LASSO penalty. Through its singularity at the origin, the LASSO

promotes sparse solutions that set one of the two assets’ weights exactly equal to zero.

On the other hand, choosing λ2 = 0 and λ1 > 0, yields the regularization term of the

`∞-Norm. The respective shape, as shown in Panel (b), takes the form of a square and

promotes the grouping of variables, i.e. it encourages solutions under which both asset

11



weights are assigned exactly the same value.

Given these two extreme cases, Panel (c) of Figure 1 shows the octagonal shape of

SLOPE, obtained by using a decreasing sequence of lambda values, with λ1 > λ2 > 0.

The penalty combines both properties of the LASSO and the `∞ penalties and due to

its singularity, is either able to set some weights exactly equal to zero, and/or to assign

the same value to some of the other weights. Furthermore, it approximates the already

well studied RIDGE penalty, which corresponds to a circle in the 2-dimensional set-up.

Although RIDGE is still convex, the shape of the penalty does not promote sparsity

among the coefficients, leading to undesirable portfolios with a large number of active

positions (Carrasco and Noumon 2012, DeMiguel et al. 2009a). Thus, the choice of

the lambda sequence for SLOPE provides the investor with the flexibility to choose

any of these shapes of the unit sphere and of the corresponding mode of shrinking the

dimension of the weight vector.

Figure 1: Geometric Representation of Penalty Functions

λ1 = λ2 > 0 λ1 > λ2 = 0 λ1 > λ2 > 0

w1

w2

w1

w2

w1

w2

(a) (b) (c)
For two asset weights w = [w1 w2]′, the figure shows the unit spheres for different SLOPE sequences: (a) the LASSO `1 sphere,
when λ1 = λ2 > 0, (b) the `∞ sphere, when λ1 > λ2 = 0 and (c) the SLOPE sphere, when λ1 > λ2 > 0. The dashed lines in (c)
represent the diamond shape of the LASSO and the RIDGE `2-balls, respectively.

In portfolio optimization, a budget constraint that requires the weights of the portfolio
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to sum to one, is imposed. Consequently, we need to understand how the penalties be-

have in the presence of such an additional constraint. Figure 2 plots the SLOPE penalty,

together with the LASSO and the RIDGE penalty for a universe of two assets and under

the condition that w1 + w2 = 1. Furthermore, we consider the penalty functions in the

presence of short sales (gray area) and no short sales (white area).

In Figure 2, we can see that the LASSO (shown in black) is only effective when short

sales are permitted, while the presence of the budget constraint makes it ineffective in

the long-only area. In contrast, the RIDGE attains its minimum for an equally weighted

portfolio, and when short sales are restricted. Similarly, the SLOPE penalty (shown in

red) also reaches its minimum at the equally weighted solution (i.e., w1 = w2 = 0.5).

Still, from a financial perspective, we prefer SLOPE over the RIDGE estimator, because

it can promote sparsity by exploiting the singularities.

Figure 3 plots the contours of the objective function, together with those of the SLOPE

spheres for the two asset case, and when we do not impose a budget constraint (i.e.∑k
i=1 wi = 1), as well as considering orthogonal and correlated designs. As noted before,

if only λ2 > 0, SLOPE always has singular points when one of the asset weights is equal

to zero, thereby promoting sparsity. When λ1 > λ2 > 0, that is, the sequence is mono-

tonically decreasing, then SLOPE has additional singular points, which correspond to

|w1| = |w2|. This is an appealing property in the presence of correlated data. Specif-

ically, as Panel (b) shows, strong correlation between assets lead to the same weights

and thereby grouping. This is consistent with portfolio theory, as it is known that, if as-

sets have all the same correlation coefficients, as well as identical means and variances,

the EW is the unique optimal portfolio. SLOPE then allows us to automatically group

assets with similar properties.
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Figure 2: Penalty Functions in a Two Asset Universe with Budget Constraint
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SLOPE: λ1 > λ2 > 0

The figure plots the SLOPE coefficient alongside the LASSO (`1 − Norm) and the
RIDGE penalty (`2−Norm), for a two asset case and under the condition that w1 +w2 =

1.

Figure 3: Sorted `1-Norm Penalty without Budget Constraint

w1

w2
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w1

w2

w1

w2

B

(a) (b)
The figure plots in Panel (a) and (b), the Sorted `1-Norm Penalty (SLOPE) in a 2-dimensional setting, considering orthogonal design
and correlated design, respectively.
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2.2 Optimization Algorithm

In this section, we introduce the details of our solution algorithm, which is based on

equivalent reformulations of the Alternating Direction Method of Multipliers (ADMM)

approach. Our algorithm can also be used to solve the LASSO optimization problem,

which is a specific instance of SLOPE. In Section 6.1 in the Appendix, we provide a

direct comparison of our algorithm to the state-of-art Cyclic Coordinate Descent (Cy-

CoDe) for LASSO, considering a simulated constant correlation model.

Reformulation and an ADMM Algorithm. In order to facilitate the application of

proximal operators involving ρλ, we first reformulate (2) - (3) into the following form:

min
w∈Rk

φ

2
w′Σw − µ′w + ρλ(v)

s.t. w = v,
k∑

i=1

wi = 1 ,

(4)

where ρλ(w) :=
∑k

i=1 λi|w|(i) is the sorted `1-Norm corresponding to the sequence λS LOPE =

(λ1, . . . , λk)′ satisfying λ1 ≥ λ2 ≥ . . . λk ≥ 0. To solve (4) we design an ADMM algo-

rithm, which is a variant of the augmented Lagrangian scheme that uses partial updates

for the dual variables (for detailed discussion of ADMM see e.g. Boyd et al. (2011)). In

our case the associated augmented Lagrangian is given as:

Lη(w, v;α, β) =
φ

2
w′Σw − µ′w + ρλ(v) + α′(w − v) + β(e′w − 1)

+
η

2

{
‖w − v‖2 + (e′w − 1)2

}
,

(5)
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where α ∈ Rk, β ∈ R, ek×1 = (1, ..., 1)′, Ik×k is the identity matrix, and η > 0 is a penalty

parameter. The ADMM algorithm consists of the updates:



w j+1 = arg minw
φ

2 w′Σw − (µ − α j − β je)′w +
η

2 (‖w − v j‖2 + (e′w − 1)2)
= arg minw

1
2w′(φΣ + η(I + ee′))w − (µ − α j − β je + η(v j + e))′w

= (φΣ + η(I + ee′))−1(µ − α j − β je + η(v j + e))
v j+1 = arg minv

η

2‖v − w j+1 − 1/ηα j‖2 + ρλ(v)
= proxρλ/η(w

j+1 + (1/η)α j)
α j+1 = α j + η(w j+1 − v j+1)
β j+1 = β j + η(e′w j+1 − 1) ,

(6)

where proxρλ/η is the proximal operator of the Sorted `1-Norm corresponding to the

sequence λ/η, provided e.g. in Bogdan et al. (2013, 2015).

A Dual Formulation and the Primal-Dual Gap. The stopping criterion for our algo-

rithm is based on the Primal-Dual Gap, which we estimate using the following approach.

First, taking the infimum over (w, v) of the Lagrangian, we get the dual objective,

g(α, β) = inf
w

φ

2
w′Σw − (µ − α − βe)′w − β + inf

v
{−α′v + ρλ(v)}

= inf
w

φ

2
w′Σw − (µ − α − βe)′w − β − ρ∗λ(α).

(7)

From the optimality condition for the infimum over w, we have

w∗ = φ−1Σ−1(µ − α − βe). (8)
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Also,

ρ∗λ(α) = sup
v
{αT v − ρλ(v)} =

0 if α ∈ Cλ
+∞ o.w.

(9)

where Cλ := {v : Rk : ρD
λ (v) ≤ 1} is the unit sphere defined in the dual norm ρD

λ (·) of

ρλ(·). Plugging-in these, we get the dual problem

max
α,β

−
1

2φ
(µ − α − βe)′Σ−1(µ − α − βe) − β

s.t. α ∈ Cλ.
(10)

We can estimate the primal-dual gap using (8),

G(w∗, v∗,α∗, β∗) = −(α∗ + β∗e)′w∗ + β∗ + ρλ(v∗) (11)

given the dual feasibility of α∗, i.e., ρD
λ (α∗) ≤ 1.

Bounds on the Objective Function. To solve the mean-variance problem, as stated

in (2), the investor needs to provide an estimate of the true covariance matrix of asset

returns Σ and of the true mean µ, which are in the most simplest form given by the

sample covariance matrix Σ̂ and the sample mean µ̂, respectively. However, Σ̂ and µ̂

might be prone to substantial estimation errors and highly sensitive to outliers. Let us

define M(Σ,µ) =
φ

2 w′Σw − w′µ, where w is the vector of weights returned by SLOPE.

