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Abstract

This paper is about the modeling of dependence in credit risk. In the recent times,
this subject is the matter of concern in many papers. Due to the relation in the
behavior of individual exposures, it is very important to take this fact into account
by judgment of the risk magnitude. The direct way in this case is to specify the
variable that describes the behavior of individual exposures and make the stochastic
process of the random variables to be dependent on each other. This paper looks into
this subject from a different point of view. We apply the portfolio view and assume
that the composition of the portfolio in terms of ratings at a specific point of time
is the result of the interactions of the individual obligors with each other in a prior
time. In this paper, we specify the random variable as a composition of the portfolio
in terms of ratings and look at the variation of this variable over the time. We assume
that the composition of the portfolio is the result of the interaction of the exposures
and can be used to study the dependence structure in credit risk. We assume that
the time behavior of the portfolio has the Markov property but in contrast to the
previous works, we apply the copula approach to model the Markov chain. It allows
using the advantages of the copula framework to model the dependence structures.

1 Introduction

It is generally accepted, that the defaults are dependent. In the modeling
literature you will find two approaches explaining the dependence between
defaults. The first approach leads back the dependence to the relationship
between the firms. According to this view, the default of the firm has influence
on the survival of the linked firms. The dependence is based on the contagion.
The second approach relates the survival probability of the individual firm to
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the general factors. The factors influence the firms in the same direction and
cause the default accumulation. For this reason, a model of credit risk has to
allow for the dependence between the individual exposures. Apart from the
different notions about the source of dependence, there are different formal
setups to implement this.

Of the crucial importance is the specification of random variable. In the recent
time the models specify the random variable as "time until default” and not as
default. The first definition does not link the dependence to the specific time
horizon but gives the information regarding distribution of defaults along the
time line. As far as the risk management is concerned about both the number
of default in the specific time horizon and how close they are, it is a convenient
approach. But the random variable refers to one specific exposure. In the first
step you define the default process of the individual exposure. To switch to the
portfolio view you have to link the random variable by the copula. At this stage
one has to specify the dependence between the individual exposures. By this
approach you have so many random variables as individual exposures. In order
to keep the problem manageable, you have to make simplifying assumptions
regarding the size and the creditworthiness of the exposure. You will assume
that all exposures in the portfolio have the same size and bear the same credit
risk

In this framework the time of default and the dependence between the indi-
vidual times of default is what are you interested in. The default of one obligor
causes the default intensities of the others jump. This makes the default of the
others more probable and the stochastic processes dependent. On this way one
models the dependence between the default times of the individual obligors.
But it will be reasonable to assume, that the default of one obligor can result
in the deterioration of the creditworthiness of the another. It is also possible,
that the deterioration of the creditworthiness of one obligor results in the de-
fault of the other. The deterioration of the creditworthiness can be specified
as the change in the rating grade. So there are two types of events: the default
and the change in the rating grade. The model will be more realistic, if we
extend our dependence concept to include the changes in the rating grades.
This is also an important step in the direction to measure the market risk of
the portfolio under the dependence between individual obligors.

If we focus on the stochastic behavior of the random variable that describes the
default behavior of an individual obligor, we distinguish between two states
of nature: default and non-default. As seen from this point of view, the rating
system has two rating grades. The rating systems used by rating agencies
have more than two rating grades in order to distinguish between the credit
qualities of the obligors. The approach in this paper models the dependence
of migrations in the rating system typical for rating agencies.



It is usual to model the rating process as a Markov chain. This is also the
assumption of our paper. We assume that the rating process has the Markov
property. In formal terms it can be expressed as

Pr{Xt+1 :j|X0:’L.O,...,Xt:i}:Pr{Xt_’_l :j|Xt:'L}

for all time points ¢ and all states. The states of Markov chain represent the
rating categories.

