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Forecasting Portuguese Stock Market Volatility 

 

 

Abstract: 

 

In this paper we apply volatility forecasting models based on past measures of risk and some 

ARCH class models to within-week volatility forecast of Portuguese Stock Market, using different 

measures of volatility and comparing them through the use of both symmetric and asymmetric 

error statistics. The results are interpreted at the light of assets and models’ features. Since usually 

the papers about this topic only deal and provide empirical evidence about mature and liquid 

financial markets and about market indices, the motivation of this study is to improve the 

knowledge about the volatility forecasting models that drive volatility in emerging capital markets, 

at the level of individual stocks.     

The results follow the ones observed by other authors and we can say that the best forecasting 

model depends on the evaluation measure used. Notwithstanding, the numbers pointed out to 

smooth superiority of ARCH class models, principally when using RMSE and MME(U), which 

means that ARCH class models normally over-predicts volatility. It is also worth noting the 

excellent performance of volatility forecasting models based on semi-standard deviation, even 

when compared with ARCH class models. This is probably the most original aspect of this study. 
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1. Introduction 

 

Volatility is one of the most important inputs of several asset pricing models. An accurate 

estimation of volatility is crucial in the pricing of derivative securities, in capital budgeting (e.g. 

real options approach), in portfolio selection and financial risk management1.  

Given the importance of volatility forecast, many forecasting models have been developed 

and empirically applied. 

This paper aims to apply several of these volatility forecasting models to the Portuguese 

Stock Market and compare them using both symmetric and asymmetric error statistics. The 

results will be interpreted at the light of assets and models’ features. 

Following the seminal work of Mandelbrot (1963) and Fama (1965), many researchers have 

found that empirical distribution of stock returns is non-normal (e.g. Peiró2 (1999), Aparício and 

Estrada (2001)). These authors found that (i) it is more peaked and with fatter tails than the 

normal distribution; (ii) it is skewed; and (iii) the variance of stock returns is not constant over 

time or exhibit volatility clustering. For these reasons, the variance of returns is not an 

appropriate measure of risk. In 1982, Engle has characterized the changing variances by an 

Autoregressive Conditional Heteroskedasticity (ARCH) model and Bollerslev (1986) introduced 

the Generalized ARCH (GARCH), which is more flexible than the previous one. These two 

papers represent a rupture with the traditional treatment of volatility and, latter, several other 

papers were published transforming them in a manner that allows them to incorporate some 

stylized facts about financial market volatility.  

Besides this, most measures of dispersion make no distinction between positive or negative 

returns and it is know that investors only dislike downside volatility (which is related with the 

skewness of stock returns distribution). This implies that, for example, skewness or upside and 

downside risk is relevant and must be integrated in the asset pricing models. Aparício and Estrada 

(2001) expose the conditions for the markets’ return distributions being normal. The authors 

reject the normality of daily stock returns of thirteen European securities markets. Given this, a 

measure that combines in a single one the information provided by the variance and skewness is 

needed. This measure could be the semivariance (or semi-standard deviation) which was already 
                                                 
1 Since the first Basle Accord (and reinforced by the second one) many financial institutions are obligated to make 
volatility forecasting because they have to constitute capital reserves of at least three times that of value-at-risk. 
2 Peiró (1999) refers several authors that propose different statistical distributions for price changes of financial 
assets. All these distributions reflect the high kurtosis existent in the empirical distribution of returns (more peaked 
and with fatter tails than the normal distribution). 
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been defended by Markowitz (1952). Aparício and Estrada (2001) propose the semi-standard 

deviation as a measure of risk when the asset’s distribution of returns is skewed and show that 

mean-semi standard deviation behavior is an approximately correct criterion to maximize the 

expected utility function. We also apply the forecasting models to semi-standard deviation. 

The remaining sections are organized as follows. Section 2 reviews some research papers that 

apply volatility forecasting models. Section 3 provides a description of the data and methodology 

used in this study. In the section 4, the results are presented and a discussion of the empirical 

evidence is provided. Section 5 summarises and concludes.  

   

 

2. Literature Review  

 

Engle (1993) and Aydemir (1998) offer a detailed exposition of several time series models for 

estimating and modelling volatility. 

Despite the popularity and theoretical support of ARCH class models, their forecasting 

power over the simpler ones is, by no means, consensual. In this section, we are going to present 

some papers that underpin this reality. 

Taylor (1987) is one of the first to test time series volatility forecasting models and uses 

DM/$ futures prices. The author, employing Root Mean Square Error (RMSE), finds that a 

weighted average of present and past high, low and closing prices is the best volatility forecasting 

model. 

Akgiray (1989) finds evidence in favour of a GARCH (1,1) model (over ARCH (2), 

Exponential Weighted Moving Average (EWMA) and Historical Volatility (HIS)), especially in 

periods of high volatility, when applied to U.S. data. The author uses traditional symmetric error 

statistics (Mean Error (ME), RMSE, Mean Absolute Error (MAE) and Mean Absolute 

Percentage Error (MAPE)). 

Dimson and Marsh (1990) apply five different types of forecasting models (random walk 

(RW), Moving Average (MA), HIS, Exponential Smoothing (ES) and Regression models) and 

recommend the last two. 

Pagan and Schwert (1990) conclude that for U.S. stock market, from 1834 to 1937, 

Exponential GARCH (EGARCH) is the best volatility forecasting model (principally when 

compared with nonparametric models). 
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Tse (1991) applies EWMA, HIS, ARCH and GARCH models to the Japanese stock market 

and finds that EWMA is the best model. Tse and Tung (1992) adopt the same in the Singaporean 

stock market and obtain the same results.  

Brailsford and Faff (1996) analyse the predictive power of several forecasting models (RW, 

HIS, MA, ES, EWMA, Regression and GARCH class models) in monthly Australian stock 

market volatility. The authors, working with symmetric and asymmetric error statistics, find that 

GJR-GARCH (Glosten, Jagannathan and Runkle (1993)) is the best model, but the results are 

very sensible to the used error statistics. 

Franses and Van Dijk (1996) study the forecasting power of RW and some GARCH class 

models, when applied to European stock indices, and conclude that QGARCH is the best model. 

Curiously, given the previous results, GJR-GARCH model is not recommended. 

McMillan, Speight and Gwilym (2000) analyse the predictive power of several GARCH class, 

RW, HIS, MA, ES, EWMA and Regression models, when applied to FTSE 100 and FT All Share 

Indices. The authors use symmetric and asymmetric error statistics in the evaluation and 

conclude that RW, MA and ES dominate the other models. 