Now, observe that the Sorted `1-Norm satisfies ρλ(w) ≥ λk||w||1. Thus, as λk > 0, we

have ||w||1 ≤ c, with c =
ρλ(w)
λk

, and simple calculations following the results of Fan et al.
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(2012) for LASSO, yield:

|M(Σ̂, µ̂) − M(Σ,µ)| ≤
φ

2
||Σ̂ − Σ||∞ρ

2
λ(w)/λ2

k + ||µ̂ − µ||∞ρλ(w)/λk (12)

where ||Σ̂ − Σ||∞ and ||µ̂ − µ||∞ are the maximum component-wise estimation errors for

the covariance matrix and the expected return. This result implies that the difference be-

tween the objective functions for the estimated and true vector of parameters decreases,

as we restrict the Sorted `1-Norm of the weight vector.

It is also important to observe that, due to imposing the budget constraint, a higher

weight on the penalty sets an upper bound on the total amount of short sales in the port-

folio, as ρλ(w) ≥ λk||w||1 = λk(w+ + w−), with w+ − w− = 1, where w+ =
∑

wi≥0
wi and

w− =
∑

wi<0
wi are the gross amount of long and short positions, respectively.

3 Simulation Analysis

In this section, we analyze and explain the effect of SLOPE on the model risk, the

sparsity and the grouping properties, by considering simulated data. Assuming that Σ is

known, we can use the alternative formulation of SLOPE and define:

wopt = arg min
w:

∑k
i=1 wi=1, ρλ(w)≤c

φ

2
w′Σw − µ′w (13)

ŵopt = arg min
w:

∑k
i=1 wi=1, ρλ(w)≤c

φ

2
w′Σ̂w − µ̂′w (14)

whereas wopt and ŵopt are the theoretical optimal and the empirical optimal weights vec-

tor, respectively. We then define the empirical portfolio risk as R̂isk(ŵopt) = ŵ′optΣ̂ŵopt,
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the actual portfolio risk as Risk(ŵopt) = ŵ′optΣŵopt and the oracle portfolio risk as

Risk(wopt) = w′optΣwopt, respectively. Following the proof of Theorem 1 of Fan et al.

(2012), we can easily show that in case when λk > 0, the pair differences between the

three measures are upper bounded by:

|Risk(ŵopt) − Risk(wopt)| ≤ 2c2||Σ̂ − Σ||∞, (15)

|Risk(ŵopt) − R̂isk(ŵopt)| ≤ c2||Σ̂ − Σ||∞, (16)

|Risk(wopt) − R̂isk(ŵopt)| ≤ c2||Σ̂ − Σ||∞ (17)

The three risk measures then allow us to extract different information: The empirical

risk is the only one that is known in a practical setting and is estimated from our in-

sample data. The actual risk is the one, to which the investor is truly exposed to, when

setting up a portfolio with optimal weights (ŵopt). Finally, the oracle risk is the risk

the investor could only obtain if Σ is known. As the SLOPE penalty becomes more

binding when λ ”increases”, the three risk measures get closer to each other. In the

following sections, we consider two simulation set-ups, and show how increasing the

SLOPE penalty allows to reduce the estimation error and to avoid its accumulation in

the portfolio risk.

Hidden Factor Structure. Let us assume that the return of an asset is represented by a

linear combination of r risk factors. Furthermore, let t be the number of observations, k

be the number of assets, and Ft×r = [ f 1 f 2 ... f r], where f i is the t × 1 vector of returns

of the ith risk factor. Moreover, let Br×k be the loading matrix for the individual risk

factors. Then, the t × k matrix of asset returns from the Hidden Factor Model (i.e. RHF)
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can be represented as:

RHF = F × B + ε (18)

where ε is a t × k matrix of error terms.

For our first illustration of the performance of SLOPE, we generate the data using the

following simplified scenario:

• t = 50, k = 12, r = 3,

• the risk factors f1, . . . , f3 are independent from the multivariate standard normal

N(0, Ir×r) distribution, with Ir×r being an identity matrix,

• the vectors of error terms εi, i = 1, . . . , k, for each asset are independent from

each other, as well as from each of the risk factors and come from the multivariate

normal distribution N(0, 0.05 × Ir×r)

• the loadings matrix Br×k is made of exactly four copies of each of the following

columns: [0.77 0.64 0]′, [0.9 0 − 0.42]′ and [0 0.31 0.64]′.

In this way, we generate three different groups that have the same exposure to the same

two risk factors and are thus strongly correlated.3

Finally, given (18), the covariance matrix of the assets ΣHF is given by:

ΣHF = B′B + 0.05 × Ik×k. (19)

3For the robustness of our results, we tested SLOPE in various set-ups, with qualitatively similar
results, but restrict ourselves, due to space limitations, to the most interesting one. The results of the
remaining simulations are available from the authors upon request.

20



Figure 4: Hidden Factors Correlation Matrix
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The figure plots the correlation matrix, based on the modeled Hid-
den Factor Structure, considering a universe of 12 assets, of which
4 are always exposed to exactly two out of the three risk factors in
the market.

After generating our t × k matrix RHF of asset returns from (18), we can then estimate

ΣHF , using the sample covariance estimate Σ̂HF . Figure 4 shows the correlation matrix

resulting from (19) and assuming that the four assets from each of the three groups are

clustered together. The figure illustrates that our simulation scenario explicitly models

a block correlation environment, with strong correlation among each of the assets hav-

ing the same underlying risk factor exposures, and low to negative correlations between

the assets with a different underlying factor structure. Subsequently, we first consider

a minimum variance optimization, such that µ̂ = µ = 0. In a second step, we solve

the mean-variance problem, estimating µ by the sample average of the asset’s returns.

In both setups, we investigate the behavior of SLOPE and the LASSO with respect to

portfolio risk, and given that we vary the value of the tuning parameter.

Unlike the LASSO or the RIDGE penalties, SLOPE requires us to define a decreasing

sequence of λS LOPE = (λ1, λ2, . . . , λk). For our analysis, we use the decreasing sequence

of quantiles of the standard normal distribution, as in Bogdan et al. (2013) and Bogdan
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et al. (2015), with λi = αΦ−1(1 − qi), ∀i = 1, ..., k, where Φ is the cumulative distri-

bution function of the standard normal distribution and qi = i × θ/2k, and in which

θ = 0.01, regulates how fast the sequence of lambda parameters is decreasing. In our

simulations, we vary the scaling parameter α so that the first element of the sequence

λ1 = αΦ−1(1 − q1) is equal to a grid of 100 log-spaced values between 10−5 and 102.

Note that in the case of the LASSO, we only choose one lambda parameter, which then

remains constant for all assets. In our simulation and also in the real world analysis, we

always choose λLAS S O = λ1. This choice favors sparser solutions for the LASSO, since

for the remaining k − 1 assets its penalty is larger than that of SLOPE.

Figure 5 plots the resulting risk and weight profile for the minimum variance optimiza-

tion, when we solve (2) separately with the LASSO and the SLOPE penalties for the

grid of 100 lambda parameters, and considering ΣHF and the sample covariance estimate

Σ̂HF , respectively. In particular, Panels (a) and (b) show the risk profile of the LASSO

and SLOPE, i.e. the actual, the oracle, and the empirical risk, together with the results

of the GMV, the GMV-LO and the EW portfolios. For both, the oracle and the actual

solution, Panels (c) and (d) display on top the number of active weights together with

the number of groups, that is the number of distinct coefficients, while on the bottom,

it shows the amount of shorting (i.e. w−). The grey surface indicates the no-short-sale-

area (i.e. wi ≥ 0 ∀ i = 1, .., k). Figure 5 shows that for a tuning parameter equal to zero,

which corresponds to the GMV solution, the empirical risk is about 1.3 times lower than

the actual risk (Panels (a) and (b)), with 12 active positions (Panel (c)) and slightly un-

der 100% short sales (Panel (d)). This can be interpreted as evidence that in over-fitted

models the estimation error in Σ̂HF strongly affects the estimation of the asset weights.

As here neither the LASSO nor the SLOPE penalty are binding, estimation errors can

enter unhindered into the optimization. Michaud (1989) describes this phenomenon as

22



Figure 5: Hidden Factors Minimum-Variance Profile
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The figure shows the Hidden Factor minimum-variance risk profile for the LASSO and the SLOPE, including in Panel (a) and (b)
their actual, empirical and oracle risk profiles, together with that of the GMV, the GMV-LO and the EW solutions. Furthermore,
Panel (c) and (d) display the number of active weights, together with the grouping profile (top) and the total amount of shorting
(bottom). All values are computed based on a Hidden Factor Structure, with three risk factors and considering for the exponentially
decreasing sequence of lambda parameters, a grid of 100 log spaced starting points for λ1 from 10−5 (i.e. x-value = 1) to 102 (i.e.
x-value = 100).

“error maximization", in which the ill-conditioned covariance estimates are amplified

through the optimization, leading to extreme long and short portfolio weights. Moving

along the grid of λ parameters from the left to the right, Panels (c) and (d) show that the

two penalties reduce the total amount of shorting in the oracle and the actual portfolio.

As we move from the GMV towards the GMV-LO, the actual, oracle, and empirical risk
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of the LASSO and the SLOPE align. This effect was first observed and theoretically

motivated by Fan et al. (2012), showing that the portfolio risk evolves in a U-shape, in

which risk first decreases before increasing again, due to the restriction of short sales.