The Markov process is completely defined by the initial state and transition
probability matrix. The initial state is generally the probability distribution
Xp. In the literature the rating process are given by rating transition matrix,
without defining the initial distribution. The reason is that, we understand the
rating process on the individual level. We say, what is the probability to find
obligor in the rating category AAA, say, in one year time, if we know, that he
is in the category B at present time. In this case, the initial distribution will
have the form: Xy = (0,...,0,1,0,...,0). But what will happen if we switch
to the portfolio view. The units included in the portfolio can be distributed
between the rating categories in many ways. The composition of the portfolio
is given by the proportion of each rating category and can be seen as the initial
distribution in terms of Markov chain. In this case by multiplying the initial
distribution with the transition matrix one would not get the distribution of
the individual obligor to be in a specific rating category at the end of the
period given his present rating, but you get the composition of the portfolio
specified by proportion of each rating at the end of specific time period, given
the present day composition. This view is very essential for many problems in
the finance, like for example the pricing of basket type instruments.

At the moment we say that the transition matrix can be also applied to de-
scribe the default process of the portfolio, one would like to know how it can
handle the dependence between the individual default processes. If we assume,
that the composition of the portfolio is essential for the dependence that we
will have in the portfolio, then it will be wrong to apply the same transition
matrix to the both portfolios to calculate the portfolio composition at the
end of some specific period of time. There must be two transition matrices
with different dependence structures. The empirical work in this area gives
some hints that it is also plausible to differentiate between different compo-
sition of the portfolios regarding the industries, countries, etc.(Nelsen, 1998).
Therefore, we will conclude, that the transition matrices published by rating
agencies are good for the universe of obligors underlying their calculation. But
one can say nothing about the dependence structure implied in these matrices
and we do not have any clues about the strength of dependence.

If we are aware of this problem, the next step will be to find a framework,
which can specify the dependence structure in the transition matrix of the



Markov chain. We use the idea of Darsow et al. (1992) to show, how we can
use the copula approach to model the dependence in terms of rating process.
This paper is organized as follows. First, we introduce the copula followed by
the specification of Markov chain in terms of copula. Then, we transfer the
idea of Darsow et al. (1992) on the rating process and show an example, how
it works. We use the rating matrix from Standard and Poor’s and hypothetical
portfolios to show the implications for the dependence structure, if we use one
of the portfolios in combination with this matrix.

2 Model Setup

2.1 Copulas!

Generally speaking, copulas are the multivariate distribution functions with
uniform distributed margins: the random variables take values on [0, 1] and
they are linked to each other by the copula function C, the joint distribution
function.

A two-dimensional copula (2-copula) is a function C' from I? to [ with the
following properties:

(1) For every u, v in [
C(u,0)=0=C(0,v) (1)
and
C(u,l)=u und C(l,v)=v (2)
(2) For every uy, us, vy, v in I such that u; < ug and vy < vy
C (ug,v9) — C (ug,v1) — C (ug,v9) + C (ug,v1) >0 (3)
There are three special cases of copulas:
W (u,v) = mazx (u+v —1,0)

M (u,v) = min (u,v)

I (u,v) =u-v

! In the recent time copulas were broad used in the modeling literature. The pre-
sentation here fails briefly and is limited to the bivariate copula used in this paper.
For the details please refer to Darsow et al. (1992); Nelsen (1998)



(&) C(u,v)=min(u,v) (b) C(u,v)=max(u+v-1,0)
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Figure 1. Graph of M—, W— und II—copulas
The figure 1 shows the graph of these copulas. For every copula C' and every

(u,v) in I?:

W (u,v) < C(u,v) < M (u,v)

The copulas W and M form the lower and upper limit for all copulas and
represent the perfect negative and positive dependence; Il stands for the in-
dependence.

Sklar’s theorem: Let H be a joint distribution function of random variables x
and y with margins F' (x) and G (y). Then, there exist the copula C' such that
for all x,y € R

H(z,y) = C(F(x),G (y))

If F" and G are continuous, then C'is unique.

For the arbitrary continuous distribution F' of the random variable x, the
random variable u such that v := F' (z) is uniform distributed on [0, 1]. Hence,
the distribution F' is not reflected in the copula function. The copula gives



the functional form of the joint distribution function H (z,y) adjusted to the
influence of the margins and is suited for the analysis of dependence.

Gauss copula

BT e ) 1 s — 2Ryt + t2
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Clayton copula

=
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C (u,v) = (u_e +ov7? - 1)

Gumbel copula

=

C (u,v) = exp (— ((— logu)? + (—log ’U)G)

) (7

Frank copula

1

O (u) = — log <1+

(exp (—0u) — 1) (exp (—Hv) — 1>> (8)

exp (—0) — 1

The parameter of the copula function captures the dependence. For the specific
parameter values the copulas converge to one of the specific cases: W, M or
I1. Table 1 shows the range of the parameter, special and limiting cases for
the four copulas presented above.

