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Abstract

In this paper we propose a parsimonious continuous time model
capable of describing the dynamics of futures equity returns at different
time frequencies. Unlike several related works in the literature, we
avoid specifying a model a priori and we attempt, instead, to infer
our model from the analysis of a data set of 5-minute returns on the
S&P500 futures contract. Throughout the entire paper we try to keep
the modelling assumptions to a minimum (and to test them step by
step), while retaining an adequate level of structure. We start with a
very general specification for our model for futures equity returns. First
we model the seasonal pattern in intraday volatility, which turns out to
be deterministic and stationary through time. Once we correct for this
component, we aggregate intraday data into a daily volatility measure
to reduce the amount of noise in the data and its distorting impact
on the results. We then employ this much less noisy daily measure to
infer the structure of the stochastic volatility model and of the leverage
component, as well as to obtain insights on the shape of the distribution
of conditional returns. Our model is then refined at a high frequency
level by means of a simple non-linear filtering technique which provides
an intraday update of volatility and return density estimates on the
basis of observed 5-minute returns. This method allows to capture
all the information embedded in the intraday data which was lost in
the daily aggregation. The results from a Monte Carlo experiment
indicate that a sample of returns simulated according to our model
well replicates the main features observed in market returns.

JEL Classification: C11, C51, C52, C53, G12.
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1 Introduction

The increasing availability of high frequency data in finance has improved
the empirical analysis of financial asset returns in several respects. In the
first place, it has enabled the investigation of the dynamics of intraday
volatility and returns per se, in consideration of the various market mi-
crostructure effects that characterise high frequency financial data. Sec-
ondly, and perhaps more importantly, it has enriched the information set
available to develop and test continuous time models which are able to ex-
plain and replicate the dynamics of financial returns observed in the markets
in a consistent manner across different time horizons. Traditionally, contin-
uous time models in finance have been estimated and tested on moderate
frequency (normally daily) financial data. In most cases, however, the asset
returns generated from those models manage to capture the dynamics of
daily or weekly returns fairly accurately, but fail to mirror the behaviour of
high frequency financial returns. Therefore, intraday data can be usefully
employed to derive a more consistent specification for a continuous time
model.

The present work fits in this latter stream of literature, since its aim is
to identify the simplest possible model which is both congruent with the
specifications commonly adopted in this field and capable of replicating the
essential features that characterise the evolution of intraday returns and
volatility as observed in futures equity markets. A continuous time speci-
fication turns out to be the most convenient and appropriate one for such
purpose.

A distinctive aspect of our study, which we consider a significant contri-
bution to the related literature, is that we adopt a parsimonious approach
and, throughout the different steps, we let the data suggest the model as
much as possible, rather than imposing a model ourselves. The standard
approach commonly followed by the literature consists of assuming from the
beginning a particular specification for the model in all its components and
using the data to estimate and test it. Instead we believe that a model for
financial data should originate from the data itself, therefore here we avoid
specifying a model a priori. We start with a very general model structure
and we perform a careful step by step analysis of the data, recording the
relevant features to be modelled, whose peculiar characteristics will actually
drive the choice among different specifications. At each step we also look
carefully for possible specification errors. Throughout the entire paper we
try to keep the modelling assumptions to a minimum, while retaining an
adequate level of structure. Our approach is also parsimonious in terms of
the statistical and econometric techniques employed to estimate the result-
ing model. Our main interest here is in assessing whether the data-driven,
step-by-step criteria we propose for selecting the model and subsequently
refining it on the basis of intraday returns enables us to derive a valid speci-
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fication that adequately explains the empirical features. Producing the most
precise estimates for the parameters of our model is not our main concern,
especially since this would require the implementation of very complicated
econometric tools that would introduce a lot of complexity to the analy-
sis without contributing significantly to the main results. We use therefore
simple techniques that still produce reasonably accurate estimates.

At the conclusion of our analysis we propose a relatively simple specifica-
tion, able to capture and model most of the aspects observed in equity index
futures markets, namely: seasonality in intraday data, stochastic volatility
and the presence of jumps, and a leverage effect. By means of a simple
Bayesian filtering technique we also generate 5-minutes ahead volatility es-
timates and density estimates for the distribution of the intraday returns,
whose accuracy is thoroughly assessed via both point and distributional
forecast tests.

The paper is structured as follows. Section 2 introduces the related lit-
erature. Section 3 describes the data set. Section 4 details in its subsections
the various steps of the data analysis and the modelling of each component,
up to the identification and estimation of a simple, but accurate, model in
continuous time. A Monte Carlo simulation exercise of the complete model
is performed in Section 5. Section 6 summarises the main conclusions and
a few suggestions for further research.

2 The Informative Content of High Frequency Data

During the last few years, the availability of high frequency data on finan-
cial assets has stimulated the production of a very rich literature. One
stream of literature, which is not immediately related to the present work
and, therefore, which is not explored in detail here, has focused on deriving
tailored models for intraday returns and volatility. These models should
be capable of capturing some distinctive features such as the significant se-
rial correlation in returns induced by market microstructure effects, and the
discreteness of transaction prices.1

A second stream of literature exploits the informative content of intra-
day data to obtain more accurate measures of the volatility of financial
returns. Most of these studies approximate the volatility over a certain
period, such as a day, with the sum of intraday squared, or absolute, re-
turns, a measure called realised volatility.2 The theoretical justification for
this approximation3 is to be found in the theory of quadratic variation (see

1Models for the dynamics of transaction prices have been suggested, amongst the oth-
ers, by Rydberg and Shephard [2000, 2003], Rogers and Zane [1998] and Giot [2000].

2See Taylor and Xu [1997] and Andersen and Bollerslev [1998] among the authors who
first proposed this measure.

3See Andersen, Bollerslev, Diebold and Labys [2001, 2003], Barndorff-Nielsen and Shep-
hard [2001a].
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Karatzas and Shreve [1988]). A complete asymptotic theory of the conver-
gence of the realised volatility to the integrated volatility has been derived
by Barndorff-Nielsen and Shephard [2001b, 2002, 2003], under the assump-
tions that conditional returns are normally distributed and volatility follows
either a diffusion specification or a Lévy process. They have also consid-
ered extensions to account for the presence of a leverage effect. Bai, Russell
and Tiao [2001], Andreou and Ghysels [2002] and Meddahi [2002] discuss
potential distorsions and biases in the realised volatility measure.

An impressive number of papers have appeared in the last couple of
years in this area, proposing various possible applications for the informa-
tive content of intraday data via the realised volatility measure.4 Andersen
and Bollerslev [1998] and Blair, Poon and Taylor [2001] employed realised
volatility as a measure against which to compare daily volatility forecasts
produced with a GARCH model. Some authors (Andersen, Bollerslev and
Lange [1999], Blair, Poon and Taylor [2001], Martens [2001], Hol and Koop-
man [2002]) investigated whether out-of-sample volatility forecasts could be
improved by using intraday data.

The distribution and the time series properties of the realised volatility
have also been studied. Examples in this context are given by Andersen,
Bollerslev, Diebold and Labys [2001, 2003] for exchange rates, Ebens [1999]
for the Dow Jones Industrial Average index, Andersen, Bollerslev, Diebold
and Ebens [2001] for both the index and its constituent stocks, Areal and
Taylor [2002] for FTSE-100 index futures. Barndorff-Nielsen and Shephard
[2002] fit a continuous time superposition of Ornstein-Uhlenbeck processes
to the time series of realised volatility.

A related research area which has attracted academic interest in the
last few years employs intraday data in order to estimate and test continu-
ous time models in which financial returns are described by a time-changed
Brownian motion or Lévy process where the stochastic time change is given
by a measure of the intraday economic activity (e.g. trading volumes, proxy
of integrated stochastic volatility). The theoretical justification for such
an approach is that all arbitrage-free processes defining asset returns can
be represented as time-changed Brownian motions,5 where the time change
(or business time) must account for information arrival and market activ-
ity. This stream of literature originates from the pioneering paper by Clark
[1973], who showed how, once re-specified in the new business time (ex-
pressed in terms of the cumulative volume of activity), financial returns are
virtually distributed according to a Gaussian law. Amongst the most rele-
vant contributions in this field, we recall Andersen [1996] who investigates

4For a survey of this literature, the interested reader can consult Andersen, Bollerslev
and Diebold [2001], Barndorff-Nielsen, Nicolato and Shephard [2002] and Dacorogna et
al. [2001].

5See Monroe [1978] for the proof that any semimartingale is a time-changed Brownian
motion.
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the returns specification when the intraday information flow is modeled as a
stochastic volatility process, and Ané and Geman [2000] who extend Clark’s
results by using the cumulative number of trades as a stochastic clock. Very
recent studies include Geman, Madan and Yor [2001], Carr, Geman, Madan
and Yor [2003], Carr and Wu [2003] where various kinds of Lévy processes
are evaluated at a time change given by the integrated volatility, generally
modelled as a square root process.

