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Abstract

We calculate optimal portfolio choices for a long-horizon, risk-averse European investor who diver-

si¯es among stocks, bonds, real estate, and a liquid asset when excess asset returns are predictable.

Simulations are performed for scenarios involving di®erent risk aversion levels, horizons, and statistical

models employed to capture predictability in risk premia. Importantly, under one of the scenarios, the

investor takes into account the parameter uncertainty implied by the use of estimated coe±cients to

characterize predictability. We ¯nd that real estate ought to play a signi¯cant role in optimal portfolio

choices, with weights between 10 and 50%. Under plausible assumptions, welfare costs of either ignoring

predictability or restricting portfolio choices to ¯nancial assets only are found to be in the order of

at least 100 basis points per year. These results are robust to changes in the benchmarks and in the

statistical framework.

1. Introduction

Predictability of asset returns is kown to have powerful e®ects on the structure and dynamics of optimal

portfolio weights for a long-horizon investor. This conclusion holds across alternative models for pre-

dictability, di®erent data sets, and heterogeneous asset allocation frameworks, see e.g. Brennan, Schwartz,

and Lagnado (1997), Campbell and Viceira (1999, 2001), and Detemple, Garcia, and Rindisbacher (2003).

However, most of this evidence has been obtained in asset menus limited to traditional ¯nancial indexes

only, i.e. stocks, bonds, and short-term liquid assets.

Our paper provides further evidence on the e®ects of predictability on long-run portfolio choice when

the asset menu includes one of the most exploited types of asset in long-horizon portfolios: real estate.

Furthermore, our asset allocation results are based on predictability patterns characterizing a European

data set that has been left unexplored thus far. Clearly, both extensions are crucial to make the results
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found in the literature relevant to the operational goals of long-horizon investors (like pension funds and

insurance companies) that commonly employ asset menus not limited to ¯nancial securities only, and that

fail to limit their portfolio choices to North American assets only. Obviously, among them European

institutional investors occupy a leading position.

From an empirical viewpoint, contributions available to pension funds are invested not only in equity

and bonds, but in real estate property as well (see Hudson-Wilson, Fabozzi, and Gordon (2003)). For

instance, as of the mid 1990s, in the UK 75 and 7.8 per cent were held in stocks and real estate respectively,

while the corresponding weights were 6.6 and 4.2 in Germany, and 26.9 and 2.2 in France. In the last two

countries, long-term bonds represented 42.3 and 59.0 of long term portfolios (see Miles, 1994, p.23), while

bonds were given a negligible weight in the UK. So it appears that considerable heterogeneity exists in the

relative weights assigned to stocks, bonds and real estate in three major European countries. Although

our paper is normative, tracing out the implications of predictability for optimal portfolio composition, we

report results that make it clear under what conditions one may obtain rational choices consistent with

either the German-French pattern (dominated by bonds) or with the British one (dominated by stocks).

Additionally ¡ since the evidence is for real estate weights between 4 and 8 percent ¡ we will understand

whether existing data support the notion that real estate ought to be included in long-horizon portfolios,

although with rather moderate weights.

We use a simple vector autoregressive framework to capture predictable time variations in the invest-

ment opportunity set, similarly to Campbell, Chan, and Viceira (2003), Lynch (2001), and others. We

solve a standard portfolio problem with isoelastic ut of terminal wealth) and ¯nd that ¡ contrary to the

bulk of the existing evidence ¡ results on the importance of predictability for optimal portfolio weights are

mixed. On one hand, predictability of mean excess returns (i.e. predictable time variation in risk premia)

has ¯rst-order e®ects for the optimal allocation between equities and bonds, similarly to Campbell and

Viceira (2002) and Guidolin and Timmermann (2004), that are robust to taking parameter uncertainty into

account, see Barberis (2000). On the other hand, predictability in risk premia produces only second-order

e®ects for the optimal diversi¯cation between ¯nancial securities vs. real estate assets, in the sense that

results do not depart signi¯cantly from the weights obtained under the (false) assumption of independently

and identically distributed returns over time. In all cases, the optimal weight to be assigned to real estate

is between 10 and 30 percent of the initial wealth.

However, the overall picture is consistent with the general ¯nding that long-run investors with an

interest in European assets ought to carefully consider the e®ects of time-varying risk premia in their

portfolio choices. In fact, the estimated welfare costs from ignoring predictability are large, in the order of

100 basis points per year for a long-run (10-year) investor with a plausible coe±cient of relative risk aversion

of 5. Additionally, we compute the costs of restricting the available asset menu to ¯nancial securities only,

thus ignoring real estate. We ¯nd that for long-horizon investors the resulting damage would be substantial,

once more in the approximate order of 100 basis points per year for a long-run, intermediate risk-averse

investor. Such ¯gure may however climb up to more than 200 basis points under some con¯gurations of the

predictability model and assuming a coe±cient of relative risk aversion of 10. Therefore we report evidence

that the utility gains from investing in real estate are of ¯rst-order magnitude, although the associated

portfolio weights may be moderate and only weakly a®ected by time-variations in conditional risk premia.

Our paper contributes to three distinct literatures. Several studies have compared the risk and return
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characteristics of stocks, bonds, and cash to real estate and analyzed optimal portfolio choice in a mean

variance framework, see e.g. Li and Wang (1995). However, there is still considerable uncertainty on the

optimal weight one should assign real estate. Among the others, Hudson-Wilson, Fabozzi, and Gordon

(2003), Karlberg, Liu, and Greig (1996), Liang, Myer, and Webb (1996), and Ziobrowski, Caines, and

Ziobrowski (1999) calculate optimal mean-variance US optimal portfolios when real estate belongs to the

asset menu and is measured by direct (appraisal-based) indices. They ¯nd that in the US, real estate

ought to have a rather negligible weight, although its importance increases when bootstrap methods are

employed to account for the uncertainty surrounding the actual distribution of returns. On the opposite,

Chandrashakaran (1999) and Liang and Webb (1996) ¯nd much larger weights using longer time series

and/or di®erent data (e.g. hedged REITs). However, none of these papers examine the predictability

patterns of the returns on these asset classes, which a®ect the risk premia and variance of cumulative

returns and hence their desirability in a multi-period setting. On the other hand, it is well known that

while the investor's planning horizon is irrelevant for asset allocation when returns are independently and

identically distributed (Samuelson, 1969; Merton, 1969, 1971), when returns are predictable the mean-

variance asset allocation may di®er substantially from the long-term one (see Samuelson, 1994, Bodie,

1995, Siegel, 1998 and Campell and Viceira, 2002, among others). Therefore, by taking predictability into

account, our paper departs from the earlier literature on portfolio management when real estate is available.

Moreover, at least to our knowledge, our paper is the ¯rst attempt at taking parameter uncertainty into

account in a framework that includes real estate (and in which parameter estimation may substantially

a®ect economic behavior).

Another literature has shown that stock returns predictability may a®ect long-term portfolio choice

in two ways (e.g. Campbell, Chan, and Viceira, 2003). First, an investor would have powerful incentives

to regularly rebalance his portfolio as he receives new information on the conditional risk premium of

the available assets. Interestingly, Balduzzi and Lynch (1999) have shown that the expected utility gains

derived from exploiting conditional information are robust to the inclusion of transaction costs incurred at

the rebalancing points. Secondly (and assuming preferences di®erent from log-utility), even a buy and hold

investor would modify his asset holdings in order to hedge future adverse predictable changes in investment

opportunities. When the asset menu is restricted to ¯nancial assets and a vector autoregressive (VAR)

system captures return predictability in the US, Campbell and Viceira (1999, 2002) and Barberis (2000)

have shown that mean-reversion in stock returns implies that average stock holdings generally increase in

the investors' horizon for low risk aversion. Average nominal bond holdings typically increase in the degree

of risk aversion, as their lower Sharpe ratio is accompanied by lower volatility. We extend these results to

an asset menu that includes real estate and ¯nd that also real estate investment schedules are generally

upward sloping, although to a lesser extent than stock schedules. We also document the e®ects of dynamic

portfolio choices (rebalancing) and conclude that even in the presence of real estate, portfolio choices ought

to strongly react to information that predicts future asset returns.

Finally, there is a recent econometric literature that has modeled returns on European assets and

pinned down predictability patterns potentially useful for portfolio choice. For instance, extensive work

has concerned the properties of UK stock and bond returns (see among the others Clare, Thomas and

Wickens, 1994; Black and Fraser, 1995; Pesaran and Timmermann, 2002), although the recent debate has

mostly focused on whether non-linear models (Flavin and Wickens, 2001; Guidolin and Timmermann, 2003)
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may be needed to calculate optimal portfolio weights, see Guidolin and Timmermann (2004). However, to

the best of our knowledge our paper is the ¯rst one to adopt an explicit aggregate, European focus and to

jointly model the VAR structure present in ¯nancial and real estate returns. We ¯nd that in a simple linear,

VAR framework, there is evidence of forecastability of returns compatible with the traditional notion that

risky assets (i.e. real estate and stocks) are less risky in the long-run than they are over short periods of

time.

The two papers most closely related to ours are Barberis (2000) and Bharati and Gupta (1992; 2004).

Barberis carefully investigates the portfolio choice e®ects of (VAR) predictability when the latter is char-

acterized through parametric models that are subject to estimation uncertainty (see also Brandt, 1999, on

this point). The uncertainty about parameters, i.e. estimation risk, can be taken into account when solving

long-run portfolio problems by adopting a Bayesian approach and integrating over the posterior density of

the parameters to obtain the (multivariate) predictive density of future asset returns. Barberis (2000) goes

on to show that optimal portfolio weights obtained ignoring parameter uncertainty (i.e. conditional on

¯xed parameter estimates) may be drastically di®erent from those that account for parameter uncertainty.

We adopt the same approach here. However, our asset allocation problem is more realistic and rich than

Barberis', including bonds and real estate besides stocks and cash. Moreover, we use di®erent (European)

data and perform a number welfare calculations that illustrate the importance of both accounting for

predictability and of expanding the asset menu to include real estate.

Bharati and Gupta (1992) model predictability in US asset returns ¡ including real estate, measured as

REITs returns ¡ by using predictive regressions that employ typical variables such as the 1-month T-bill

rate, the term spread, the default spread, monthly dummies etc. (see Pesaran and Timmermann (1995)).

Long-horizon portfolio models are used to calculate optimal portfolio choices. They ¯nd that predictability

and real estate as an asset class are both important, in the sense that active strategies involving real estate

holdings outperform passive ones, even in presence of transaction costs. However their paper disregards

parameter uncertainty, and uses a predictability framework that maximizes predictive R-squares through

increases in the number of state variables that make it di±cult to apply dynamic portfolio optimization

methods. No welfare costs from omitting real estate are calculated, making their criteria of evaluation

possibly inconsistent with the investors' objectives.