2.2 Markov chain in terms of copula®

Let X; be a continuous random variable for all ¢ € T', where ¢ is the time index.
With Markov chain, we describe the real stochastic process of the random

2 The people who first specified the Markov chain in terms of copula were Darsow
et al. (1992, p. 604 et sqq). The brief presentation of the approach is given by Nelsen
(1998, p. 195).



Table 1

The range of parameter and special cases.

Range of parame- | Perfect  neg- | Independence | Perfect  pos-
ter ative  depen- itive  depen-
dence dence
Clayton | [—1,00) \ {0} ct- =w ci0y =11 Ccfeo} — M
Gumbel | [1,00) - ciy =11 c{ecl = M
Frank | (—o0,00)\ {0} clt=—w |l =11 ooy —
GauR | [-1,1] ct- =w clo} — 11 oy — v

I (u,v) =u x vy W(u,v) =max [u+v—1,0]; M (u,v) = min [u, v].

variable X; given by the sequence X; € T. We defined the 2-copula as a
function of two uniformly on [0, 1] distributed continuous random variables:
C' (u,v). Applying to the Markov chain, one variable of the copula stands for
the initial distribution X, the other for the end distribution X; of the same
random variable X. If we denote with F; the cumulative distribution function
of X; at time ¢ und with F; the joint cumulative distribution function of
the variables X; and X, we can link this notation to copula notation of the
previous section:

Fo(z,y) = Cy (Fs (), F (),

i.e., Cg (u,v) gives us the joint probability for Fy (z) < w und F; (y) < v. In
their work Darsow et al. defined the product of two 2-copulas and shown, that
this is the continuous analog to the multiplication on matrices. They proved
that the first derivation of the copula function gives the transition probabilities
of the Markov chain. Formally, 3

P(Xs <ul Xy =)= Cap (F (2), F; (y)) (9)

with s, ¢ € T such that ¢t < s and Cy; copula function of random variables
Xsand Xt'

In the common specification of the Markov chain we use the initial distribution
and the transition matrix to define the stochastic process. It is obvious, that
the changing the initial distribution and holding the transition matrix constant
has an impact on the end distribution. The initial and the end distributions
are linked to each other by transition matrix. Given the transition matrix in
the absolute terms we do not know how strong the dependence of the end
distribution on the initial distribution is. In the approach of Darsow et al., the
Markov chain is specified by the initial and the end distributions as well as the

3 See the proof of the theorem 3.1 in the essay of Darsow et al. (1992, pp. 608-609).



copula function. The copula function sets the dependence structure between
the initial and the end distribution. The parameter of the copula function
captures the dependence strength. The transition matrix in the absolute terms
arises from the first derivation function of the copula.

2.3  Rating process in terms of copula

In this section, we apply the copula approach to the rating process and specify
the transition probabilities in terms of copula function. Therefore, we define
the random variable X, as the rating grade of the obligor at a specific point of
time t. Applying the rating grade system of Standard & Poor’s, the state space
of the random variable X; willbe AAA, AA, A, BBB, BB, B, CCC and D.
Notice, that X; is a discrete variable. For each point of time, we describe the
portfolio of exposures by the proportion of each rating grade in the universe of
exposures. For the purpose of this paper we assume, that the exposures have
the same size given by the nominal amount. In this case the proportion of
each rating grade is the number of exposures of the rating grade ¢ dividing by
the total number of exposures: —“—, were n; is the number of exposures of the

n;’

rating grade i. We calculate the Zprobability, that the exposure has the rating
grade BB by f(X; = BB) = ff;fl (density function). Then, F' (X, = BB)
is the cumulative distribution function and gives the probability, that the
exposure is of the rating grade BB or better. The index ¢ refers to the specific
point of time. f; (x) und F; (x)are the density and the cumulative distribution

function of portfolio at time t.

