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Abstract:
We analyze the implications of the introduction of disappointment averse

agents on the financial markets. The underlying intuition is that agents
take account for the potential disappointment of their decisions, in particu-
lar when they invest on the stock market. After having defined the concepts
of disappointment aversion, we show that in our framework a disappointment
averse agent is pessimistic. We then explore the consequences of disappoint-
ment aversion and pessimism on the CAPM and the C-CAPM. We finally
study a Lucas asset pricing model that is standard, except that the repre-
sentative agent is supposed to be disappointment averse. Using a constant
marginal utility function, we show that the model can account for both large
equity risk premia and low risk-free rates. It may so be viewed as a solution
to the equity premium puzzle

Keywords: Behavorial Finance, Disappointment, Equity Premium Puz-
zle, Pessimism.
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1 Introduction

This paper focuses on the equity premium puzzle highlithed by Mehra and

Prescott (1985). That puzzle refers to the seeming inability of standard

dynamic asset pricing models to explain the average equity premium observed

in the US markets. In particular, they showed that reasonable configurations

of the preference parameters1 embbeded in a Lucas (1978) consumption-

based asset pricing model (hereafter CCAPM) cannot produce high enough

equity premia. The only way for producing large equity premia is to consider

large value (more than 50) for the relative risk-aversion coefficient. But

the acceptation of such values as a correct description of the representative

consumer behavior leads to an another puzzle, namely the riskfree rate puzzle

identified by Weil (1989).

The CCAPM is the classic model for asset pricing in a dynamic frame-

work. The level of equity risk in that model is based on the covariance

of asset returns with per capital consumption. The equity premium puz-

zle comes from the relative low value of that latter covariance found in the

data. Therefore, producing a sufficiently high intertemporal marginal rate of

substitution requires very large values for the risk aversion parameter.

The model used by Mehra and Prescott is based on three main assump-

tions.2 Comments on these assumptions can be found in the excellent lit-

erature survey of Kocherlakota (1996). The different attempts to solve this

puzzle have focused on relaxing one or the other of these three assumptions.

1The relative risk aversion parameter and the psychological discount factor.
2i) Expected Utility Maximizer;
ii) Asset markets are complete;
iii) Asset trading is costless.
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Our paper belongs among the ones that try to generalize the preferences of

the representative consumer to account for both the equity premium and the

risk-free rate puzzles.

There is a large body of works that took the previous way. One of the

most successful follows the initial work of Constantinides (1990) and intro-

duces a property of habit persistence in the form of a subsistence level for

consumption in the utility function. In the latter, the large variations in

the marginal rate of substitution are due to the fact that small changes in

consumption generate large changes in consumption net of the subsistence

level. Campbell and Cochrane (1999) explore the role of time-varying habit

persistence in the explanation of various moments of asset returns. Never-

theless, they still have to assume implausibly risk averse investors to explain

the equity premium puzzle.

An another way of thinking is the paper of Cechetti, Lam and Mark

(2000). In the latter, they show how the canonical asset pricing model with

particular non rational agents, actually agents who are pessimistic, can solve

both the equity premium and risk-free rate puzzles. But, in addition to that

hypothesis of non rationality of the representative agent, they have to assume

that (s)he is not a bayesian learner.

In that paper, we argue that the agents when facing a risky situation, as

it would be before investing on the stock market, could feel some disappoint-

ment by observing the ex post resolution of the uncertainty. We then think

that a rational agent takes account for the potential disappointment of his

decision.

Preferences that exhibit disappointment aversion have been axiomatized
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by Gul (1991) to offer a solution to the so-called Allais paradox. This is done

by modeling an agent who maximizes a weigthed sum of utility, where the

weitghts deviate from the original probabilities so as to reflect disappointment

aversion. Until now, few attempts have been made for using that kind of

preferences in an asset pricing model. Only Epstein and Zin (1991a) and

more recently Ang et alii (2004) and Routledge and Zin (2004) use that

concept in a financial perspective.

We use a slightly different version of the Gul’s model. Indeed, the Gul

preferences imply technical difficulties by the need of the ex ante calculation

of the certainty equivalent of a lottery. Our framework proposes a way to

get rid of those drawbacks. As Gul does, our decision maker is supposed to

maximize the expected utility of his terminal wealth but the weights he uses

while doing so, are not the original probabilities but transformed probabil-

ities. In our model, the latter probabilities convey directly the property of

disappointment aversion.

A very interesting property of our model is that the more disappointment

averse the decision maker is, the more pessimistic he is. In that sense, our

model may be viewed as a foundation of the Cechetti et alii article, since we

provide the framework for solving the two puzzles considering both the full

rationality of expectations and the existence of bayesian learners.

After having thus defined and decribed our disappointment weighted util-

ity theory, our analysis consists of two steps.

First, we redefine the concepts of risk-aversion and equity premium in

the framework of our theory. We highlight a new term that expresses the

disappointment aversion. We then explore some theoretical implications in
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finance. We establish that an appealing justification of using mean and vari-

ance as choice criteria (or the use of the CAPM for valuation) is the existence

of disappointment averse decision-makers with constant marginal utility. Fi-

nally, we show that the Euler equations derived from the intertemporal equi-

librium model exhibit an intertemporal marginal rate of substitution that is

more volatile than the usual one.3 As we notice above, that latter property

is the principal condition to produce sufficiently high equity premia.

Finally, together with the framework employed by Mehra and Prescott

(1985), we show how our model can help explain the low risk-free rate and

the large equity premium observed in the U.S. data.