With the observations above, we extend the results of Fan et al. (2012), showing that the

U-shaped behavior of the portfolio risk is not the only possible one. Especially when

the dependence among the assets is positive, the tighter constraint in terms of short

sales shrinks the optimization search space of feasible solutions, making it impossible

to exploit the optimal diversification benefits. This leads to a higher portfolio risk when

reaching the GMV-LO. The investor also reaches the maximum sparsity, that is the max-

imum number of coefficients equal to zero, at this point. For the LASSO, increasing the

tuning parameter beyond this point does not alter the allocation any further, as the reg-

ularization penalty is constant and equal to 1.

This is different for SLOPE: in fact, Figure 6 shows the evolution of the portfolio

weights for both the oracle and the actual solution, considering both the LASSO and

the SLOPE penalty. As before, the grey surface indicates the no-short-sale-area.

From Figure 6, we can observe two important characteristics of SLOPE: First, while the

LASSO shrinks the weights up until the no short sale area, all non-zero coefficients still

receive a different weight, independent of their underlying factor exposures. SLOPE, on

the other hand, is able to identify the three distinct types of securities, consistent with

the true model, and groups them together, by assigning the same coefficient values to

them. This provides information about the dependence structure among the assets, and

gives the investor the flexibility to select from the groups the assets, which best fit her

individual preferences. Not surprisingly, the oracle risk starts to form groups among the

securities even before entering into the no short sale area, while the actual weights can

only capture the underlying structure much later, and when we already impose a larger
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Figure 6: Hidden Factors Minimum-Variance Weight Profiles

Lasso - Oracle

0 10 20 30 40 50 60 70 80 90 100

Grid Lambda

-0.2

0

0.2

 W
e

ig
h

ts

Lasso - Actual

0 10 20 30 40 50 60 70 80 90 100

Grid Lambda

-0.5

0

0.5

 W
e

ig
h

ts

Slope - Oracle

0 10 20 30 40 50 60 70 80 90 100

Grid Lambda

-0.2

0

0.2

 W
e

ig
h

ts

Slope - Actual

0 10 20 30 40 50 60 70 80 90 100

Grid Lambda

-0.5

0

0.5

 W
e

ig
h

ts

(a) (b)
The figure shows the weight profile of the oracle (top) and actual (bottom) solution of the LASSO and the SLOPE penalty, consider-
ing a minimum variance setup. All values are computed based on a Hidden Factor Structure, with three risk factors and considering
for the exponentially decreasing sequence of lambda parameters, a grid of 100 log spaced starting points for λ1 from 10−5 (i.e.
x-value = 1) to 102 (i.e. x-value = 100). Equally colored weights characterize assets with the same underlying factor exposure.

tuning parameter value. Second, and different to the LASSO, increasing the lambda pa-

rameters past the point of the GMV-LO, the octagonal shape of the penalty pushes the

solution towards the equally weighted portfolio. That is, the aforementioned grouping

effect increases, and all weights - even those that were shrunken towards zero - are as-

signed the same coefficient value of 1
k . Given that the equally weighted portfolio is only

optimal when all assets have the same risk and return characteristics, in our example,

this allocation results in higher portfolio risk when compared to the GMV-LO or GMV

portfolios.

In a next step, we investigate how SLOPE performs in a mean-variance framework. For

that purpose, we choose µHF = 0 and µ̂HF = mean(RHF) as the sample average of the

t = 50 return observations for the k = 12 assets. Figure 7 plots the resulting risk profile

of the LASSO and the SLOPE, when we again consider 100 logspaced values from 10−5

to 102 for the starting point of the sequence of tuning parameters. The effect of adding

the mean estimate to the minimum variance framework can be observed from multiple
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Figure 7: Hidden Factors Mean-Variance Profile
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The figure shows the Hidden Factor mean-variance risk profile for the LASSO and the SLOPE, including in Panel (a) and (b) their
actual, empirical and oracle risk profiles together with that of the MV, MV-LO and EW solutions. All values are computed based on
a Hidden Factor Structure, with three risk factors and considering for the exponentially decreasing sequence of lambda parameters,
a grid of 100 log spaced starting points for λ1 from 10−5 (i.e. x-value = 1) to 102 (i.e. x-value = 100).

viewpoints: First, from the risk plot in Panels (a) and (b), we observe that the estima-

tion errors, which are known to be larger in the mean than in the covariance matrix (see

for example Merton (1980), Michaud (1989), DeMiguel et al. (2009a)), lead to a more

pronounced difference among the empirical, oracle, and actual risk. The unconstrained

mean-variance solution (MV) now has an empirical risk of 0.35, compared to the actual

risk of 0.5. Increasing the weight on the tuning parameter, for both the LASSO and

the SLOPE, reduces the estimation error, letting the three risk measure converge, as we

move from the MV to the mean-variance long-only solution (MV-LO).

Finally, Figure 8 shows that, regardless of the penalty function, the oracle and actual

weight vectors differ substantially in their values. As before, weights for the LASSO, of

assets with different underlying factor exposures, are overlapping, and randomly picked.

SLOPE, on the other hand, and despite requiring larger λ values, is still capable to cor-

rectly group the assets with the same underlying risk factor exposure, and thereby dis-
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entangling signal from noise.

Figure 8: Hidden Factors Mean-Variance Weight Profiles
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The figure shows the weight profile of the oracle (top) and actual (bottom) solution for both the LASSO and SLOPE penalty,
considering a mean-variance setup. All values are computed based on a Hidden Factor Structure, with three risk factors and
considering for the exponentially decreasing sequence of lambda parameters, a grid of 100 log spaced values for λ1 from 10−5 (i.e.
x-value = 1) to 102 (i.e. x-value = 100). Different colors characterize assets with the same underlying factor exposure.

SP500 Simulated Covariance Matrix. Our generic example suffers from the drawback

that, in reality, assets do not follow such a strict exposure to only two out of the three

underlying risk factors, but are most likely exposed to all factors. Furthermore, investors

often face an investment universe that is larger than 12 assets.

To model a more realistic scenario, we consider a factor setup, which was introduced

by Fan et al. (2008) and which is driven by the estimated covariance matrix between

different assets. As the behavior of the LASSO in a high dimensional environment is

widely studied, and for the sake of brevity, we restrict ourselves to study the behavior

of the new SLOPE procedure. The results for the performance of the LASSO in such

an environment are available from the authors upon request.

As before, we assume that security returns can be expressed as a linear combination of
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risk factors, as in (18), implying that our true covariance matrix takes the form

ΣSP500 = B′ΣF B + Σε , (20)

where ΣF is the covariance matrix of hidden factors and Σε is the covariance matrix of

error terms.

Different to the simulations before, we draw the three factors and the factor loadings

from multivariate normal distributions that are calibrated to real world data. Specifically,

our three hidden factors are generated from a trivariate normal distribution N(µF ,ΣF),

where µF and ΣF are calculated based on data taken from Kenneth French’s Homepage4,

spanning the time period from 31.12.2004 to 31.01.2016 (see Table 1). The factor load-

ings for each of k = 500 assets are independently drawn from the trivariate normal

distribution N(µB,ΣB), in which µB and ΣB are calculated using data on the SP500 from

31.12.2004 to 31.01.2016, as reported in Table 1. Finally, the idiosyncratic noises are

generated from a gamma distribution with shape parameter α = 7.2609 and scale pa-

rameter β = 0.0028 (see Fan et al. (2008) for details).

We then set t = 500 and solve (2) both with (a) µ̂SP500 = µSP500 = 0, which is then the

minimum variance problem, and with (b) µSP500 = B′µF , in which µ̂S P500 is equal to the

sample mean of the last 500 return observations obtained from (18). We use the same

λS LOPE sequences as in the previous section, with the first element of the sequence λ1

taking 100 log spaced values from 10−8 to 10−1.5 in the minimum variance framework,

and from 10−4 to 10−1.5 for the mean-variance framework.

Figure 9 shows the risk and sparsity profiles for the minimum variance optimization,

while Figure 10 displays the results for the mean-variance set-up. Both plots are consis-

4http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Table 1: Configuration Parameters for Fan et al. (2008) Simulation

Parameters for factor loadings Distribution of hidden factors

µB ΣB µF ΣF

-0.0679 0.0062 -0.0016 0.0020 0.00022 0.000157 0.000015 0.000028
0.1505 -0.0016 0.0109 0.0012 0.00012 0.000015 0.000033 -0.000016
-0.0203 0.0020 0.0012 0.0173 -0.00018 0.000028 -0.000016 0.000034
The table reports the means (µ) and the covariance matrices (Σ) used as input parameters for the trivariate normal distributions
to sample the hidden factors and the assets’ factor loadings. The first and second moments for the factor loadings are calibrated
using daily data from the SP500 from 31.12.2004 to 31.01.2016, while the parameters for the factor distribution are calibrated,
using daily data for the three Fama-French risk factors plus the Carhart (1997) liquidity factor, covering again the period from
31.12.2004 to 31.01.2016.

tent with the findings from the Hidden Factor Model. In detail: we again observe that

in the GMV solution (i.e., λ = 0), there is a substantial difference among the three risk

measures, with the empirical risk (given in red) highly underestimating the actual risk.