The transition matrix gives the joint distribution (pdf) of two variables X, X,
where t, s (s < t) are two points of time. In the previous notation the joint cu-
mulative distribution function of X, X, is given by F;. Since X, is a discrete
variable, we cannot apply the copula approach directly. In the proof of the
theorem, Darsow et al. (1992) use the interpolation. We use the same inter-
polation to define the Markov chain in terms of copula. By the interpolation,
we expand the rating matrix (after cumulating the row values) to copula. The
formal expression for the interpolation is: 4

Plasy = CEELFO) -0 FE=1).F) 0

The example below illustrates, how the interpolation works. For this purpose
we use as input the composition of portfolio at two points of time as given

4 You can find this expression in book of Joe (1997, p. 245). In book of Nelsen
(1998, p. 16) refer to Lemma 2.3.5. See also Darsow et al. (1992, pp. 609-610).



Table 2
The composition of the portfolio at the beginning and the end of the specific time
period in terms of the density and cumulative distribution function (f (x) and F (z)).

AAA AA A BBB BB B CCC D

z) | 0.0250 | 0.1000 | 0.2500 | 0.2500 | 0.2500 | 0.1000 | 0.0200 | 0.0050

fo ()
(z) | 0.0250 | 0.1250 | 0.3750 | 0.6250 | 0.8750 | 0.9750 | 0.9950 | 1.0000
(z)
(x)

e

0.0200 | 0.1200 | 0.2000 | 0.2500 | 0.2000 | 0.1000 | 0.0600 | 0.0500
0.0200 | 0.1400 | 0.3400 | 0.5900 | 0.7900 | 0.8900 | 0.9500 | 1.0000

=

T

=

X

05 05

0
®

Figure 2. Migration matrix and function of the first derivation of the Clayton copula
0 =8.

in table 2. Furthermore we use in this example the Clayton copula with the
parameter 6 = 8.

First, we calculate C' (Fy (z), Fy (x)) by setting the values of the cdf’s in the
copula function. We get a 8 * 8 matrix. Then, we apply the equation 10 to
get the transition matrix. We have to modify the matrix another time by
subtracting from each column the previous one beginning with the last column.
We can see the result of the modification in figure 2 (a). For comparison, the
figure 2 (b) contains the first derivation function of the Clayton copula.

In the common specification of Markov chain we use the initial distribution
and the transition matrix to define the Markov chain. It is obvious, that chang-
ing the initial distribution and holding the transition matrix constant has an
impact on the end distribution. In the approach of Darsow et al. (1992), the
Markov chain is specified by the marginal distributions and the copula func-
tion. By the copula function, we can control the dependence structure and
leave the copula unchanged as long as the same dependence structure can
be assumed. Given the marginal distributions and the transition rates for



two portfolios that are different in composition regarding rating weights, we
can investigate using copula whether the portfolios have different dependence
structures due to their composition differences.

3 Example

The idea of this paper is based on the assumption that the interactions of
the exposures in the portfolio will be different due to the differences in their
composition, for example regarding the weights of rating grades. The interac-
tion of exposures will make migrations, we observe, dependent. In so far as
the migrations are influenced by the composition of the portfolio we can not
assume the same migration matrix as given in the absolute terms for different
portfolios. Based on the observed migrations the calculated transition matrix
should be understood in terms of the portfolio (group of firms) underlying it.

In the example we proceed contrary to the reasoning underlying the approach
above. We consider the 1-year and 10-year transition matrix in conjunction
with different portfolios. The example is based on the 1-year transition matrix
from Standard & Poor’s given in table 3. The rating matrix for the 10-years
period of time was calculated as 10-fold product of the one year transition
matrix: @ (10) = Q'° (1). Further, we assume 4 portfolios as given in table 4.
For the purpose of this example it is essential, that they differ in the compo-
sition regarding the weights of rating grades. We notify the vector of weights
of Portfolio a with P (0) at the begin, ¢ = 0, and apply the 1-year transition
matrix to find the portfolio composition at the end of the first year P*(1):
P*(1) = P*(0) x @ (1). In the same way we proceed to get the composition
of the portfolios at the end of the tenth year: P®(10) = P*(0) x @ (10).

By means of this example we attempt to verify the following claims, which
support the idea of the paper in the indirect way:

Claim 1 The parameter of the copula underlying the transition matriz is sen-
sitive to the composition of the portfolio.