The paper is organized as follows: In Section 2, we present the key features

of the model and we examine the consequences of shifting from the original

to the new probabilities on the definition and the properties of risk aversion.

Section 3 explores the characteristics of an equilibrium on financial markets

when agents are disappointment averse, looking at static and intertemporal

equilibria in succession. In Section 4, we apply the Mehra and Prescott (1985)

methodology to our new Euler equations to evaluate the ability of our theory

to solve the equity premium puzzle. Section 5 presents our conclusions.

2 A short description of the disappointment
weighted utility theory

The goal of that paper is not to provide a fully axiomatization of our pref-

erence functional but to present how our particular model can be useful in

3That one obtained by the standard consumption-based asset pricing model with time
separable isoelastic preferences.
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finance. So, in this section, we only present the necessary elements to carry

out the financial implications of our theory.

The concept of disappointment is not new in the literature. Bell (1985),

Loomes and Sugden (1986) and more recently Gul (1991) provide some useful

models that convey this property. Ang et alii (2004) and Routledge and Zin

(2004) provide financial applications of the Gul theory. In that kind of mod-

els, it is suggested that, when facing a risky prospect, an indivudual forms

some prior expectation about that prospect. After the uncertainty is resolved,

the individual experiences one particular consequence of the prospect. If that

consequence falls short of the prior expectation, the individual may feel some

degree of disappointment, whereas if the consequence is better than the prior

expectation, the individual may also feel some measure of elation.

The satisfaction an individual feels after a lottery L has been run, may

then depend on two elements: the expected utility of the outcome and disap-

pointment (or elation). Disappointment can be modelized by the difference

between the ex ante expected value of the utility of the lottery and its ex post

value (EL [u(w)])−u(w)). Thus, the satisfaction of the considered individual

is usually identified to the sum of the expected value of his cardinal utility

function EL [u(w)] and that of a function of disappoinment i.e.:

U(L) = EL [u(w)]−D [EL [u(w)]− u(w)]

The model we use is related to the literature about disappointment al-

though it is somewhat different. In this paper, the satisfaction of an individ-

ual will be assumed to be the expected value of a cardinal utility of outcome,

given that transformed probabilities are used instead of the original ones and
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that the distortion depends on the importance of disappointment. Hence we

shall write:

U(L) = ET (L) [u(w)]

where T (L) is the lottery whose cumulative distribution function F is derived

from that of lottery L, using a change of probabilities (dFT (L)/dFL) which

will be assumed to depend on disappointment: formally:

dFT (L)

dFL
= γL [u(w)− EL [u(w)]]

Following _ and _ (2004), it can be shown that the lottery L1 will be

prefered to the lottery L2 if and only if:

Z +∞

−∞
u(w)

³
1−A(EL1 [u(w)])

(u(w)−EL1 [u(w)])
´
dFL1 (1)

6
Z +∞

−∞
u(w)

³
1−A(EL2 [u(w)])

(u(w)−EL2 [u(w)])
´
dFL2

Under some restrictions about the value of A,4 the term¡
1−A(EL[u(w)]) (u(w)−EL [u(w)])

¢
f(w), where f is the density function

of the lottery L, can be viewed as a change of probability measure. The

term A plays an important role in our theory, since it is one that weights the

degree of disappointment or elation. So, it can be interpreted as the absolute

disappointment aversion of our decision maker.

Therefore, our valuation functional (1) expresses that our individual max-

imizes the expected utility of his wealth but using transformed probabilities

which depend on the level of his disappointment.
4A is also positive.
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A propety of our model is that disappointment averse decision makers

are pessimistic in the sense that the distribution of transformed probabili-

ties is stochastically dominated by the original one. Indeed, in the case of

low outcomes, the term −A(EL[u(w)]) (u(w)−EL [u(w)]) is positive, so that

the probabilities attached at those particular states of nature are well over-

weighted. By contrast, the probabilities attached to the high outcomes are

under-weigthed, since the previous term become negative.

2.1 Two definitions for risk premia and risk aversion

We now turn to studying risk “in the small” i.e. infinitesimal risks. We define

as usual the risk premium of an infinitesimal risk as the difference between

the expected outcome of the lottery and its certainty equivalent. We are led

to the following equality, which is established in Appendix 2:

PR (w)| {z }
TRP

= A(u(w))V ar [ew]| {z }
PRP

−
³
u
0
(w)/(2u

00
(w))

´
V ar (ew)| {z }

COP

TOTAL RISK PREMIUM

= DISAPPOINTMENT PREMIUM

+CONCAV ITY PREMIUM (or Arrow-Pratt Premium)

Each of the two premia is proportional to the variance of the lottery under

review. When the first premium is considered, the coefficient of proportion-

ality only depends on the tastes of the investor since it is equal to A(u(w)),

which characterizes disappointment aversion. Hence, we can write:
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TRA (w) = 2A(u(w))| {z }
DRA(w)

+
³
−u00 (w) /u0 (w)

´
| {z }

ARA(w)

TOTAL RISK AV ERSION

= DISAPPOINTMENT AV ERSION

+ARROW − PRATT RISK AV ERSION

The reason for coefficient 2 to appear is that, according to tradition, we

have defined risk aversion as twice the ratio of the premium to the variance

of the payoffs.

All the preceding results hold “in the small”, i.e. for infinitesimal risks.