The plan of the paper is as follows. Section 2 describes the methodology of the paper, in terms

of both statistical modeling and solution methods applied to the asset allocation problem. Section 3

describes the data and reports results on their statistical properties, revealing the existence of exploitable

predictable patterns in the dynamics of the investment opportunity set. Section 4 is the core section

of the paper. We characterize optimal portfolios including real estate, and compare them to the case

without predictability and parameter uncertainty. In Section 6, we calculate welfare costs to quantify the

importance of predictability and of expanding the asset menu to include real estate. Section 7 contains a

few robustness checks involving both the statistical model and the choice of the benchmarks for welfare

cost calculations. Section 8 concludes.

2. Long Run Asset Allocation when Returns Are Predictable

In this section we review the structure and solution methods for a portfolio choice problem over the long

run when returns are predictable and when the uncertainty about the extent of predictability is taken into
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account. The methodology follows Kandel and Stambaugh (1996) and Barberis (2000) and so we only

brie°y discuss the main issues and technical details.

Long run portfolio strategies may be based on two rather di®erent approaches: buy-and-hold vs. opti-

mal rebalancing strategies. An investor who follows a buy-and-hold strategy chooses the optimal allocation

at the beginning of the planning horizon (t) and does not modify it until the end-point (t + T ) is reached.

Clearly, when T is large, this represents a strong commitment not to revise the portfolio weights notwhit-

standing the possible receipt of important news characterizing the available investment opportunities.

Under a rebalancing strategy, the investor chooses the asset allocation at the beginning of the planning

horizon taking into account that it shall be optimal to modify the portfolio weights at intermediate dates

(rebalancing points), say t + '; t + 2'; ..., t + T . In the following we separately describe the relevant

methods distinguishing between buy-and-hold and rebalancing.

Another important dimension of the portfolio problem is whether the statistical uncertainty surrounding

the parameters is taken into account or not. In the former case, the approach is usually a Bayesian one, in

which conditional expectations are calculated employing the predictive density of future (cumulated) asset

returns. In the latter case, the approach is based on the tools commonly employed by classical statisticians.

Therefore a second, crucial distinction in the explanations to follow revolves around these aspects.

2.1. Buy-and-Hold Investor

Consider the time t problem of an investor who maximizes expected utility from terminal wealth over a

planning horizon of T months by choosing optimal portfolio weights (!t), when preferences are described

by a standard, power isoelastic utility function:

max
!t

Et

"
W 1¡°
t+T

1 ¡ °

#
° 6= 1:1

Wealth can be invested in three risky asset classes: stocks, bonds and real estate. The menu is completed by

a cash, riskless (in the short-run) investment (1-month deposits). The continuously compounded monthly

real return on the free risk asset, rf , is assumed to be constant as in Barberis (2000), Campbell and Viceira

(1999), and Lynch (2001). The continuously compounded excess returns (i.e. Rt ´ lnPt ¡ lnPt¡1 where

P denotes asset prices) between month t¡ 1 and t on stocks, bonds and real estate are denoted by Rst , Rbt ;

and Rrt ; respectively. The fraction of wealth invested in stocks, in bonds, and in real estate are !st ; !bt ; and

!rt ; respectively, so that !t ´ [!st !bt !rt ]
0. The investor's terminal wealth, when initial wealth Wt is equal

to one, is given by:

Wt+T = !st exp(Rst;T ) + !bt exp(Rbt;T ) + !rt exp(Rrt;T ) + (1 ¡ !st ¡ !bt ¡ !rt ) exp(rfT );

where Rst;T ; Rbt;T , and Rrt;T denote the cumulative returns between t and T on stocks, bonds and real estate,

respectively:

Rst;T ´
TX

k=1

(Rst+k + rf ) Rbt;T ´
TX

k=1

(Rbt+k + rf ) Rrt;T ´
TX

k=1

(Rrt+k + rf ):

In general, we call n the number of risky asset classes modeled. Our baseline experiment concerns n = 3:

Furthermore, we follow the bulk of the literature imposing no-short sale constraints, i.e. 1 ¸ !st ; !bt ; !rt ¸ 0:
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Therefore the buy-and-hold problem may be simply re-written as

max
!t

Et

2
64

h
!st exp(Rst;T ) + !bt exp(Rbt;T ) + !rt exp(Rrt;T ) + (1 ¡ !st ¡ !bt ¡ !rt ) exp(rfT )

i1¡°

1 ¡ °

3
75

s.t. 1 ¸ !st ¸ 0 !bt ¸ 0 !rt ¸ 0: (1)

Time-variation in the excess returns are modelled using a Gaussian VAR(1) framework, for instance:

zt = ¹ + ©Rzt¡1 + ²t or (2)
2
66664

Rst
Rbt
Rrt
xt

3
77775

=

2
66664

¹s

¹b

¹r

¹x

3
77775

+

2
66664

Áss 0 0 Ásx

0 Ább 0 Ábx

0 0 Árr Árx

0 0 0 Áxx

3
77775

2
66664

Rst¡1
Rbt¡1
Rrt¡1
xt¡1

3
77775

+

2
66664

²st
²bt
²rt
²xt

3
77775

where ²t is i.i.d. N(0; §) and xt represents any economic variable (e.g. industrial production growth, the

term structure of interest rates, default risk premia indicators, etc.) able to forecast future asset returns.

Model (2) implies that

Et¡1[zt] = ¹ + ©Rzt¡1;

i.e. the conditional risk premia on the assets are time-varying and function of past excess asset returns as

well as lagged values of the predictor variable xt¡1. In particular, as in Barberis (2000), the zero restrictions

appearing in the vector autoregressive matrix ©R will normally imply that most of the predictability in

asset risk premia is explained by lagged values of xt; besides possible persistent components captured by

(positive) Áss; Ább; and Árr.

Although for most North-American data sets, the restrictions to ©R are generally supported by formal

statistical tests, and papers like Campbell, Chen, and Viceira (2003) and Guidolin and Timmermann

(2004) have shown that relaxing the restrictions does not radically a®ect optimal portfolio weights, in this

paper we also deal with the unrestricted version of (2) in which zt = ¹ + ©zt¡1 + ²t; with © full matrix.2

For future reference, we call µ the vector collecting all the parameters entering (2), i.e. µ ´ [¹0 vec(©)0

vech(§)0]0:

Under models like (2), the (conditional) distribution of cumulative future returns (i.e. the ¯rst n

elements in zt;T ´ PT
k=1 zt+k) is multivariate normal with mean and covariance matrix given by:

Et¡1[zt;T ] = T¹ + (T ¡ 1)©¹ + (T ¡ 2)©2¹ + ::: + ©T¡1¹ + (© + ©2+::: + ©T )zt¡1

V art¡1[zt;T ] = § + (I + ©)§(I + ©)0+(I + © + ©2)§(I + © + ©2)0+

:::+(I + © + ::: + ©T¡1)§(I + © + ::: + ©T¡1)0; (3)

where I is the identity matrix of dimension n and ©k is a short-hand for
Qk
i=1©. Since the parametric form

of the predictive distribution of zt;T is known, it is simple to approach the problem in (1), or equivalently

max
!t

Z
W 1¡°
t+T

1 ¡ °
p (Et¡1[zt;T ]; V art¡1[zt;T ]) ¢ dzt;T (4)

2We also experiment relaxing the ¯rst-order VAR constraint but ¯nd that for all exercises performed in this paper, a

¯rst-order VAR provides the best trade-o® between ¯t and parsimony, i.e. it minimizes a few standard information criteria

(AIC and BIC).
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(where p (Et¡1[zt;T ]; V art¡1[zt;T ]) is a multivariate normal with mean Et¡1[zt;T ] and covariance matrix

V art¡1[zt;T ]), by simulation methods. Similarly to Kandel and Stambaugh (1996), Barberis (2000), and

Guidolin and Timmermann (2005), this means evaluating the integral in (4) by drawing a large number of

times (N) from p (Et¡1[zt;T ]; V art¡1[zt;T ]) and then maximizing the following functional:

max
!t

1

N

NX

i=1

2
64

h
!st exp(Rs;it;T ) + !bt exp(Rb;it;T ) + !rt exp(Rr;it;T ) + (1 ¡ !st ¡ !bt ¡ !rt ) exp(rfT )

i1¡°

1 ¡ °

3
75 ; (5)

where [Rs;it;T Rb;it;T Rr;it;T ]0 represent the ¯rst three elements of zit;T along a sample path i = 1; :::; N: At this

stage, the portfolio weight non-negativity constraints are imposed by maximizing (5) using a simple two-

stage grid search algorithm that sets !jt to 0, 0.01, 0.02, ..., 0.99, 0.9999 for j = s; b; r.3 In the results

that follow, we employ N = 100; 000 Monte Carlo trials in order to minimize (essentially eradicate) any

residual random errors in optimal weights induced by our simulation approach.

2.2. Parameter Uncertainty

Since the true values of the `parameters' in µ are unknown, the uncertainty on the actual strength of

predictability induced by estimation risk may substantially a®ect optimal portfolio rules, especially over

the long run. As in Barberis (2000), parameter uncertainty is incorporated in the model by using a Bayesian

framework that relies on the principle that portfolio choices ought to be based on the multivariate predictive

distribution of future asset returns. Such a predictive distribution for future returns (and predictors),

conditioned on observed data only, is obtained by integrating the joint distribution of µ (in this case,

interpreted as a random vector) and future returns p(zt;T ;µjÄZt) with respect to the posterior distribution

of µ; p(µjÄZt):

p(zt;T ) =

Z
p(zt;T ; µjÄZt)dµ =

Z
p(zt;T jÄZt;µ)p(µjÄZt)dµ;

where ÄZt collects the time series of observed values for asset returns and the predictor, ÄZt ´ fzigti=1: When

parameter uncertainty is taken into account, the maximization problem involves the integral:4

max
!t

Z
W 1¡°
t+T

1 ¡ °
p(zt;T jÄZt;µ)p(µjÄZt) ¢ dzt;T :

In this case the Monte Carlo methods require drawing a large number of times from p(zt;T ) and then

`extracting' cumulative returns only from the resulting vector. However, the task is further simpli¯ed by the

fact that predictive draws can be obtained by drawing from the posterior distribution of the parameters and

then, for each set of parameters drawn, by sampling one point from the distribution of returns conditional

3As explained by Kandel and Stambaugh (1996), !jt = 1 cannot be considered as when 100% of the wealth is invested in

some asset and Rjt;T ! ¡1 (bankruptcy) is feasible (as it is the case under a multivariate normal distribution), !jt = 1 would

lead to zero or negative wealth which for ° > 1 would deliver a (meaningless) maximizer for (5).
4As it is well known from the Bayesian econometrics literature (see e.g. Hamilton (1993) for an introduction), integrating

the joint posterior for zt;T and µ with respect to the posterior for µ delivers a density with fatter tails which simply re°ect

the additional (estimation) uncertainty implied by µ being random.
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on past data and the parameters. At this point, (2) can be re-written as:

2
66664

z02
z03
...

z0t

3
77775

=

2
66664

1 z01
1 z02
...