To proof this claim, we calculate parameter value for each portfolio implied
by the transition matrix assuming the validity of the particular copula func-
tion. Since the parameter of the copula determines the dependence magnitude,
differences in parameter value imply different dependence grade.

It is intuitive, that the dependence will decrease with time lag. Taken to the

limit, ¢ — oo, we will have independence between the composition of portfolio
at the beginning P (0) and the end P (co) of time horizon. This intuition

10
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Figure 3. Composition of the hypothetical portfolios in term of rating grades at the
initial point of time.

underlies claims 2 and 3.

Claim 2 The parameter of copula relates to the period of time and for a given
portfolio decreases for the time horizon increases.

In this case, we compare the parameter value of copula for 1-year and 10-years
time horizon as calculated for a particular portfolio. If this claim turns out
to be true, we should observe the convergence in the parameter value of the
portfolios with the increasing time horizon.

Claim 3 The differences in the value of parameter for different portfolios
must decrease as the time horizon increases.

In this paper we can not investigate which copula function fits best the em-
pirical data because we do not know the composition of firms underlying the
transition matrix. But we can see how the different copulas perform on the
data of this example.

In order to determine the parameter value for the selected copulas, we per-
formed the optimization in Matlab. Given the copula function, we use the

11



Table 3
One-year rating transition frequencies of Standard and Poor’s (in percentages)
(Schonbucher, 2004, p. 227).

AAA AA A BBB BB B CCC D

AAA | 0.8910 | 0.0963 | 0.0078 | 0.0019 | 0.0030 | 0.0000 | 0.0000 | 0.0000
AA | 0.0086 | 0.9010 | 0.0747 | 0.0099 | 0.0029 | 0.0029 | 0.0000 | 0.0000

A 0.0009 | 0.0291 | 0.8894 | 0.0649 | 0.0101 | 0.0045 | 0.0000 | 0.0009
BBB | 0.0006 | 0.0043 | 0.0656 | 0.8427 | 0.0644 | 0.0160 | 0.0018 | 0.0045

BB | 0.0004 | 0.0022 | 0.0079 | 0.0719 | 0.7764 | 0.1043 | 0.0127 | 0.0241

B 0.0000 | 0.0019 | 0.0031 | 0.0066 | 0.0517 | 0.8246 | 0.0435 | 0.0685

CCC | 0.0000 | 0.0000 | 0.0116 | 0.0116 | 0.0203 | 0.0754 | 0.6493 | 0.2319

D | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000
Historical average (1981-1991), "no rating” eliminated.

Matlab-function "Isqnonlin” to find the parameter value which minimizes the
distance between the corresponding elements of the migration matrices: the
ones given in the example (see table 3 ) and ones arising from the copula for
the parameter in question.

The results of the optimization are given in table 5 and table 6 for 1-year and
10-years period of time, respectively.

For 1-year period of time, we find the significant variation in the parameters
across the portfolios disregarding the copula function we assume. This result is
in accordance with the first claim. We also find that the variation of parameter
for 10-years time horizon is less distinct as for 1-year. This finding maintains
claim 3. By all portfolios we observe the decline in the value of the parame-
ter over time (claim 2). The comparison between the one-year und ten-year
parameter value for the particular portfolio points for all portfolios and all
copula functions at the decline in dependence given by decline in parameter
value.

Regarding the question which copula fits best the data of the example, the
findings are not clear: for the 1-year period the Clayton and Gumbel copula
turns out to have the smallest residual for all portfolios, whereas for the 10-year
period these two copulas provide the best fit only for portfolio c. Regarding
portfolios a and b the Frank and Gauss copula give the smallest residual for the
10-years period. By portfolio d the Gauss copula shows the best performance
followed by Gumbel and Frank copula.

12



Table 4

The composition of the portfolio in terms of rating grades
at the beginning (to) and the end of the one year (¢1) and ten year (¢;9) period.