Poon and Granger (2002), in a superior review about forecasting volatility in financial 

markets, provide some useful insights to compare studies about this topic. The authors say that 

the conclusions of these studies depends strongly on the used error statistics, the sampling 

schemes (e.g. rolling fixed sample estimation or recursive expanding sample estimation), the 

period and assets studied. Poon and Granger (2002) also argue that is important to interpret the 

results at the light of assets’ features. For instance, volatility estimative for assets that were 

confronted with financial shocks or that have volatility mean reversion behaviour is more reliable 

if came out from ARCH class models than from the “simpler” ones, because these models do 

not handle those facts. ARCH class models will provide better volatility estimation when there 

are no changes in volatility level because they assume variance stationarity. If changes in volatility 

level are observed the simpler models, namely the exponential smoothing models, turn out to be 

preferred.         
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3. Data Description and Methodology 

 

3.1. Data Description 

 

The data used in this study consists on daily returns (where the returns are computed by 

natural logarithm differences) from the Portuguese Stock Index PSI 20 and a sample of fifteen 

stocks traded in this market (these stocks represents 96% of the this market index). The data are 

obtained from Datastream and summary statistics about these stocks and PSI 20 are provided in 

Table 1. Returns used throughout the article are daily returns, ranging from the first transaction 

day until 18th of May 2004.  

For each asset, the period from the first transaction day to the last day of September 1998 is 

used as the initialization set and the period from the first day of October 1998 to the 18th of May 

2004 is used as the test set. The error measures are calculated over this period. 

 

3.2. Volatility Measures 

 

Following the work of Balaban, Bayar and Faff (2002), we study weekly volatility forecast, 

however, unlike them, we employ three measures of volatility:  

(i) the within-week standard deviation,  
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where σw is the within-week standard deviation; Rw, t is the continuously compounded return on 

trading day t, in week w; µw is the week w mean return; n is the number of trading days in a week; 

  

(ii) the within-week semi-standard deviation (Σw), 
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(iii) and the within-week standard deviation around zero and not week’s mean return3, as it 

is defined in equation (1). There is no loss of degree of freedom.    

 

3.3. Volatility Forecasting Models 

 

In this study we are going to apply only time series volatility forecasting models and not those 

based on traded option prices. Additionally, we exclude the nonparametric volatility forecasting 

models (Pagan and Schwert (1990) argue that these models have a poor performance) and those 

based on neural networks (given their computational complexity).    

 

3.3.1. Volatility Forecasting Models based on past Measures of Risk  

 

The simplest historical price model is the Random Walk Model (RW). According to this 

model, the best forecast of the next period volatility is the actual observed volatility. 

w1+w σ=σ
^

      (3) 

Extending this concept we have the Historical Volatility Model (HIS). It can be calculated by 

taking the average of past observed volatilities. 

wσ++σ+σ=σ 11ww1+w /)...( -

^
    (4) 

HIS is suitable when volatility asset behaviour has no volatility clustering and there is variance 

stationarity. 

Moving Average Model (MA-α) is similar to HIS but makes use of the last α observed 

volatility values. 

ασ++σ+σ=σ 1+αw1ww1+w /)...( --

^
    (5) 

We assign the following values for α = 4 and 12. The larger the order of the moving average 

(α) the greater the smoothing effect. Like HIS, this model does not work very well when the 

underlying process is not stationary. 

Weighted moving average model (WMA-α) is an extension of MA-α, but it gives a different 

weight to each of α observations. 

                                                 
3 Poon and Granger (2002) refer that taking deviations around zero, instead of the sample mean, increases volatility 
forecast accuracy, but it can also result in noisy volatility estimates. 
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∑
w
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ii1+w σβ=σ

-

^
*       (6) 

where βI is the weight of each observation; the sum of these weights must be one and we choose 

a decline of 15% from the newest to the oldest observation. We assume the following values for 

α = 4 and 12. 

 The exponential smoothing model (ES) takes the observed volatility for the previous period 

and adjusts it using the forecast error. 

ww1+w σθ+σθ1=σ
^^

**)-(      (7) 

where θ is the smoothing parameter and is restricted to lie between zero and one. We use an 

analytical procedure to find the value of this parameter, for each asset, by minimizing RMSE 

(since it is quite consistent across the different error statistics). This model should be used when 

it is assumed a flat forecast function.   

Exponentially weighted moving average model (EWMA-α) is similar to the previous one, but 

replaces the past observed volatility by the α – week moving average.  

)-(*)-(*)-(
^^

αEWMAσθ+αMAσθ1=σ ww1+w    (8) 

where α = 4 and 12.  

Besides these models but still inside volatility forecasting models based on past measures of 

risk we have regression models that will not be explored in this study. Simple regression models 

express volatility as a function of its past values and an error term.  

ε++σγ+σγ=σ 1w1w2ww11+w ...** --,,

^
   (9) 

Regression models are essentially autoregressive. If past volatility errors are included we get 

an ARMA model for volatility. Introducing a differencing order we get an ARIMA model for 

volatility. 

 

3.3.2. ARCH Class Models 

 

Unlike the previous models, ARCH class models do not make use of sample standard 

deviations. 

In developing an ARCH model we need to consider two specifications: one for the 

conditional mean and one for the conditional variance (ht). 
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ARCH models were introduced by Engle (1982). For the next models, returns, rt, have the 

following process: 

rt = c + εt      (10) 

εt = th et       (11) 

          et ~ N (0,1)      

where ht follows one of the following ARCH class models. Each of these models tries to capture 

some �tylised facts about financial market volatility such as fat tail distributions, volatility 

clustering, asymmetry and mean reversion of volatilities. Poon and Granger (2002) refer that 

correlation among volatility is stronger than that among returns and increases during bear 

markets. These authors also say that high frequency volatility measures have a long memory 

property and the autocorrelations of variances stay positive and significantly different from zero 

for lags up to a thousand or more. 

An ARCH (q) means that ht is a function of q past squared returns, 

Ht = ∑
q

1=k

2
ktk εα+ω -*      (12) 

The forecast errors (εt) are assumed to be conditionally normally distributed with a zero mean 

and ht variance, based on the information set, Ψt-1, available at time t-1, 

εt | Ψt--1 ~ N (0, ht) 

The parameter ω is equal to δV, where V is the long run volatility and δ is the weight given to 

V. Weights must sum to unity 

∑
q

1=k
k 1=α+δ  

In this study we are going to use ARCH (1). 

In GARCH (p, q) (Bollerslev (1986)), today’s conditional volatility depends on p last 

conditional volatility and on q last squared forecast errors  

ht = ∑∑
p

1=j
jtj

q

1=k

2
ktk hβ+εα+ω -- **     (13) 

ARCH model is a special case of a GARCH model, in which there are no lagged forecast 

variances in conditional variance equation. Consistent with GARCH’s conditional variance 

specification, this period’s variance is a weighted average of a long term average (the constant), 

last period forecasted variance (the GARCH term) and the information about the last period 
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realized volatility. This model is coherent with the often observed volatility clustering in financial 

returns data.   

According to GJR-GARCH (1, 1) (Glosten, Jagannathan and Runkle (1993)) the specification 

for the conditional variance is  

ht = 1t
2
1t1t

2
1t hβ+εDγ+εα+ω ---- ****     (14) 

0  if0
0  if1

1-t

1-t

>=ε
<ε

 

 

In this model, good news (εt-1<0) and bad news (εt-1≥0) have differential effects on the 

conditional variance. If γ ≠0 the news have an asymmetric impact (γ represents the leverage 

effect). 