...

1 z0t¡1

3
77775

"
¹0

©0

#
+

2
66664

²02
²03
...

²0t

3
77775

;

or simply

Z = XC + E

where Z is a (t¡1; n+1) matrix with the observed vectors as rows, X is a (t¡1; n+2) matrix of regressors,

and E a (t ¡ 1; n + 1) matrix of error terms, respectively. All the coe±cients are instead collected in the

(n+2; n+1) matrix C: We apply Bayesian methods, we follow Barberis (2000) who extends Zellner's (1971)

Bayesian analysis of a multivariate regression model with exogenous regressors to the dynamic regression

framework with endogenous regressors. If we consider the following standard uninformative di®use prior:

p(C; §) / j§j¡n+2
2 ;

then the posterior distribution for the coe±cients in µ; p(C; §¡1jÄZt) can be characterized as:

§¡1jÄZt » Wishart(t ¡ n ¡ 2; Ŝ¡1)

vec(C)j§¡1; ÄZt » N
³
vec(Ĉ); § ­ (X0X)¡1

´

where Ŝ = (Z ¡ XĈ)
0
(Z ¡ XĈ) and Ĉ = (X

0
X)¡1X0Z; i.e. the standard OLS estimators for the coe±cients

and covariance matrix of the residuals. Also for the Bayesian case, we adopt a simulation method that:

First, draws N independent variates from p(C; §¡1jÄZt): This is done by ¯rst sampling from a marginal

Wishart for §¡1 and then (after calculating §) from the conditional N
³
vec(Ĉ); § ­ (X0X)¡1

´
, where Ĉ

is easily calculated. Second, for each set (C; §) thus obtained, samples cumulated excess returns from a

multivariate normal with mean vector and covariance matrix given by (3). Given the double simulation

scheme, in this case N is set to a relatively large value of 300,000 independent trials.

2.3. Dynamic Rebalancing Strategies

The solution method is in this case based on standard dynamic programming principles and on a discretiza-

tion of the state space. In particular, divide the interval [t; T ] into B ¸ 1 intervals [t; t + ']; [t + '; t + 2'];

..., [t + (B ¡ 1)'; t + B']; where B = T=' and assume the rebalancing occurs at regular intervals B times

over [t; T ]: The problem is then similar to (1), with the only di®erence that the objective ought to be

maximized by choosing the entire sequence f!t+'gB¡1'=0 :

max
f!t+k'gB¡1k=0

Et

"
W 1¡°
t+T

1 ¡ °

#

s.t. Wt+(k+1)' = Wt+k'[!
s
t+k' exp(Rst+k';t+(k+1)') + !bt+k' exp(Rbt+k';t+(k+1)') +

+!rt+k' exp(Rrt+k';t+(k+1)') + (1 ¡ !st+k' ¡ !bt+k' ¡ !rt+k') exp(rf')]

1 ¸ !st+k' ¸ 0 1 ¸ !bt+k' ¸ 0 1 ¸ !rt+k' ¸ 0; k = 0; 1; :::; B ¡ 1;
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where cumulated returns Rjt+k';t+(k+1)' ´ P'
i=1(R

j
t+i + rf ) (j = s; b; r) are de¯ned similarly to Section

2.1. Standard arguments (see e.g. Ingersoll (1987)) show that under a power utility function the value

function of the problem is homogeneous in wealth, i.e.

V (Wt+k'; zt+k') ´ max
f!t+k'gB¡1k=0

Et+k'

"
W 1¡°
t+T

1 ¡ °

#
=

W 1¡°
t+k'

1 ¡ °
Q(zt+k'):

This fact suggests solving the problem by backward induction, starting at time t + (B ¡ 1)' and working

to time t: The solution is approximate in the sense that it is based on the discretization of the space for the

state vector z on a discrete grid of J points, say zj; j = 1; :::; J: In fact, at time t + (B ¡ 1)' the problem

simpli¯es as Q(zjt+(B¡1)') = 1 8j, i.e. at the end of the investment horizon the investor ought to solve:

max
!t+(B¡1)'

Et+(B¡1)'

"
W 1¡°
t+T

1 ¡ °

#
; (6)

which is a simple buy-and-hold problem with horizon of ' periods. If the process of excess asset re-

turns is correctly described by (2) and parameter uncertainty is ignored, then (6) has a simple solu-

tion that can be found using the results in Section 2.1, as the multivariate density for z remains nor-

mal p
¡
Et¡1[zt+(B¡1)';T ]; V art¡1[zt+(B¡1)';T ]

¢
with moments given by (3) when zt+(B¡1)' = zjt+(B¡1)',

j = 1; :::; J:5 For instance, provided N is large enough, an approximate solution will be found by maximiz-

ing N¡1PN
i=1

¡
W i
t+T

¢1¡°
=(1¡°); where W i

t+T is found on the simulated path i: De¯ne then Q(zjt+(B¡1)') ´

argmax!t+(B¡1)' Et+(B¡1)'

�
W 1¡°
t+T

1¡°

¸
when p (Et¡1[zt;T ]; V art¡1[zt;T ]) is conditional on zt+(B¡1)' = zj

t+(B¡1)':

Then for j = 1; :::; J; !̂jt+(B¡2)' will be found by solving (once, more by simulation, using a multivariate

normal conditional on zjt+(B¡2)')

max
!j
t+(B¡2)'

Et+(B¡2)'

"
W 1¡°
t+(B¡1)'
1 ¡ °

Q(zjt+(B¡1)')

#
;

thus yielding J new values, Q(zjt+(B¡2)') j = 1; :::; J: The process is to be continued until t+(B¡B)' = t;

i.e. until a vector !̂jt j = 1; :::; J emerges from expected utility maximization. By construction, each !̂jt
is matched to a zjt : Although in general the observed zt di®ers from zjt on the grid, simple interpolation

algorithm will then be used to determine !̂t using the two closest values of !̂jt : For the calculations that

follow, we use J = 15 discretization points and a number of Monte Carlo trials N = 100; 000:

We also incorporate parameter uncertainty in a framework with dynamic rebalancing. In principle, this

is a formidable problem as an investor ought to rationally recognize that in the future ¡ based on future

realizations of z ¡ she will revise her posterior density for the coe±cients in µ, and that such revisions

will in°uence her portfolio choices and hence the stochastic process for wealth. Essentially, parameter

uncertainty in a dynamic setting turns µ into an additional vector of state variables. However, similarly

5This means that conditional moments have to be calculated by initializing zt+(B¡1)' to z
j
t+(B¡1)' on the grid, j = 1; :::; J :

Et¡1[zt+(B¡1)';T ] = '¹ + ('¡ 1)©¹ + :::+©'¡1¹+ (©+ ©2+:::+©')zjt+(B¡1)'

V art¡1[zt+(B¡1)';T ] = § + (I+©)§(I+©)0+:::+(I+©+ :::+©'¡1)§(I+©+ :::+©'¡1)0;

9



to Gennotte (1986) and Barberis (2000), we simplify the problem in the following way: we suppose that

although the investor acknowledges that she is uncertain about model parameters, she ignores future

revisions of her posterior density for the parameters themselves. Once this simplifying assumption is

in place, the same dynamic programming, discretization-based approach followed in the classical case

can be implemented in the Bayesian framework, with the only di®erence that instead of approximating

expectations by simulation under a multivariate normal with moments described by (3), Monte Carlo

methods are applied drawing from an appropriate joint predictive density for cumulative returns over the

intervals [t; t + ']; [t + '; t + 2']; ..., [t + (B ¡ 1)'; t + B']:

3. Estimation Results

3.1. The Data

Since one of the contributions of this paper is to expand the asset menu to real estate, we start by providing

a sense for what the related data issues may be. Real estate performance can be measured using two types

of indices. Direct indices are derived from either transaction prices or the appraised value of properties,

while indirect indices are inferred from the behavior of the stock price of property companies that are listed

on public exchanges. Indirect real estate index returns normally show higher volatility than direct returns,

and ¡ being subject to similar common market factors ¡ tend to display higher correlations with standard

stock index returns. In this sense, indirect indices are biased towards a ¯nding of simultaneous correlation

of real estate returns with ¯nancial returns. On the other hand, the reliability of transaction-based, direct

indices is often made problematic by both the fact that properties may be wildly heterogeneous and by

the poor transparency of transaction conditions. Additionally, direct, appraisal-based data are known to

be a®ected by many biases (see Giliberto 1988; 1991). For instance, the standard deviation of appraisal

indices has been shown to represent (by construction) a downward biased estimate of the true value.6

Confronted with these pros and cons of direct vs. indirect real estate indices, our paper employs

an indirect index of the 40 most liquid property companies in Europe, the monthly European Liquid 40

Index prepared by the European Public Real Estate Association (EPRALiquid40). EPRA indices track

the performance of stocks of real estate companies engaged in the ownership, disposure and development

of income-producing real estate. We select this index among the many indirect alternatives available (even

including the EPRA universe only) with the intent of maximizing the homogeneity of the asset classes

studied in the paper in terms of transaction costs ¡ in the sense that only for the most liquid real estate

property companies an assumption of similar frictions relative to stocks or bonds is a sensible one.

The remaining assets entering the investment opportunity set are European short-term deposits, long-

term bonds, and stocks. We use monthly data, for the period March 1993 - March 2004, for a total

of 132 observations. The sample period seems to be well balanced, including at least one complete bull

(the 1990s) and one complete bear (2000-2002) market cycles. In particular, stock returns are calculated

from the Datastream European price index; the Citigroup European World Government Bond Index is

used to capture the behavior of European bond returns for maturities exceeding ¯ve years;money-market,

short-term instruments are proxied by the JP Morgan Euro cash (three-month) index obtained from daily

6A comparison of direct appraisal-based vs. indirect indices is provided by Giliberto (1993) for the U.S. and by Maurer et

al. (2003) for Germany.
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compounding of the Euribor (the rate on euro-currency deposits) with a three-month maturity. 7 All

indices are continuously compounded (i.e. Rjt ´ lnP j
t ¡lnP j

t , j = s; b; r), total return market-capitalization

indices, including both capital gains and income return components, expressed in euros. Excess returns

are calculated by deducting short-term cash returns from Rjt : We express returns in real terms, which

seems appropriate given the long-run horizons we are interested in. However, since our econometric models

will concern excess returns, this is equivalent to deal with real short-term interest rates, calculated as a

di®erence between nominal yields and the monthly rate of change in a European harmonized index of

consumer prices (EICP). Finally, the predictor xt is identi¯ed with the dividend yield on the Datastream

stock price index.8

In table 1 we present summary statistics for the variables (returns and dividend yields) discussed above.