Still, with a larger λ, the difference between the risk measures decreases and we move

closer to the GMV-LO solution. Furthermore, given a larger investment universe and

the realistic dependence structure, the impact of a reduction in the search space, due to

a larger penalty is smaller, and the actual risk decreases, as we move closer to the no

short selling area and towards the EW solution.

The same is true for the mean-variance set-up. In fact, Figure 10 shows that including

the estimate of the mean, µ̂SP500, introduces as expected even more estimation error,

than compared to the minimum variance optimization. Panel (a) of Figure 10 shows

that the effect of the mean estimate is so large that even in the EW solution the actual

risk is smaller than in the MV solution. However, note that this is different for the or-

acle solution, which considers µSP500 and therefore is not prone to any extreme mean

estimates. Still, as we increase the λ sequence, the three risk measures align and the

overall risk reduces. Most importantly, while the LASSO is not effective in the no-short

sale area, SLOPE provides this risk reduction effect even past the MV-LO, and when

29



moving towards the EW solution.

Figure 9: SP500 Minimum-Variance Profile
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The figure shows the Fan Simulated SP500 minimum-variance risk profile for SLOPE, including in Panel (a) the actual, empirical
and oracle risk profile of SLOPE together with that of the GMV, the GMV-LO and the EW solutions, as well as in Panel (b) the total
amount of shorting of the actual and oracle solution. All values are computed based on the Fan et al. (2008) simulation, calibrated
to the SP500, and considering for the exponentially decreasing sequence of lambda parameters, a grid of 100 log spaced values with
a starting point for λ1, from 10−8 (i.e. x-value = 1) to 10−1.5 (i.e. x-value = 100).

This is especially valuable for investors, who face short sale constraints and deal with

large portfolios and many candidate assets. Indeed, as previously discussed, the LASSO

would be stuck in the GMV-LO (MV-LO) solution, while with SLOPE, investors fac-

ing short sale constraints are then able to further reduce their risk. Furthermore, they

are even able to set up new strategies and to exploit the grouping property, by selecting

among the assets the one that best corresponds to their financial investment objectives.

An interesting difference between the minimum variance and mean-variance optimiza-

tion is the behavior of the short sales, as shown in Panel (b) of Figure 9 and Figure 10.

While in the minimum variance set-up, we start with an initial solution that shows a cer-

tain amount of shorting and which is subsequently reduced with an increasing value of

λ, in the mean-variance optimization, using the sample mean estimate, first leads to an

increase in the total amount of shorting, before decreasing it again. For the actual risk,
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this behavior can be explained by the presence of positively correlated assets, which is

typical in financial markets. The optimization then exploits the diversification, by tak-

ing at the beginning extreme positive and negative weights. With an increased λ, the

penalty then has an effect on shrinking large weights and reducing the number of active

positions. Hence, to exploit diversification benefits, other assets with smaller weights

end up in increasing their negative exposure.

Figure 10: SP500 Mean-Variance Profile
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The figure shows the Fan Simulated SP500 mean-variance risk profile for SLOPE, including in Panel (a) the actual, empirical and
oracle risk profile of SLOPE together with that of the MV, the MV-LO and the EW solutions, as well as in Panel (b) the total amount
of shorting of the actual and oracle solution. All values are computed based on the Fan et al. (2008) simulation, calibrated to the
SP500, and considering for the exponentially decreasing sequence of lambda parameters, a grid of 100 log spaced values with a
starting point for λ1, from 10−4 (i.e. x-value = 1) to 10−1.5 (i.e. x-value=100).

Finally, and even though not displayed, we observe that the desired feature of group-

ing assets together persists, not only in a directly modeled Hidden Factor Structure, but

even in a high dimensional scenario, with real world calibrated covariance matrices.

This might be valuable for investors who can then set up sophisticated asset alloca-

tion strategies, exploiting SLOPE’s grouping property, such as SLOPE-MV, which we

introduce in Section 4.
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4 Empirical Analysis

4.1 Set up and Data

This section studies the out-of-sample performance of the SLOPE procedure, consider-

ing, as typical for most studies, a minimum variance framework (see i.e. Jagannathan

and Ma (2003), Brodie et al. (2009), DeMiguel et al. (2009a), Giuzio and Paterlini

(2016)). Our analysis compares SLOPE with state-of-the-art portfolio selection meth-

ods, such as the EW, the GMV, the GMV-LO, the equal risk contribution (ERC), the

RIDGE and the LASSO portfolio. We examine two extensions to our standard SLOPE

procedure: (1) SLOPE with an added long-only constraint (SLOPE-LO) and (2) a port-

folio in which we utilize SLOPE’s selection ability, by first running SLOPE-LO on the

whole time period, identifying groups of similar assets and picking out of each group

the one with minimum variance. We then roll through the dataset and solve for these

active securities the GMV-LO portfolio (SLOPE-MV).

In the following analysis, we consider five data sets, including the monthly log-return

observations for the 10- and 30 Industry Portfolios (Ind), as well as the 100 Fama French

(FF) portfolios, formed on Size and Book-to-Market, as well as the daily returns of

the SP100 and SP500. The monthly portfolio values are taken from Kenneth French’s

Homepage5 and span the period from January 1970 to January 2017 (T = 565 monthly

observations). The daily return data are obtained from Datastream, covering the period

from 31.12.2004 to 31.01.2016 (T = 2890 daily observations). Table 2 reports the de-

scriptive statistics for the data sets. As shown by the skewness and the kurtosis values,

all of them exhibit the typical return time series characteristics, including fat tails and

slight asymmetry.

5http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
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Table 2: Descriptive Statistics of the Dataset

Dataset T k µ̂ σ̂ m̂ed m̂in m̂ax ŝkew k̂urt period freq.
10Ind 565 10 0.099 0.043 0.012 -0.211 0.156 -0.476 5.077 01/1970 - 01/2017 Monthly
30Ind 565 30 0.010 0.048 0.012 -0.255 0.179 -0.507 5.749 01/1970 - 01/2017 Monthly
100FF 565 100 0.011 0.052 0.015 -0.262 0.241 -0.551 5.600 01/1970 - 01/2017 Monthly
SP100 2890 93 0.000 0.013 0.000 -0.098 0.116 -0.240 14.816 12/2004 - 01/2016 Daily
SP500 2890 443 0.000 0.014 0.000 -0.107 0.109 -0.418 13.234 12/2004 - 01/2016 Daily

The table reports descriptive summary statistics for the 10 Industry Portfolios, the 30 Industry Portfolios, the 100 Fama French
Portfolios, the S&P 100 and the S&P 500, respectively. Reported are for the daily (monthly) data: the number of observations (T),
the number of constituents(k), the mean (µ̂), the standard deviation (σ̂), the median (m̂ed), the minimum (m̂in), the maximum (m̂ax),
the skewness (ŝkew), the kurtosis (k̂urt), the period that the data set covers (period) and the frequency (freq.).

To evaluate our portfolios in an out-of-sampling setting, we rely on a rolling window

approach with a window size of τ = 120 monthly observations for the 10Ind, the 30Ind,

and the 100FF, as well as τ = 500 daily observations for the SP100 and SP500.6 All

portfolios are re-balanced monthly, discarding the oldest and including the most recent

observations, allowing for a total of t = 445 (t = 115) out-of-sample returns for the

monthly (daily) data.

The rolling window approach for the daily data works as follows: the first τ return

observations are used to estimate Σ̂t, according to the shrinkage approach by Ledoit and

Wolff (2004). Then, Σ̂ is used as the input to compute the optimal weight vector ŵt.

The resulting portfolio is assumed to be held for the following 21 days. At t + 1, the

k constituents’ returns over this monthly period, Rt+1, are used to compute the out-of-

sample portfolio return as: Rp,t+1 = ŵtRt+1. In the next step, we roll the data window

forward, dropping the last and adding the most recent 21 observations to our training

set. We then estimate a new weight vector, which determines our portfolio holdings and

the out-of-sample return for the next month. This process is repeated until the end of
6To test the robustness of our results, we account for different window sizes of τ = 250, 750 and

1000 daily observations, and make the results available upon request. The obtained results are qualitative
similar.
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the data set is reached. The same procedure is applied to the Industry and Fama French

portfolios, though the window is rolled forward by one monthly observation instead of

21 daily observations.

Figure 11 plots the condition numbers7 for the covariance matrix estimate, whereas

large values indicate that our estimate is very sensitive to changes in the underlying data

structure. These large condition numbers often stem from multicollinearity between

the assets and consequently, as we rebalance the portfolio, the changes in the input

parameter then lead to extreme changes in the portfolio weights and to high turnover

levels.

Figure 11: Condition Numbers
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The figure shows the evolution of the condition number for the 10Ind, the 30Ind and the 100FF, as well as for the SP100 and the
SP500. The condition number was computed based on the shrunken covariance matrix from Ledoit and Wolff (2004), considering a
window size of τ = 500 (τ = 120) observations for the S&P Indices (for the 10Ind, 30Ind and 100FF), and rebalancing the portfolio
every month.