3 The Data Set

Our data set consists of 5-minute frequency intraday prices on the S&P500
stock index futures contract from September 15, 1997, to July 26, 2001.
All prices are for the futures contract closest to maturity, except for the
days within one week to expiration, when the next contract is considered, in
order to always refer to the contract with the highest trading volume. Days
that recorded transactions only for part of the entire trading day6 have
been excluded from the data set. We have also eliminated four days which
exhibited very large returns on some intraday interval immediately followed
by equally large returns of the opposite sign, which could be indicative of
mistakes in recording the price. Some other days were originally missing
from the data set. All in all, our final sample consists of intraday prices for
960 days.

The full trading day in the futures market at the Chicago Mercantile
Exchange starts at 8:30 a.m. and ends at 3:15 p.m. Chicago time. Intra-
day log returns have been computed on the consecutive logarithmic closing
prices for each of the 81 5-minute intervals that constitute a trading day.
Since in modelling the intraday dynamics of returns and volatility it is im-
portant to take into account the close-to-open returns and their volatility,
we also analyse overnight log returns, calculated as the difference between
the logarithm of the open price and the logarithm of the closing price for
the previous day.7

In the top half of Table 1 we report some sample statistics for the 5-
minute and the overnight returns, which we consider separately, given the
different nature and characteristics of the two series. The intraday returns
display an almost zero sample mean, a sample standard deviation of 0.121%,
positive sample skewness of 0.88 and a strong sample excess kurtosis of 35.48.
As expected, the standard deviation of the overnight returns is considerably
larger, as it refers to a longer temporal horizon. The higher moments are
closer to those of a normal distribution, with a sample skewness of −0.38

6Most of those days are those immediately preceeding holidays, such as December 24
and December 31.

7For the same reason, unlike other works on high frequency data (see, for example,
Andersen and Bollerslev [1997]), we retain the return on the first interval of the trading day,
which mainly reflects the information accumulated overnight and shows a high volatility.
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and an excess kurtosis of 3.04, by effect of the aggregation process which
takes place over a longer time horizon.

Table 2 displays the values of first order autocorrelation coefficients in the
series of high frequency returns for each year under analysis, together with
the percentage bid-ask spread, estimated following Roll [1984].8 Although
statistically significant for the first two and a half years, the serial correlation
in the intraday futures returns always seems to be economically negligible.
To ascertain that, we have computed the bias in the variance induced by
ignoring first and second order serial correlation, which turns out to be,
respectively, −0.318% and −0.319% of the correct variance.9 Our results
suggest that it does not make any substantial difference if we remove the
autocorrelation from our series or not. Therefore, here we do not need to
worry about market microstructure issues such as the bid-ask bounce, which
would bring a strong negative serial dependence and complicate the analysis
further, by introducing a serious bias in the volatility measures.

4 Data Analysis and Derivation of the Model

In the present section we perform a careful step by step analysis of the
data, aimed at isolating its main distinctive features and their nature, and,
therefore, at providing directions for plausible model specifications.

We start by postulating a very general structure for our model of the
dynamics of intraday returns, represented as follows:

rit = sitσitεit (1)

for i = 1, . . . , 82, t = 1, . . . , T , where rit represents the unconditional in-
traday (or overnight) log return for interval i at day t, de-meaned by the
sample mean on the corresponding sub-interval; sit identifies the volatility
for sub-interval i at day t attributable to the seasonal pattern in intraday
volatility; σit stands for the stochastic volatility component, independent
of the seasonal component;10 εit symbolises the conditional intraday log re-
turn, with zero mean, independent of both the seasonal and the stochastic
volatility parts. Once all the seasonal and stochastic volatility components
have been correctly modeled, this latter component should translate into a

8Roll simply defines a measure for the bid-ask spread in percentage of the geometric
average of the average bid and ask prices as: sr ≡ −2

√
| Cov[Rt−1, Rt] |.

9Our measure for the bias in the variance has been obtained by comparing the variance
of the returns with the variance of the residuals resulting from fitting, respectively, an
AR(1) and an AR(2) process to the high frequency returns.

10The choice of such a specification for the volatility seemed natural since the empirical
evidence indicates that both a periodic pattern and a stochastic volatility component exist
in intraday volatility and need to be modelled.
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series which is independent11 across the intraday intervals.12

An important consideration needs to be made here. The structure in (1)
is indeed a very rich specification which admits an infinite variety of models
as special cases. Nevertheless, even this very general assumptions may easily
be too strong, e.g. the distribution of εit could well depend on sit or σit, or
the stochastic volatility σit could depend on sit. However, in this work we do
not take our assumptions for granted, but we will test their validity as part
of our data analysis. Another issue that could be raised about the model
in (1) is its possible misspecification in the presence of a significant price
clustering. The evidence of a small number of ticks per 5-minute volatility
in our sample, ranging from 11 in the quietest moments of the day to 16 in
the busiest time, suggests the absence of a strong price clustering.

A note on the terminology that will be used in the present work and
on the scaling of the model in (1). Amongst the possible alternatives, after
verifying the deterministic nature of the seasonal volatility component, we
have chosen to work with de-seasonalised returns which translates into scal-
ing our model so that E[σit] = 1 and E[|εit|] = 1.13 The use we make here
of the term volatility to denote σit is therefore quite unorthodox and, to be
precise, we should refer to σit as “relative volatility”.

In the following subsections we proceed to investigate the features of the
data that characterise the nature of the components in Equation (1) and
then, to propose and test accurate model specifications for each component.

4.1 The seasonal component

Fig. 1 displays the intraday patterns in average returns (plotted with 95%
confidence intervals around zero) and average absolute returns, computed
across the time series of the single 5-minute intervals.14 No clear predictable
pattern is discernible for the average returns, whereas an obvious U-pattern
characterises the intraday volatility.15

11The assumption of independence is, in fact, justified by the absence of a significant
autocorrelation structure, as ascertained in the previous section.

12Here we do not attempt to model the risk premium given that four years of data would
not be a sufficiently long time span to obtain reliable estimates for such purpose.

13Throughout the paper, we prefer to use absolute, rather than squared, returns, to
measure volatility. As largely documented in the existing literature (see, for an exhaustive
discussion, Barndorff-Nielsen and Shephard [2003]), absolute returns are less sensitive to
large outliers and more reliable when the fourth moment of the distribution of returns is
not finite.

14Overnight returns have not been included in the plots. Their average and average
absolute values of, respectively, 0.02% and 0.41% are clearly not in line with the rest of
the intraday data and their inclusion would have distorted the analysis.

15The presence of a U-pattern in intraday volatility of stock returns was first documented
by Wood, McInish and Ord [1985] and Harris [1986], whereas the impact of this seasonal
component on the volatility dynamics was first investigated by Andersen and Bollerslev
[1997].
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The average absolute returns start out at about 0.1% at the market
opening, keep on increasing for the first half an hour up to 0.12%, decline
smoothly to the lowest level of 0.062% before noon and then increase again
to 0.113% at the closure of the cash index market. The alternance of drop
and rise in the last 15 minutes of the trading day is attributable to the post
cash market trading.

In principle, the model in (1) allows for a seasonal volatility component
that changes through time t. To test for the stability of the seasonal pat-
tern across different moments, we have analysed the shape of the intraday
periodicity in volatility on subsamples computed on single days of the week
(Fig. 2), on the 50% highest and the 50% lowest volatility days and on the
first and the second half of the entire sample period (Fig. 3).16 The visual
inspection of the plots reveals the presence of very similar and almost indis-
tinguishable patterns in intraday volatility. We have also conducted more
formal tests of equality between intraday volatility patterns for, respectively,
high and low volatility days, first and second half of the sample, each trad-
ing day of the week and the overall sample. We first performed, for each
intraday interval, a two sample Student’s t-test for mean equality (at 95%
confidence level) on the average normalised absolute returns of the two sub-
samples we wanted to compare. The percentage of sub-intervals on which
the null hypothesis of equal means is rejected (on the total of 82 intervals)
is displayed in the second column of Table 3. We then derived the series
of intraday ratios computed on the average normalised absolute returns of
the two subsamples of interest; average values and standard deviations for
these series have also been reported in Table 3. Both the small percentages
of rejections for the mean equality test (ranging from 0 to 12%) and the
little dispersion of the ratios of intraday volatility coefficients around the
average level of one (with values for the standard deviation between 0.055
and 0.075) seem to support the stability of the seasonal pattern. Therefore,
our results suggests that over the time period spanned by our data we can
safely assume constant deterministic intraday seasonal pattern, which can
then be appropriately represented by si.17

Since the intraday periodicity in the return volatility has a strong im-
pact on the dynamic properties of intraday returns, it is essential to correct
for this component in order to reveal and model the stochastic volatility
dynamics present in our series. The average absolute returns for the in-
dividual sub-intervals constitute simple and accurate estimates of the in-

16The comparison amongst subsets of data with different levels of volatility has been
made possible by using absolute returns normalised by the average of absolute returns
across the day, taken as a volatility proxy for the day.