Over our sample period, the European real estate market fails to be `dominated' (in mean-variance terms)

by the stock market, in spite of the euphoria characterizing the so-called New Economy period of 1995-2000:

real estate investments performed similarly to equities in mean terms (around 6.5 percent per year in excess

of the riskless real rate), but were strictly less volatile than stocks (their annualized standard deviation

is 13% vs. 17% for equities).9 As one would expect, bonds have been less pro¯table (4%) but also less

volatile (5.4%) than stocks and real estate. However an annualized real return of approximately 7% remains

remarkable for bonds and is explained by the declining short-term interest rates during the 1990s. The

third and fourth central moments for excess returns stress that the series are moderately left skewed and

leptokurtic. The Jarque-Bera test for normality induces to strongly reject the null hypothesis of normality

for excess stock returns only, mainly on account of their negative skewness. Rejections of normality are

weak for excess bond and real short-term returns. Ljung-Box portmanteau tests are then applied to test

the null hypothesis of no serial correlations in levels and squares of returns. As it is well known, serial

correlation tests applied to squares are useful to detect volatility clustering, i.e. ARCH e®ects. European

asset returns appear to be approximately serially uncorrelated (there is weak evidence for the short-term

real rate only) and ¡ with the exception of excess stock returns ¡ also statistically independent, in the

7The EPRALiquid40 index is based on prices of European quoted property company shares in the following countries:

Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, the Netherlands, Norway, Portugal, Spain,

Sweden, Switzerland, and the United Kingdom.

The WGBI Europe is a market-capitalization weighted portfolio that tracks the performance of bonds issued in the countries

above as well as Poland.

The Datastream index covers the stock markets in the countries above as well as those in Prague, Budapest, Bucarest,

Moscow, Stockholm and Instanbul.

8This is suggested by empirical ¯ndings on the predictability of stock returns reported for instance in Bekaert and Hodrick

(1992), Campbell and Shiller (1988), Fama and French (1988, 1989), Ferson and Harvey (1991), Goetzmann and Jorion (1993)

and Kandel and Stambaugh (1996). Due to its high persistence coupled with the strong negative correlation between shocks

to returns and shocks to the dividend yield, Lynch (2001) and Campbell, Chan, and Viceira (2003) ¯nd that the dividend

yield generates the largest hedging demand among a wider set of predictor variables.
9Most of the evidence reports lower mean returns for real estate appraisal-based returns coupled with lower volatility

relative to stocks both in the US (Ibbotson and Siegel (1984); Maurer, Reiner and Sebastian (2003)) and in the UK and

Germany (Maurer, Reiner and Sebastian (2003)). A similar pattern emerges in

Maurer, Reiner and Rogalla (2003), using German indirect real estate indices.
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sense that volatility clustering is weak.10 Finally, the dividend yield displays all the usual features that

have appeared in the North-American literature, namely it is a playkurtic and highly serially correlated

series.11

These ¯ndings of rare departures from (univariate) normality and of weak serial correlation and volatility

clustering e®ects make it plausible to think that a simple, homoskedastic Gaussian VAR(1) model as in (2)

may be not be badly misspeci¯ed. Table 2 provides a ¯rst impression of the main features of a multivariate

Gaussian model, at least in terms of simultaneous correlations. The table shows that the performance across

the three markets is only weakly correlated, with a peak correlation coe±cient of 0:56 between excess stock

and real estate returns.12 Under these conditions, there is wide scope for portfolio diversi¯cation across

¯nancial and real assets. In particular, excess bond returns are characterized by insigni¯cant correlations

relative to both stock and real estate, and therefore we should expect a large demand for bonds (see e.g.

Campbell and Viceira (2002)) for purely hedging reasons.

3.2. Predictability in Excess Asset Returns

Table 1 reveals only weak evidence of predictability in asset returns, essentially connected to the fact that

past excess stock returns forecast future, subsequent excess stock returns. However, a complete picture of

the degree to which risk premia may be forecast can be derived only from the estimation of (2). Results

are reported in table 3 for the case in which classical estimation methods are employed; robust t-stats are

reported in parenthesis, under the corresponding point estimates. There is strong statistical evidence that

lagged excess returns on real estate forecast subsequent excess bond returns, and that lagged excess stock

returns forecast excess real estate returns. In particular, an increase in time t real estate returns forecasts

a decline in bond returns at time t+1, while a time t increase in stock returns predicts a time t+1 increase

in real estate returns.13 This is consistent with stories according to which real estate markets adjusts to the

equity market swings (e.g., booming prices cause wealth e®ects that spread over the real estate market)

and in which real property forecasts future economic conditions (hence adjustments in the slope of the

term structure of interest rates), see e.g. C.H Liu and J. Mei (1992) and H. Liao and J. Mei (1998).

We also ¯nd weaker evidence of the forecasting power of the dividend yield for European excess stock

returns: although the coe±cient is interesting for its magnitude (it implies that a one standard deviation

increase in the dividend yield forecasts an increase in stock returns by 74 basis points), its statistical

signi¯cance is marginal (the corresponding p-value is 15% only). Therefore, while on US (and UK, see

Guidolin and Timmermann (2005)) data there is robust evidence that the dividend yield forecasts asset

10The serial correlation for short real rates is stronger and ¯ts the common perception of near-integration for short term

rates. The absence of volatility clustering (ARCH) at monthly frequencies is not surprizing. Among others, Campbell and

Viceira (1999, 2002), Barberis (2000), and Lynch (2001) all ignore ARCH e®ects and focus on the predictability of the risk

premium only.
11The evidence of volatility clustering in table 1 for the dividend yield is illusory: once an AR(1) model is ¯tted to the

dividend yield, the residuals appear to be approximately homoskedastic.
12However this measure is likely to incorporate an upward bias as almost all the equities covered by the EPRA40 enter

in the Datastream European Stock Index. However, the latter covers 2,431 di®erent stocks, so the e®ect on the correlation

coe±cient is likely of second-order magnitude.
13The e®ects are economically important: a one standard deviation increase in monthly excess real estate returns forecasts

a 41 basis points decline in excess bond returns; a one standard deviation increase in monthly excess stock returns predicts

an 85 basis point increase in excess real estate returns.
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returns, such evidence is more doubtful on European data, at least for our sample period. One last remark

concerns the MLE estimates of the (simultaneous) covariance matrix of excess asset returns residuals:

§̂ =

2
66664

0:168 0:068 0:540 ¡0:951

0:001 0:052 0:228 ¡0:055

0:011 0:001 0:117 ¡0:574

¡0:001 ¡0:000 ¡0:000 0:005

3
77775

;

where the elements on and below the main diagonal are annualized volatilities and pairwise covariances,

respectively, while the elements above the main diagonal are pairwise correlations. In particular, notice

the relatively high correlation (0:54) between excess stock and real estate returns residuals, indication that

shocks unexplained by the VAR(1) model tend to appear simultaneously for the stock and real estate

markets. Moreover, the simultaneous sample correlations between news a®ecting stock and real estate

markets and news involving the dividend yields are negative and signi¯cant (¡0:95 and ¡0:57; respectively):

when shocks hit the dividend yield (i.e. the way in which company pro¯ts are transformed into asset prices),

our estimates imply a contemporaneous negative e®ect on excess stock and real estate returns. Such ¯ndings

are ubiquitous in the literature analyzing US ¯nancial returns data (see e.g. Barberis (2000)), but they are

novel with reference to European and ¡ more important ¡ real estate markets. As a result, the ¯nding

that the dividend yield is only a weak predictor of future excess asset returns is only apparent, in the

sense that we do ¯nd that news to the dividend yield have important and precisely estimated correlation

structure with ¯nancial return news. As we will see in Section 4, these features have major portfolio choice

implications.

In table 4, we repeat the econometric analysis employing Bayesian estimation techniques that ¡ as

stressed in Section 2.2 ¡ allow us to derive a joint posterior density for the `coe±cients' collected in µ:

The tails of this density also measure the amount of estimation risk present in the data. In fact, table

3 reports the means of the marginal posteriors of each of the coe±cients in C along with the standard

deviation of the corresponding marginal posterior, which gives an idea of its spread and therefore of a

measure of the uncertainty involved. As typically found in the ¯nancial literature, the posterior means in

table 4 only marginally depart from the MLE point estimates in table 3.14 Standard errors are relatively

high, con¯rming the presence of important amounts of estimation risk in this application. However, it

remains clear that the e®ects of lagged excess stock returns on real estate returns and of lagged real estate

on bond returns are characterized by tight posteriors which suggest a non-zero e®ect. Also in this case,

the e®ect of the dividend yield on subsequent returns seems to be rather strong in terms of location of

the posterior density, although the tails are thick enough to cast some doubts on the precision with which

e®ects can be disentangled. For completeness, we also report the posterior means and standard deviations

14For instance, the most important di®erence (in absolute terms) concerns the coe±cients measuring the e®ects of the lagged

dividend yield on excess stock returns, which goes from 1.262 under MLE to a Bayesian posterior mean of 1.256.
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(in parenthesis) for §:

§Post=

2
66666664

0:175
(0:063)

0:068 0:540 ¡0:951

0:001
(0:001)

0:054
(0:019)

0:228 ¡0:055

0:012
(0:002)

0:002
(0:001)

0:122
(0:044)

¡0:574

¡0:001
(0:000)

¡0:000
(0:000)

¡0:000
(0:000)

0:005
(0:002)

3
77777775

:

Volatilities and covariances are again reported in annualized terms, while the coe±cients above the main

diagonal are correlations. Clearly, most elements of § have very tight posteriors, and importantly all the

implied correlations are identical (to the third decimal) to those found under MLE. Therefore also in this

case, the seemingly weak predictability from dividend yields must be supplemented by the evidence of

strong and precisely identi¯ed simultaneous correlations between the dividend yield and excess stock and

real estate returns.

4. Optimal Asset Allocation with Real Estate

4.1. Baseline, Buy-and-Hold Classical Weights

We start with the simplest of the portfolio allocation exercises: we consider an investor who commits her

initial, unit wealth for T years and who ignores parameter uncertainty, i.e. replaces the unknown VAR

coe±cients with their MLE parameter estimates, ignoring the corresponding standard errors. Initially we

do not impose any restrictions on the predictability model, i.e. report results for a full VAR(1) model (see

Campbell, Chan, and Viceira (2003)). Throughout, we set zt¡1 to the full-sample mean values for excess

returns and the dividend yield:15

Figure 1 reports optimal portfolio weights for horizon between 1 month and 10 years, which is assumed

to represent the typical long-horizon objective. The exercise is repeated for three alternative values of

the coe±cient of relative risk aversion, ° = 2; 5, and 10. Clearly, the latter represents rather a high risk

aversion coe±cient and we expect that its adoption would completely bias our results against the riskier

assets and in favor of relatively safe bonds and cash investments.