We could now generalize Pratt ’s (1964) theorem and cope with risk in the

large. To spare space we limit here, as far as finite risks are considered,

to selecting Markowitz’ point of view, leading to an alternative definition

of a risk premium, i.e.: the difference between the utility of the expected

gain Ep [u (ew)] and the utility U (ew) of the uncertain wealth ew which is but
the expected utility of wealth using the transformed probabilities Eπ [u (ew)].
Hence:

U (ew) = Eπ [u (ew)] = Ep [(1−Ap (u(ew)−Ep [u(ew)]))u (ew)]
= Ep [u ( ew)]−ApV arp [u (ew)]

and, finally:
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u (Ep [ew])− U ( ew)| {z }
TOTAL PREMIUM

≡ u (Ep [ew])−Eπ [u (ew)] (2)

= u (Ep [ew])−Ep [u (ew)]| {z }
MARKOWITZ PREMIUM

+ A(Ep[u( ew)])V arp [u ( ew)]| {z }
DISAPPOINTMENT PREMIUM

The new premium is the sum of two terms: the first, which is Markowitz’

premium, would correspond to the case of a VNM individual. The second

corresponds to the behavior of probability transformation. In the case when

utility is linear the Markowitz premium vanishes whereas the disappointment

reduces to A(Ep[u( ew)])V arp [ew].
2.2 The mean-variance criterion as “dual” theory

A particular case arises when individuals have a constant marginal utility.5

Although we cannot bring here some empirical evidence, we think it is prob-

ably a very frequent situation in the daily life. Indeed, institutional investors

are likely to have both a marginal utility close to one and to feel disappoint-

ment when they observe their performance. Considering equation (2) and

assuming a constant marginal utility, the difference between the utility of

expected wealth and its expected utility is:

u (Ep [ew])−Eπ [u (ew)] = ApV arp [u ( ew)]
One can view this relation as a justification of the utilization of the mean-

variance criterion since the equation above can be written as follows:

5The VNM axiomatics cannot suitably deal with this case except for admitting the risk
neutral assumption of all investors.
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U (ew) = Eπ [u ( ew)] = u (Ep [ew])−ApV arp [u ( ew)]
= Ep [ew]−ApV arp [ew]

where A is a decreasing function of Ep [ew]. Then, U (ew) is well an increasing
function of Ep [ew]. and a decreasing function of V arp [ew].
3 Market Equilibrium: Some Illustrations

We now address the issue of market equilibrium with disappointment averrse

individuals. Our analysis is threefold. We first characterize a static mar-

ket equilibrium. We then show that the CAPM can be viewed as a model

corresponding to the dual case of constant marginal utility and of constant

absolute disappointment aversion. Finally, we cope with intertemporal mod-

els and we propose new Euler equations.

3.1 Static market equilibrium

We consider the case of one single period securities market. We assume

there exists a finite set of states of the world with K elements. The value

of each state is revealed to the investors at time t = 1. There are N + 1

assets exchanged on this market. They are labelled with the superscript

n (n = 0, 1, ..., N). Sn
0 will denote the time-0 price of security n, and, Sn

k

(k = 1, ..., K) the time-1 price of security n in the kth state of world.

We assume that the preferences of our consumer market are represented

by an additive and separable utility function, and we suppose he cautiously
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alters the probabilities. Using α−1 as subjective discount factor, his utility

function can be written as follows:

U (w0, ew) = u (w0)+α
−1

KX
k=1

pk (1−A (Ep [u( ew)]) (u(wk)−Ep [u( ew)]))u (wk)

(3)

To spare space, we assume the existence and the uniqueness of a static

equilibrium. Given (3), Appendix 3 provides the equilibrium prices of the

market described above, and we get: So, we get:

Sn
0 =

1

αu0 (w0)

⎛⎝ Ep

h
u
0
( ew) eSn

i
(1−A0V arp [u (ew)])

−2ACovp
³
u
0
(ew) eSn, u (ew)´

⎞⎠ (4)

3.2 Constant marginal utility and constant disappoint-
ment aversion

We turn to the interesting case of both constant marginal utility (u(w) = w)

and constant absolute disappointment aversion (A0 = 0). We can rewrite (4)

as follows:

Sn
0 =

1

α

³
Ep

heSn
i
− 2ACovp

heSn, ewi´
We assume the existence of a risk-free asset. It will be denoted by the

superscript (n = 0), we then have:

1 =
1

α
(1 + r0)⇔ α = 1 + r0

The expected return of the risky assets (n > 0) is given by:
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EP [ern] = r0 + 2ACovP [ew, ern] (5)

At the equilibrium, the risk premium is equal to the product between the

risk aversion and the covariance between the rate return of the asset and the

income of the consumer. To go on with our analysis, we now suppose there

exists a representative consumer. Let us denote M0 and M , the values of

the market portfolio in dates 0 and 1, and θn, the agent’s asset n holdings at

date 0. If the state of world k occurs then the final wealth is:

ewk = β

Ã
W0 − w0 −

NX
j=1

θj0S
j
0

!
+

NX
j=1

θjk
eSj
k =M + β (W0 − w0 −M0)

If r̃M designates the rate of return of the market portfolio, we have M =

M0

¡
1 + r̃M

¢
, and, for the representative consumer:

CovP (ewk, r̃
n) =

NX
j=1

θjkCovP
³eSj, r̃n

´
= CovP (M, r̃n) =M0CovP

¡
r̃M , r̃n

¢
Using this result and Equation (5), we can write for all assets:

EP [r̃
n] = r0 + 2AM0Cov

¡
r̃M , r̃n

¢
(6)

And, for the market portfolio:

EP

£
r̃M
¤
= r0 + 2AM0V ar

£
r̃M
¤

(7)

Note that Cov
¡
r̃M , r̃n

¢
= βnMV ar

£
r̃M
¤
. Using (6) and (7) leads to the

well-known CAPM equation:
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EP [ern] = r0 + βnM
¡
EP

£
r̃M
¤
− r0

¢

It is well-known that, in the VNM universe, the CAPM relation can be

established if and only if at least one of the two following conditions is verified:

—The asset returns are distributed following by laws fully defined from

their two first moments;

—The investors utility functions are quadratic.