17There is a chance that different seasonal patterns arise during daylight saving periods,
which we have not investigated. However, we expect the impact of a correction in this
direction to be much less important for equity data than it would be for exchange rate
data.
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traday seasonal component in volatility si, both for the 5-minute intervals
and for the overnight returns.18 Different approaches have been proposed
in the literature to obtain smoothed estimates of these seasonal coefficients.
In a recent comparative paper, Martens, Chang and Taylor [2002] recom-
mend the Flexible Fourier Functions approach, first suggested by Andersen
and Bollerslev [1997]. Following this technique, smoothed estimates of the
seasonal components (only for the 5-minute subperiods) are produced by
fitting Flexible Fourier Functions (which consist of combinations of linear,
quadratic, trigonometric functions and dummy variables) to multiplicative
coefficients based on the average absolute returns. In Fig. 4 we show how
good smoothed estimates can be obtained much more easily by fitting a set of
cubic B-splines to the average absolute returns for the 5-minute intervals.19

The cubic B-splines present several advantages over the FFF approach: they
are easier to fit, more flexible, more general and they do not rely on ad hoc
specifications for the inclusion of dummy variables.

Having obtained fairly accurate smoothed estimates for the determinis-
tic intraday seasonal pattern in volatility,20 we proceed to derive the time
series of de-seasonalised unconditional intraday returns, obtained by divid-
ing the de-meaned unconditional returns rit by the corresponding estimate
of periodicity in volatility si. In the same way we compute the time series
of de-seasonalised unconditional overnight returns. Sample higher moments
for the series of de-seasonalised unconditional returns (both 5-minute and
overnight) are displayed in the bottom half of Table 1.

4.2 The stochastic volatility component

4.2.1 Methodology

Once we have adjusted for the intraday periodicity in volatility, the model
in (1) translates into a mixture process, such that each de-meaned and de-
seasonalised intraday return is a combination of independent realisations
from a stochastic volatility process and from a conditional density. There-
fore, the next step to take in order to produce sensible forecasts for high
frequency returns is to identify an appropriate stochastic volatility process
capable of generating good intraday volatility estimates.

18Taylor and Xu [1997] proposed a similar adjustment for seasonality, based on averages
of squared returns.

19Once again, the overnight period has been excluded from the analysis. As estimate of
the overnight seasonal volatility component we use the average absolute overnight returns.
Also note the presence of a spike in our cubic B-splines curve, due to a knot placed to
capture the drop-and-rise movement typical of the futures contract.

20To ensure that no relevant information has been lost as an effect of the smoothing
procedure, we have also computed de-seasonalised high frequency returns on the average
intraday absolute returns, and re-estimated our model on this series. The changes in the
results turned out to be negligible.
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Before providing the details of the analysis, let us briefly discuss the
intuition and the motivation that drove us through the following steps. Our
target is to model stochastic volatility at a high frequency level, but the data
available clearly does not enable us to investigate accurately how volatility
changes at that frequency, since a 5-minute return gives an extremely noisy
measure of intraday volatility. However, if the stochastic volatility does not
move too much within a single day, we can easily derive a very accurate daily
proxy for the volatility from the average of the 5-minute absolute returns
and employ that to analyse the evolution of volatility on a daily basis.

Obviously the estimated model will not be appropriate for producing
good intraday volatility estimates (for which it will have to be re-estimated
at a higher frequency level); instead, it will provide us with good initial
estimates of daily volatility, which reveal the structure that our stochastic
volatility model should have in order to capture the essential characteristics
of the volatility changes that need to be modelled, including the component
attributable to the leverage effect. If volatility were constant during the day,
these estimates would also be accurate at an intraday level. We know that
this is not the case, therefore at a high frequency level such estimates will
show inaccuracies due to both some measurement error and intraday changes
in the volatility. However, our daily estimates can still be considered good
enough for the purpose of conditioning the series of unconditional intraday
returns upon them and consequently, obtaining more precise information on
the shape of the conditional distribution, which will turn out to be essential
in order to re-estimate the stochastic volatility model at an intraday level
and to produce better 5-minute volatility estimates.

4.2.2 The analysis of daily volatility estimates

To investigate the presence and the nature of the stochastic volatility compo-
nent, we start by plotting the autocorrelogram of the absolute de-seasonalised
5-minute21 returns for 4, 100 lags, corresponding to 50 days (Fig. 5, top
half). The highly significant serial correlation in absolute intraday returns
over many lags reveals an important stochastic component in volatility. The
slow decay of the autocorrelation coefficients through time indicates the per-
sistence of such component.

However, any single 5-minute absolute return obviously gives a very poor
estimate of volatility, as confirmed by the strongly irregular pattern of the
ACF. In presence of a large, slow-decaying, noisy component at a 5-minute
level, we can best examine the volatility dynamics by taking the daily av-
erage of absolute intraday unconditional returns as our volatility proxy, as

21In our notation, 5-minute should not be interpreted literally since, in general, it also
refers to the overnight interval.
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follows:

σ̂t =
1
m

m∑
i=1

∣∣∣∣rit

si

∣∣∣∣ (2)

The measure in (2) directly relates to the realised volatility measures
mentioned earlier, which have been recently recommended by several authors
as very accurate estimates of the latent daily volatility.

The autocorrelogram for the daily average of absolute high frequency
returns up to lag 50 is displayed at the bottom of Fig. 5 to provide a com-
parison with the one at the top and therefore to ensure that our measure for
the volatility at a daily level reproduces the basic characteristics displayed
by the volatility estimates at an intraday level (hopefully highlighted by the
reduction in the noise). As expected, the elimination of most of the noise
produces an overall increase in the level of serial correlation for the daily
volatility, which is around four times as much as the intraday level. Also
the averaging process has the obvious effect of drastically reducing the very
high autocorrelation recorded in intraday volatility for the first 150-200 lags.
The visual inspection of the serial correlation in absolute returns at both
daily and 5-minute level reveals that the stochastic volatility factor seems
to be the result of two components: a) a fast mean reverting component;
b) a more persistent component, which appears to decline almost linearly in
time.22

As we will explain more in detail later, the statistical techniques that we
use to estimate a stochastic volatility model provide more reliable and un-
biased results the closer the series to be modelled is to a normal. Therefore,
we have chosen to work with the time series of the logarithm of the daily
volatility proxy ln(σ̂t), whose skewness of 0.40 and excess kurtosis of 0.31
are much closer to the corresponding moments of a Gaussian than those of
the volatility proxy itself (equal to, respectively, 1.94 and 6.63).

In the following subsections, we first investigate the impact of the lever-
age effect and suggest a model to account for the changes in volatility in-
duced by this component and then we explore a way of modelling the (daily)
dynamics of the volatility in order to capture the features described above.

4.2.3 The leverage effect

The leverage effect was first discussed by Black [1976] who observed that
the amplitude of the volatility of a stock tends to increase when its price
drops. However, a direct comparison between volatility and stock prices is
not possible, since the first series is stationary and the second one is not.
Therefore, in order to investigate presence and magnitude of the leverage

22It is worth noticing that the ACF is informative when the underlying model is linear
and the variables are Gaussian, which is not the case in our context. When we deal with
non-linearities in the model and heavy tailed distributions, the ACF might suggest the
presence of spurious long memory effects (see Davis and Mikosch [2000]).
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effect, we construct a new, stationary, variable which measures how distant
the current price is from its average level.

A very simple specification, which actually seems to be well supported by
our data, consists in computing an exponentially weighted moving average
M of daily closing log prices for the S&P500 stock index futures as Mt =
(1− θ)Mt−1 + θ ln(St−1), for t = 1, . . . , T and in deriving the new stationary
series as ln(St) − Mt. A measure of the leverage effect is then given by the
correlation between ln(St)−Mt and the log volatility proxy for the following
day ln(σ̂t+1). The initial value M0 is set equal to the initial log price and
we choose θ = 0.03 (corresponding to a half life of 23 days), which is the
value that maximises (in absolute terms) the correlation between log price
movements and log volatility series. For this parametrisation, we obtain a
correlation of ρ = −0.545 between the two series, whose scatter and time
series plots are shown in Fig. 6. Our findings indicate a strong leverage effect
whose impact on the volatility dynamics needs to be adequately modelled.

In order to separate the changes in volatility induced by the leverage
effect from those arising from the dynamics of the stochastic volatility com-
ponent we propose the following specification:

ln(σ̂t) = κ(ln(St−1) − Mt−1) + υt (3)

The regression in (3) provides us with an estimate for κ of −4.34 (stan-
dard error 0.26) and with time series of the residuals υt, whose evolution
should thus mirror the dynamics of the (ex-leverage) stochastic volatility.
Given that the ACF inspection carried out in the previous section suggests
the presence of both a transient and a more permanent component in the
volatility process and that the leverage effect turns out to be quite persis-
tent, we start by assessing whether the volatility expressed by the residuals
could be adequately modelled by means of an AR(1) specification.23 Unfor-
tunately, this simple and appealing specification is immediately ruled out,
as indicated by the ACF of the residuals from the AR(1) process (Fig. 7,
top), which clearly highlights the existence of a more persistent dynamics
ignored by our model.