Modeling linear predictability patterns seem to make a noticeable di®erence for portfolio choice, in the

sense that short- and long-horizon portfolio weights radically di®er for all levels of °: For instance, for

° = 2 (not an atypical choice in the asset allocation literature, see Brennan et al. (1997) and Barberis

(2001)), the 1-month allocation is 57% in real estate, 41% in stocks, and 2% in bonds; however, under

a 10-year horizon, the optimal weights become 50%, 42%, and 8%, respectively. This means that there

is an important (8%) shift out of the riskier assets and in favor of the safe bonds. Remarkably, cash is

never demanded, i.e. the presence of relatively safer bonds and predictability combine into an asset menu

that can satisfy the risk-return trade-o®s of even highly risk-averse investors (° = 10) without involving

zero-variance assets.

Generally speaking, and consistently with results in the literature (see Kandel and Stambaugh (1996)

and Barberis (2000)), the weight invested in riskier assets appears to be a monotone increasing function of

15Our results therefore qualify as `simulations' representative of the average properties of our estimated model rather than

actual end-of-sample (March 2004) portfolio recommendations.
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the investment horizon. This is particularly evident for ° = 5 and 10, although the schedule characterizing

real estate is rather °at. The explanation is that predictability in the risk premium makes risky assets

less risky than what is conveyed by their standard deviations; this e®ect becomes stronger, the longer the

horizon an investor has over which to exploit the forecastability patterns. The best way to see this is to

focus on the multiperiod conditional variance of (say) the risky stocks implied by our VAR(1) framework:

V art[R
s
t;2] =V art

"
2X

k=1

(Rst+k+rf )

#

=V art

"
1X

k=0

³
rf+¹s+ÁssRst+k+ÁsbRbt+k+ÁsrRrt+k+Ásxxt+k+¾2s"

s
t+k+¾sb"

b
t+k+¾sr"

r
t+k+¾sx"

x
t+k

´#

=2¾2s + (Ásb)2¾2b + (Ásr)2¾2r + (Ásx)2¾2x + 2Ásb¾sb + 2Ásr¾sr + 2Ásx¾sx;

which can be compared to V art[R
s
t;1] = V art[R

s
t+1] = ¾2s: Given our MLE estimates, it happens that

V art[R
s
t;2]

2V art[Rst;1]
< 1;

i.e. that conditional variance grows at a slower rate than the horizon because the following terms are

negative:

(Ásb)2¾2b + (Ásr)2¾2r + (Ásx)2¾2x + 2Ásb¾sb + 2Ásr¾sr + 2Ásx¾sx < 0:

This results in an increasing allocation to stocks as T gets larger.16 The economic interpretation is that

when dividends fall unexpectedly (i.e. they are hit by some adverse shock), ¾sx; ¾rx < 0 imply that the news

will be likely accompanied by a positive, contemporaneous shock to excess stock and real estate returns.

On the other hand, since Ásx; Árx >> 0; a currently diminished dividend yield forecasts future lower risk

premia on stocks and real estate. Hence the parameter con¯guration implied by the data leads to a built-

in element of negative serial correlation.It is well known that processes characterized by negative serial

correlations are less volatile in the long- than in the short-run, due to mean-reversion e®ects.These e®ects

may be of ¯rst-order importance even when the standard errors associated to many of the coe±cients in

(2) are high and the estimated VAR(1) coe±cients relatively small, as long as adequate covariance loadings

come through §̂ (in this case, ¾̂sx << 0).

Finally, ¯gure 1 shows two another key results. First, the optimal allocation to bonds is generally

monotone decreasing with T . However, this is fully explained by the statistical properties of the vector zt

16In fact, replacing unknown coe±cients with their MLE estimates gives:

(Á̂
sb
)2¾̂2b + (Á̂

sr
)2¾̂2r + (Á̂

sx
)2¾̂2x + 2Á̂

sb
¾̂sb + 2Á̂

sr
¾̂sr + 2Á̂

sx
¾̂sx

= (0:07)2 ¢ 0:0002 + (0:07)2 ¢ 0:0011 + (1:26)2 ¢ 1:7e¡06 +
2 ¢ 0:07 ¢ 5e¡05 + 2 ¢ 0:07 ¢ 0:0009¡ 2 ¢ 1:26 ¢ 6e¡05 = ¡9:1e¡06 < 0:

This number is only apparently negligible: for instance it is more than 5 times larger than the unexplained variance of the

dividend yield.

Similar calculations may be performed for real estate. Since (Á̂
rs
)2; (Á̂

rb
)2; ¾̂2x ' 0, while ¾̂rx implies a correlation of

¡0:57 < 0; Á̂
rx
= 0:65 > 0; and Á̂

rs
= 0:14 ' 0 and Á̂

rs
= 0:17 ' 0; then also for real estate, risk grows slower than

the investment horizon. However in this case the e®ect is smaller, which supports our ¯ndings of relatively °at investment

schedules for real estate assets.
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we have modeled in Section 3 (see table 3). In particular, notice that bonds display a negligible covariance

with the dividend yield (¾̂bx implies a correlation of ¡0:06 only) and actually positive covariances with

shocks to stocks and real estate. This means that news a®ecting the variables (for us, the dividend yield)

characterizing investment opportunities will essentially leave current, realized bond returns unchanged and

then forecast future changes in risk premia of the same sign as the news. Therefore bonds will either

be characterized by a variance that grows at the same rate as T; or even by increasing risk over longer

and longer time horizons. This makes them rather safe assets for T = 1-2 years, although they become

increasingly risky and less attractive the longer the horizon.

Figure 1 shows some non-monotonic shapes, especially for ° = 2 and with reference to the demand for

bonds, which seems to increase between T = 1 month and 1 year and smoothly declines for the reasons

explained above. This feature is fully explained by the simulation nature of the results in ¯gure 1, i.e. the

fact that in (2) we initialize zt¡1 = t¡1
Pt
i=1 zi: Notice that while the full-sample means for real returns

are

[0:0079 0:0060 0:0080 0:0263]0 ;

the estimated VAR(1) model implies unconditional means of:

E[zt] = (I4 ¡ ©̂)¡1¹̂ =[0:0004 0:0047 0:0019 0:0233]0 :

Although these values make sense, as they imply positive mean real returns (and risk premia), notice that

all mean returns are systematically below the full-sample means. Therefore our initialization corresponds

in fact to an economy in a period of above-mean returns and dividend yields. Since most of the coe±cients

in ©̂ are positive (we do notice only one exception), initially high returns imply some persistence in the

assumed bull market conditions. In particular, it is easy to check through simulation experiments, that

using t¡1
Pt
i=1 xi = 0:0263 > E[xt] = 0:0233 implies forecasts of high, above-mean excess returns on

stocks and bonds at horizons up to 6-12 months. This explains a transient e®ect by which the demand

for stocks and real estate is particularly high at a 1-month horizon, and the demand for bond relatively

modest. Since an investor ought to aggressively exploit these predicted e®ects in the mean, the lower her

risk aversion, such non-monotonicities are more obvious for ° = 2 and 5:17

Another way to quantify the importance of predictability in determining rational portfolio choices when

real estate belongs to the asset menu can be derived by comparing the results in ¯gure 1 with those one

can calculate assuming a simple model without any predictability patterns, i.e.

zt = ¹ + ²t ²t i.i.d. N(0; §); (7)

with constant covariances as well as risk premia. We ¯nd that long-run asset allocations in the presence

of predictability are rather di®erent than those obtained under the IID benchmark.18 For instance, when

° = 5; the percentages to be invested in bonds are 42% vs. 54% under no predictability, 32% vs. 18%

for stocks, and 26 vs. 28% for real estate.19 Hence, also in this metric predictability implies a shift

17This e®ect can be quanti¯ed in a diminished bond weight of roughly 20% when ° = 2 and of 5% when ° = 5:
18As discussed in the Introduction, under (7) the optimal portfolio weights become independent of the horizon. In the

following we compare asset allocations under IID with those obtained under (2) for the T = 10 years case.
19The corresponding numbers are (for bonds, stocks, and real estate, respectively) 8-2%, 42-39%, 50-59% when ° = 2;

54-72%, 28-11%, 18-17% when ° = 10:
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out of bonds by 10% or more and into the riskier assets, mostly stocks. Obviously, the interpretation is

that the assets whose long-run risk is mitigated by the mean-reversion e®ects implied by (2) are in lower

demand under IID, the opposite for assets that are riskier the longer the horizon. Overall, it seems that

ignoring predictability altogether would in fact lead to inappropriate asset allocations. Section 5.1 further

investigates the welfare losses resulting from disregarding predictability.

In conclusion, a classical analysis obtained by `plugging-in' our parameter estimates from (2) implies

that real estate ought to have an important role in simple, buy-and-hold portfolio choices, especially when

investors have a long-run perspective. Depending on the assumed coe±cient of relative risk aversion,

we have found optimal real estate weights between 18 and 50% of the available wealth. These results

are substantially higher than typical ¯ndings in the North American literature based on simple mean-

variance static portfolio theory: for instance, using annual US data, Karlberg, Liu, and Greig (1996) and

Ziobrowski, Caines, and Ziobrowski (1999) ¯nd that the optimal fraction of wealth to be allocated in real

estate is around 9%, in the range of 3-15%; in fact, for moderate enough risk aversion levels, most of the

investor's wealth ought to be assigned to stocks, while bonds carry a negligible weight.20

4.2. Parameter Uncertainty Under Buy-and-Hold

We next proceed to calculate optimal portfolio weights for the case in which the investor adopts a Bayesian

approach: For simplicity, we deal with the buy-and-hold case ¯rst.21

Figure 2 reports portfolio weights as a function of T: The e®ects of estimation risk manifest themselves

with varying intensity at two distinct levels. On one hand, accounting for parameter uncertainty does not

radically change the structure of portfolios, especially for low risk aversion and short horizons. Optimal

weights still depend (as one ought to expect) from the coe±cient of relative risk aversion. For instance, for

° = 2, the 1-month allocation is identical to the one derived ignoring parameter uncertainty as an investor

who is not strongly risk averse will not be a®ected by additional estimation risk, over short-horizons. The

10-year allocation is instead 31% in real estate, 34% in stocks, and 35% in bonds, i.e. very close to an

equally-weighted portfolio, 22 di®erent from the 50%, 42%, and 8% weights found in Section in 4.1 for this

case. The only major di®erence in portfolio composition obtains under T = 10 years and high risk-aversion,

and consists in the appearance of positive weights invested in the riskless asset , as much as 40% . This

makes sense as cash is not only the safest among the assets but also the only one that completely escapes

the additional uncertainty created by estimation risk.

