The Risk Anomaly and Corporate Finance

Malcolm Baker

Harvard Business School, NBER, Acadian Asset Management

Jeffrey Wurgler, Brendan Bradley, Ryan Taliaferro

1

Two Facts You Already Know

- The equity premium puzzle: The salient "beta" risk across asset classes is compensated, to a greater extent than simple models of expected utility would predict
- The risk anomaly: The more subtle "beta" risk within asset classes appears to be relatively neglected

1 3

Misspecification or Mispricing

- One strand of asset pricing aims to resurrect market efficiency, linking only that which does predict returns to subtler notions of risk
- The other strand accepts these as evidence of market mispricing, linked to a combination of institutional and individual behavior and the limits to arbitrage
 - Behavioral finance replaces rational and frictionless asset pricing
- Both seem defensible, but this talk is going to take the second point of view as a starting point

The Idea

- Suppose investors neglect risk, overvaluing high risk stocks and undervaluing low risk stocks
- At low levels of leverage and asset risk, increasing debt lowers the cost of capital by lowering the risk-adjusted cost of equity
- At high levels of leverage and asset risk, increasing debt shifts risk from equity where it is overvalued to debt where it is not
- Absent tax benefits or costs of financial distress, this leads to an interior optimal leverage ratio
 - Consistent with a range of facts: Corporate leverage, private equity, venture capital, bank capital regulation

Plan

- Assumption 1: Is there a risk anomaly?
- Assumption 2: Is there an integrated risk anomaly?
- The risk anomaly and capital structure
- Two anecdotes
- Applications: Corporate leverage, private equity, venture capital, bank capital regulation

7

The Risk Anomaly

8

The Risk Anomaly

- A possible market inefficiency, namely that low beta stocks do not earn commensurately lower returns
- A long tradition in tests of the CAPM
 - Black (1972), Black, Jensen, and Scholes (1972), Haugen and Heins (1975), and Fama and French (1992) find flat relationship between beta and return

$$r_e = \gamma(\beta_e - 1) + r_f + \beta_e r_p$$

Where $\gamma < 0$ measures the flatness of the security market line and $\gamma < -r_p$ indicates that the risk-return relationship is inverted

9

The Risk Anomaly Buy and hold value-weighted returns for CRSP, sorted into three FF-sized groups by trailing beta 30% 20% 16.0% 23.6% Low Risk -Medium -High -20% -30% 1967 1977 1987 1997 2007 Year

The Risk Anomaly

- Maybe this is the wrong measure of risk
 - It is true that the CAPM is built on imperfect assumptions
 - But, beta sorts deliver lower risk, by almost any measure
- And, the risk anomaly holds within industries, so high beta stocks would have to be hedges without relying on different asset risk
- Maybe this is a fluke of the historical data
 - It is true that this anomaly is less robust than value versus growth
 - But, it works in international, developed markets back to 1989
- And, much of this post-dates the first empirical tests in the 1970s
- Reminder: Could be misspecification of risk or mispricing, but this talk is going to take the pricing to be real and anomalous

13

Drivers of the Anomaly

- Individual demand for securities
- Risk seeking: Lottery preferences
- Risk seeking: Representativeness
- Risk seeking: Overconfidence and short sales constraints
- Risk neglect: Categorization
- Limits to institutional arbitrage
 - Risk seeking: Mutual fund flows and incentives
 - Risk neglect: Benchmarking

Plan

- Assumption 1: Is there a risk anomaly?
- Assumption 2: Is there an integrated risk anomaly?
- The risk anomaly and capital structure
- Two anecdotes
- Applications: Corporate leverage, private equity, venture capital, bank capital regulation

16

Is There an Integrated Risk Anomaly?