More complete specifications capable of taking into account this feature
are then needed in order to achieve a satisfactory model for the stochastic
volatility component.

4.2.4 A short memory model

Given the slow, almost hyperbolic, decay in the sample autocorrelogram
for the stochastic volatility, which seems to suggests the presence of long
memory effects, we have attempted to model the volatility component by

23The continuous time equivalent of an AR(1) model is a standard Ornstein-Uhlenbeck
process.
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means of long memory ARFIMA(p,d,q) processes of different kinds. Quite
surprisingly, none of the specifications chosen is supported by our data set.
Gallant, Hsu and Tauchen [1999] provided an alternative explaination for
such a slowly decaying dynamics by showing how, for an appropriate choice
of parameters, the sum of two AR(1) processes also exhibits long memory
features. Modelling the stochastic volatility as a sum of two AR(1) or equiv-
alently, in continuous time framework, with a superposition of Ornstein-
Uhlenbeck processes would consent to accurately describe the empirical re-
sults, while maintaining the nice properties of a short memory process.

We therefore explore the use of a model similar to Alizadeh, Brandt and
Diebold [2002] and represent the log volatility in continuous time as:

ln(σt) = ln(σs,t) + ln(σl,t) (4)

with:

d ln(σs,t) = −αsdt ln(σs,t) + βs

√
dtdWs,t

d ln(σl,t) = −αldt ln(σl,t) + βl

√
dtdWl,t

In this parametrization, the log volatility ln(σt), which is our latent
state variable, evolves like a sum of two independent Ornstein-Uhlenbeck
processes, each of them mean reverting towards the long run level of zero,24

with mean reversion parameters αj . Since we estimate the model on daily
variables, dt = 1.25 Once we discretize the model in (4), the two components
of the log volatility follow a Gaussian first-order autoregressive process with
mean zero, autoregressive parameter ρj = 1 − αj and variance β2

j .
Since we choose as volatility proxy the residuals from Equation (3), the

model we estimate in discrete time to describe the dynamics of the log
volatility is:

υ = ln(σt) + ξt (5)

ln(σt) = ln(σs,t) + ln(σl,t)
ln(σs,t) = ρs ln(σs,t−1) + βsωs,t

ln(σl,t) = ρl ln(σl,t−1) + βlωl,t

The estimation has been carried out by applying a Kalman filter algorithm
to the state space system in (5). If the measurement equation errors ξt were
normally distributed, we could obtain exact maximum likelihood estimates

24In our multiplicative model, the expected value for the stochastic volatility is one,
therefore the level at which the log volatility must revert is zero. In fact, statistical
estimates of the long run mean turned out to be not significantly different from zero.

25The empirical issue of the choice of dt at intraday level, in view of the overnight
market closure, will be discussed later on in the paper.
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of the model and the linear projections produced by the Kalman filter pro-
cedure would represent conditional expectation. As we will discuss later,
in our case the measurement errors turn out not to be Gaussian. However,
quasi-maximum likelihood procedures can still produce consistent estimates
of the parameters.26

The estimated parameters, with standard errors in brackets, are dis-
played in Table 4. We can clearly distinguish between a transient volatility
component, with α = 0.734 corresponding to a half life of 0.94 days and
a permanent one, with α = 0.018 and half life of approximately 37.5 days.
Most of the short-run variance of the model can be attributed to the tran-
sient component, as the values of the β coefficients suggest, whereas 52%
of the unconditional long-run variance is explained by the more persistent
component. The ACF of the residuals from the two factor AR(1) specifica-
tion (Fig. 7, bottom) reveals how all the dynamics of the volatility has now
been correctly captured.

The distributions of the residuals from both the state equations of the
two components and the measurement equation have been analysed (Fig. 8).
All the residual series exhibit positive skewness and excess kurtosis which
lead to a rejection of their normality. However, for all the distributions,
skewness and fat tailness are not too pronounced and this “approximate”
Gaussianity should ensure a reasonable efficiency of both the Gaussian quasi-
maximum likelihood estimates and the consequent inferences about the la-
tent volatility process.27

4.2.5 Some insights on the conditional return densities

As mentioned earlier, the estimation of the stochastic volatility model on
a daily basis provides us with both a structure for the dynamics of the
stochastic volatility component, and estimates of the (log) volatility level,
adjusted daily according to the new value for the log volatility proxy ln(σ̂).
Such estimates will be fairly accurate at a daily level, but unsatisfactory at
a 5-minute level, given that a daily update is equivalent to assuming that

26The model has also been estimated by maximising the spectral log-likelihood function
for the sum of two AR(1) processes. The two estimation methods produce essentially the
same results.

27The variance of the measurement error associated with our log volatility proxy should
not be very large. In fact the distribution of the residuals from the measurement equation
includes both the noise component and the sampling variation from the conditional distri-
bution of the log volatility proxy, which in practice are very difficult to separate. However,
the variance of the error term can be used as an upper bound to the percentage of the total
variance attributable to measurement error. In our example, it amounts to 0.052, which
is the 38.51% of the total variance of the log volatility measure. A lower bound on the
variance explained by measurement error is obtained by calculating what the variance of
the log volatility proxy from conditional returns would be if the conditional distribution
of the returns was normal. In our case it is equal to 0.0072, which corresponds to the
5.30% of the total variance for the log volatility proxy on the unconditional returns.
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the intraday volatility estimates for the 82 subintervals of a same day are
all identical.28

Since it is realistic not to expect large changes in the volatility to oc-
cur within a single day, these constant intraday volatility estimates can
be usefully employed to extract information on the distribution of condi-
tional returns, as a necessary preliminary step to perform in view of refining
the estimates of our model at a 5-minute level. The time series of con-
ditional returns is obtained by normalising the unconditional de-meaned,
de-seasonalised return, rit/si, by the volatility estimate for day t made at
the end of the previous day.29

If the volatility dynamics was accurately modelled and the conditional
return distribution was independent from the volatility process, then condi-
tional intraday returns should be identically distributed across all intervals
of the day and no changes in the shape of their density (i.e. more fat-tailed in
intervals of higher activity and less fat-tailed when there are less transactions
on the market) should be discernible.30

In order to empirically assess such hypotheses, we start by computing
summary sample statistics of the time series of conditional returns for each
of the 82 intraday intervals. We plot in Fig. 9 (top) the standard deviation of
the time series of the conditional returns for the individual intervals. We can
clearly detect a few spikes for some intraday intervals that seem to suggest
the fat-tailed nature of the conditional distribution and its variability across
subintervals. However, looking more carefully at our data, we can see that
the spikes are mainly attributable to a very small number of outliers (around
15 for the whole dataset, i.e. less than 0.020% of the total observations)
that distort the tails of the distributions over some intervals (not necessarily
the busiest ones). Disregarding the spikes, the standard deviation of the
conditional distribution of intraday returns turns out to be surprisingly flat
across the different subintervals of the day. It is also quite close to the
value of

√
π/2 (the straight horizontal line in the plot), which represents the

theoretical level of standard deviation under the assumption of normality for
the distribution of conditional returns.31

28A rigorous evaluation of both the volatility forecasts and the resulting density forecasts
for the returns is postponed to one of the following sections, where a comparison will be
drawn with the improved forecasts from high frequency updating.

29A remark is appropriate here: in order to avoid tautological results, when deriving the
series of conditional returns we always condition on the information available before the
actual return was observed. In other words, the return rit observed on interval i of day t
will be conditioned on the volatility estimate produced the day before (for daily-updated
volatility forecasts) or the 5-minutes before (for 5-minute updated volatility forecasts).

30Similarly, given our choice of scaling, if we refer to the distribution of absolute con-
ditional intraday returns, the following properties should hold: E[|εit|] = 1 and V ar[|εit|]
constant for i = 1, . . . , m.

31Under the assumption of normally distributed conditional returns, their variance must
be equal to π/2 in order to satisfy the condition E[|εit|] = 1.

15



However, the fact that the volatility of the empirical distribution is per-
sistently higher than the theoretical normal one seems to suggest that the
conditional distribution is more fat-tailed than a Gaussian. The plot show-
ing the average excess kurtosis of the conditional returns for the various
intraday periods is reported in Fig. 9 (bottom). Again, we observe a high
level of excess kurtosis over some intervals of the day, which is mainly due
to the presence of few sporadic outliers, as discussed above, rather than to
the effect of some external source of information not captured by our model.
If we removed these outliers, the excess kurtosis for the overall conditional
distributions would be around 2, pushing the distributions much closer to a
Gaussian.