On the other hand, important modi¯cations occur in the structure of the investment schedules as

a function of the horizon: while a classical investor will be characterized by weights to stocks and real

estate increasing with the investment horizon, when parameter uncertainty is taken into account these

schedules become either °at or weakly monotone decreasing. For instance, when ° = 5 the allocation to

real estate declines from 26% at 1-month to 16% at 10 years; the allocation to stocks is essentially °at

at 20-21%. Notice that the uncertainty deriving from estimation risk compounds over time, i.e. if it is

di±cult to assess whether the predictability patterns help in asset allocation over a 1-month horizon, this

20However Liand and Webb (1996) do estimate higher weights.
21Also in this case, we set zt¡1 to the full-sample mean values for excess returns and the dividend yield.
22Gold (1993) reports a similar results for US optimal portfolios in a mean-variance framework in which investors protect

themselves against estimation risk by bootstrapping real estate returns.

17



e®ect is magni¯ed for longer planning periods. This means that the contrasting e®ects of the reduction

in long-run risk resulting from predictability ¡ which would cause the investment schedules to be upward

sloping ¡ and of estimation risk roughly cancel out for a long-horizon investor, with the result of either

°at or weakly monotonically decreasing schedules.23 Additionally, it seems that the e®ects of parameter

uncertainty are equally strong for bonds as for the riskier assets, stocks and real estate. Notice in fact that

the posterior standard errors characterizing all the bond coe±cients in table 4 are rather high. As a result,

bond investment schedules turn now strongly downward sloping, in fact giving way to a positive demand

for short-term cash deposits for T in excess of 4-5 years.

Once more, we provide a preliminary (see also Section 5) measure of the importance of predictability

under parameter uncertainty by calculating optimal portfolio weights under the no-predictability bench-

mark (7) and by comparing results to (2). In practice, such an exercise is also helpful to document and

quantify the pure e®ects of parameter uncertainty on optimal portfolio weights.24 Figure 3 displays re-

sults through the usual set of plots. Although they generally con¯rm the importance of real estate for

portfolio choice purposes, these plots also put further emphasis on our discussion of the separate e®ects

of predictability vs. estimation risk. In a system with no predictability but in which there is parameter

uncertainty, the investment schedules for both stocks and real estate are monotonically decreasing, i.e. as

initially guessed estimation risk is compounded and magni¯ed by longer and longer investment horizons.

Interestingly, the demand for cash is completely absent, also for investors with high risk aversion. More-

over, the bond investment schedules are now upward sloping, which con¯rms that there exists a di®erential

of estimation risk that favors bonds over riskier instruments. Finally, by comparing ¯gures 2 and 3, one

has an implicit proof of the fact that the estimation risk may be particularly important when the number

of estimated coe±cients grows, i.e. when an investor tries to capture the uncertain predictability patterns

using some parametric framework. In particular, the schedules for bonds appear to change slope and a

positive demand for cash investments appears when moving from ¯gure 3 to 2. This is consistent with

larger degrees of parameter uncertainty plaguing (2) vs. (7) and with the existence of ¯rst-order e®ects

from the high posterior standard errors characterizing Ábs; Ább; Ábr; and Ábx:

In conclusion, adding back parameter uncertainty to the asset allocation problem changes a few of the

results found in Section 4.1, but leaves the overall picture intact: real estate is an important class that ¡
when predictability is measured and put to use through a Bayesian approach ¡ ought to receive an optimal

long-run weight between 10 and 30%, depending on the assumed coe±cient of relative risk-aversion.25

23In fact the real estate schedules turn downward sloping as a re°ection of the weaker predictability e®ects found for this

asset class in Section 4.1.
24The coe±cients in ¹ have posterior means of 0.005, 0.003, and 0.005 (the dividend yield is irrelevant in this case), and

standard errors of 0.005, 0.001, 0.003. Details on the posterior distribution of the coe±cients in § are available upon request.
25Notice that when estimation risk is accounted for, our implications become rather implausible for ° = 10; when roughly

75% of the available wealth ought to be invested in either cash or bonds when the horizon is 10 years. Clearly, such implications

are at odds with the actual structure of the majority of observed managed portfolios, and simply reject ° = 10 as a plausible

speci¯cation for preferences. If ° = 2 and 5 are the most plausible relative risk aversion levels, then the optimal real estate

weight climbs to 20-30% at least. Similar conclusions apply to equity investments.
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4.3. Dynamic Rebalancing

We assess the e®ects of dynamic rebalancing on the optimal real estate weights by computing portfolio

allocations for the most realistic case in which ' = 12 months, i.e. adjustment to the asset allocation

are admitted every year and the investors takes that into account even when formulating long-horizon

strategies with T >> ': In particular, we start with the case in which the statistical model is simpli¯ed to

Barberis' (2000) framework,
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i.e. when predictability is restricted to come from the dividend yield only and ¡ consistently with available

results on North American markets (see e.g. Campbell, Lo, and MacKinlay (1997)) ¡ past excess returns

fail to predict future returns.26 Given that this model simpli¯es the state space to one variable only (the

dividend yield), for the calculations that follow we use J = 20 discretization points for increased accuracy.

Once more, the initial dividend yield is set to its full-sample mean.

Column (a) of Figure 4 shows results for the classical case, when parameter uncertainty is ignored.

A comparison with Figure 1 reveals only two important changes. First, rebalancing makes the resulting

portfolio investment schedules (as a function of the horizon) rather °at. Careful analysis of the plots reveals

in fact that di®erences between optimal weights at T = 5 and at T = 10 are generally negligible. This

makes sense as two investors with either a ¯ve or a ten-year horizon that rationally discount the possibility

to make (unrestricted) changes to their optimal portfolios in only 12 months are unlikely to drastically di®er

in their current portfolio choices, as all they know about asset returns between month t+'+1 and T = 60

or 120 months later is that their joint dynamics is well-described by the unconditional distribution. The

fact that rebalancing tends to °atten optimal investment schedules for T >> ' has been observed already

by Brandt (1999) and Guidolin and Timmermann (2004, 2005) in related applications. Second, di®erences

between the rebalancing and buy-and-hold cases are modest but exist: in general, rebalancing opportunities

when the system is initialized at the full-sample mean dividend yield tend to penalize the investments in the

riskier assets, stocks and real estate.27 However, the demand for cash investments remains nil for all levels

of risk aversion. It seems that a dividend yield equal to its full-sample mean may suggest some caution to

a rational investor, who then waits for an improvement in the investment opportunities by going longer in

the relatively safe (especially over a relatively short period) bonds. In general, even when rebalancing is

admitted, real estate remains an important asset class, receiving a weight always close to 20% or higher

for all horizons and risk-aversion coe±cients. On the other hand, when rebalancing is possible, an investor

aggressively tries to exploit the available information: for instance, when ° = 5 and the horizon is long

(ten years), the real estate weight is only 10% when dyt = 2:2%; it increases to 21% for dyt = 2:6%; and

26In this case, the dividend yield predicts with some accuracy (i.e. the related coe±cients are signi¯cant at 10%) both stocks

and bonds, and the higher the dividend yield, the higher the risk premia on assets. The dividend yield remains considerably

persistent and there is substantial negative correlation between shocks to excess stock and to real estate returns and dividend

yield shocks. Complete results are available upon request.
27For instance, at T = 3 years, the optimal weights in real estate under rebalancing are 42% (vs. 43% under buy-and-hold)

for ° = 2; 21% (vs. 23%) under ° = 5; and 14% (vs. 16%) under ° = 10:
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becomes 28% for dyt = 3:2%: Importantly, all these values of the dividend yield were observed over our

sample period.28

Column (b) of Figure 4 reports instead results for the Bayesian case. For this exercise, the number of

simulations is increased from 100,000 to 200,000 independent trials to accommodate the complex drawing

loops needed to approximate the Bayesian predictive density and reduce randomness deriving from the use

of simulations. Once more, we start by entertaining the simpli¯ed model in (8). Introducing rebalancing

opportunities in a Bayesian framework has two major e®ects. First, it brings down to zero the demand

for 3-month deposits: while under buy-and-hold and ° ¸ 5 the optimal cash weight was positive for

horizons exceeding 4-5 years, rebalancing does °atten the demand for the less risky asset to nothing. This

is consistent with the idea that rebalancing makes a rational investor more aggressive (i.e. less risk-averse)

as the possibility to switch out of risky portfolio positions well ahead of the planning horizon exists.29 A

similar, albeit less strong e®ect is obtained with reference to bonds, for which the long-run demand declines

from 35-45% under buy-and-hold to less than 20% (zero assuming ° = 2). Second, rebalancing shifts up the

demand for stocks and (to a lesser extent) real estate and makes the corresponding investment schedules

upward sloping for horizons in excess of 1 year (i.e. those a®ects by our annual rebalancing assumption).

Also in this case, most of the e®ects occur at horizons between 1 and 4 years, as for long-run investors

schedules are typically °at, as observed before.

5. Welfare Cost Analysis

Even though Section 4 has provided abundant and compelling evidence that (i) real estate enters the

optimal long-run portfolio composition with non-negligible weights when asset returns are predictable, and

that (ii) predictability has important e®ects on portfolio weights, it remains very di±cult to reach de¯nitive

conclusions on the economic importance of the implied e®ects for expected utility maximization. Therefore

we follow Ang and Bekaert (2002), Ang and Chen (2002), Guidolin and Timmermann (2004, 2005), and

Lynch (2001), and obtain estimates of the welfare implications of restricting the asset allocation problem

in any of its dimension, like the breadth of the asset menu or the richness of the statistical model used to

describe the multivariate process of asset returns.

Call !̂Rt the vector of portfolio weights obtained imposing restrictions on the portfolio choice prob-

lem. For instance, !̂Rt may be the vector of optimal asset demands when the investor is forbidden from

investing in real estate. We aim at comparing the investor's expected utility under the unrestricted models

entertained in Section 4 ¡ and leading to some optimal set of controls !̂t ¡ to that derived assuming

the investor is constrained to choose at time t the restricted optimum, !̂Rt : De¯ne now V (Wt; zt; !̂t) the

optimal value function of the unconstrained problem, and V (Wt; zt; !̂
R
t ) the `constrained' optimal value

function. Since a restricted model is by construction a special case of a more general, unrestricted model,

the following holds:

V (Wt; zt; !̂
R
t ) � V (Wt; zt; !̂t):

28Section 6.2 provides further analysis on the e®ects of changing predictor variables on optimal portfolio weights.
29This remark applies only when the simulations are initialized in (relatively) good market conditions, such as those asso-

ciated with a mean, 2.6% dividend yield. For instance, when dyt = 1:2% (i.e. prices are relatively high), the demand for cash

by a 10-year horizon investor with ° = 5 is 68%, i.e. rebalancing makes it rational to wait on the sidelines and invest more

than two-thirds of the initial wealth in the safe asset.
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We compute the compensatory premium, ¼Rt , that an investor with relative risk aversion coe±cient ° is

willing to pay to obtain the same expected utility from the constrained and unconstrained asset allocation

problems as:

¼Rt =

�
V (Wt; zt; !̂t)

V (Wt; zt; !̂
R
t )

¸ 1
1¡°

¡ 1: (9)

The interpretation is that an investor, if endowed with an initial wealth of (1 + ¼Rt ); would tolerate

to be constrained to solve some kind of restricted asset allocation problem leading to V (Wt; zt; !̂
R
t ) �

V (Wt; zt; !̂t) only. Several types of restrictions are analyzed in what follows. For simplicity, we limit

ourselves to consider simple buy-and-hold strategies.30

5.1. Cost of Ignoring Predictability

We ¯rst proceed to calculate the ¼Rt implied by forcing an investor to ignore predictability altogether, i.e.

to pretend that (7) is a correctly speci¯ed model while we have evidence (see Section 3) that in fact (2) is

a better model. As observed in Section 5, this would lead to `incorrect' portfolio choices. We now quantify

the costs of these mistakes. These are presented in ¯gure 5, once more as a function of the alternative levels

of the horizon T and of °: In particular, panel (a) refers to the classical case, when parameter uncertainty

is ignored. Clearly, the implied welfare costs from model misspeci¯cations strongly depend on the assumed

coe±cient of relative risk aversion, in the sense that they are the higher the lower ° is.31 Generally speaking,

especially if a Reader considers ° = 2 ¡ 5 as the most plausible range for risk aversion, the implied welfare

costs are far from negligibile, and in the case of long-horizon investors they range between 3 and 10% of the

initial wealth. This means that a rational investor with ° = 2 would require a (riskless) annual increase in

the returns generated by her portfolio in the order of approximately 95 basis points, for him to accept to

work under and make portfolio decisions based on a misspeci¯ed IID model that disregards predictability

altogether.