Figure 12 shows that the mean, the median, as well as the first and third quartiles of the

correlation coefficient, across all constituents, are strictly positive for all data sets. In

fact, the correlations of the Industry and Fama French portfolios are high and positive

7The condition number of the covariance matrix is defined as the ratio of the largest to the smallest
eigenvalue (Meucci 2005).
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in the late 1970s, and slightly decrease until the beginning of the millenium, probably

due to the new economy boom and the offset of the technology sector. However, with

the burst of the DotCom Bubble and later with the beginning of the financial crisis in

2007, the correlation rises sharply for all three data sets. As for the Industry and Fama

French portfolios, the values for the SP100 and SP500 increase with the onset of the

financial crisis in 2007. After falling slightly, the correlation rises again in 2012, during

the European sovereign debt crisis. The correlation coefficient plays an important role

for our following analysis, as increased positive correlation among the constituents is

reported to reduce the effects of diversification (Choueifaty and Coignard 2008, You and

Daigler 2010, Giuzio and Paterlini 2016).

For all portfolios, the optimal weights vector, ŵt, depends on the choice of the optimal λ

parameter value. To select the optimal tuning parameter, we consider a grid of 100 log-

spaced values of λ between 10−7.5 and 101, from which we choose λRIDGE = λLAS S O =

λ1 = αΦ−1
(
1 − 0.01

2k

)
. The remaining elements i = 2, ..., k of the λ sequence for SLOPE

are as before, equal to λi = αΦ−1
(
1 − 0.01i

2k

)
.

Among the 100 lambda values, we select the optimal tuning parameter for the various

strategies in the following ways: As the RIDGE produces portfolios in between the

GMV and the EW, we create a grid of six portfolios between these two points and

choose the portfolio right before the EW. For the LASSO and the SLOPE, we choose the

portfolio that lies between the GMV and GMV-LO solution and which provides us with

approximately 30% of active positions. Note that as we increase the tuning parameter,

beyond the GMV-LO, SLOPE would move along the no-short sale area towards the

EW solution. Still, we do not consider this interval here, as we solve the optimization

again with SLOPE and an added long-only constraint (SLOPE-LO), to explicitly exploit

the grouping feature, which predominates in this area. Consequently, we then select
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for SLOPE-LO from an interval of six portfolios, in between the GMV-LO and EW

solution, the one with the largest number of groups. To guarantee that all our portfolios

can also be implemented in practice, all weights that are smaller in absolute value than

the threshold of 0.05% are set to zero.

Given the optimal portfolio vector ŵt at time t, we compute the out-of-sample mean and

the out-of-sample standard deviation, defined as:

µ̂p =
1
t

t∑
i=1

ŵtRt+1 (21)

σ̂p =

√√
1

t − 1

t∑
i=1

(ŵtRt+1 − µ̂p)2 (22)

from which we construct the out-of-sample Sharpe Ratio (SR) as:

Ŝ R =
µ̂p

σ̂p
(23)

To evaluate whether the Ŝ R and σ̂2
p of any portfolio is statistically different from our

SLOPE procedure, we use the tests developed by Ledoit and Wolf (2008) and Ledoit

and Wolf (2011), respectively.

As frequent re-balancing of a portfolio is costly, we complement our analysis by com-

puting the turnover of each portfolio, defined as:

T̂O =
1
t

t∑
i=1

||ŵt+1 − ŵt||1 (24)
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Furthermore, we include the following diversification measures: the Diversification Ra-

tio (DR), the weight (WDiv) and the risk diversification (RDiv) measures. The DR is

defined as the ratio of the weighted asset volatility to the overall portfolio volatility:

D̂R =

∑k
i=1 ŵiσ̂i

σ̂p
, (25)

where σ̂i is the i-th asset’s estimated volatility σ̂p is the estimated portfolio volatility,

for which the investor typically prefers a higher value (Choueifaty and Coignard 2008).

Finally, both the WDiv and RDiv measure the concentration of the portfolio in terms

of weights and risk (Maillard et al. 2010, Roncalli 2013). The WDiv ranges from 1
k

for a perfectly concentrated portfolio up to 1 for the equally weighted portfolio. It is

computed according to:

ŴDiv =
1

k ×
∑k

i=1 ŵ2
i

(26)

On the other hand, we obtain the RDiv by substituting the weights for the risk contribu-

tion, defined as R̂Ci = ŵi×∂wiσ(ŵi), where ∂wiσ(ŵi), defines the marginal contribution to

risk (MRC) of asset i, that is the first derivative of the portfolio variance with respect to

portfolio weight wi. The MRC measures the sensitivity of the portfolio variance, given

a change in asset i-th weight. The RDiv takes a value of 1 for the equally-weighted risk

contributions (ERC) portfolio, which is least concentrated in terms of risk contributions
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and 1
k for a portfolio which is fully concentrated on one asset:

R̂Div =
1

k ×
∑k

i=1 R̂C
2
i

(27)

Summing up, we prefer values close to one for the WDiv and the RDiv (Cazalet et al.

2014).

4.2 Empirical Results

Industry and Fama French Portfolios. Table 3 reports the annualized out-of-sample

volatility, the annualized out-of-sample SR, the number of active positions, the turnover,

and the Value-at-Risk (VaR), evaluated at the 5% significance level, for the 10Ind,

30Ind and the 100FF, using a window size of τ = 120 observations with monthly re-

balancing. We indicate portfolios that are statistically different from our SLOPE proce-

dure at the 10%, 5% and 1% level, given the test for the difference in the SR and the

volatility, following Ledoit and Wolf (2008) and Ledoit and Wolf (2011).

Looking at the values for the out-of-sample volatility in Table 3, we observe that no

portfolio is statistically different from our new SLOPE procedure, across any of the

three data sets. Still, SLOPE yields consistently lower variance than any of the EW,

ERC, RIDGE or GMV-LO portfolios. Similar performance can be observed for our two

portfolio strategies, SLOPE-LO and SLOPE-MV, and when comparing them to the EW,

the ERC and the RIDGE.

Simultaneously, the values for the out-of-sample SR, establish SLOPE among the best

performing portfolios, with some results being statistically significant. In detail: for
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the Industry portfolios, we observe the highest SR after the GMV, while for the Fama-

French portfolios we obtain statistically higher SR than all strategies, except from the

GMV and the LASSO. Finally, across all data sets, SLOPE is able to statistically sig-

nificantly outperform the EW, challenging its widely reported characteristic of a tough

benchmark to beat (DeMiguel et al. 2009b). This observation is consistent for SLOPE-

LO and SLOPE-MV.

Beside reducing the overall portfolio variance, our goal is to construct sparse portfo-

lios with a low turnover. For that, reconsider that the EW always invests naively in all

constituents and thus has the highest possible number of active positions, while by def-

inition reports a turnover value of zero. Similar values are obtained for the ERC, which

aims at equalizing the risk contribution of each asset to the overall portfolio risk. These

two portfolios are closely followed by the GMV and the RIDGE penalty, whereas the

GMV has an exposure to all assets, and estimation errors can enter unhindered into the

optimization (see i.e., Ledoit and Wolff (2004)). In fact, looking at Figure 11, the large

values of the condition number imply a high instability due to the presence of multi-

collinearity, leading to extreme changes in the portfolio composition. Consequently,

the GMV has the highest turnover values among the non-regularization strategies. The

RIDGE, on the other hand, results in more stable asset allocations, despite not setting

any asset weight exactly equal to zero. Although both strategies should invest in all

assets, the reported number of active positions are slightly reduced, due to our imposed

threshold.

Compared to the strategies above, our new SLOPE procedure is able to promote sparse

solutions and to reduce the overall portfolio turnover. In fact, we consistently report

lower turnover values than the LASSO portfolio, across all three data sets. Especially

interesting is the performance of SLOPE-MV: although the investor suffers from an
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increase in volatility, she is still able to outperform the ERC, the RIDGE or the EW.

Furthermore, SLOPE-MV has the smallest number of active positions, together with

the smallest turnover value, among all sparse portfolio methods.

Table 4: Diversification Measures - Industry and Fama French Portfolios

DR WDiv RDiv

10Ind 30Ind 100FF 10Ind 30Ind 100FF 10Ind 30Ind 100FF

EW 1.270 1.343 1.212 1.000 1.000 1.000 0.933 0.935 0.958
GMV 1.255 1.362 0.958 0.197 0.078 0.013 0.197 0.078 0.013
GMV-LO 1.289 1.414 1.299 0.320 0.150 0.062 0.320 0.150 0.062
ERC 1.300 1.382 1.225 0.935 0.914 0.963 1.000 1.000 1.000
RIDGE 1.328 1.430 1.244 0.655 0.629 0.622 0.735 0.722 0.617
LASSO 1.289 1.411 1.180 0.316 0.145 0.035 0.313 0.135 0.022
SLOPE 1.293 1.424 1.200 0.328 0.157 0.043 0.326 0.148 0.027
SLOPE - LO 1.315 1.457 1.295 0.417 0.287 0.209 0.437 0.319 0.221
SLOPE - MV 1.163 1.220 1.205 0.179 0.072 0.036 0.179 0.072 0.036

The table reports the diversification measures for the 10-, 30-, and 100- Portfolios, considering a windowsize of τ = 120 monthly
observations and re-balancing the portfolio every month over the period from 01/1970 to 01/2017. Reported are: The Diversification
Ratio (DR), the Weight Diversification (WDiv) and the Risk Diversification (RDiv) measures.