Finally, we are going to use the Eviews’ adapted version of EGARCH (1, 1) (Nelson (1991)) 

model. The specification for the conditional variance is 

5,0

1t-

1t-

t

t
1tt π

2
-

h
ε

α+
ε

γ+hβ+ω=h *
h

*)ln(*)ln(
1-
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-    (15) 

Because it is done the logarithm of ht, the leverage effect is exponential and conditional 

variance is non-negative. The presence of leverage effects can be tested by the hypothesis that γ 

<0. Chong, Ahmad and Abdullah (1999) refer that, although GARCH models can manage 

returns’ excess kurtosis, they cannot handle with skewness. One advantage of EGARCH model 

is that it explicitly takes skewed distributions into account.   

Poon and Granger (2002) surveyed several other papers that developed and exposed 

alternative ARCH class models.   

 

3.4. Forecast Evaluation 

 

The reliability of a forecasting study depends largely on evaluation measures. In this paper, 

we follow Brailsford and Faff (1996) work. So, we employ symmetric and asymmetric error 

statistics. Symmetric error statistics are ME, MSE (we do not provide empirical evidence about 

these two measures given the redundancy with the following ones), RMSE and MAPE and we 

think that they are self explanatory. 

Dt-1 
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Asymmetric error statistics weighted differently under or over predictions. Mean mixed error 

statistics (MME) are defined as: 

∑∑
U

1=w
ww

O

1=w
ww σσ+σσE=UMME --)(

^^
   (16) 
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where O and U is the number of over and under predictions, respectively. Given this, MME(U) 

penalizes the under predictions and MME(O) penalizes the over predictions. 

 

 

4. Empirical Results 

 

Table 1 shows some descriptive statistics about the analysed data. Assets’ daily mean returns are 

all close to zero (only EDP and SAG have  negative daily mean returns) which should imply that 

within-week standard deviation around zero is a good approximation to traditional within-week 

standard deviation.  

[Insert Table 1] 

 

The kurtosis and Jarque-Bera statistics indicate for all stocks a clear rejection of the normality 

of daily returns. Returns distribution of BPI, Semapa and PT do not show skewness. According 

to Ljung-Box test, except for Ibersol, Semapa and Portucel, assets’ returns are autocorrelated at a 

significance level of, at least, 2.5%. The analysis of autocorrelation coefficients (and their 

statistical significance) allows us to conclude that more than two thirds of assets’ returns have an 

autoregressive process of order 1 (AR(1)). When this happens, ARCH class models are estimated 

using a stationary AR(1) conditional mean, meaning that the equation return (10) becomes: 

rt = c + rt-1 + εt 

Before starting the analysis of the volatility forecasting models’ performance, we are going to 

discuss ARCH class models’ specifications (Appendix 1). 

Almost all coefficients, in variance equation, are significant at the 1% level. The exceptions 

are the leverage effect of GJR-GARCH and EGARCH models. For approximately half of the 
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sample, the news do not have an asymmetric impact and, apparently, it cannot be identified any 

pattern concerning this fact.   

Based on the performance of the goodness-of-fit statistics (Log likelihood, Akaike Info 

Criterion and Schwarz criterion, not presented), EGARCH (1,1) is the best model for all assets. It 

is also for this model that the null hypothesis of Ljung-Box test is not rejected for the higher 

number of stocks (thirteen stocks), meaning that, at a significance level of 1%, standardized 

residuals are identically distributed (iid), as it was supposed to be. For ARCH (1) model, the null 

hypothesis of that test is not rejected only for nine stocks. Only for the market index and Brisa 

standardized residuals of all ARCH class models stay autocorrelated.    

ARCH (10) LM test reveals ARCH effect in the residuals of some models for some assets. 

The rejection of the null hypothesis of this test means that variance equation is not well defined. 

As it can be seen in Appendix 1, there are two facts worthwhile to be pointed out: first, the null 

hypothesis of this test is rejected, at 1% significance level, for one stock when modelled by 

EGARCH (1,1) and GJR-GARCH (1,1) models, which means that they capture appropriately the 

variance’s structure of original series of returns; second, only for three stocks, the null hypothesis 

of this test is rejected, at 1% significance level, when modelled by ARCH (1), which reinforced 

the conclusions of goodness-of-fit statistics.  

For GARCH (1,1) model, the sum of the α and β parameters, to all assets except EDP and 

SAG, is close to the unity which indicates that long-memory type ARCH process could be 

appropriated to model daily returns’ volatility. This idea is reinforced by Engle’s Lagrange 

Multiplier test (ARCH (q) LM) to standardized residuals of ARCH (1) model. Except for Sonae 

Indústria and SAG, high values of β parameter in the GARCH (1,1) signifies that a relevant 

proportion of past volatility carries on to the forward period.  

Consistent with GJR-GARCH (1,1), is interesting to note that, exception done to the market 

index, the leverage effect does not exist in assets with negative skewness. This fact can lead us to 

ask the following question to Behavioural Finance: Given bad news, why did investors penalize 

more assets with positive skewness?   

After models’ estimation, we perform some tests on standardized residuals (Appendix 1). For 

all models and assets, standardized residuals do not follow a normal distribution (Jarque-Bera 

test’s null hypothesis is rejected) and have high kurtosis. Curto, Reis and Esperança (2004) get the 

same conclusions and do the reestimation of ARCH class models with Student’s t innovations 
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and not with normal ones. After reestimation, the authors observed an improvement in the 

goodness of fit statistics.  

Forecasting volatility models’ mean performance is shown through appendix 2 to 64. We are 

going to focus our attention in the within-week traditional standard deviation and within-week 

semi-standard deviation, given that error statistics values of the within-week standard deviation 

around zero are very close to the ones observed for within-week traditional standard deviation. 

We compare ARCH class models’ performance with that of models based on past risk measures, 

only for within-week traditional standard deviation. 

The relative forecast error exhibited through appendix 2 to 5, is obtained by taking the ratio 

of the error statistics value of a given model with the one of the worst performing model for that 

asset. Those appendixes also show the ranking of volatility forecasting models’ mean 

performance, given an error statistic, with 1 being the best forecasting model.  

RMSE allow us to identify some interesting features. First, the RW model is the worst 

volatility forecasting model, for all risk measures. Second, ARCH class models (curiously ARCH 

(1), the worst forecasting model, from this class, according to goodness-of-fit statistics is the best 

model) provide the best volatility forecast and volatility forecasts are very close one to the other. 

Third, from volatility forecasting models based on past risk measures, WMA-12 is the best 

model, followed by EWMA-12 and MA-12. Fourth, even with ARCH class models, RMSE value 

of the best forecasting model of with-in weekly semi-standard deviation is lower than the 

comparable one of with-in weekly standard deviation. Probably, this is one of the most curious 

results because it means that with-in semi-standard deviation is more forecastable than with-in 

weekly standard deviation, even when we use complex ARCH class models. Thus, we make the 

following suggestion to mathematicians: why not combining ARCH class models with semi-

standard deviation?     