Panel (b) of ¯gure 5 presents instead results for the Bayesian portfolio choice case, when estimation

risk is incorporated in optimal decisions. In this case, the implied utility loss seems to be somewhat larger

and especially rather independent of the coe±cient of relative risk aversion. At long horizons, the welfare

loss is always between 10 and 12% of the initial wealth, which corresponds to a required, (riskless) annual

increase in the returns generated by the portfolio of approximately 100 basis points. The reasons of the

larger utility losses under parameter uncertainty vs. the classical case in panel (a) are related to the fact

that while in panel (a) !̂IIDt is anyway very close to the optimal, long-run !̂t; in panel (b) this is not the

case: as shown by ¯gures 2 and 3, for large T portfolio choices are structurally di®erent, especially because

in ¯gure 2 implies substantial cash investments that are not found when predictability is ignored. All in all,

we interpret the evidence in ¯gure 5 as consistent with the idea that ignoring predictability is associated

with welfare losses of substantial magnitude.

30These clearly give lower bounds to the implied welfare costs, see e.g. Guidolin and Timmermann (2005). As a matter

of fact, under dynamic rebalancing predictability gives an investor a chance to aggressively act upon the information on zt;

therefore ignoring predictability when rebalancing is possible implies even higher (sometimes enormous) utility costs. A similar

reasoning applies to restrictions on the asset menu, in the sense that depriving investors of useful assets hurts them the most

the highest is the frequency with which they can switch in and out of the assets themselves.
31This ¯nding is not new, see e.g. Campbell and Viceira (1999) and Guidolin and Timmermann (2005).
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5.2. Cost of Excluding Real Estate

Although the evidence on the economic value of predictability is important, our key question remains

open: How important is real estate in asset allocation problems, i.e. what is the welfare loss associated

with restricting portfolio choice from involving real estate? Given the ¯nding that ignoring predictability

may be largely suboptimal, especially when estimation risk is taken into account, we analyze the utility

losses when the investor exploits the evidence of predictability provided by (2).

As a ¯rst step, table 5 presents classical MLE estimates along with t-ratios for the case in which n = 2;

i.e. the asset menu is limited to stock, bonds, and cash. Obviously, the expressions and results in Section 2.1

still apply (e.g. (3)). Table 5 stresses that on a restricted asset menu, the evidence of predictability becomes

extremely weak, in the sense that only stock returns exhibit some degree of persistence and the dividend

yield is a somewhat imprecise predictor of subsequent excess stock returns; the marginal distribution of

excess bond returns seems to be well approximated by a Gaussian i.i.d.. In a way, real estate may help in

asset allocation problems as it seems to be capable to bring out more precise predictability structure in risk

premia. The left column of plots in ¯gure 6 shows `classical' asset allocation results under this restricted

asset menu. Results are consistent with the general patterns isolated in Section 4.1: the demand for

stocks increases with the investment horizon as their riskiness actually declines thanks to the predictability

implied by (2); on the opposite, the bond investment schedule is downward sloping. There is no demand for

cash assets independently of the degree of relative risk aversion.32 Figure 7, panel (a), shows the implied

welfare costs from excluding real estate from the portfolio problem. In this case, the utility loss is clearly

increasing in the coe±cient of relative risk aversion. Even in the case of intermediate risk aversion (° = 5)

the welfare loss at a short horizon of one year only is of 70 basis points; the loss for a long horizon investor

exceeds a total of 9% of the initial wealth, i.e. almost 90 basis points a year. Such ¯gures double or even

triple if one considers a highly risk-averse investor; e.g., under a 10-year horizon and assuming ° = 10; the

loss is in the order of 200 basis points per year. This means that especially under long planning horizons,

including real estate in the asset menu should represent a primary concern for all portfolio managers.

Table 6, and ¯gures 6 and 7 complete the picture by reporting results for the Bayesian portfolio choice

problem, when parameter uncertainty is kept into consideration. Table 6 gives Bayesian posterior means

and standard deviations for the restricted VAR model in which n = 2; i.e. excluding real estate excess

returns. Posterior means are very close to MLE estimates, and standard errors con¯rm the results in table

5: the evidence of predictability is weak and only stock returns exhibit some degree of persistence. Figure

6 plots instead optimal asset allocations and obtains di®erences between classical and Bayesian portfolio

weights consistent with our comments in Section 4: positive weights on liquid investments appear for ° ¸ 5

under parameter uncertainty, as a protective measure against the additional uncertainty deriving from the

fact the coe±cients are random; while the equity investment schedule is generally upward sloping in a

classical framework (an e®ect of predictability), the Bayesian allocation to stocks tends to decline with the

investment horizon. Finally, ¯gure 7 displays the percentage compensatory variation from excluding real

estate from the asset menu. In this case, results are similar to the classical ones, i.e. the loss from ignoring

real estate may easily exceed 100 basis points per year for either highly risk-averse and/or for long-horizon

investors.
32For moderate levels of relative risk aversion, some non-monotonic features appear for horizons between 1 month and 2

years. Once more, these are explained by the way in which our simulations were initialized.
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6. Robustness Checks

We conclude by performing a few additional exercises that aim at corroborating our results and show that

they scarcely depend on speci¯c assumptions concerning the statistical model, how the state variables are

initialized, and the measurement of the welfare loss implied by solving `standard' portfolio problems in

which the predictable nature of risk premia is ignored and the attention is focused on a standard mean-

variance benchmark (cf. Elton et al. (2004)).

6.1. Restricted VAR Results

One naturally wonders whether our results on the importance of predictability and real estate in rational

portfolio choices for a European portfolio manager depend in any way on two choices we have made: (i)

similarly to Campbell, Chan, and Viceira (2003) (and di®erently from other papers, e.g. Barberis (2000)

and Lynch (2001)) we have considered an unrestricted VAR(1) model in which past excess returns are

allowed to forecast future excess returns as well as dividend yields; (ii) within such a model, we have

disregarded the statistical signi¯cance of the estimates obtained, i.e. predictive densities were de¯ned on

the basis of a number of parameters characterized by relatively large standard errors.33 We therefore run

experiments in which both these aspects are dealt with.

First of all, we apply the same statistical restrictions employed in Barberis (2000) and many other

papers in the literature, and prevent past excess asset returns from forecasting both future returns and

dividend yields. Equivalently, we restrict the model so that only the dividend yield forecasts subsequent

excess returns in a linear fashion. Clearly, this is just model (8) employed in Section 4.3 for our dynamic

portfolio simulations. The buy-and-hold calculations are repeated for both the classical and Bayesian cases.

In both frameworks, results are qualitatively similar to those reported in ¯gures 1 and 2. However, the

restrictions in (8) seem to slightly in°ate the optimal weights assigned to stocks and real estate, i.e. to

improve their mean-risk trade-o®. For instance, assuming ° = 5 and T = 10 years, the stock and real

estate weights go from 32 and 26 percent, respectively, under model (2) to 36 and 33 percent under (8).

Clearly, an increase of 7 percentage points in the real estate holdings over the long-run is rather important,

at least in economic terms. However, our early conclusion that at least one-¯fth or more of an optimal,

European portfolio should be held in real estate assets continues to hold, and is actually strengthened by

these experiments.34

Secondly, we enforce a second type of statistical restrictions: we start from the general model in (2) but

proceed to set to zero all the VAR coe±cients that fail to be statistically signi¯cant according to a standard,

classical t-ratio test with a signi¯cance level of 10%. The resulting VAR model is the one in Table 3 with

all the non-boldfaced coe±cients in © set to zero. Although formal tests would imply a di®erent technology

(and language) based on odds ratios, for comparison purposes identical restrictions are also enforced in the

Bayesian set up. Also in this case, we focus on buy-and-hold results only. Classical results are virtually

indistinguishable from those in ¯gure 1. If any, restricting our attention to predictability parameters that

are `statistically signi¯cant' implies an increased weight to be assigned to real estate (the returns on which

33Notice that this second choice is natural given that we want to focus on both classical and Bayesian frameworks, where

the latter does not (easily) entertains the notion of `statistical signi¯cance'.
34Complete results are available from the Authors upon request.
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are predictable from lagged excess bond returns).35 Interestingly, Bayesian results are di®erent from those

reported in ¯gure 2 in one speci¯c respect: while in Figure 2 schedules were essentially °at ¡ a ¯nding that

we have interpreted as a result of the compensation between predictability and parameter uncertainty ¡
when non-signi¯cant parameters are eliminated, investment schedules as a function of the horizon become

generally downward sloping. This means that the (negative, in terms of slope) e®ects of the reduced risk

premia predictability induced by the elimination of many VAR coe±cients are stronger than the (positive)

e®ects of the reduction in parameter uncertainty caused by the elimination of just those coe±cients that

in table 3 happened to be estimated less precisely. In any event, also in this case it remains true that

roughly one-¯fth of the portfolio ought to be held in the form of real estate assets. In fact, calculations of

welfare costs of expelling real returns from the asset menu corroborate this claim: real estate should be a

¯rst-order concern in applied portfolio management.