In general, our new SLOPE procedure provides the investor with a large amount of flexi-

bility, as with an increased lambda value the penalty starts to form groups among assets,

assigning to them the same coefficient value. This is of special interest for investors,

who want to move beyond the property of statistical shrinkage, and who want to include

in their portfolio construction process any form of financial indicator, like among oth-

ers fundamental multiples (i.e. Price/Earnings, Dividends/Earnings), accounting values

(i.e., net income, Free Cash Flow) or other quantitative measures (i.e., Value-at-Risk

or Expected Shortfall). In fact, with SLOPE-MV we here show a simple strategy that

selects, out of the formed groups, the one asset with minimum volatility, while other

strategies could easily be developed.
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Finally, Table 4 complements our risk and return analysis for the 10Ind, 30Ind and

100FF, and reports the DR, the WDiv, and the RDiv. As the EW invests equally in all

assets, it achieves, by definition, the best values for the WDiv, with similar values re-

ported for the ERC. As the ERC aims to equalize the contribution to portfolio risk from

each asset, it also reports the highest values for the RDiv. SLOPE-LO shows the best

diversification measures, followed by SLOPE, while both consistently dominating the

LASSO across all data sets. As before, SLOPE does not only outperform the LASSO,

but also provides flexibility with regard to the diversification measures. For that, Fig-

ure 13 plots the weight- and risk diversification measure against the attainable portfolio

volatility for the LASSO and the SLOPE, together with the EW, the ERC, the GMV and

the GMV-LO, considering the first window size of τ = 120 observations for the 10Ind.

Figure 13: Risk and Weight Diversification Frontier
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The figure shows on the left the weight diversification and on the right the risk diversification frontier, both reporting on the x-axis
the portfolio volatility and on the y-axis the risk and weight diversification measure, respectively. Considered are the first window
size of τ = 120 months for the 10Ind. Plotted are the resulting combinations for the GMV, the GMV-LO, the EW, the ERC, as well
as the different combinations for the LASSO and the SLOPE procedure, considering a range of lambda values from 10−7.5 to 101.

For both frontiers, and considering the solutions of the LASSO, the full grid of lambda

parameters enables the investor to select only a combination between the GMV and the
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GMV-LO solution. SLOPE, on the other hand, is able to span a much larger set of port-

folios, beginning from the GMV, via the GMV-LO up to the EW. The investor can thus

control the trade-off between diversification and volatility out of a much larger set of

portfolios, to find the allocation that best fits her individual preferences.

S&P Indices. Table 5 reports the annualized out-of-sample portfolio volatility, the an-

nualized out-of-sample SR, the number of active positions, the turnover, and the 5%

VaR, for the SP100 and SP500, using a window size of τ = 500 daily observations with

monthly re-balancing. Again, we indicate portfolios that are statistically different from

our SLOPE procedure at the 10%, 5% and 1% level, given the test for the difference in

the SR and the volatility, following Ledoit and Wolf (2008) and Ledoit and Wolf (2011).

Table 5: Risk- and Return Measures - S&P Indices

Vol. (in %) Sharpe Ratio AP Turnover VaR 5% (in %)

SP100 SP500 SP100 SP500 SP100 SP500 SP100 SP500 SP100 SP500

EW 18.855 20.238 0.254 0.210 93.000 443.000 0.000 0.000 −7.431 −8.155
GMV 10.829 11.522 0.479 0.340 92.035 434.377 0.695 2.669 −5.800 −6.963
GMV-LO 12.338 10.822 0.231 0.415 18.421 30.298 0.159 0.227 −6.558 −4.929
ERC 16.574 17.947 0.295 0.238 93.000 443.000 0.020 0.022 −6.819 −7.366
RIDGE 14.243 14.732 0.406 0.345 91.070 399.509 0.063 0.070 −6.716 −6.854
LASSO 11.276 9.401 0.279 0.615 36.307 146.184 0.256 0.447 −6.990 −4.426
SLOPE 11.202 9.481 0.316 0.584 38.789 153.860 0.238 0.418 −6.945 −4.609
SLOPE - LO 12.474 11.991 0.392 0.402 44.991 129.632 0.464 0.584 −6.197 −6.221
SLOPE - MV 13.513 13.804 0.465 0.305 10.307 13.289 0.111 0.131 −5.635 −5.828

The table reports the out-of-sample Risk and Return Measures for the SP100 and SP500, considering a windowsize of τ = 500 daily
observations and re-balancing the portfolio every month over the period from 12/2004 to 01/2016. Reported are: The annualized
out-of-sample volatility , the annualized out-of-sample Sharpe Ratio, the number of active positions (AP), the average total turnover,
and the Value at Risk (VaR) evaluated at the 5% significance. Furthermore, we report the significance for the test of the difference
in the volatility and the SRs with regard to SLOPE, at the 10%, 5% and 1% level with ∗, ∗∗ and ∗∗∗, respectively.

Table 5 shows that, with regard to the out-of-sample variance and the SR, no strategy

is statistically significantly different from each other. Still, SLOPE and LASSO per-
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form best for the SP500, reporting the smallest variance among all strategies and the

highest SR. This improved performance can be explained twofold: first, for the SP500

the number of observations is only marginally bigger than the size of our investment

universe. Thus, our estimates are very prone to estimation error. We can see that even

by using the shrunken covariance matrix, SLOPE and LASSO are still able to reduce

extreme weight estimates further. Second, we explicitly select for the LASSO and the

SLOPE, a portfolio with a moderate amount of short sales, making it possible to further

exploit diversification benefits. Hence, the resulting allocation has a smaller variance,

as compared to the GMV-LO. At the same time, and compared to the LASSO, SLOPE

is again able to reduce overall turnover, and consequently the cost of implementing such

a strategy.

The results for SLOPE-LO and SLOPE-MV are mixed. As we explicitly restrict short

sales for these strategies, the resulting variances are higher, but still outperform some of

the other allocations. Still, SLOPE-MV reports again the smallest number of active po-

sition and the smallest turnover among the two. Depending on the investors objectives,

she is then able to further reduce the transaction and monitoring costs.

Finally, Table 6 reports the risk diversification measures for the SP100 and SP500. For

the DR the evidence is mixed with SLOPE-LO being superior for the SP100 and SLOPE

for the SP500. This difference might be due to short sales in the portfolio, making it pos-

sible to exploit more diversification benefits. For the WDiv and RDiv, both SLOPE and

SLOPE-LO again dominate the LASSO, hence confirming previous results.

Robustness Tests. We investigate the robustness of our results by (a) imposing a linear

transaction cost proportional to the turnover and (b) investigating the behavior of the

S&P Indices for different window sizes.
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Table 6: Diversification Measures - S&P Indices

DR WDiv RDiv

SP100 SP500 SP100 SP500 SP100 SP500

EW 1.586 1.675 1.000 1.000 0.892 0.894
GMV 1.576 3.147 0.050 0.011 0.050 0.012
GMV-LO 1.631 1.944 0.090 0.032 0.090 0.032
ERC 1.630 1.728 0.892 0.880 1.000 1.000
RIDGE 1.662 1.797 0.661 0.567 0.660 0.487
LASSO 1.630 2.265 0.104 0.061 0.081 0.027
SLOPE 1.650 2.235 0.117 0.070 0.091 0.031
SLOPE-LO 1.706 1.936 0.285 0.206 0.312 0.219
SLOPE-MV 1.474 1.528 0.062 0.013 0.062 0.013

The table reports the diversification measures for the SP100 and SP500, considering a windowsize of
τ = 500 daily observations and re-balancing the portfolio every month over the period form 12/2004 to
01/2016. Reported are: The Diversification Ratio (DR), the Weight Diversification (WDiv) and the Risk
Diversification (RDiv) measures.

For our transaction cost (TC) analysis, we consider three cost regimes: (1) no (TC =

0bps), (2) low (TC = 35bps) and (3) high (TC = 50bps) transaction costs.8 Our set-up

assumes that the TCs are linear in the turnover and are the same for selling and buy-

ing securities. Figure 14 shows the impact of an imposed market transaction cost for

the five data sets, and across the different portfolio strategies, as well as considering all

three regimes. Naturally, high turnover strategies like the GMV suffer with regard to

returns and the SR in the higher cost regimes and even report negative returns for the

30Ind. On the other hand, SLOPE portfolios show a nearly steady performance for all

data sets and when considering the different TC regimes.