Nevertheless, it is well-documented that the second assumption implies a

result invalidated by empirical works: the absolute risk aversion in the Arrow-

Pratt sense is not an increasing function of wealth. The first assumption leads

to consider the normality of the asset returns. But it is contradicted by the

empirical observations even if we consider the interesting Lévy-stable laws.

Hence, it is somewhat paradoxical that the CAPM has been so popular,

that it remains the reference for any empirical work on the stock markets and

that fund managers still continue to use the mean-variance criterion. Such

a paradox can be addressed, if one assumes that investors, especially insti-

tutional investors, who play the most important role on financial markets,

have both a constant marginal utility and a constant absolute disappoint-

ment risk aversion; if so, the market equilibrium must be in accordance with

the CAPM. This justification of the use of the CAPM appears to us more

convincing than that of the one traditionally made, in terms of quadratic

utility functions or normal distributions.
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3.3 The consumption-based asset pricing model with
probabilities alteration:

We can write, using the same labelling as before, the maximization program

of the representative consumer, where wt and Wt respectively represent the

consumption and the wealth of the representative agent at time t:

MAX Eπ,0

∙ ∞P
t=0

α−tu (ect)¸
subject to the budget constraints:

i) Wt =
NP
n=1

θnt S
n
t + ct

ii) Wt+1 =
NP
n=1

θnt S
n
t+1

Note that current wealth Wt is a state variable and that current asset

holdings θnt are the control variables of this program; we can thus write the

following Bellman equation:

U
³
Wt,
−→
S t

´
=MAX| {z }

−→
θ t

⎡⎢⎣ u

µ
Wt −

NP
n=1

θnt S
n
t

¶
+α−1Ep,t

h
γp (Wt+1)U

³
Wt+1,

−→
S t+1

´i
⎤⎥⎦

Appendix 4 provides the resolution of this program. The corresponding

Euler equations are:

Sn
t =

1

αu0 (ct)

⎡⎣ Ep,t

heSn
t+1u

0
(ct+1)

i
(1−A0V arp,t [u (ct+1)])

−2ACovp,t
³
u(ct+1), eSn

t+1u
0
(ct+1)

´ ⎤⎦ (8)
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4 Disappointment and Pessimism and The Eq-
uity Premium Puzzle

In this section we explore the ability of our theory to cope with a well-known

puzzle of the financial literature, namely the Equity Premium Puzzle. In

a seminal paper, Mehra and Prescott (1985) found that the Lucas model

with an expected utility maximizer was not able to account for the average

equity premium over the period 1889-1978. Indeed, with realistic values of

the parameters, the authors could only produce an average equity premium

of 0.35% (instead of 6.18% corresponding to the premium observed in the

US data). They also established that the historical equity premium could

be achieved by the model considering large relative risk-aversion coefficients

(more than 30). However, even if one believes in such values, one cannot get

rid of an another puzzle, namely the risk-free rate puzzle, first identified by

Weil (1989), since the simulated values of the risk-free rate then seem much

too high (more than 15% compared to the historical value of 0.8%).

The main approach used in the literature to solve this puzzle consists

of generalizing preferences of the representative consumer to introduce non-

separabilities in the state space or in the temporal space. Epstein and Zin

(1991b) explore a model using recursive utility functions, while Constan-

tinides (1990) and Campbell and Cochrane (1999) mix in a property of habit

formation with the utility function. Except for Epstein and Zin (1990) who

use the dual theory of choice proposed by Yaari (1987), few authors have

tried to exploit the new theories of decision-making under risk to explain

the behavior of real per-capita consumption and asset returns. Up to 1996

as reported by Kocherlakota, none of these approaches have succeeded in

17



solving the two puzzles, even if a study of Benartzi and Thaler (1995) using

the concept of myopic loss aversion6 in a timeless framework7 provided an

explanation of the equity premium puzzle considering investors who evaluate

annually their portfolio.

Recently, Barberis et alii (2000) using a preference representation with

both CRRA utility function and a function of wealth with a property of loss

aversion were able to explain them. However, though that work appears

very promising, the preference function they use has not been justified by

any axiomatics.

Our theory is very closely related to the article of Cechetti et alii (2000).

In their paper, they show that the standard asset pricing model in which

agents are pessimistic can solve both the equity premium and the risk-free

rate puzzles. To justify that assumption of pessimistic agents, they argue

that they are not fully rational. In addition to that “undesirable” property,

their framework do not permit agents to be bayesian, in the sense that they

can not learn from their past errors.

Our theory provides answers for these two drawbacks. Actually, our ax-

iomatics (See Chauveau et Nalpas, 2000) show that people care about dis-

appointment. The disappointment aversion implies that probabilities of fa-

vorable (unfavorable) events are then under(over)-weighted. So, the more

disappointment averse an agent is, the more pessimistic he is. Moreover,

that property of pessimism is a consequence of a behavior towards risk. So

our model can embed both full rationality of expectations and systematic

6that mixes the concepts of loss aversion and mental accounting.
7It’s due to the property of loss aversion for which the utility is no more defined

over the consumption plan but only over the wealth, what doesn’t allow an intertemporal
consumption-based analysis.
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pessimism.