The analysis of MAPE error statistics should be done at the light of its serious limitations 

when the values are inferior to the unity. Nevertheless, this statistics leads us to remarkable 

changes in conclusions. The most challenging change is the poor ARCH class models’ 

performance. As a matter of fact they are outperformed by WMA, MA and ES models. Despite 

this, ARCH class models relative performance stay very compact, which means that these models 

provide very similar forecasts. It is also important to point out the decrease of forecasting power 

of the models based in with-in weekly semi-standard deviation. 
                                                 
4 Forecasting volatility models’ performance for each stock is available at request. 
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Turning our attention to MME, the major conclusion is that ARCH class models make over 

predictions because they perform very well according to MME(U), but very bad according to 

MME(O). It is also important to notice that, independently of the risk measure used, volatility 

forecasting models based on shorter past periods (like WMA-4, MA-4, RW, ES) provide more 

frequently under-predictions and those based on higher past periods have the inverse behaviour. 

Once again, forecasting models that use with-in weekly semi-standard deviation make more 

accurate forecasts. Even for MME(U), where ARCH class models provide a substantial 

improvement to forecast accuracy (when compared to forecasting models based on past risk 

measures), forecasting models that use with-in weekly semi-standard deviation make very good 

forecasts.   

 

 

5. Conclusions 

 

Volatility is an extremely important input to several pricing models in many fields of finance. 

Given this, academic community over the last decades has been developing several volatility 

forecasting models. However, the best volatility model or class of models it is by no means 

consensual. In this study we make an exposition of several volatility forecasting models and apply 

them to Portuguese stock market. These models can be grouped into two classes: the volatility 

forecasting models based on past measures of risk and ARCH class models.  

Therefore, the main purpose of this study is to analyse the performance of these models, with 

some risk measures and different evaluation measures (symmetric and asymmetric error 

statistics). 

The results follow the ones observed by other authors and we can say that the best forecasting 

model depends on the evaluation measure used. Notwithstanding, the numbers pointed out to 

smooth superiority of ARCH class models, principally when using RMSE and MME(U), which 

means that ARCH class models normally over-predicts volatility. It is also worth noting the 

excellent performance of volatility forecasting models based on semi-standard deviation, even 

when compared with ARCH class models. This is probably the most original aspect of this study. 
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TABLE: 

 

Table 1: Assets Daily Returns’ Descriptive Statistics 

 

 PSI20 BCP BES BPI Brisa Cimpor Cofina EDP Ibersol J. M. SAG Semapa
Sonae 

Ind. 

Sonae 

SGPS 
Portucel PT 

Mean     0.0003 0.0001 0.0004 0.0003 0.0004 0.0004 0.0001 -0.0002 0.0003 0.0005 -0.0005 0.0005 0.0003 0.0006 0.0001 0.0005 

Maximum  0.069 0.104 0.096 0.118 0.116 0.092 0.318 0.088 0.198 0.123 0.135 0.104 0.226 0.266 0.130 0.081 

Minimum  -0.096 -0.174 -0.124 -0.130 -0.079 -0.135 -0.144 -0.104 -0.116 -0.177 -0.099 -0.126 -0.159 -0.114 -0.109 -0.101 

Std. Dev.   0.010 0.016 0.013 0.017 0.017 0.014 0.026 0.017 0.022 0.020 0.016 0.017 0.022 0.023 0.017 0.020 

Skewness   -0.629* -0.414* 0.297* -0.018 0.357* -0.421* 2.359* 0.321* 1.447* -0.274* 0.222* 0.077 0.791* 0.811* 0.436* -0.092 

Kurtosis   10.396* 13.687* 12.773* 9.194* 7.799* 13.750* 27.681* 6.595* 15.689* 11.946* 12.283* 8.805* 14.355* 12.911* 9.500* 5.506* 

No. Observ. 2967 2967 2967 2967 1687 2567 1627 1805 1687 2967 1522 2292 2967 2967 2317 2337 

Jarque-Bera 6958* 14203* 11850* 4742* 1655* 12435* 42805* 1003* 11907* 9931* 5477* 3221* 16249* 12469* 4152* 615* 

                                  

LB Q(10) 105.77* 37.45* 71.86* 51.69* 137.23* 50.53* 51.56* 22.11** 16.53 77.41* 20.18** 8.04 36.51* 28.0* 15.60 43.30* 

ρ1 0.158* 0.096* 0.127* 0.118* -0.276* 0.125* 0.039 -0.037 0.071* 0.132* 0.012 -0.024 0.094* 0.049* 0.041 0.113* 

ρ2 0.031 -0.021 0.038 0.038 -0.025 0.026 -0.069 -0.030 0.030 0.041 0.001 0.006 0.019 0.038 0.005 -0.048 

ρ3 0.023 -0.003 0.028 0.010 -0.012 0.000 0.034 -0.039 0.051 0.055 -0.027 0.016 -0.002 0.002 -0.041 -0.011 

* Significant at the 1% level; ** Significant at the 2.5% level 

Jarque-Bera is the Jarque-Bera test for normality and follows a χ2 distribution with two degrees of freedom; Jarque-Bera = T* (Skewness2/6 + (Kurtosis – 3)2/24). Standard errors of the 

coefficients of skewness under the null hypothesis of normality where computed as (6 / n)1/2, where n is the number of observations. The significance of kurtosis is tested using K = 

(n/24)(kurtosis – 3)2, which is χ2(1) distributed under the null hypothesis of a kurtosis of 3. LB Q(10): is the Ljung-Box test for returns;  ρi are the estimates of autocorrelation coefficients for 

returns. 
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APPENDIXES: 

 

Appendix 1: ARCH Class Models’ Specifications  

 

ARCH (1)

C 0.0004 ( 0.022) 0.0004 ( 0.153) 0.0005 ( 0.007) 0.0006 ( 0.044) 0.0004 ( 0.279) 0.0005 ( 0.043) -0.0012 ( 0.011) -0.0001 ( 0.722)
r(t-1) 0.2155 ( 0.000) 0.0780 ( 0.062) 0.1581 ( 0.000) 0.0146 ( 0.337) -0.2710 ( 0.000) 0.0399 ( 0.048) - -

ω 0.0001 ( 0.000) 0.0001 ( 0.000) 0.0001 ( 0.000) 0.0002 ( 0.000) 0.0002 ( 0.000) 0.0001 ( 0.000) 0.0003 ( 0.000) 0.0002 ( 0.000)
α 0.4278 ( 0.000) 0.4832 ( 0.000) 0.4894 ( 0.000) 0.2878 ( 0.000) 0.1411 ( 0.000) 0.3637 ( 0.000) 0.5872 ( 0.000) 0.1438 ( 0.000)

PSI20 BPI CIMPOR EDPBCP

Variance Equation

Brisa CofinaBES

 
 

Stand. Residuals
Mean    
Std. Dev.  
Skewness  
Kurtosis  

Jarque-Bera 6854.1 ( 0.000) 9747 ( 0.000) 1983 ( 0.000) 10397 ( 0.000)