Finally, we also investigate the performance of the portfolio methods across different

window sizes. In detail, we consider a length of τ = 250, τ = 750, and τ = 1000 for

the S&P Indices, as well as τ = 60 for the 10Ind, 30Ind and 100FF portfolios. The

8Note that, 1 basis point (bps)= 0.01%.
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Figure 14: Transaction Cost Regimes
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The figure reports the portfolio return and Sharpe Ratio for the different transaction cost regimes across all considered strategies
and data sets. We report results for three linear cost regimes, considering (1) no costs (TC = 0bps), (2) low costs (TC = 35bps) and
(3) high cost (TC = 50bps), which all are assumed to be linear and the same for buying and selling securities.

results show that our analysis is robust to changes in the window size and due to space

limitations, we do not report them here, but make them available from the authors upon

request.

5 Conclusion

Regularization methods have gained increased attention in the financial literature, be-

cause they allow to reduce the influence of estimation errors and to stabilize the resulting

asset weight vector. In this paper, we extend the literature on financial regularization by

introducing SLOPE to the mean-variance portfolio optimization, discussing its prop-

erties and testing its performance with regard to risk and return on simulated and real

world data.

SLOPE relies on a sorted `1-Norm, whose intensity is controlled by a decreasing se-

quence of λ parameters. As the largest tuning parameter is assigned to the largest
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weight, SLOPE penalizes the assets by their rank, and provides a natural interpreta-

tion of importance. To solve the penalized mean-variance optimization, we propose a

novel algorithm based on the Alternating Direction Method of Multipliers (ADMM).

When applied to the LASSO, which is a specific case of SLOPE, this algorithm pro-

vides the same accuracy as the state-of-the-art CyCoDe, but is superior with regard to

computing time, especially when the asset universe is large.

The paper studies the properties of our new penalty function in a simulated environment

and shows that SLOPE has the advantage of still being active in the no short sales area

and given an imposed budget constraint. Furthermore, SLOPE can automatically iden-

tify assets with the same underlying risk factor exposure and group them together, by

assigning the same coefficient value to them. This property is especially desirable for

investor planning to incorporate their individual views into the optimization, by select-

ing assets from these groups according to a specific financial characteristic or individ-

ual preferences. We employ such method by introducing a simple investment strategy,

SLOPE-MV, selecting from the groups the asset with the lowest volatility.

Moreover, we investigate the performance of SLOPE in an out-of-sample setting, con-

sidering a rolling window approach, and re-balancing the portfolio every month. The

empirical analysis covers five major data sets, including the 10Ind, 30Ind and 100FF, as

well as the constituents of the SP100 and SP500.

Our results show that SLOPE is able to achieve equal and even better out-of-sample

portfolio volatilities and SR, when compared to the LASSO. Although, only part of the

differences are statistically significant, SLOPE is able to construct sparse portfolios with

reduced turnover. This especially applies to situations with a large amount of estimation

error, for example when considering the SP500. Furthermore, our SLOPE-MV portfolio

results in very sparse portfolios with even lower turnover than state-of-the-art methods
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and at the same time maintains a comparable performance.

With regard to weight and risk diversification measures, SLOPE outperforms the LASSO,

reporting improved values for the DR, the WDiv and the RDiv. Furthermore, the shape

of the penalty extends the frontier of attainable portfolios, ranging from the GMV via

the GMV-LO, up to the EW portfolio and thus enables the investor to select among them

the one that provides her with the desired volatility- and diversification trade-off.

The results establish SLOPE as a valid alternative to the standard LASSO for creating

sparse portfolios with a reduced turnover rate, improved risk- and weight diversifica-

tion, and a high degree of flexibility in the portfolio construction process.

A natural extension to our study is to investigate, how different sequences of lambda pa-

rameters would impact the risk and portfolio allocation, and whether the investor should

choose them according to the underlying correlation regime of the stock market or his

own prior beliefs on the assets.
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6 Appendix

6.1 ADMM vs. Cyclic Coordinate Descend

In this section, we use the newly introduced ADMM algorithm for solving the minimum-

variance optimization with an `1 Norm (which is a specific instance of our new SLOPE

penalty) and compare its performance to the one of the Cyclic Coordinate Descend al-

gorithm (CyCoDe).

The CyCoDe algorithm is considered state-of-art and has found various applications

in solving norm constrained optimization problems (see i.e. Fastrich et al. (2014), Yen

(2015)). The algorithm works by optimizing the weights along one coordinate direction,

while holding all other weights constant. Although there is no general rule on how the

CyCoDe updates the weight vector, we follow the procedure of Yen (2015) and update

the weights cyclical, that is we first fix wi, i = 2, ..., k and find a new solution for w1

that is closer to its optimal solution w∗. In a next step, we fix wi, i = 1, 3, ..., k and find

a value for w2 that is again closer to the optimal one w∗. Given a starting criteria w0 for

the weight vector, the Lagrange parameter, γ, for the budget constraint and a trade-off

parameter, θ, for µ and σ2, Algorithm 1 shows the pseudo code for the CyCoDe.
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Algorithm 1 Cyclic Coordinate Descend

1: Initialize w0 and j = 0

2: while convergence criteria is not met do

3: for i = 1 to k do

4: wi = S T (γ − zi, λ) × (2 × σ2
i )−1

5: where S T is the soft-thresholding function and zi = 2
∑k

j,i w jσi j − θµi

6: end for

7: j = j + 1

8: end while

To evaluate the performance of the two algorithms, we first draw a random sample

of size n for k assets from a multivariate normal X ∼ MVN(0,Σ), where Σ:

Σi j =

1, i = j,
ρ, i , j,

(28)

and for which we choose ρ = 0.2 and 0.8, respectively. Then, we solve the minimum

variance problem given in (2) and subject to the `1- Norm on the weight vector, using as

an input for Σ the shrunken covariance matrix, introduced by Ledoit and Wolff (2004).

We initialize both algorithms with a soft starting point w0, that is (1) w0
i = 1

k ∀ i = 1, ..., k,

and (2) w0
i = ai∑k

i=1 ai
,with ai ∼ U(0, 1) ∀ i = 1, ..., k, and repeat the above procedure 100

times, using for both algorithms a tolerance stopping point of 10−7. All computations

are performed in Matlab 2016a on a Lenovo T430, with Windows 7, an Intel i7-3520M

with 2.90 GHZ and 8 GB of RAM.

Table 7 and 8 display the minimum and the median of the objective function values,

together with the median amount of shorting, the median time in seconds used for each
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algorithm to solve the 100 simulations and the median absolute weight difference9, con-

sidering as soft starting criteria an equally weighted and a random portfolio weight

vector, respectively.10

The tables show that both algorithms reach the same global minimum and median objec-

Table 7: Simulation Results - Equal Weights

λ = 4.03 × 10−6 λ = 5.65 × 10−4 λ = 7.91 × 10−2

ρ n p Algo Min Med Short Time W.Diff. Min Med Short Time W.Diff. Min Med Short Time W.Diff.

0.2

500 100
CyCoDe 0.14 0.16 0.51 0.66

5 × 10−7 0.14 0.16 0.49 0.62
5 × 10−7 0.23 0.25 0.00 0.18

7 × 10−8
ADMM 0.14 0.16 0.51 0.01 0.14 0.16 0.49 0.01 0.23 0.25 0.00 0.01

500 250
CyCoDe 0.09 0.11 2.13 13.63

8 × 10−6 0.09 0.11 2.02 12.87
6 × 10−6 0.21 0.24 0.00 0.94

8 × 10−8
ADMM 0.09 0.11 2.13 0.09 0.09 0.11 2.02 0.09 0.21 0.24 0.00 0.03

1000 500 CyCoDe 0.09 0.10 3.46 117.69 3 × 10−5 0.09 0.11 3.23 116.29 2 × 10−5 0.22 0.24 0.00 5.58 1 × 10−7

ADMM 0.09 0.10 3.46 0.66 0.09 0.11 3.23 0.64 0.22 0.24 0.00 0.17

0.8

500 100 CyCoDe 0.55 0.64 3.39 11.67 2 × 10−3 0.55 0.65 3.30 11.23 2 × 10−3 0.73 0.83 0.00 1.37 8 × 10−7

ADMM 0.55 0.64 3.39 0.06 0.55 0.65 3.30 0.05 0.73 0.83 0.00 0.03

500 250
CyCoDe 0.34 0.42 10.98 35.33

8 × 10−1 0.35 0.43 10.46 34.75
8 × 10−1 0.67 0.82 0.00 6.03

1 × 10−6
ADMM 0.34 0.42 10.94 0.58 0.35 0.43 10.47 0.56 0.67 0.82 0.00 0.11

1000 500
CyCoDe 0.36 0.42 16.49 109.37

2.1
0.38 0.44 15.44 107.64

1.8
0.75 0.83 0.00 37.20

2 × 10−6
ADMM 0.36 0.42 16.34 3.96 0.38 0.43 15.33 3.76 0.75 0.83 0.00 0.61

The table reports, for the Cyclic Coordinate Descend (CyCoDe) and the Alternating Direction Method of Multipliers (ADMM),
the simulation results to the penalized minimum variance problem given in (2), considering six data sets drawn from a multivariate
normal distribution, with ρ = 0.2 and ρ = 0.8, respectively, and using the equally weighted portfolio as a soft starting point. Stated
are across all 100 simulations: the minimum (Min) and the median (Med) value of the objective function, the median value of
the total amount of shorting (Short) the median time in seconds needed to compute the solution (Time) and the average weight
difference (W.Diff.).