We use the Mehra and Prescott (1985) framework to estimate the level

of disappointment necessary to produce the observed equity premium and

risk-free rate in the United States data. We then calibrate our new Euler

equations (8) following the Mehra and Prescott methodology. In order to

grasp the only influence of disappointment on equity premia and risk-free

rates, we assume the risk neutrality of our representative agent in the Arrow-

Pratt sense. So the model displays the same number of parameters as the

standard asset pricing model. The relative risk aversion parameter is then

replaced by the disappointment aversion one.

The calibration requires two kinds of parameters: (i) those defining the

preferences of the representative agent,8 and (ii) those defining the considered

technology of the economy.9 The latter parameters are selected so that they

match the sample values for the US economy over the period 1889-1978.

To avoid complex calculations, we make the traditional assumption that

our decision maker has a constant relative disappointment aversion. Figure

1 gives the average simulated equity premia corresponding to the Mehra and

Prescott original model in which, as the authors did, we have introduced

a leverage effect (θ).10. The maximum premium simulated by the Mehra

and Prescott model does not exceed 0.7%. This value is much lower than the

observed equity premium (6.18%) and it is obtained with an induced risk-free

rate close to 4%, which is much higher than that observed (0.8%).

8Her subjective discount factor and her relative disappointment aversion coefficient.
9The average growth rate of the per capita consumption on non-durables and services,

its standard deviation, and its first-order serial correlation.
10We have allowed θ to vary in the interval [0,0.975] in order to produce sufficient high

levels for the second moment of the simulated equity premia.
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In order to compare our results with those of Mehra and Prescott, we

have used similar specifications:

i) we impose a maximal value of 4% for the simulated risk-free

rate, which produces an interval of [0.96,1] for the subjective dis-

count factor of our model;

ii) We limit the values of the simulated equity premia to those

which correspond to a disappointment aversion coefficient less

than 10.

The values of the equity risk premia obtained with our model are plotted

on Figure 1.

Thus, our model is able to produce both high equity premia and low risk-

free rates. It can be considered as a model that solves the equity premium

and the risk-free rate puzzles.
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Figure 1: Simulated Equity Premia for The Disappointment Weighted Utility
Theory

Figure 2:

5 Conclusion

In that paper, we have proposed a preference function based on the concept

of disappointment. We have distinguished two different concepts for describ-

ing the behavior towards risk in our model, which are represented by the

standard risk aversion and the disappointment aversion. The idea underly-

ing our theory is that individuals are disappointment averse, what lead them

to over-weight the probabilities of the lower outcomes and under-weight the

probabilities of the higher ones, so that they are pessimistic.

Finally, we obtained three main results:
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-(i) the risk premium is the sum of the Arrow-Pratt premium, which

, in reality, is only a concavity premium, and a disappointment premium

characterizing the intensity of the deformation of probabilities; such a result

holds in the small and in the large;11

-(ii) an “attractive” justification for utilizing the mean-variance criterion,

and, consequently for referring to the CAPM is the existence of investors hav-

ing both a constant marginal utility and a constant absolute disappointment

aversion;

-(iii) We have modified the Euler equations of an intertemporal asset-

pricing model which from now on consist of the sum of four terms, incor-

porating the behavior towards disappointment risk. Using both these new

Euler equations and the framework of Mehra and Prescott (1985) has enabled

us to obtain results that can be viewed as a solution to the equity premium

puzzle.

Two final remarks can be made: one could believe that assuming disap-

pointment aversion may challenge the validity of the CAPM in the case of

decreasing marginal utility. This is obviously not true since a Taylor devel-

opment to the second (third, . . .) order of the utility function allows for the

3CAPM (4CAPM, . . .) to prevail. Finally, further empirical analysises shoud

be undertaken, in particular, investigations on how our theory can cope with

the observed second moments of the equity pemium and risk-free rate as well

as the persitence and predictability of excess returns found in the data.

11However we have limited ourselves to considering Markowitz’ point of view and not
Pratt’s, for risk in the large.
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APPENDIX 1:
Calculation of the risk premium

We write therefore, for an additive risk with usual notations:ew = w + eε , Ep [eε] = 0 , Ep [ew] = w , V arp [ew] = V arp [eε] = σ2

The utility of this lottery is:

U (ew) = Ep

£
γp (ew) u (ew)¤ = Ep [(1−Ap (u(ew)−Ep [u(ew)]))u (ew)]

= Ep

⎡⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎝
1−

Ap

µ
(ew −Ep [ew])u0 (w) + 1

2

µ
(ew −Ep [ew])2
−V arp [ew]

¶
u
00
(w)

¶
+o
¡
(ew −Ep [ew])2¢

⎞⎟⎟⎠
µ

u (w) + (ew −Ep [ew])u0 (w)+
1
2
(ew −Ep [ew])2 u00 (w) + o

¡
( ew − Ep [ew])2¢

¶

⎤⎥⎥⎥⎥⎥⎥⎦

= Ep

⎛⎜⎜⎜⎜⎜⎜⎝

1−

Ap

⎛⎜⎜⎜⎜⎝
µ

u (w) + (ew −Ep [ew])u0 (w)
+1
2
( ew − Ep [ew])2 u00 (w) + o

¡
(ew −Ep [ew])2¢

¶
−Ap

⎡⎣⎛⎝ (ew −Ep [ew])u (w)u0 (w) + ( ew − Ep [ew])2 u0 (w)2+
1
2

¡
(ew −Ep [ew])2 − V arP [ew]¢u (w)u00 (w)