Is There an Integrated Risk Anomaly? • Modigliani and Miller does not depend on a rational tradeoff between risk and return, but rather market integration $\gamma(\beta_c - 1) + r_f + \beta_c r_p$ — Security Market Line — Equity — Debt $0.0 \quad 1.0 \quad 2.0$ Beta

 A somewhat more formal test of whether corporate bond alphas are consistent with the risk anomaly in stocks

Basis Points	Bottom 30%		Top - Bottom 30%		Corporate – Bottom 30%		Extrapolated Corporate – Bottom 30%	
	Coef	[t]	Coef	[t]	Coef	[t]	Coef	[prob]
CAPM Regression	s, January 193	1-December	r 2012					
Market	0.71	[63.79]	0.80	[50.64]	-0.63	[-39.63]		
Intercept	13.6	[2.24]	-35.1	[-4.09]	3.8	[0.45]	27.5	
Difference							-23.6	[p =0.036]
R-Squared								0.8899

Plan

- **Assumption 1:** Is there a risk anomaly?
- **Assumption 2:** Is there an integrated risk anomaly?
- The risk anomaly and capital structure
- Two anecdotes
- Applications: Corporate leverage, private equity, venture capital, bank capital regulation

22

The Risk Anomaly and Capital Structure

23

The Risk Anomaly and Capital Structure

- Two key assumptions for this to matter for corporate finance
- 1. There is a risk anomaly

$$r_e = \gamma(\beta_e - 1) + r_f + \beta_e r_p$$

2. Debt and equity are segmented markets

$$r_d = r_f + \beta_d r_p$$

or
$$r_d = \gamma_d(\beta_d - \beta^*_d) + r_f + \beta_d r_p$$
 with $\gamma_d < \gamma$

The Risk Anomaly and Capital Structure

· Optimal capital structure minimizes the cost of capital

WACC =
$$Er_e + (1-E)r_d$$

= $r_f + \beta_a r_p + \gamma \beta_a r_p - \gamma [E + (1-E)\beta_d(\beta_{a'}E)]$
FOC: $0 = -\gamma [1 - \beta_d(\beta_{a'}E) + (1-E)\beta'_d(\beta_{a'}E)]$

- Result 1: Existence, not extent of the risk anomaly matters
 - · Somewhat of a technicality, because there are no other frictions
- Result 2: Firms will issue as much risk-free debt as they can
- **Result 3:** $dE/d\beta_a > 0$ Optimal level of capital is rising in β_a
 - Because of the risk anomaly in equities, optimal to locate risk there... inefficient risk allocation dominates at high leverage
 - · Optimal policy looks a bit like targeting a credit rating

nation

Two Case Studies

- At low levels of underlying asset risk... think about a leasing company like Textainer
 - At 100% equity with no debt, the equity will be undervalued
- Replacing an initial 10% of equity with debt does two things:
- 1
- 10% of the capital (debt plus equity) goes from being undervalued to being fairly valued

AND

 The remaining 90% of the capital becomes riskier, and so it moves from being more undervalued to being less undervalued because of the risk anomaly [29]

Low Leverage Despite Taxes

- At high levels of underlying asset risk... think about technology company like Linear
 - At 100% equity with no debt, the equity will be overvalued
- Replacing an initial 10% of equity with debt does two things:

 10% of the capital (debt plus equity) goes from being overvalued to being fairly valued

AND

 The remaining 90% of the capital becomes a little bit riskier, but not as much as for a firm with low asset risk because the debt shares in the risk of the firm at much lower levels of leverage [30]

Plan

- **Assumption 1:** Is there a risk anomaly?
- Assumption 2: Is there an integrated risk anomaly?
- The risk anomaly and capital structure
- Two anecdotes
- Applications: Corporate leverage, private equity, venture capital, bank capital regulation

31

Applications

(22

Plan

- Assumption 1: Is there a risk anomaly?
- Assumption 2: Is there an integrated risk anomaly?
- The risk anomaly and capital structure
- Two anecdotes
- Applications: Corporate leverage, private equity, venture capital, bank capital regulation

38

The Risk Anomaly Tradeoff of Leverage

 Two facts that you already knew... the "equity premium puzzle" and the failure of the CAPM

The Risk Anomaly Tradeoff of Leverage

- Two facts that you already knew... the "equity premium puzzle" and the failure of the CAPM
- This could be misspecification of risk or mispricing
- If the pricing is both real and anomalous, there is a "risk anomaly tradeoff" of leverage
- A simple model that can explain a number of patterns in corporate capital structure... and other patterns, in structured finance, bank leverage, private equity, venture capital
- And one that is easy to square with what CFOs, bankers, private equity investors say about the benefits of leverage