tive function value and the same amount of shorting for the low correlation environment,

regardless of the chosen lambda value and whether we consider the equally weighted or

the random weight vector as the soft starting point. This also applies to the low dimen-

sional data set, when the correlation is set to ρ = 0.8. When p = 500 for ρ = 0.8, the

ADMM reports a lower amount of shorting for the first two lambda values. This holds

regardless of how we choose the soft starting point. This difference might also explain

the discrepancy in the weight vectors, which is reported to be the highest for these two

data sets. Still, the difference in the resulting weight vectors is modest and amounts to
9The difference in the weights is computed as:

∑
|wADMM − wCyCoDe|, where wADMM and wCyCoDe are

the optimal weights obtained with the ADMM and the CyCoDe algorithm, respectively.
10Due to space limitations, we have restricted ourselves to report the above mentioned measures. Fur-

ther results, including the standard deviation of the objective function value and the median number of
active positions are available upon request to the authors.
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an average of 10−6 for both low correlation environments, and to 10−4, for the first two

high correlation environments and regardless on how we choose the soft starting point.

Most notably, the ADMM outperforms the CyCoDe, with regard to the median time in

seconds used to compute the solution for all six data sets. This difference is not neg-

ligible: the ADMM uses on average 0.265 seconds in the low correlation environment

across all lambdas and all starting criteria, while the CyCoDe is slower by a factor of

more than 100, using on average 28.88 seconds. This also applies to the high correlation

environment, with the ADMM finding the solution, by taking on average 2.65 seconds

and the CyCoDe using 38.98 second. Finally, and for both algorithms, selecting the

random weight vector as a starting point results in longer computing times, as opposed

to using the equally weighted solution.

Figure 15 plots the computing times needed for the CyCoDe and the ADMM for both the

Table 8: Simulation Results - Random Weights

λ = 4.03 × 10−6 λ = 5.65 × 10−4 λ = 7.91 × 10−2

ρ n p Algo Min Med Short Time W.Diff Min Med Short Time W.Diff Min Med Short Time W.Diff

0.2

500 100
CyCoDe 0.13 0.16 0.49 0.46 5 × 10−7 0.13 0.16 0.47 0.44 4 × 10−6 0.22 0.25 0.00 0.13

7 × 10−8
ADMM 0.13 0.16 0.49 0.01 0.13 0.16 0.47 0.01 0.23 0.25 0.00 0.01

500 250
CyCoDe 0.08 0.10 2.12 10.26 8 × 10−6 0.08 0.10 2.02 10.02

6 × 10−6 0.19 0.23 0.00 0.74
8 × 10−8

ADMM 0.08 0.10 2.11 0.07 0.08 0.10 2.02 0.07 0.19 0.23 0.00 0.02

1000 500
CyCoDe 0.08 0.10 3.50 111.66

3 × 10−5 0.09 0.10 3.28 112.50
2 × 10−5 0.22 0.24 0.00 5.31

1 × 10−7
ADMM 0.08 0.10 3.50 0.52 0.09 0.10 3.28 0.51 0.22 0.24 0.00 0.15

0.8

500 100
CyCoDe 0.55 0.64 3.30 8.02

2 × 10−3 0.56 0.64 3.21 7.86
2 × 10−3 0.72 0.82 0.00 0.89

8 × 10−7
ADMM 0.55 0.63 3.30 0.03 0.55 0.64 3.21 0.03 0.72 0.82 0.00 0.02

500 250
CyCoDe 0.33 0.41 10.77 31.54

8 × 10−1 0.35 0.42 10.34 32.05
8 × 10−1 0.68 0.81 0.00 5.35

1 × 10−6
ADMM 0.33 0.41 10.75 0.55 0.35 0.42 10.33 0.53 0.68 0.81 0.00 0.10

1000 500
CyCoDe 0.36 0.40 16.42 111.10 2.193 0.37 0.42 15.38 111.70

1.99
0.76 0.82 0.00 38.7

1.81
ADMM 0.36 0.40 16.37 3.89 0.37 0.42 15.36 3.69 0.76 0.82 0.00 0.60

The table reports, for the Cyclic Coordinate Descend (CyCoDe) and the Alternating Direction Method of Multipliers (ADMM),
the simulation results to the penalized minimum variance problem given in (2), considering six data sets drawn from a multivariate
normal distribution, with ρ = 0.2 and ρ = 0.8, respectively, and using the equally weighted portfolio as a soft starting point. Stated
are across all 100 simulations: the minimum (Min) and median (Med) value of the objective function, the median value of the total
amount of shorting (Short) the median time in seconds needed to compute the solution (Time) and the average weight difference
(W.Diff.).

EW and Random weight vector initialization, considering the two correlation regimes

and varying the number of parameters that have to be estimated. Clearly the ADMM

consistently shows a superior performance, by only using a fraction of the time of the
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CyCoDe. Furthermore, we can observe that both algorithms are also invariant to the

selection of the soft starting point. Only the CyCoDe shows a slight difference for pa-

rameter values above k = 450, signaling that for the CyCoDe an EW portfolio results in

finding the optimal solution faster.

Figure 15: Computation Times for CyCoDe and ADMM
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The figure shows the average computation times needed for the CyCoDe and ADMM algorithm, depending on the correlation
regime, the number of parameters and the soft start criterion. All values are based on 100 simulations, considering a constant
correlation set-up.

6.2 Portfolio Selection Models

Equally Weighted Portfolio. The equally weighted portfolio is considered as one of the

toughest benchmarks to beat (see, i.e. DeMiguel et al. (2009b)), and naively distributes

the wealth equally among all constituents, such that with k assets:

wi =
1
k
∀ i = {1, ..., k}, (29)
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where wi is the weight of asset i. The EW ignores both the variances, the covariances

and the return of the assets, and is the optimal portfolio on the mean-variance efficient

frontier, when we assume that all three are the same.

Norm-Constrained Minimum Variance Portfolio. Reconsider the formulation of the

mean-variance problem in (1). By disregarding the mean in the optimization, we obtain

the Global Minimum Variance Portfolio (GMV), given by:

min
w∈Rk

σ2
p = w′Σw s.t.

k∑
i=1

wi = 1, ∀ i = {1, ..., k}, (30)

However, this formulation is prone to estimation errors, and unstable portfolio weights.

To circumvent these problems, we extend the framework in (30) by adding a penalty

function ρλ(w) on the weight vector. For LASSO, we add a `1 - Norm to the formulation

in (30), such that:

ρλ(w) = λ ×

k∑
i=1

|wi| (31)

where λ is a regularization parameter that controls the intensity of the penalty. Besides

LASSO, we also consider the RIDGE penalty, which adds an `2-Norm on the weight

vector to the formulation in (30), and that takes the form of:

ρλ(w) = λ ×

k∑
i=1

w2
i (32)

As opposed to the LASSO, the RIDGE is not singular at the origin and thus does not

promote sparse solutions. Still, imposing the `2 - Norm on the portfolio problem is

equal to adding an identity matrix, weighted by the regularization parameter λ to the
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inverse of the variance-covariance matrix, i.e. (Σ−1 + λI), where I is the k × k identity

matrix. This leads to more numerical stability and makes the RIDGE penalty especially

appealing in environments that suffer from multicollinearity (Zou and Hastie 2005).

Equal Risk Contribution Portfolio. Finally, we consider the Equal Risk Contribution

(ERC) portfolio, which aims to equalize the marginal risk contributions of the assets to

the overall portfolio risk. That is, given that portfolio variance can be decomposed as:

σ2
p =

k∑
i=1

k∑
j=1

wiw jσi j =

k∑
i=1

wi

k∑
j=1

w jσi j (33)

the marginal contribution to the portfolio risk for asset i is given as:

cvar
i = wi

k∑
j=1

w jσi j = wi (Σw)i with
k∑

i=1

cvar
i = σ2

p (34)

where (Σw)i denotes the ith row of the product of Σ and w (Roncalli 2013). As the

marginal risk is dependent on the portfolio weight magnitude, the ERC portfolio has no

analytically solution and must be obtained numerically,by solving:

min
w∈RN

k∑
i=1

(
wi (Σw)i

σ2
p
−

1
k

)2 s.t.
k∑

i=1

wi = 1, 0 ≤ wi ≤ 1 ∀ i ∈ {1, 2, ..., k} (35)

The ERC favors assets with lower volatility, lower correlation with other assets, or both,

and is less sensitive to small changes in the covariance matrix as compared to the GMV

portfolio (Kremer et al. 2017). Furthermore, (Maillard et al. 2010) show that the volatil-

ity of the ERC is between that of the EW and the GMV, and that it coincides with the

latter, when both, correlations and SRs, are assumed to be equal (Maillard et al. 2010).
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