+o
¡
( ew − Ep [ew])2¢

⎞⎠⎤⎦
⎞⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠
= u (w) +

1

2
u
00
(w)V arp [ew]−Apu

0
(w)2 V arp [ew] + o

¡
( ew − Ep [ew])2¢

So, if we limit to second order terms:

U (ew) = u (w)−
µ
Apu

0 (w)− 1
2
u
00
(w)

¶
V arp [ew]

The certainty equivalent of this lottery is defined by:

U (ew) = u (EC ( ew))
And the risk premium is:

23



PR (ew) = w −EC ( ew)
Combining the preceding equations, we get:

U (ew) = u (EC ( ew)) = u (w − PR (w)) = u (w)−PR (w)u
0
(w)+ o (PR (w))

And, we finally have:

PR (w) = ApV arp [ew]− 1
2

u
00
(w)

u0 (w)
V arp [ew]

24



APPENDIX 2:
Static maximization program with probabilities alteration

MAX Eπ [U (w0, ew)]
subject to the contraints:

i) w0 + θ0 +
NP
n=1

θnSn
0 −W0 = 0

⇒ w0 =W0 −
µ
θ0 +

NP
n=1

θnSn
0

¶
ii) wk − βθ0 −

NP
n=1

θnSn
k = 0

⇒ wk = βθ0 +
NP
n=1

θnSn
k , k = 1, ...,K

Where θn is the date 0 holding of the asset n, wk is the date 1 consumption

of the state k.

The Lagrangian function of this program is:

L = U (w0, ew)− λ0

Ã
w0 + θ0 +

NX
n=1

θnSn
0 −W0

!

−
KX
k=1

λk

Ã
wk − βθ0 −

NX
n=1

θnSn
k

!
with:

U (w0, ew) = u(w0) + α−1

"
KX
j=1

pj(1 +A (Ep [u (ew)]− u (wj)))u (wj)

#

= u(w0) + α−1

"
KX
j=1

pjγju (wj)

#
The first order conditions are:
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• ∂L
∂w0

= u
0
(w0)− λ0 = 0⇒ λ0 = u

0
(w0)

• ∂L
∂wk

= α−1

"
pkγku

0
(wk) +

KP
j=1

pju (wj)
∂γj
∂wk

#
− λk = 0

⇒ λk = α−1
£
pkγku

0
(wk) + Γ (k)

¤
, k = 1, ..., K

• ∂L
∂θ0
= −λ0 +

µ
KP
k=1

λk

¶
β = 0⇒

KP
k=1

λk = β−1u
0
(w0)

• ∂L
∂θn

= −λ0Sn
0 +

µ
KP
k=1

λkS
n
k

¶
= 0 , n = 1, ..., N

Combining the third and last equations, we get:

Sn
0 =

KP
k=1

λkS
n
k

u0 (w0)
= β−1

KP
k=1

λkS
n
k

KP
k=1

λk

= β−1
KX
k=1

µkS
n
k

With µk =
λk
KP
j=1

λj

≥ 0 and
KX
k=1

µk = 1

The equilibrium is defined by the condition that the µk are equal to the

risk neutral probabilities qk. Thus, we have the solution of our program:

Sn
0 =

KP
k=1

λkS
n
k

u0 (w0)
=

1

αu0 (w0)

KX
k=1

³
pkγku

0
(wk)S

n
k + Γ (k)Sn

k

´
Since we have:
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KX
k=1

³
pkγku

0
(wk)S

n
k

´
=

KX
k=1

³
pku

0
(wk)S

n
k ((1−A (u(wk)− Ep [u(ew)])))´

= Ep

h
u
0
(ew) eSn

i
−AEp

h
(u(ew)−Ep [u(ew)])u0 (ew) eSn

i
= Ep

h
u
0
(ew) eSn

i
−ACovp

³
u
0
(ew) eSn, u( ew)´

And,

∂γj
∂wk

= pku
0 (wk) [A

0 (Ep [u ( ew)]− u (wj)) +A]− δjkAu
0 (wk)

Γ (k) =
KX
j=1

pju (wj)
∂γj
∂wk

= pku
0 (wk) [−A0V arp [u (ew)] +A]−Apku (wk)u

0 (wk)

Therefore,

KX
k=1

Γ (k)Sn
k = −A0V arp [u (ew)]( KX

k=1

pku
0 (wk)S

n
k

)

+A

(
KX
k=1

pku
0 (wk)S

n
k (Ep [u ( ew)]− u (wk))

)
KX
k=1

Γ (k)Sn
k = −A0Ep

h
u
0
(ew) eSn

i
V arp [u (ew)]−ACovp

³
u
0
( ew) eSn, u ( ew)´

So, we get:

Sn
0 =

1

αu0 (w0)

⎛⎝ Ep

h
u
0
( ew) eSn

i
(1−A0V arp [u (ew)])

−2ACovp
³
u
0
(ew) eSn, u (ew)´

⎞⎠
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APPENDIX 3:
Intertemporal maximization program with probabilities alteration

Consider an economy whereN+1 assets are traded: the fisrt one is riskless

whereas the others are risky. The evolution of the vector St = (S0t , S
1
t , ..., S