LB Q (10) 36.655 ( 0.000) 13.75 ( 0.185) 13.099 ( 0.218) 26.949 ( 0.003) 31.755 ( 0.000) 7.821 ( 0.646) 29.284 ( 0.001) 23.728 ( 0.008)
ARCH (10) LM 265.81 ( 0.000) 54.51 ( 0.000) 60.42 ( 0.000) 59.76 ( 0.000) 12.94 ( 0.227) 79.33 ( 0.000) 78.98 ( 0.000) 18.95 ( 0.041)

-0.008
1.000
0.207
6.812

1105.6 (0.000)

-0.004
1.000
0.000
10.229

5587.3 (0.000)

-0.020
1.000
0.016
8.155

3284.56 (0.000)2144.3 (0.000)

-0.016
1.000
-0.238
7.138

PSI20 BPI CIMPOR EDPBCP
-0.020
1.000
-0.070
10.446

Brisa
0.001
1.000
0.257
8.287

BES
-0.012
1.000
0.604
11.798

Cofina
0.036
1.000
0.865
15.263

 
 

ARCH (1)

C -0.0010 ( 0.017) 0.0006 ( 0.108) -0.0006 ( 0.121) 0.0005 ( 0.106) -0.0006 ( 0.070) 0.0005 ( 0.207) 0.0000 ( 0.909) 0.0005 ( 0.201)
r(t-1) -0.1798 ( 0.000) 0.1436 ( 0.000) - - - - 0.0080 ( 0.579) 0.0604 ( 0.007) - - 0.1163 ( 0.000)

ω 0.0003 ( 0.000) 0.0003 ( 0.000) 0.0002 ( 0.000) 0.0002 ( 0.000) 0.0003 ( 0.000) 0.0004 ( 0.000) 0.0002 ( 0.000) 0.0003 ( 0.000)
α 0.4355 ( 0.000) 0.3104 ( 0.000) 0.2941 ( 0.000) 0.2188 ( 0.000) 0.5353 ( 0.000) 0.1723 ( 0.000) 0.3284 ( 0.000) 0.3025 ( 0.000)

Ibersol

Variance Equation

SAG Semapa PTSonae Ind. Sonae SGPSJ. M. Portucel

 



FORECASTING PORTUGUESE STOCK MARKET VOLATILITY    

            19/26 

Stand. Residuals
Mean    
Std. Dev.  
Skewness  
Kurtosis  

Jarque-Bera 3951 ( 0.000) 9930 ( 0.000) 7984 ( 0.000) 2843 ( 0.000) 10373 ( 0.000) 20430 ( 0.000) 3244 ( 0.000) 578.95 ( 0.000)

LB Q (10) 36.324 ( 0.000) 19.995 ( 0.029) 18.346 ( 0.049) 6.9532 ( 0.730) 29.442 ( 0.001) 14.744 ( 0.142) 13.956 ( 0.175) 17.549 ( 0.063)
ARCH (10) LM 42.34 ( 0.000) 34.79 ( 0.000) 20.46 ( 0.025) 40.14 ( 0.000) 63.72 ( 0.000) 38.28 ( 0.000) 37.37 ( 0.000) 153.51 ( 0.000)

0.650
10.386

Ibersol
0.035
1.000

SAG
0.007
1.000
0.437
14.186

0.094
8.453

Semapa
-0.012
1.000 1.000

-0.067
5.435

0.076
12.161

PTSonae Ind.
0.022
1.000

-0.006
Sonae SGPS

0.005
1.000
1.026
15.69311.961

J. M.
-0.005
1.000
-0.112 0.412

8.738

Portucel
0.007
1.000

 

 

GARCH (1,1)

C 0.0004 ( 0.004) 0.0002 ( 0.282) 0.0005 ( 0.001) 0.0005 ( 0.088) 0.0005 ( 0.191) 0.0003 ( 0.080) -0.0005 ( 0.233) -0.0001 ( 0.774)
r(t-1) 0.1722 ( 0.000) 0.0845 ( 0.002) 0.0777 ( 0.000) 0.0650 ( 0.002) -0.2548 ( 0.000) 0.0266 ( 0.188) - - - -

ω 0.0000 ( 0.000) 0.0000 ( 0.000) 0.0000 ( 0.000) 0.0000 ( 0.000) 0.0000 ( 0.000) 0.0000 ( 0.000) 0.0000 ( 0.000) 0.0000 ( 0.000)
α 0.1342 ( 0.000) 0.1631 ( 0.000) 0.0486 ( 0.000) 0.1604 ( 0.000) 0.0358 ( 0.000) 0.0808 ( 0.000) 0.2350 ( 0.000) 0.0971 ( 0.000)
β 0.8671 ( 0.000) 0.8343 ( 0.000) 0.9505 ( 0.000) 0.7202 ( 0.000) 0.9358 ( 0.000) 0.9027 ( 0.000) 0.7213 ( 0.000) 0.7356 ( 0.000)

PSI20 BPI CIMPOR EDPBCP Brisa

Variance Equation

BES Cofina

 

 

Stand. Residuals
Mean    
Std. Dev.  
Skewness  
Kurtosis  

Jarque-Bera 1391.3 ( 0.000) 4184.4 ( 0.000) 10603 ( 0.000) 2944.1 ( 0.000) 2412.4 ( 0.000) 5653.1 ( 0.000) 2296.9 ( 0.000) 867.6 ( 0.000)

LB Q (10) 44.436 ( 0.000) 12.768 ( 0.237) 24.358 ( 0.007) 17.585 ( 0.062) 32.388 ( 0.000) 8.0221 ( 0.627) 20.192 ( 0.027) 15.273 ( 0.122)
ARCH (10) LM 10.07 ( 0.434) 10.30 ( 0.415) 11.44 ( 0.324) 3.72 ( 0.959) 3.76 ( 0.957) 6.10 ( 0.807) 4.54 ( 0.920) 11.66 ( 0.309)

6.349 7.866 10.243 6.375
-0.100 0.188 0.319 0.189
1.000 1.000 1.000 1.000

PSI20 BPI
-0.015 -0.017 0.014 -0.014

CIMPOR EDP

-0.060
8.818

BCP
-0.013
1.000

Brisa
-0.003
0.999
0.230
8.842

BES
-0.012
1.001
0.642
12.173

Cofina
0.011
1.001
0.242
8.801
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GARCH (1,1)

C -0.0001 ( 0.806) 0.0006 ( 0.065) -0.0008 ( 0.023) 0.0007 ( 0.023) -0.0004 ( 0.185) 0.0008 ( 0.008) 0.0001 ( 0.654) 0.0007 ( 0.021)
r(t-1) -0.0155 ( 0.549) 0.0998 ( 0.000) - - - - 0.0173 ( 0.478) 0.0607 ( 0.006) - - 0.1139 ( 0.000)