To summarise, the distribution of conditional returns computed by nor-
malising upon constant intraday volatility forecasts turns out to be virtually
the same across the different 5-minute intervals of the day and surprisingly
close to Gaussian. However, it exhibits a small degree of fat-tailness that
could be explained by the changes in volatility across the day that our sim-
plified estimates do not capture. The investigation of this aspect will be the
object of the following section.

4.3 The estimation of the model at an intraday level

As previously stated, volatility and density estimates produced by the model
calibrated on a daily basis are not satisfactory at an intraday level. In
order to obtain estimates that accurately describe the actual dynamics of
high frequency data, the estimation of our continuous time specification
must be refined by exploiting the information content of the 5-minute return
series. The aim of the present section is to derive improved estimates for our
continuous time model by means of a simple non-linear filtering technique
in which the update occurs every 5 minutes, based on observed intraday
market returns.

The assumption of a continuous time specification for our model is sup-
ported by the inspection of the serial correlation ρt,t+k for 5-minute absolute
returns within the same day (t and t + k belong to the same day, k ≤ 80)
and between one day and the following (t and t+k belong to adjacent days,
k ≤ 161), reported in Fig. 10. The two segments clearly seem to belong to
the same curve, with no sudden break in the series, which is in favour of a
continuous time specification.

In deriving high frequency estimates, we start by dismissing the persis-
tent component of the stochastic volatility process in (5), since we expect
the contribution of the fast mean-reverting part to be predominant for such
purpose. We also ignore the impact of the leverage effect at intraday level,
given that this component is quite persistent and, therefore, its effect should
be better investigated and modeled at a lower frequency level.32

32To justify our choices, we have computed the proportions of the variance of log volatil-

16



In what follows, we first consider a standard diffusion model for the
5-minute volatility process, of the kind described in (5) for the transient
component. We then introduce jumps in our volatility specification which
will significantly improve our return density forecasts.

4.3.1 A simple diffusion process for intraday volatility

In order to describe the intraday volatility dynamics, we maintain the stan-
dard Gaussian Ornstein-Uhlenbeck specification employed in the daily model
to characterise the evolution of the transient component, and we make use
of the information available on high frequency returns to obtain improved
estimates for the parameters of the process.

To impose the least possible structural assumptions on the derivation
of high frequency volatility estimates, the latter are obtained and updated
through a simple non-linear filtering technique based on observed intraday
market returns. A range of possible discrete values for the log volatility
ln(σj) for j = 1, . . . , N is specified, together with the corresponding set of
initial probabilities Pj assigned to each value. These initial probabilities are
then combined with the transition probabilities P a

i,j between log volatility
values j and i to produce a discrete set of prior probabilities P ∗

i for i =
1, . . . , N as follows:33

P ∗
i,t ≈

N∑
j=1

P a
(i,t),(j,t−1)Pj,t−1 (6)

which will then be applied to the corresponding volatility values in the range
in order to return the intraday volatility estimate σ∗ =

∑N
i=1 P ∗

i,tσi. Within
this framework, the discretisation of our continuous time volatility process
is achieved by evolving the analogous discrete mean reverting process on a
trinomial grid structure. The resulting transition probabilities, which we
assume constant, are derived in Appendix A.1.34

Under the assumption of normality for the conditional returns, justified
on the basis of the results derived in the previous section, a density forecast
for the unconditional de-seasonalised returns rf

t is represented by a mixture
of normal densities, where each component is a normal with zero mean

ity innovations at 5-minute frequency attributable to each component: the leverage effect
and the persistent volatility component explain, respectively, less than 5% and 4% of the
total variance and, therefore, both components can be safely disregarded for the purpose
of improving the high frequency volatility process.

33For simplicity of exposition, here t denotes the intraday moment previously indicated
as it, hence t = 1, . . . , 82T .

34For the practical implementation of the model, we chose a log volatility range be-
tween −1.5 and 1.5, with step size equal to 0.1, roughly corresponding to three times the
estimated volatility of the mean reverting process. Alternative choices for the volatility
range and the step size have been investigated, and the results do not seem to differ too
significantly.
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and standard deviation equal to one of the volatility values in the range
multiplied by

√
π/2 and the mixing probabilities are given by the prior

probabilities for the individual values in the volatility range:

rf
t ∼

N∑
i=1

P ∗
i,tN(0, σi

√
π/2) (7)

Once the 5-minute unconditional de-seasonalised return rt/s is observed,
the probability P r

i,t that such return represents an observation from each
of the Gaussian components of the mixture is computed and a Bayesian
probability update is applied to the set of prior probabilities, producing a
corresponding set of posterior probabilities P p

i,t:

P p
i,t ≈ P r

i,tP
∗
i,t∑N

j=1 P r
j,tP

∗
j,t

(8)

which will replace the initial probabilities Pi in order to re-start the process.
Unlike in the previous case, here volatility and return density forecasts are
updated every 5 minutes on the basis of the actual evolution of returns
observed in the financial market.

An important empirical issue concerning the implementation of our con-
tinuous time specification is the choice of the time step ∆t. Our data seems
to support a time step equal to 1/106 for 5-minutes intervals and 25/106 for
the overnight period,35 given that on average de-seasonalised unconditional
overnight returns are about 25 times the corresponding 5-minute returns.36

We then need estimates of both the mean reverting coefficient αs and the
volatility parameter βs such that the likelihood that the observed returns
are realisations of our non-linear filtering model, given by:

L(rT ) ≈
T∏

t=1


 N∑

j=1

P r
j,tP

∗
j,t


 (9)

is maximised and that, on average, the volatility of the intraday changes
in the log volatility estimates is equal to the volatility parameter βs of the
process.37 Working on a grid of possible values for αs and β2

s (spaced at a
step of, respectively, 0.05 and 0.01, which turns out to be a good compromise

35It is worth noticing that during the 25 steps of the overnight period, the process
evolves only on the grid and the Bayesian update of the probability does not occur until
the opening price for the day is known.

36Alternative choices for time steps of ∆t = 1/82 for all intervals as well as ∆t = 1/288
for 5-minute and ∆t = 207/288 for overnight periods have been considered. However, the
results turned out to be less satisfactory and robust.

37The likelihood function for mixture models is known to be unbounded at some points
on the edge of the parameter space (see Kiefer [1978]). In our case, however, we do not
attempt to maximise the likelihood per se, and we only use it to discriminate between
various set of parameters that satisfy the volatility constraint.

18



between complexity and accuracy) we have found that estimated values of
αs = 0.6 and βs = 0.28 meet these requirements.

In the present work, we employ very simple filtering and estimation tech-
niques to produce step-by-step volatility and return density forecasts and
to obtain estimates of the relevant parameters. Much more sophisticated
econometric methods have been developed recently in the literature: auxil-
iary particle filtering techniques have been suggested for volatility filtering in
continuous and discrete time models by Pitt and Shephard [1999], Durham
and Gallant [2002], Chib, Nardari and Shephard [2002], Johannes, Polson
and Stroud [2002]. Markov Chain Monte Carlo (MCMC) methods provide
very precise parameter estimates for a variety of diffusion and jump-diffusion
models (see Elerian, Shephard and Chib [2001], Eraker [2001], Eraker, Jo-
hannes and Polson [2003]). Estimation strategies based on GMM procedures
have been proposed, amongst the others, by Singleton [2001] and Bollerslev
and Zhou [2002]. The implementation of such techniques would certainly
improve the accuracy of our results but at the cost of an increased complex-
ity which would not be justified in our context given that, as already stated,
the best possible estimation accuracy is not our main concern. Therefore
we choose to use simple techniques that still produce reasonably accurate
estimates, as will be shown later.

Once the model is fully parametrised, 5-minute volatility estimates and
return density estimates can be extracted. The time series of conditional re-
turns is obtained by normalising unconditional returns rit upon the intraday
volatility forecasts σ∗

it computed 5-minutes earlier, and the analysis aimed
at investigating shape and constancy of the conditional return distribution
across the different subintervals of the day is replicated.

Again we compute summary sample statistics for the time series of con-
ditional returns for each of the 82 intraday intervals and we report plots of
the standard deviation (top Fig. 11) and the excess kurtosis (bottom Fig.
11) across the individual subintervals. A few spikes due to the presence of
very large outliers can still be easily detected. If we ignore these outliers, we
observe values for both the standard deviation and the excess kurtosis very
similar across all the intervals of the trading day and very close to the values
we would have for normally distributed conditional returns, with a standard
deviation closely oscillating around the value of

√
π/2 and an average excess

kurtosis of 0.9.
These findings are entirely in line with our expectations: volatility es-

timates which are updated at a high frequncy level can account for most
of the fat-tailness left in the conditional return density after normalising
with respect to volatility estimates which remain constant across the day.
The assumption of a Gaussian distribution to describe returns computed
by conditioning on accurate 5-minute volatility estimates turns out to work
surprisingly well, actually better than expected.

At this stage, in order to correct for the presence of the outliers and for
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the residual fat-tailness while maintaining a specification valid in continuous
time, we propose to introduce jumps in the model.