N
t )

of the N + 1 prices is assumed to be described by a multivariate stochastic

process. In each period t, the decision maker must choose simultaneously

his/her consumption and his/her portfolio whose composition is character-

ized by the vector
©
θt = (θ

0
t , θ

1
t , ..., θ

N
t )
ª
denoting the quantities of assets held

during the th period. We shall denote θ0t its transpose. In other words, the

individual chooses the value for the endogenous state variable in the sub-

sequent period and his/her choice can be described by a sequence ΘT =

{θ0, θ1, θ2, ...., θT−1, θT} of vectors {θt} corresponding to the quantities of

assets held during the th period. A feasible investment plan can be viewed

as a multivariate stochastic process {θt} obeying the following constraints :

ct = (θ
0
t − θ0t+1)St > 0 for t ∈ N+

with the following denominations:

wt = θ0tSt

ct = wt − θ0t+1St = (θ
0
t − θ0t+1)St

or equivalently:

wt+1 = θ0t+1St+1

wt = ct + θ0t+1St
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and, conventionnally:

c0 = w0 − θ01S0 = (θ
0
0 − θ01)S0

By assumption, in each period t, the decision maker exhibits the following

lifetime utility function:

U0 = u (c0)

+α−1Ep

∙
u (c1) {1 +A (Ep [u (c1) | F0]− u (c1))}

| F0

¸
+α−2Ep

∙
Ep [u (c2) {1 +A (Ep [u (c2) | F1]− u (c1))} | F1]

| F0

¸
+ ..

+α−TEp

∙
..Ep

∙
Ep

∙
u (cT ) {1 +A (Ep [u (cT ) | FT−1]− u (cT ))}

| FT−1

¸
| FT−2

¸
| .. | F0

¸

or:

U0 = u (c0) + α−1

⎛⎝ Ep [u (c1) | F0] +

Ep

∙
u (c1)A

µ
Ep [u (c1) | F0]
−u (c1)

¶
| F0

¸ ⎞⎠
+α−2

⎛⎝Ep

⎡⎣ Ep [u (c2) | F1] +

Ep

∙
u (c2)A

µ
Ep [u (c2) | F1]
−u (c1)

¶
| F1

¸
| F0

⎤⎦⎞⎠+ ..

+α−TEp

⎡⎢⎢⎢⎢⎣ ..Ep

⎡⎢⎢⎣
Ep [u (cT ) | FT−1] +

Ep

∙
u (cT )A

µ
Ep [u (cT ) | FT−1]

−u (cT )

¶
| FT−1

¸
| FT−2

⎤⎥⎥⎦
| .. | F0

⎤⎥⎥⎥⎥⎦
or, equivalently:
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U0 = u (c0) + α−1

⎛⎝ Ep [u (c1) | F0]

+Ep

∙
Ep

∙
u (c1)A

µ
Ep [u (c1) | F0]
−u (c1)

¶
| F0

¸
| F0

¸ ⎞⎠
+α−2Ep

⎡⎣⎛⎝ Ep [u (c2) | F1]

+Ep

∙
Ep

∙
u (c2)A

µ
Ep [u (c2) | F1]
−u (c1)

¶
| F1

¸
| F1

¸ ⎞⎠ | F0

⎤⎦+ ..

+α−TEp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
..Ep

⎡⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎝
Ep [u (cT ) | FT−1]

+

Ep

⎡⎣ Ep

∙
u (cT )A

µ
Ep [u (cT ) | FT−1]

−u (cT )

¶
| FT−1

¸
| FT−1

⎤⎦
⎞⎟⎟⎟⎟⎠

| FT−2

⎤⎥⎥⎥⎥⎥⎥⎦
| .. | F0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

Now, let12*

ªt

¡
wt − θ0t+1St

¢
= u

¡
wt − θ0t+1St

¢
+ α−1Ep

⎡⎣ u

µ
wt

−θ0t+1St

¶
A [.]

µ
Ep

∙ ¡
wt − θ0t+1St

¢
| Ft−1

¸
−

| Ft−1

with :

A [.] ≡ A

∙
Ep

∙ ¡
wt − θ0t+1St

¢
| Ft−1

¸¸
ª0 (w0 − θ01S0) = u (w0 − θ01S0)

θ0T+1 = 0⇒ ªT

¡
wT − θ0T+1ST

¢
= ªT (wT )

The lifetime utility function then reduces to:

12with the following convention:

ϕ0 (c) = u (c)
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U0 (.) = ª0 (w0 − θ01S0) + α−1Ep [ª1 (w1 − θ02S1) | F0]

+α−2Ep [Ep [ª2 (w2 − θ03S2) | F1] | F0] +

..+ α−TEp [..Ep [Ep [ªT (wT ) | FT−1] | FT−2] .. | F0]

and, one period ahead, it reads:

U1 (.) = ª1 (w1 − θ02S1) + α−1Ep [ª2 (w2 − θ03S2) | F1]

+α−2Ep

∙
Ep [ª3 (w3 − θ04S3) | F2]

| F1

¸
+

..+ α−(T−1)Ep

⎡⎣ ..Ep

∙
Ep [ªT (wT ) | FT−1]

| FT−2

¸
.. | F1

⎤⎦
We thus, have:

U0 (.) = ª0 (w0 − θ01S0) + α−1Ep [U1 (.) | F0]

More generally, we have:

Ut (.) = ªt

¡
wt − θ0t+1St

¢
+ α−1Ep

£
ªt+1

¡
wt+1 − θ0t+2St+1

¢
| Ft

¤
+α−2Ep

£
Ep

£
ªt+2

¡
wt+2 − θ0t+3St+2

¢
| Ft+1

¤
| Ft

¤
+

..+ α−(T−t)Ep [..Ep [Ep [ªT (wT ) | FT−1] | FT−2] .. | Ft]

and, finally:

Ut (.) = ªt

¡
wt − θ0t+1St

¢
+ α−1Ep [Ut+1 (.) | Ft] for t = 0, T − 1
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This last equation exhibits the usual recursive structure of a dynamic pro-

gramming problem which may be stated with a finite horizon as:

Max

ΘT
U0 (.) = ª0 (w0 − θ01S0)

+
T−1X
t=1

α−tEp

⎡⎣ ..Ep

∙
Ep

∙
ªt+1

¡
wt+1 − θ0t+2St+1

¢
| Ft−1

¸
| Ft−2

¸
... | F0

⎤⎦
+α−TEp [..Ep [Ep [ªT (wT ) | FT−1] | FT−2] .. | Ft]

or with an infinite horizon as:

Max

Θ
U0 (.) = ª0 (w0 − θ01S0)

+
+∞X
t=1

α−tEp

⎡⎣ ..Ep

∙
Ep

∙
ªt+1

¡
wt+1 − θ0t+2St+1

¢
| Ft−1

¸
| Ft−2

¸
.. | F0

⎤⎦
∗ (aV arp [gt+1 | Ft]

given that the last program will make sense and will exhibit a unique solu-

tion only under standard restrictive assumptions detailed below. However,

if {St} is a stationary markovian process whose transition probabilities are

denominated

pij = Pr (St+1=Si | St=Sj)

which we now assume, we can get rid of the dependency of ªt upon t . Indeed
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we have:

ªt

¡
wt − θ0t+1St

¢
= ª

¡
wt − θ0t+1St

¢
= u

¡
wt − θ0t+1St

¢

+α−1
KX
k=1

pk,i(t)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u
¡
wt − θ0t+1St

¢
A.

⎡⎣ KP
j=1

pj,i(t)u¡
wt − θ0t+1St

¢
⎤⎦⎧⎪⎨⎪⎩

Ã
KP
j=1

pj,i(t)u
¡
wt − θ0t+1St

¢!
−u
¡
wt − θ0t+1St

¢
⎫⎪⎬⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
where i(t) is the state of {St} at time t. As usual , the solution will be

obtained using the following usual Bellman equation:

Max

θt+1
Vt (wt, wt+1,..., wT ) = ª

¡
wt − θ0t+1St

¢
+α−1Ep [Vt+1 (wt+1,..., wT ) | Ft] for t = 0, 1, ...

where:and whose first order condition reads:

∂Vt
∂θnt+1

(wt, .) =
∂ª
∂θnt+1

¡
wt − θ0t+1St

¢
+α−1Ep

∙
∂Vt+1
∂θnt+1

(wt+1, .) | Ft

¸
= 0 for t = 0, T−1 and n = 1, N

However, it will be more convenient to rewrite the Bellman equation as fol-

lows:

Max

θt+1
Ut (ct, ct+1, ...) = ⊕ (θt, θt+1, St)

+α−1Ep [Ut+1 (ct+1, ct+2, ...) | Ft] for t = 0, 1, ...

and the corresponding first order condition now reads:
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∂Ut
∂θnt+1

=
∂⊕
∂θnt+1

(θt, θt+1, St)

+α−1Ep

∙
∂Ut+1
∂θnt+1

| Ft

¸
= 0 for t = 0, T − 1 and n = 1, N

which is equivalent to :

0 = −Sn
t u

0 (ct) + α−1Ep
∂

∂θnt+1
[u (ct+1)A [.] (Ep [u (ct+1) | Ft]− u (ct+1)) | Ft]

+α−1Sn
t+1u

0 (ct+1)

= −Sn
t u

0 (ct)

+α−1
∂

∂θnt+1

½
A [.] (Ep [u (ct+1) | Ft])

2−
A [.]Ep [u

2 (ct+1) | Ft]

¾
+ α−1Sn

t+1u
0 (ct+1)

= −Sn
t u

0 (ct)

+α−1A0 [.]

½
(Ep [u (ct+1) | Ft])

2

−Ep [u
2 (ct+1) | Ft]

¾
Ep

∙
∂

∂θnt+1
u (ct+1) | Ft

¸
+α−1A [.]

(
∂

∂θnt+1
(Ep [u (ct+1) | Ft])

2

− ∂
∂θnt+1

Ep [u
2 (ct+1) | Ft]

)
+ α−1Sn

t+1u
0 (ct+1)

= −Sn
t u

0 (ct)− α−1A0 [.]V arp [u (ct+1) | Ft]Ep

£
Sn
t+1u

0 (ct+1) | Ft

¤
+2α−1A [.]

½
Ep [u (ct+1) | Ft]Ep

£
Sn
t+1u

0 (ct+1) | Ft

¤
−Ep

£
u (ct+1)u

0 (ct+1)S
n
t+1 | Ft

¤ ¾
+α−1Sn

t+1u
0 (ct+1)

and, finally:

0 =
∂Ut
∂θnt+1

= −Sn
t u

0 (ct) + α−1Ep [St+1u
0 (ct+1) | Ft] (1−A0 [.]V arp [u (ct+1) | Ft])

+2α−1A [.] {Ep [u (ct+1) | Ft]Ep [St+1u
0 (ct+1) | Ft]−Ep [u (ct+1)u

0 (ct+1)St+1 | Ft]}

which are the new Euler equations:
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Sn
t u

0 (ct) = α−1
½

Ep

£
Sn
t+1u

0 (ct+1) | Ft

¤
(1−A0 [.]V arp [u (ct+1) | Ft])

−2A [.]Covp
£
u (ct+1) , S

n
t+1u

0 (ct+1) | Ft

¤ ¾
t = 1, ...n = 0, .., N

We have thus established that the Euler equations are necessary conditions

for solving (PROG)
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