ω 0.0000 ( 0.000) 0.0000 ( 0.003) 0.0001 ( 0.000) 0.0000 ( 0.000) 0.0001 ( 0.000) 0.0000 ( 0.105) 0.0000 ( 0.000) 0.0000 ( 0.000)
α 0.1533 ( 0.000) 0.2038 ( 0.000) 0.2780 ( 0.000) 0.1759 ( 0.000) 0.4616 ( 0.000) 0.0510 ( 0.000) 0.1966 ( 0.000) 0.0565 ( 0.000)
β 0.8524 ( 0.000) 0.6937 ( 0.000) 0.5591 ( 0.000) 0.7168 ( 0.000) 0.4708 ( 0.000) 0.9474 ( 0.000) 0.7435 ( 0.000) 0.9423 ( 0.000)

Ibersol

Variance Equation

SAG Semapa PTSonae Ind. Sonae SGPSJ. M. Portucel

 

 

Stand. Residuals
Mean    
Std. Dev.  
Skewness  
Kurtosis  

Jarque-Bera 2019.6 ( 0.000) 23922 ( 0.000) 5525.8 ( 0.000) 3229.7 ( 0.000) 6183 ( 0.000) 3732.9 ( 0.000) 3075.5 ( 0.000) 209.39 ( 0.000)

LB Q (10) 16.754 ( 0.080) 18.94 ( 0.041) 10.776 ( 0.375) 7.3978 ( 0.687) 27.281 ( 0.002) 16.631 ( 0.083) 9.0788 ( 0.525) 12.245 ( 0.269)
ARCH (10) LM 35.02 ( 0.000) 2.85 ( 0.985) 4.31 ( 0.932) 4.92 ( 0.896) 6.04 ( 0.812) 10.44 ( 0.403) 9.20 ( 0.513) 20.23 ( 0.027)

1.000
0.327
8.322

Ibersol
-0.007

1.001
-0.246
12.322

SAG
0.015

1.000
0.173
8.805

1.0001.000
0.1980.069
4.41210.072

-0.0090.008
PTSonae Ind.

0.441
8.42516.894

-0.006
Semapa
-0.015

-0.366
1.000

Sonae SGPS
-0.016
1.005

J. M. Portucel
0.003
1.000
0.616
8.508

 
 

EGARCH (1,1)

C 0.0003 ( 0.032) 0.0004 ( 0.046) 0.0006 ( 0.000) 0.0005 ( 0.069) 0.0006 ( 0.116) 0.0006 ( 0.003) -0.0008 ( 0.022) -0.0006 ( 0.133)
r(t-1) 0.1907 ( 0.000) 0.0981 ( 0.000) 0.0842 ( 0.000) 0.0691 ( 0.000) -0.2654 ( 0.000) 0.0320 ( 0.090) - - - -

ω -0.4890 ( 0.000) -0.5354 ( 0.000) -0.2708 ( 0.000) -0.9414 ( 0.000) -0.7055 ( 0.000) -0.3981 ( 0.000) -0.8939 ( 0.000) -1.4042 ( 0.000)
α 0.2544 ( 0.000) 0.2679 ( 0.000) 0.1560 ( 0.000) 0.2087 ( 0.000) 0.1265 ( 0.000) 0.1869 ( 0.000) 0.4053 ( 0.000) 0.1882 ( 0.000)
γ -0.0429 ( 0.000) -0.0280 ( 0.353) -0.0333 ( 0.000) -0.0637 ( 0.000) -0.0380 ( 0.001) 0.0236 ( 0.000) 0.0218 ( 0.068) -0.1052 ( 0.000)
β 0.9681 ( 0.000) 0.9593 ( 0.000) 0.9810 ( 0.000) 0.9045 ( 0.000) 0.9253 ( 0.000) 0.9692 ( 0.000) 0.9206 ( 0.000) 0.8461 ( 0.000)

PSI20 BPI CIMPOR EDPBCP

Variance Equation

BrisaBES Cofina
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Stand. Residuals
Mean    
Std. Dev.  
Skewness  
Kurtosis  

Jarque-Bera 1147.6 ( 0.000) 4262 ( 0.000) 13312 ( 0.000) 2697.3 ( 0.000) 2600.7 ( 0.000) 6453 ( 0.000) 2217.8 ( 0.000) 1041.1 ( 0.000)

LB Q (10) 40.630 ( 0.000) 10.969 ( 0.360) 23.528 ( 0.009) 17.4 ( 0.066) 25.771 ( 0.004) 7.2776 ( 0.699) 19.445 ( 0.035) 15.968 ( 0.101)
ARCH (10) LM 12.66 ( 0.243) 11.62 ( 0.311) 12.73 ( 0.239) 6.93 ( 0.732) 5.79 ( 0.833) 10.07 ( 0.434) 6.99 ( 0.726) 14.24 ( 0.162)

6.047 7.665
0.024 0.128 0.164 0.214

0.001 -0.018 -0.010 0.012

10.762 6.696

1.000 1.000 1.000 1.000

PSI20 BPI CIMPOR EDPBCP
-0.026
1.000
0.056
8.871

Brisa
-0.013
1.001
0.188
9.073

BES
-0.012
1.001
0.787
13.259

Cofina
0.030
1.001
0.206
8.705

 

 

EGARCH (1,1)

C -0.0003 ( 0.405) 0.0005 ( 0.365) -0.0011 ( 0.002) 0.0006 ( 0.026) -0.0006 ( 0.010) 0.0013 ( 0.000) -0.0001 ( 0.753) 0.0007 ( 0.026)
r(t-1) -0.0580 ( 0.024) 0.1032 ( 0.000) - - - - 0.0632 ( 0.007) 0.0815 ( 0.001) - - 0.1290 ( 0.000)

ω -1.0995 ( 0.000) -1.4603 ( 0.000) -1.8244 ( 0.000) -1.2509 ( 0.000) -2.3677 ( 0.000) -0.1252 ( 0.012) -1.3387 ( 0.000) -0.1945 ( 0.000)
α 0.4769 ( 0.000) 0.3364 ( 0.000) 0.3880 ( 0.000) 0.3087 ( 0.000) 0.6108 ( 0.000) 0.0989 ( 0.000) 0.3740 ( 0.000) 0.1321 ( 0.000)
γ 0.0053 ( 0.676) -0.0181 ( 0.641) 0.0236 ( 0.083) -0.0389 ( 0.000) -0.0505 ( 0.000) -0.0074 ( 0.623) -0.0198 ( 0.062) -0.0121 ( 0.055)
β 0.9013 ( 0.000) 0.8450 ( 0.000) 0.8138 ( 0.000) 0.8746 ( 0.000) 0.7518 ( 0.000) 0.9924 ( 0.000) 0.8689 ( 0.000) 0.9879 ( 0.000)

Ibersol

Variance Equation

SAG Semapa PTSonae Ind. Sonae SGPSJ. M. Portucel

 

 

Stand. Residuals
Mean    
Std. Dev.  
Skewness  
Kurtosis  

Jarque-Bera 1522.4 ( 0.000) 23082 ( 0.000) 6296.9 ( 0.000) 2945 ( 0.000) 7001.1 ( 0.000) 6497.4 ( 0.000) 2816 ( 0.000) 287.73 ( 0.000)