4.3.2 A process with jumps in intraday volatility

The introduction of jumps can take place in the returns process, in the
volatility process, or in both. To avoid arbitrary assumptions on the most
appropriate specification (and, therefore, to maintain it as parsimonious as
possible), we analyse the nature of the outliers (identified with all conditional
returns larger, in absolute value, than 3

√
π/2) to decide whether they are

more likely to represent jumps in returns or in volatility.
In order to investigate how persistent the increased volatility consequent

to a jump turns out to be, the regression (| rt+1 | −σ∗
t+1) = a+b(| rt | − | r̄ |)

has been run at a 5-minute level on both the entire sample and the subsample
where rt are all outliers. The estimated coefficients of a = −0.014 (s.e.
0.010) and b = 0.027 (s.e. 0.014) for the entire sample and a = 0.03 (s.e.
0.058) and b = 0.109 (s.e. 0.017) for the outliers suggest that the impact of
the jumps seems to persist and not to die out immediately as the nature of
jumps in returns would predict. The inspection of the temporal distribution
of the outliers highlights a significant clustering in the incidence of jumps,
which contradicts the i.i.d. assumption made for jumps in returns. Our
empirical results indicate that the outliers exhibits more the features of
jumps in volatility than those of jumps in returns.38

The continuous time process for the dynamics of intraday volatility then
becomes:

d ln(σs,t) = −αsdt ln(σs,t) + βs

√
dtdWs,t +

N(t)∑
i=1

Yi − λdtE[Y ] (10)

where N(t) denotes the total number of jumps in dt (arrivals of a Poisson
process with intensity λ) and Yi are i.i.d. random variables corresponding to
the Poisson jump magnitudes.39 In order to fit the discrete version of this
stochastic volatility model into our grid structure, we need to work with
jumps of discrete size (i.e. Yi will have a discrete distribution), expressed
as a multiple of our step size ∆r. To simplify the analysis, jump sizes and
intensities are assumed to be constant.

The discrete values for the jump magnitudes and the respective intensi-
ties are obtained via calibration with the empirical features of the outliers.

38This is in line with some recent findings which point out how models with diffusive
stochastic volatility and jumps in returns are incapable of capturing the empirical features
of equity returns (see Pan [2002], Bates [2000], Duffie, Singleton and Pan [2000], Eraker,
Johannes and Polson [2003]). A more rigorous specification would also allow for jumps
in returns. For simplicity, here we restrict our attention to jumps in volatility, which still
yields good results.

39A compensated jump process has been chosen to maintain the mean of the volatility
process unchanged.
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Our outliers can be roughly grouped into three categories: small (up to 6
standard deviations), medium (between 6 and 12 standard deviations) and
large (above 12 standard deviations). This suggests three possible kinds of
jumps in volatility: a small jump, of size equal to 3∆r which, given our log
volatility model, is roughly equivalent to an outlier in conditional returns
of 4 standard deviations; a medium jump of size 10∆r, corresponding to
8 standard deviations; a large jump of size 20∆r roughly equivalent to 22
standard deviations. A simple investigation of the frequency of outliers re-
veals that, on average, a jump occurs every other week, therefore we choose
λ = 1/10 as our overall jump intensity expressed on a daily basis. A more
detailed analysis of the frequency of jump incidence for each group (given
by the number of jumps occurred within that group divided by the total
number of days in the sample) returns frequencies of 0.00729 (= 7/960) for
large jumps, 0.027 (= 26/960) for medium jumps and 0.0708 (= 68/960) for
small jumps. On the basis of these empirical frequencies, properly rescaled
by the overall jump intensity λ = 1/10, we derive probabilities of jump in-
cidence for each group equal to pl = 8% for the biggest jumps, pm = 27%
for intermediate jumps and ps = 65% for small jumps.40

Once the jump sizes and intensities have been specified, the Bayesian
filtering procedure illustrated in the previous section can be entirely repli-
cated here, with the only difference that the log volatility process evolving on
the grid is now the mean reverting model augmented by the jumps compo-
nent. Therefore, the transition probabilities must be recomputed, following
Amin [1993] (details in Appendix A.2). The values for log volatility range,
initial probabilities, step size and time step are the same as before. The
estimates for the remaining parameters of the volatility process produced
by our methods are equal to values of αs = 0.7 and βs = 0.24.

As before, we obtain 5-minutes ahead volatility and return density fore-
casts, whose accuracy in both absolute and relative41 terms needs to be
adequately assessed.

4.4 The appraisal of intraday volatility and density estimates

The present section focusses on the assessment of our high frequency volatil-
ity and return density estimates through the implementation of statistical
techniques borrowed from both point and density forecast evaluation prac-
tice.

Point forecast evaluation techniques are used to assess the 5-minute
40To ensure that our choices of jumps sizes and intensities are not too arbitrary, we

have replicated the analysis using alternative values obtained from different groupings of
the outliers. As long as we allow for at least three kinds of jumps in volatility, the results
do not differ too much.

41In comparison with constant intraday estimates and changing intraday estimates with-
out jumps.

21



volatility estimates, through a comparison with the absolute value of de-
meaned, de-seasonalised high frequency unconditional returns, taken as a
proxy of the actual intraday volatility level. In line with the existing litera-
ture on volatility forecasts evaluation,42 we first regress the absolute return
on the volatility prediction, |rt/s| = α + βσ∗

t + εt. The forecast is unbiased
only if α = 0 and β = 1 and, what is most important for a good prediction,
has got small forecast errors if the standard error of the regression is small
and R2 is large. However, the presence of a strong noisy component in our
volatility proxy induces very high standard errors and very small R2 coeffi-
cients: the regression performed on returns simulated from exact volatility
forecasts returns a standard error of 0.6687 and R2 = 0.2244.

We also report a measure P of the proportion of volatility explained
by the forecasts, first introduced by Blair, Poon and Taylor [2001], which
compares the amount of variations in the forecast errors with that in actual
volatility, according to:

P = 1 −
∑

(|rt/s| − σ∗
t )

2

∑
(|rt/s| − E[|rt/s|])2

Values closer to one indicate better forecasts, with a small variation in the
forecast errors. Finally, a standard Mean Absolute Deviation measure, de-
termined as simple average of the absolute deviations of the volatility fore-
casts from the volatility proxies, is computed.

The findings from the point forecast evaluation of constant and changing
5-minute volatility estimates are displayed in Table 5. As expected, the
results indicate a very poor forecasting performance in all cases, but we
should keep in mind that they are heavily distorted by the noise in the high
frequency absolute returns. In a relative comparison, the forecasts updated
on an intraday basis (with and without jumps) perform significantly better
than the ones updated on a daily basis, as suggested by a smaller standard
error (0.77 against 0.96) and a higher R2 (0.16 against 0.09) of the regression,
as well as by a higher value of the P statistic (0.14 vs. 0.09) and a slightly
smaller MAD (0.635 against 0.64).

Density forecasts evaluation techniques are employed to evaluate the in-
traday density forecasts for the returns.43 Following a standard procedure,
first applied to density forecast evaluation problems by Diebold, Gunther

42See, for a comprehensive review, Granger and Poon [2003].
43We briefly recall what our intraday density forecasts for the returns look like, under

the assumption of normally distributed conditional returns. When the volatility forecasts
stay the same across the day, the 5-minutes ahead density forecast for the unconditional
returns on each of the intraday intervals is given by a Gaussian with zero mean and
standard deviation equal to the forecasted volatility for that day multiplied by

√
π/2. For

changing intraday volatility forecasts, the density forecast for the returns is represented
by the mixture of normal densities derived in the previous section.
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and Tay [1998], from the sequence of 5-minutes ahead density forecasts ft(r),
we derive the series of the probability integral transforms of the realised in-
traday unconditional returns taken with respect to the corresponding density
forecasts as follows:

zt =
∫ rt/s

−∞
ft(r) dr (11)

If the forecasts and the true densities coincide, then the sequence of PITs
is distributed as i.i.d. U(0, 1). Equivalently, the sequence of transformed
PITs, where a transformation to normality is applied to the PITs series (see
Berkowitz [2001]), follows an i.i.d. N(0, 1).

To guarantee more robust results against possible misspecifications of dif-
ferent type in the forecasted distributions, several goodness-of-fit techniques
have been implemented. The popular Kolmogorov-Smirnov, Anderson-Darling
and Watson statistics have been chosen to test for uniformity. The normality
is assessed via Jarque-Bera and Doornik-Hansen tests, as well as via normal
Q-Q plots. Two likelihood ratio tests are performed to test for indepen-
dence (LR1) and for the joint hypothesis of independent observations with
zero mean and unit variance (LR2). Since the size of our sample is huge
(82 observations for 960 days), virtually any distributional forecast, even a
very good one, can be easily rejected. To overcome, at least partially, this
problem, we have sorted our sample in four subsamples according to the
level of the volatility forecast.