AAA AA A BBB BB B cCcC D
Portfolio a
P*(0) | 0.1500 | 0.1500 | 0.1500 | 0.1500 | 0.1500 | 0.1500 | 0.1000 | 0.0000
P*(1) | 0.1352 | 0.1552 | 0.1584 | 0.1508 | 0.1383 | 0.1504 | 0.0736 | 0.0379
P*(10) | 0.0577 | 0.1527 | 0.1962 | 0.1450 | 0.0909 | 0.1065 | 0.0203 | 0.2300
Portfolio b
PP (0) | 0.0250 | 0.1000 | 0.2500 | 0.2500 | 0.2500 | 0.1000 | 0.0250 | 0.0000
PY(1) | 0.0236 | 0.1016 | 0.2490 | 0.2469 | 0.2188 | 0.1158 | 0.0242 | 0.0200
P (10) | 0.0161 | 0.1034 | 0.2290 | 0.1942 | 0.1176 | 0.1227 | 0.0220 | 0.1943
Portfolio c
P<(0) | 0.0250 | 0.0500 | 0.1000 | 0.1500 | 0.2000 | 0.2250 | 0.2500 | 0.0000
Pc(1) | 0.0230 | 0.0519 | 0.1079 | 0.1522 | 0.1829 | 0.2282 | 0.1749 | 0.0790
P<(10) | 0.0126 | 0.0604 | 0.1334 | 0.1328 | 0.1020 | 0.1379 | 0.0286 | 0.3917
Portfolio d
P2(0) | 0.2500 | 0.2250 | 0.2000 | 0.1500 | 0.1000 | 0.0500 | 0.0250 | 0.0000
P(1) | 0.2250 | 0.2336 | 0.2077 | 0.1499 | 0.0938 | 0.0575 | 0.0199 | 0.0125
P?(10) | 0.0937 | 0.2252 | 0.2482 | 0.1541 | 0.0788 | 0.0747 | 0.0129 | 0.1116
Table 5
Results of the optimization for the 1-year time horizon.
Portfolio a | Portfolio b | Portfolio ¢ | Portfolio d
Clayton | Parameter | 42.514312 | 42.941125 | 19.520435 | 109.527114
Residuum | 0.053975 0.237859 0.032926 0.136884
Gumbel | Parameter | 21.888600 | 19.043297 | 23.574518 | 17.272355
Residuum | 0.051853 0.581547 0.046097 0.131391
Frank Parameter | 35.211145 | 22.602965 | 36.333209 | 32.396330
Residuum | 0.168832 1.072155 0.667351 0.497427
Gauk Parameter | 0.974438 0.616887 0.704439 0.664971
Residuum | 1.995890 2.799504 2.682245 2.710970
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Table 6
Results of the optimization for the 10-years time horizon.

Portfolio a | Portfolio b | Portfolio ¢ | Portfolio d

Clayton | Parameter | 3.166551 1.844106 1.527723 4.959245
Residuum | 0.104420 0.248017 0.067062 0.261621
Gumbel | Parameter | 2.446430 1.838830 2.740726 1.865865
Residuum | 0.084838 0.154729 0.094904 0.083952

Frank Parameter | 7.928077 6.577437 7.514955 8.528203
Residuum | 0.043987 0.141955 0.186208 0.104685
Gauf Parameter | 0.792962 0.543514 0.600013 0.733866
Residuum | 0.051547 0.125408 0.174038 0.047071

4 Conclusion

In this paper we have shown how we can specify the rating process in terms
of copula. We defined the rating grade of the firm as random variable. The
distribution of this random variable is then given by the composition of port-
folio in terms of weights of rating grades. The migration matrix arises from
the first derivation of the copula function in both variables. Due to discrete
specification of random variables we have to use the interpolation to calculate
the migration matrix.

We argued that the transition matrix calculated on the observed migration
implies a specific dependence degree in the migration behavior as measured
by the parameter of the copula function. Furthermore, we argued that the mi-
gration probabilities capture the dependence between migrations of the firms.
We find reasonable to assume, that the interaction of the exposures in the
portfolio and thereby the dependence in the migration behavior is influenced
by the composition of the portfolio. Till now, the transition matrices of the
rating process were never related to the composition of the firms in formal
framework. Assuming the migrations dependent on the initial distribution,
the approach presented here allows to calculate the migration matrix for the
specific composition of the portfolio. As far as the dependence degree and
therewith the magnitude of risk is determined by the composition of the port-
folio, this approach is of great interest.
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