LB Q (10) 20.109 ( 0.028) 18.198 ( 0.052) 10.97 ( 0.360) 6.5319 ( 0.769) 18.81 ( 0.043) 16.198 ( 0.094) 9.8827 ( 0.451) 12.448 ( 0.256)
ARCH (10) LM 25.08 ( 0.005) 2.25 ( 0.994) 4.04 ( 0.946) 6.78 ( 0.746) 3.19 ( 0.977) 22.20 ( 0.014) 8.53 ( 0.577) 22.78 ( 0.012)

1.000
0.189
7.640

Ibersol
-0.006

12.933

SAG
0.029

Semapa
-0.012 -0.0080.025
1.000
0.204
8.538

1.000
-0.398 0.2290.082

4.65710.525

0.9991.000

PTSonae Ind. Sonae SGPS
-0.033
1.008
0.605
10.149

J. M.
-0.002
1.000
-0.126
16.664

Portucel
0.016
1.000
0.623
8.255
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GJR-GARCH (1,1)

C 0.0003 ( 0.044) 0.0001 ( 0.610) 0.0004 ( 0.012) 0.0002 ( 0.556) 0.0003 ( 0.372) 0.0004 ( 0.071) -0.0004 ( 0.326) -0.0004 ( 0.262)
r(t-1) 0.1774 ( 0.000) 0.0855 ( 0.001) 0.0814 ( 0.000) 0.0716 ( 0.001) -0.2568 ( 0.000) 0.0259 ( 0.201) - - - -

ω 0.0000 ( 0.000) 0.0000 ( 0.000) 0.0000 ( 0.000) 0.0000 ( 0.000) 0.0000 ( 0.000) 0.0000 ( 0.000) 0.0000 ( 0.000) 0.0000 ( 0.000)
α 0.1039 ( 0.000) 0.1391 ( 0.000) 0.0376 ( 0.000) 0.0848 ( 0.000) 0.0306 ( 0.001) 0.0858 ( 0.000) 0.2438 ( 0.000) 0.0351 ( 0.002)
γ 0.0509 ( 0.000) 0.0428 ( 0.426) 0.0380 ( 0.000) 0.1096 ( 0.000) 0.0429 ( 0.002) -0.0119 ( 0.189) -0.0167 ( 0.481) 0.1356 ( 0.000)
β 0.8693 ( 0.000) 0.8365 ( 0.000) 0.9423 ( 0.000) 0.7644 ( 0.000) 0.8834 ( 0.000) 0.9040 ( 0.000) 0.7196 ( 0.000) 0.7344 ( 0.000)

Variance Equation

PSI20 BPI CIMPOR EDPBCP BrisaBES Cofina

 

 

Stand. Residuals
Mean    
Std. Dev.  
Skewness  
Kurtosis  

Jarque-Bera 1340.6 ( 0.000) 4438.1 ( 0.000) 11544 ( 0.000) 2459.9 ( 0.000) 2653.5 ( 0.000) 5631.5 ( 0.000) 2234 ( 0.000) 927.01 ( 0.000)

LB Q (10) 44.399 ( 0.000) 13.17 ( 0.214) 22.337 ( 0.013) 16.943 ( 0.076) 26.929 ( 0.003) 7.9975 ( 0.629) 19.835 ( 0.031) 15.848 ( 0.104)
ARCH (10) LM 8.08 ( 0.621) 10.12 ( 0.430) 12.58 ( 0.248) 4.52 ( 0.921) 3.17 ( 0.977) 6.08 ( 0.809) 4.44 ( 0.925) 13.95 ( 0.175)

-0.019 0.228
6.293 7.438 10.230 6.485

0.317 0.211

0.010 0.004
1.000 1.000 1.000 1.000
-0.001 0.005
PSI20 BPI CIMPOR EDPBCP

-0.003
1.000
0.005
8.993

Brisa
0.004
1.000
0.220
9.130

BES
0.000
1.001
0.792
12.535

Cofina
0.008
1.001
0.229
8.722

 
 

GJR-GARCH (1,1)

C -0.0002 ( 0.623) 0.0004 ( 0.174) -0.0008 ( 0.051) 0.0005 ( 0.119) -0.0006 ( 0.062) 0.0006 ( 0.058) 0.0001 ( 0.871) 0.0006 ( 0.049)
r(t-1) -0.0147 ( 0.565) 0.0979 ( 0.000) - - - - 0.0220 ( 0.366) 0.0605 ( 0.005) - - 0.1144 ( 0.000)

ω 0.0000 ( 0.000) 0.0000 ( 0.000) 0.0001 ( 0.000) 0.0000 ( 0.000) 0.0001 ( 0.000) 0.0000 ( 0.105) 0.0000 ( 0.000) 0.0000 ( 0.000)
α 0.1406 ( 0.000) 0.1721 ( 0.000) 0.3024 ( 0.000) 0.1411 ( 0.000) 0.3882 ( 0.000) 0.0375 ( 0.004) 0.1797 ( 0.000) 0.0505 ( 0.000)
γ 0.0278 ( 0.050) 0.0594 ( 0.000) -0.0557 ( 0.078) 0.0755 ( 0.000) 0.1433 ( 0.000) 0.0286 ( 0.084) 0.0316 ( 0.081) 0.0190 ( 0.019)
β 0.8546 ( 0.000) 0.6983 ( 0.000) 0.5666 ( 0.000) 0.7130 ( 0.000) 0.4806 ( 0.000) 0.9469 ( 0.000) 0.7444 ( 0.000) 0.9380 ( 0.000)

Ibersol

Variance Equation

SAG Semapa PTSonae Ind. Sonae SGPSJ. M. Portucel
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Stand. Residuals
Mean    
Std. Dev.  
Skewness  
Kurtosis  

Jarque-Bera 2092 ( 0.000) 23379 ( 0.000) 5451.4 ( 0.000) 2903.7 ( 0.000) 6146.1 ( 0.000) 3783.6 ( 0.000) 3198.6 ( 0.000) 229.56 ( 0.000)

LB Q (10) 16.941 ( 0.076) 19.904 ( 0.030) 10.56 ( 0.393) 7.1341 ( 0.713) 28.154 ( 0.002) 17.313 ( 0.068) 9.2701 ( 0.507) 12.226 ( 0.270)
ARCH (10) LM 35.34 ( 0.000) 2.84 ( 0.985) 4.45 ( 0.925) 5.11 ( 0.884) 5.78 ( 0.833) 10.37 ( 0.409) 8.88 ( 0.543) 18.72 ( 0.044)

1.000
0.390
8.401

Ibersol
0.000

SAG
0.008
1.000
-0.304
12.252 8.497

Semapa
-0.003

4.47310.046
0.2170.148

-0.0030.021
1.0001.0001.000

0.217

PTSonae Ind. Sonae SGPS
-0.002
1.005
0.485
8.447

J. M.
0.002
1.000
-0.315
16.740

Portucel
0.009
1.000
0.644
8.610

 
 