The results from the density forecasts tests on both the entire sample and
the four groups are reported in Table 6. The null hypothesis that the return
density forecasts represent accurate predictions of the actual distribution of
unconditional returns is generally rejected by all our goodness-of-fit statistics
on the entire sample as well as on the four subsamples, for both constant and
changing intraday volatility estimates. However, a substantial improvement
is recorded in the production of density forecasts when volatility estimates
are updated every 5 minutes, which becomes even more striking when jumps
are introduced in the volatility process. The values of the goodness-of-fit
statistics (especially of the normality tests) are now much closer to their
critical values and the normal Q-Q plots for the case of changing volatility
estimates (Fig. 12 and 13) display empirical quantiles fairly close to the
normal ones, especially for the model with jumps. More specifically, it seems
that the fat-tailness induced by the jumps in volatility corrects for most of
the misspecification in the tails recorded for both the daily updating method
and the intraday method without jumps.

To summarise, in the light of our findings, we can conclude that in order
to produce accurate volatility and return density estimates at an intraday
frequency, we need to rely on a non-linear filtering technique where the
forecasts are updated every 5 minutes on the basis of the current value
of unconditional returns observed in the market. Also, a simple diffusion
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process for the intraday volatility is not appropriate and a specification
which allows for jumps is to be preferred.

A stochastic volatility model of the kind in (5) which works well at both
high and lower frequency level can be obtained by combining the perma-
nent component whose parameters are estimated on a daily basis with the
transient component (with jumps) whose parameters are estimated on a
non-linear intraday filtering model.

5 A Monte Carlo Simulation Exercise

Throughout the previous section the relevant features in the evolution of
the observed returns have been carefully isolated, studied and modelled: all
the individual components have then been assembled together to produce a
complete 5-minute continuous time model as follows:44

rt = siσtεt (12)
dMt = θ(ln(St−1) − Mt−1)dt

ln σt = κ(ln(St−1) − Mt−1) + ln σs,t + ln σl,t

d ln(σs,t) = −αsdt ln(σs,t) + βs

√
dtdWs,t +

N(t)∑
i=1

Yi − λdtE[Y ]

d ln(σl,t) = −αldt ln(σl,t) + βl

√
dtdWl,t

In order to: 1) test whether the dynamics of unconditional high frequency
returns generated from our model in (12) does actually mirror the empirical
one; 2) assess whether our simple estimation procedure produces reliable
estimates, we perform a simple Monte Carlo simulation experiment.

A number of 82 intraday unconditional returns is generated each day for
a total of 960 days according to the model in Equation (12) where:

• The deterministic seasonal coefficients are given by their smoothed
estimates.

• The parameters for the leverage component are those estimated at a
daily level in Section 4.2.

• Realisations of the stochastic volatility are generated from the two-
factor model where both components have Gaussian innovations and
the parameters are estimated on a daily basis for the permanent com-
ponent and on an intraday basis with jumps for the transient compo-
nent.

44Again, t denotes time on a 5-minute, and not daily, basis, and dt indicates the intraday
interval.
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• Realisations of the conditional returns are obtained by sampling from
the Gaussian density N(0,

√
π/2).

For simplicity, we only simulate five full samples. In fact, when the
focus in on assessing whether our data set could actually represent a random
sample generated from the model, we restrict the comparison between the
features of the simulated returns and those of the empirical data to one
sample only. Instead, all five samples are employed to assess the estimation
technique.

We start by looking at the plots of higher moments, skewness and ex-
cess kurtosis, computed across the time series of high frequency returns for
each of the intraday intervals, which indicate very similar values for both
simulated and observed returns (Fig. 14). We then aggregate the simulated
high frequency values to derive daily log volatility proxies as averages of ab-
solute de-meaned, de-seasonalised returns, and daily measures of leverage.
The time series of these daily simulated variables (Fig. 15, bottom) are
contrasted with their daily empirical counterparts (Fig. 6, bottom) to check
for possible significant differences in the evolution of simulated and observed
volatility proxy and leverage measure. The dependence between log volatil-
ity and leverage component from simulated data has also been investigated,
via scatter plot (Fig. 15, top) and computation of the correlation coefficient,
equal to ρ = −0.533. The results are very encouraging, since both the tem-
poral evolution of simulated volatility proxy and leverage measure and their
correlation structure closely resemble the empirical ones. These findings at
high frequency, as well as daily, level, suggest that the model in (12) seems
capable of capturing and replicating the most significant features observed
in futures equity returns.

To evaluate the adequacy of the estimation techniques employed so far,
we have derived estimates of our model from each of the five simulated sam-
ples and compared the resulting parameters with the actual parameters of
the data generating process. Following the steps of our data analysis, we
start by investigating the seasonal component, whose pattern (not reported
here) is indistinguishable from the one shown by the market data for all
five simulated samples. Daily measures of log volatility and leverage com-
puted on simulated data are then used to obtain estimates for the leverage
model through the regression in 3 and for the two-factor stochastic volatility
model via Kalman filter on the residuals from the previous regression. The
estimates, displayed in Table 7, are in all cases very close to the original
parameters of the process from which the samples have been simulated, and
only the mean reversion parameter of the transient volatility component is
slightly underestimated in all samples. In relative terms, the larger (but still
quite small in absolute terms) dispersion can be observed for the estimates
of the parameters of the permanent volatility component.

As before, the non-linear filtering technique with intraday updating of
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volatility and return density estimates is implemented in order to refine
the high frequency volatility process. First we produce estimates of the
volatility specification without jumps and we employ the resulting volatility
forecasts to obtain a series of conditional returns. Again the inspection of the
outliers provides us with information on the characteristics of the jumps. For
simplicity, we maintain the discrete magnitudes of the three kinds of jumps
unchanged (equal to 3∆r, 10∆r and 20∆r, with ∆r = 0.1) and we only
re-estimate the overall and the individual jump intensities on the basis of
their frequency of incidence. Finally, we re-estimate the parameters of mean
reversion and volatility of volatility on the grid. The estimates for the log
volatility process with jumps, shown in the bottom part of Table 7, are fairly
satisfactory since they turn out to be quite close to the actual parameters
of the data generating process. However, we can detect an underestimate of
both the overall incidence of jumps, with jumps occurring every 3 or 4 weeks
for four out of five simulated samples, and the intensity of the biggest jumps,
since no evidence of the presence of large jumps can be found for two samples.
The mean reversion and volatility parameters of the diffusion component
seem also to be a little underestimated. On the whole, our findings suggest
that the estimates produced by applying our simple techniques are quite
reliable and adequate for our purposes.

6 Conclusions and Further Work

In the present work we have attempted to build a simple, although accurate,
continuous time model capable of describing and replicating the dynamics
of both high and moderate frequency index returns, by performing a careful
analysis of a set of intraday data, aimed at: 1. identifying the relevant
features that need to be modelled; 2. investigating the best possible model
specification, without imposing too much structure a priori and by testing
step by step the assumptions made.

At the conclusion of our analysis we propose a model where the sea-
sonal intraday volatility component is deterministic and constant through
time, the stochastic volatility component follows a two-factor mean revert-
ing process with jumps in the transient factor, where volatility forecasts are
updated every 5 minutes and the conditional return distribution is Gaussian
and fairly constant across the subintervals.

An additional attractive feature of our work is that from the general
model specification, which is consistent for both high and moderate fre-
quency data, we can easily obtain simplified versions which have the correct
properties for the specific time horizon of interest. This aspect would deserve
further investigation.
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A Transition probabilities for the high frequency
volatility process

In what follows we derive the transition probabilities between volatility val-
ues, associated with the discretised versions of the two continuous time pro-
cesses (without and with jumps) chosen in 4.3 to model the dynamics of
intraday volatility.

A.1 Diffusion model

The discrete analogous of the continuous time model proposed to describe
the evolution of 5-minute volatility, obtained via Euler discretisation,45 is
given by:

∆ ln(σs,t) = −αs∆t ln(σs,t) + βs

√
∆tωs

with ωs ∼ N(0, 1). In order to fit this structure into our non-linear fil-
tering technique, we let each log volatility value in our range ln(σj) for
j = 2, . . . , N − 1, evolve according to a trinomial tree. Between t and t+∆t
the log volatility (equal to ln(σi) in t) can go up by the amount ∆r (step
size) to level ln(σi−1) with probability pu, down by −∆r to level ln(σi+1)
with probability pd or stay at level ln(σi) with probability pe. Here we as-
sume that both the transition probabilities pu, pd, pe and the step size are
constant. Following a standard procedure, the transition probabilities are
obtained by equating the first two moments of the discrete time process to
the corresponding moments of the continuous time model:

pu∆r + pd(−∆r) = E[∆ ln(σi)] = −αs∆t ln(σi)
pu(∆r)2 + pd(−∆r)2 = var[∆ ln(σi)] + E2[∆ ln(σi)] = β2

s∆t + [−αs∆t ln(σi)]2

pu + pd + pe = 1

for i = 2, . . . , N − 1. For i = 1, p
(1)
e = pe and p

(1)
d = 1 − p

(1)
e and, similarly,

for i = N , p
(N)
e = pe and p

(N)
u = 1−p

(N)
e . ∆r should be chosen close to three

times the standard deviation of the continuous model (βs

√
dt) to ensure an

adequate representation of the process in a discrete framework.