 

Appendix 2: Volatility Forecasting Models’ Mean Performance (RMSE) 

 

  RMSE Mean (σ) RMSE Mean (µ2) RMSE Mean (Σ) 
  Value Relative Rank Value Relative Rank Value Relative Rank 
RW 0.01165 1.000 13 0.01169 1.000 9 0.00822 1.000 9 
HIS 0.01016 0.872 12 0.01025 0.876 8 0.00711 0.864 8 
MA-4 0.01006 0.864 11 0.01007 0.861 7 0.00708 0.861 7 
MA-12 0.00965 0.828 7 0.00972 0.831 3 0.00679 0.826 3 
WMA-4 0.00999 0.857 9 0.00998 0.854 6 0.00703 0.854 6 
WMA-12 0.00952 0.817 5 0.00955 0.816 1 0.00670 0.814 1 
ES 0.00999 0.857 9 0.00982 0.840 5 0.00690 0.839 5 
EWMA-4 0.00967 0.830 8 0.00973 0.832 4 0.00684 0.832 4 
EWMA-12 0.00961 0.825 6 0.00969 0.828 2 0.00678 0.824 2 
ARCH(1) 0.00837 0.718 1 - - - - - - 
GARCH(1,1) 0.00879 0.755 3 - - - - - - 
EGARCH(1,1) 0.00864 0.741 2 - - - - - - 
GJR-GARCH(1,1) 0.00880 0.755 4 - - - - - - 
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Appendix 3: Volatility Forecasting Models’ Mean Performance (MAPE) 

  MAPE Mean (σ) MAPE Mean (µ2) MAPE Mean (Σ) 
  Value Relative Rank Value Relative Rank Value Relative Rank 
RW 0.75016 0.830 8 0.68906 0.816 7 0.77607 0.864 8 
HIS 0.86354 0.956 12 0.84425 1.000 9 0.89826 1.000 9 
MA-4 0.69277 0.767 4 0.65349 0.774 3 0.71622 0.797 3 
MA-12 0.71219 0.788 5 0.67770 0.803 6 0.73906 0.823 6 
WMA-4 0.68645 0.760 1 0.64522 0.764 1 0.70958 0.790 1 
WMA-12 0.69199 0.766 3 0.65409 0.775 4 0.71689 0.798 4 
ES 0.69124 0.765 2 0.64760 0.767 2 0.71351 0.794 2 
EWMA-4 0.71377 0.790 6 0.67192 0.796 5 0.73505 0.818 5 
EWMA-12 0.72666 0.804 7 0.69094 0.818 8 0.75154 0.837 7 
ARCH(1) 0.90332 1.000 13 - - - - - - 
GARCH(1,1) 0.79096 0.876 10 - - - - - - 
EGARCH(1,1) 0.79677 0.882 11 - - - - - - 
GJR-GARCH(1,1) 0.79028 0.875 9 - - - - - - 

 

Appendix 4: Volatility Forecasting Models’ Mean Performance (MME(U)) 

  MME(U) Mean (σ) MME(U) Mean (µ2) MME(U) Mean (Σ) 
  Value Relative Rank Value Relative Rank Value Relative Rank 
RW 0.04337 1.000 13 0.04263 1.000 9 0.03586 1.000 9 
HIS 0.03813 0.879 12 0.03783 0.887 8 0.03144 0.877 8 
MA-4 0.03794 0.875 11 0.03748 0.879 7 0.03122 0.871 7 
MA-12 0.03610 0.832 8 0.03580 0.840 5 0.02979 0.831 4 
WMA-4 0.03777 0.871 10 0.03724 0.874 6 0.03110 0.867 6 
WMA-12 0.03590 0.828 7 0.03542 0.831 3 0.02960 0.825 3 
ES 0.03675 0.847 9 0.03567 0.837 4 0.02999 0.836 5 
EWMA-4 0.03557 0.820 6 0.03539 0.830 2 0.02942 0.821 2 
EWMA-12 0.03544 0.817 5 0.03512 0.824 1 0.02933 0.818 1 
ARCH(1) 0.02470 0.570 1 - - - - - - 
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GARCH(1,1) 0.02536 0.585 4 - - - - - - 
EGARCH(1,1) 0.02501 0.577 2 - - - - - - 
GJR-GARCH(1,1) 0.02529 0.583 3 - - - - - - 

 

Appendix 5: Volatility Forecasting Models’ Mean Performance (MME(O)) 

  MME(O) Mean (σ) MME(O) Mean (µ2) MME(O) Mean (Σ) 
  Value Relative Rank Value Relative Rank Value Relative Rank 
RW 0.04474 0.766 2 0.04412 0.877 1 0.03680 0.905 2 
HIS 0.04939 0.845 9 0.05032 1.000 9 0.04068 1.000 9 
MA-4 0.04479 0.767 3 0.04446 0.884 3 0.03694 0.908 3 
MA-12 0.04666 0.799 6 0.04646 0.923 6 0.03871 0.951 6 
WMA-4 0.04458 0.763 1 0.04415 0.877 2 0.03670 0.902 1 
WMA-12 0.04593 0.786 5 0.04567 0.908 5 0.03806 0.935 5 
ES 0.04583 0.784 4 0.04531 0.900 4 0.03774 0.928 4 
EWMA-4 0.04719 0.808 7 0.04664 0.927 7 0.03890 0.956 7 
EWMA-12 0.04755 0.814 8 0.04733 0.941 8 0.03932 0.967 8 
ARCH(1) 0.05843 1.000 13 - - - - - - 
GARCH(1,1) 0.05549 0.950 10 - - - - - - 
EGARCH(1,1) 0.05663 0.969 12 - - - - - - 
GJR-GARCH(1,1) 0.05563 0.952 11 - - - - - - 
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Appendix 6: Summary of Volatility Forecasting Models’ Performance 

 

  Risk Measure - σ Risk Measure - µ2 Risk Measure - Σ 
  RMSE MAPE MME(U) MME(O) RMSE MAPE MME(U) MME(O) RMSE MAPE MME(U) MME(O) 
RW 13 8 13 2 9 7 9 1 9 8 9 2 
HIS 12 12 12 9 8 9 8 9 8 9 8 9 
MA-4 11 4 11 3 7 3 7 3 7 3 7 3 
MA-12 7 5 8 6 3 6 5 6 3 6 4 6 
WMA-4 9 1 10 1 6 1 6 2 6 1 6 1 
WMA-12 5 3 7 5 1 4 3 5 1 4 3 5 
ES 9 2 9 4 5 2 4 4 5 2 5 4 
EWMA-4 8 6 6 7 4 5 2 7 4 5 2 7 
EWMA-12 6 7 5 8 2 8 1 8 2 7 1 8 
ARCH(1) 1 13 1 13 - - - - - - - - 
GARCH(1,1) 3 10 4 10 - - - - - - - - 
EGARCH(1,1) 2 11 2 12 - - - - - - - - 
GJR-GARCH(1,1) 4 9 3 11 - - - - - - - - 
 

 