A.2 Jump diffusion model

The discrete time version of our process for intraday stochastic volatility
with jumps is given by:

∆ ln(σs,t) = −αs∆t ln(σs,t) + βs

√
∆tωs +

N(∆t)∑
i=1

Yi − λ∆tE[Y ]

45In this context, the Euler discretisation should not introduce a significant bias, since
we work with high frequency data, which are frequently spaced.
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The probability of a generic jump occurring in a time step ∆t is equal
to λ∆t and we assume that multiple jumps cannot happen in a single time
step. As before, the step size is equal to ∆r. Let pl denote the probability
of a large jump of size 20∆r, pm the probability of an intermediate jump of
10∆r and ps = 1 − pl − pm the probability of a small jump of size 3∆r.

Between t and t+∆t the log volatility (equal to ln(σi) in t) can evolve ac-
cording to the trinomial structure analysed before, with probability 1−λ∆t
(no jumps occurring), or it can jump up by 3∆r, 10∆r or 20∆r with proba-
bilities λ∆tps, λ∆tpm, λ∆tpl, respectively. Again, the transition probabili-
ties are obtained by equating the first two moments of the discrete and the
continuous time process:

(1 − λ∆t)(pu∆r + pd(−∆r)) + λ∆t(ps3∆r + pm10∆r + pl20∆r) =
−αs∆t ln(σi)

(1 − λ∆t)(pu(∆r)2 + pd(−∆r)2) + λ∆t(ps(3∆r)2 + pm(10∆r)2 + pl(20∆r)2) =
β2

s∆t + λ∆t(ps(3∆r)2 + pm(10∆r)2 + pl(20∆r)2) + [−αs∆t ln(σi)]2

pu + pd + pe = 1

with the following restrictions dictated by the grid structure:

• λ = 0, p
(1)
e = pe, pu = 0 and p

(1)
d = 1− p

(1)
e for i = 1 (highest volatility

value, no possibility of upward movements).

• λ = 0 for i = 2, 3 (no possibility of jumps).

• ps = 1, pm = pl = 0 for i = 4, . . . , 10 (only small jumps possible).

• pm = 1 − ps, pl = 0 for i = 11, . . . , 20 (only small and intermediate
jumps possible).
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Table 1: Summary sample statistics for intraday returns.

Unconditional Intraday Returns

5-minute Overnight
Mean -9.95E-09 0.0002
Std. Dev. 0.121% 0.575%
Skewness 0.883 -0.378
Excess Kurtosis 35.476 3.044

Unconditional De-seasonalised Intraday Returns

5-minute Overnight
Mean -1.15E-05 1.9E-17
Std. Dev. 1.409% 1.408%
Skewness 0.908 -0.378
Excess Kurtosis 35.622 3.044

Table 2: First order serial correlation of intraday returns.

1997-98 1999 2000 2001

Serial correlation -0.0793* -0.0901* -0.0491 -0.0364
Critical value -0.0372 -0.0423 -0.0493 -0.0570
Estimated BA spread (%) -0.064% -0.064% -0.059% -0.053%

* statistically significant at 5% confidence level.
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Table 3: Tests for equality of seasonal volatility patterns.

Subsamples % of rejection Average value ratio Std. dev. ratio
mean equality test intraday coeff. intraday coeff.

Monday 0.0% 1.002 0.057
Tuesday 12.20% 0.998 0.075
Wednesday 2.44% 0.998 0.056
Thursday 0.0% 1.002 0.055
Friday 4.88% 1.001 0.064
First-second half 12.20% 1.004 0.074
High-low volatility 7.32% 1.000 0.064

Table 4: Coefficient estimates for two-factor AR(1) model.

ρ α(= 1 − ρ) β2 Half life Unconditional var.
in days β2/(1 − ρ2)

Transient 0.261 0.739 0.044 0.94 0.046
(0.095) (0.570)

Permanent 0.982 0.018 0.0019 37.50 0.051
(0.008) (0.321)
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Table 5: Comparison intraday volatility estimates.

Daily 5-minute 5-minute with jumps

Regression
alpha -0.0164* -0.0421 -0.0487

(0.0139) (0.0097) (0.0083)
beta 1.0505 1.0252 1.0416

(0.0158) (0.0207) (0.0173)
S.E. regression 0.9620 0.7653 0.7786
R2 0.0895 0.1677 0.1596

P-statistic 0.0882 0.1429 0.1387

MAD 0.6433 0.6343 0.6364

* not significantly different from zero at 5% level.
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Table 6: Distributional forecast evaluation.

Uniformity tests Normality tests LR tests

K-S A-D Watson J-B D-H LR1 LR2
(1.36) (2.49) (0.19) (5.99) (5.99) (3.84) (7.81)

Entire sample
(78720 obs)
Daily 3.76* 65.66* 3.32* 13,995* 8,255* 249.18* 1,418.0*
5-minute 3.67* 31.66* 4.66* 2,271* 1,733* 2.36 4.36
5-m. jumps 3.90* 41.17* 6.23* 895* 751* 1.23 5.29

4 Subsamples
Daily
Low vol. 2.08* 19.99* 1.09* 3,452* 1,948* 51.78* 348.61*
Medium low 2.19* 17.87* 1.32* 2,724* 1,698* 62.80* 277.21*
Medium high 2.48* 15.83* 0.75* 2,322* 1,503* 68.76* 359.43*
High vol. 2.62* 15.83* 0.67* 5,844* 3,127* 67.04* 445.56*

5-minute
Low vol. 2.79* 18.59* 2.69* 975* 693* 2.37 14.58*
Medium low 2.40* 13.18* 1.96* 686* 497* 1.06 5.16
Medium high 2.08* 7.64* 1.04* 312* 252* 2.11 5.54
High vol. 2.88* 3.52* 0.50* 425* 345* 1.41 11.91*

5-m. jumps
Low vol. 3.61* 24.34* 3.99* 480* 373* 2.58 33.04*
Medium low 2.42* 13.89* 2.07* 244* 196* 0.55 6.68
Medium high 2.07* 5.84* 0.80* 152* 133* 0.20 2.60
High vol. 2.92* 3.65* 0.59* 120* 108* 0.71 8.51*

* rejected at 5% level.

32



Table 7: Estimates from simulated samples.

Samples 1 2 3 4 5 Avg. Std.Dev. Data

Daily model

κ -4.74 -4.02 -4.94 -3.89 -4.15 -4.35 0.464 -4.34
αs 0.632 0.608 0.683 0.647 0.666 0.647 0.029 0.734
αl 0.024 0.023 0.035 0.010 0.013 0.021 0.010 0.018
βs 0.179 0.220 0.203 0.235 0.231 0.214 0.023 0.210
βl 0.042 0.032 0.059 0.052 0.047 0.046 0.010 0.043
ρ -0.55 -0.45 -0.57 -0.45 -0.48 -0.50 0.057 -0.545

Intraday model

αs 0.7 0.6 0.6 0.6 0.7 0.64 0.055 0.7
βs 0.21 0.22 0.20 0.24 0.21 0.216 0.015 0.24
ps 0.7 0.6 0.7 0.65 0.76 0.682 0.060 0.65
pm 0.3 0.32 0.27 0.35 0.20 0.288 0.057 0.27
pl 0.0 0.08 0.03 0.0 0.04 0.03 0.033 0.08
λ 0.066 0.05 0.10 0.066 0.05 0.066 0.020 0.10
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Figure 1: Intraday patterns of average returns and volatility.

34



800 1000 1200 1400 1600
0.5

1

1.5
Monday

800 1000 1200 1400 1600
0.5

1

1.5
Tuesday

800 1000 1200 1400 1600
0.5

1

1.5
Wednesday

800 1000 1200 1400 1600
0.5

1

1.5
Thursday

800 1000 1200 1400 1600
0.5

1

1.5
Friday

800 1000 1200 1400 1600
0.5

1

1.5
Overall

Figure 2: Seasonality patterns for days of the week.
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Figure 4: Smoothed B-spline estimation of seasonal coefficients.
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Figure 9: Standard deviation and excess kurtosis of conditional returns -
constant intraday volatility estimates.
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Figure 10: Intraday and interday serial correlation of absolute returns.
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Figure 11: Standard deviation and excess kurtosis of conditional returns -
changing intraday volatility estimates.
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Figure 12: Normal QQ plots - return density forecasts with changing intra-
day volatility without jumps.
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Figure 13: Normal QQ plots - return density forecasts with changing intra-
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Figure 14: Skewness and excess kurtosis for intraday simulated returns.
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