6.2. Sensibility of Optimal Weights to the Dividend Yield

With limited exceptions, all of our simulation experiments so far have been based on initializing the dividend

yield to its full-sample mean of 2.6%. Under this assumption on a plausible value for dyt; we have found that

under predictable risk premia, real estate represents an important asset class that ought to complement

stocks and bonds in optimal long-run portfolios. However, it remains natural to ask whether this conclusion

is robust to di®erent assumptions concerning the dividend yield, especially given the observation that table

1 implies that all yields in the interval [0:9 4.3] percent have to be considered `plausible' as they fall in a

90% con¯dence interval.36 Figure 8 plots the resulting optimal asset allocation choices as the dividend yield

changes over a wide range of possible initial (current) values in simulation experiments. Several exercises

are performed corresponding to alternative assumptions concerning the coe±cient of relative risk aversion

(° = 2 or 5), the horizon (T = 1 and 10 years), and the rebalancing frequency (' = 1 year and ' = T; i.e.

buy-and-hold). However, to simplify calculations, we only report classical results that ignore parameter

uncertainty. The qualitative insights are similar for the Bayesian case.

Results for stocks and bonds are those one would expect from ¯rst principles: as a higher dividend yield

forecasts good future (equity) investment opportunities, the optimal stock weight is monotone increasing in

dyt for all °s, T s, and 's; on the opposite, the rational bond weight is generally monotonically decreasing

in the dividend yield. Such a statement admits one quali¯cation: for ° = 5, the bond schedule is actually

increasing for dyt between 1 and 1.5%. This is explained by the fact that for intermediate risk aversion

and extremely poor investment opportunities (i.e. assuming a very low initial dividend yield, an indication

of initially high asset prices) an investor would actually reduce the demand for bonds and invest in cash

in percentages between 10 and 50 percent. However, for dividend yields in excess of 1.5%, the demand

for cash disappears entirely, consistently with the results reported in Section 4.1. More importantly, the

optimal demand for real estate is positive and not negligible for a wide range of dividend yield values,

especially those around the full-sample mean (i.e. between 2 and 3%). Visibly, the optimal real estate

weight is especially high (20-50 percent) for long-run investors with T = 10 years. Interestingly, over the

interval 2-3 percent, the demand for real estate seems to only weakly depend on the exact value taken by

the initial dividend yield, while a few inverted U-shapes appear. Since most of the observed sample values

35Assuming ° = 5 and T = 10, the restricted real estate weight is 28% vs. an unrestricted 26%.
36In fact, over our sample period dividend yields between 1.7 and 3.7 percent were observed.
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for the dividend yield do fall in the range 2-3 percent, Figure 8 implies in principle a very stable demand for

real estate, potentially in the range 10-30%.37 Figure 8 makes us speculate that real estate may somehow

represent the pillar, the `backbone' of strategic asset allocation for European portfolio managers.

6.3. Welfare Costs of Excluding Real Estate Under Constant Investment Opportunities

Section 5 has assessed the long-run welfare costs of ignoring predictability in approximately 100 basis

points per year, i.e. a rational investor should request a riskless increase of the annual returns from his

wealth in the order of 1 percent a year. A similar result was obtained for the compensatory variation that

should be required to ignore real estate as an asset class in addition to stocks, bonds, and cash ¯nancial

investments. However, this last estimate has been obtained assuming that predictability should and would

not be ignored by a rational portfolio manager. Even though we believe that the statistical evidence in

favor of the existence of predictability patterns in mean excess returns is strong and that a welfare cost

of roughly 1% a year ought to be a major incentive for investors not to ignore predictability, it remains

interesting to repeat the calculations of Section 6.2 when predictability is ignored and excess returns are

generated by the simple model (7).

In the classical case, we obtain a picture that is very similar to Figure 7(a): the cost of excluding real

estate grows with the coe±cient of risk aversion; for long-run investor with ° = 5, the cost is in the order

of 80 basis points a year, and this estimate grows to exceed 200 basis points when ° = 10 is considered.

This implies that the cost of ignoring real estate scarcely depends on the whether predictability is modeled

or not, although it is clear that the welfare gains from doing so remain substantial.38 Similar calculations

are performed in the Bayesian case. We ¯nd that welfare costs of ignoring real estate are actually higher

when predictability is ignored altogether.39 In fact, Figure 3 has shown that the optimal real estate weight

is higher by 10-15 percent vs. the case in which predictability is taken into account (¯gure 2). This is

easily explained by the fact that in tables 2 and 3, real estate excess returns were characterized by rather

weak predictability patterns so that it is not di±cult to think that the demand for real estate may be hurt

in net terms by the existence of estimation uncertainty. In this sense, restricting our exercise to the case

of i.i.d. excess asset returns may bring ¡ when parameter uncertainty is taken into account ¡ to a higher

estimate of the utility loss deriving from ignoring real estate. In conclusion, the welfare losses reported and

discussed in Section 6.2 represent at best a lower bound for the utility costs of omitting real estate when

choosing optimal European portfolios.

7. Conclusions

In this paper we have documented the existence of linear predictability patterns ¡ described by a simple

VAR(1) framework ¡ in an asset menu that involves both ¯nancial and real estate excess returns. In

37In fact, more than 60% of the available observations fall in the 2-3 percent range.
38This remark is consistent with the ¯nding in Figure 8 that over a relatively wide range of values for the dividend yield,

optimal portfolio weights fail to depend on the state variable that determines the strongest predictability patterns (see Lynch

(2001) on this point). Full results on the welfare costs estimates as a function of the investment horizon are available upon

request.
39For instance, assuming ° = 5; the cost for a 10-year horizon investor exceeds 120 basis points a year. When VAR

predictability is modeled, such an estimate is 100 basis points `only'.
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particular, lagged excess stock and real estate returns predict subsequent real estate and bond excess

returns respectively. Moreover, real estate and stock return shocks are negatively correlated with dividend

news shocks. Both facts make stock and real estate returns less risky as the horizon grows. As a result,

when we calculate optimal portfolio weights based on the MLE estimates of the VAR coe±cients, we ¯nd

portfolio weights for stocks and real estate that are monotone increasing in the planning horizon. Stocks,

bonds, and real estate do not appear excessively risky to a long-run investor, so that the demand for cash

is rather limited or even absent. These ¯ndings are robust to the adoption of a Bayesian approach that

incorporates estimation risk into the formal portfolio problem, although the trade-o® between predictability

and parameter uncertainty makes for °atter investment schedules.

In this framework, we ¯nd that real estate has a considerable importance, both in absolute terms ¡ as

measured by the portfolio weights resulting from the problem ¡ and in welfare terms: the compensatory

variation required by an investor to do without real estate is easily in excess of 100 basis points per

year. Although the welfare costs deriving from ignoring predictability would be of similar importance, it

is interesting to notice that the conclusions above concerning the utility loss from expelling real estate

from the asset menu do not depend on the ¯nding of predictability. As a matter of fact, our robustness

checks in Section 6 suggest that our estimates for the optimal real estate weights and welfare losses from

restricting the asset menu are probably only a lower bound for higher estimates obtainable under alternative

assumptions. For instance, it would be interesting to perform some of the calculations in this paper using

indirect indices, that traditionally imply a much smaller correlation with stock and bond returns and hence

o®er greater diversi¯cation opportunities.

In policy terms, our paper implies that preferences and horizons exist that justify both the British

and the continental European patterns of long-horizon portfolio diversi¯cation for pension institutions. In

particular, the German-French pattern is consistent with the rational choices of portfolio managers that

display high risk aversion, worry about estimation risk, and have investment horizons between 5 and 10

years. On the contrary, investing four-¯fths of one's wealth in risky assets - as in the Anglo-Saxon pattern-

may be optimal for investors with low risk aversion disregarding parameter uncertainty. However, in this

case real estate ought to receive a weight at least as important as stocks, which is not the case.

Our results on optimal asset allocation stress the potential rationality of current practices with pension

fund managers of limiting their exposure to real estate risk to roughly 10%-15% of their overall managed

assets.

Of course, there are many issues that this paper merely touches upon. First and foremost, we have

ignored transaction costs throughout. On one hand, this is consistent with our choice to use an indirect real

estate return index based on the behavior of the market price of the equity issued by companies involved in

real estate operations: it makes sense to entertain the assumption that the frictions associated in trading in

these companies may not be structurally di®erent from the market average. Furthermore, even assuming

that real estate implies higher transaction costs than ¯nancial securities, it remains di±cult to think that

such a di®erential may easily exceed a full one percent of total initial wealth of the investor (also considering

that only 10-30 of this wealth ought to be invested in real estate). On the other hand, recent papers (e.g.

Balduzzi and Lynch (1999)) have shown how dynamic portfolio choices may be computed in the presence

of transaction costs. Such an e®ort seems to be particularly appropriate for assets in the real estate class.

We leave these further exciting explorations for future research.
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Table 1 

Summary Statistics for Asset Returns and the Stock Dividend Yield 
The table reports summary statistics for monthly total excess return series (including dividends, coupon distributions, 
adjusted for splits, etc.) for the 3-month JP Morgan Euro Cash Index, stocks, bonds, and real estate investments. The 
sample period is March 1993 – March 2004. All returns are expressed in euros. Return data for stocks, bonds, and real 
estate are in excess of the real risk-free rate. The sources of the data are: DataStream (European Equity Index), 
Citigroup (bond index, a weighted basket with maturities of five years and longer), and EPRA (Real Estate Liquid 40 
Index). The real risk-free rate is calculated by subtracting the European harmonized consumer price inflation index 
from nominal returns. Means, medians, and standard deviations are annualized by multiplying monthly moments by 12 
and 12 , respectively. LB(j) denotes the j-th order Ljung-Box statistic. The last row reports statistics for the dividend 
yield calculated on the DataStream Equity Return Index. 
 

Portfolio/Asset Class Mean Median St. Dev. Skewness Kurtosis Jarque- 
Bera LB(4) LB(4)- 

squares 
3-month Euro cash (real) 0.030 0.025 0.013 0.515 3.748 8.969* 12.201* 8.959 

Excess stock returns 0.065 0.115 0.172 -0.751 3.874 16.723** 4.018 22.933** 

Excess bond returns 0.042 0.065 0.054 -0.550 3.422 7.701* 3.700 4.244 

Excess real estate returns 0.066 0.080 0.125 -0.368 3.439 4.077 10.889* 1.272 

Dividend Yield 0.026 0.027 0.017 -0.158 2.016 5.921 474.35** 465.38** 

* denotes 5% significance, ** significance at 1%. 
 
 
 
 

Table 2 

Correlation Matrix of Excess Asset Returns 
The table reports linear correlation coefficients for monthly excess total return series. The sample period is March 1993 
– March 2004. All returns are expressed in euros. 

 Excess stock 
returns 

Excess bond 
returns 

Excess real 
estate returns Dividend Yield 

Excess stock returns 1 0.067 0.558 -0.133 

Excess bond returns  1 0.199 0.103 

Excess real estate returns   1 -0.063 

Dividend Yield    1 

 
 



 

 

Table 3 
Classical Parameter Estimates for a VAR(1) Model of Excess Returns and the Dividend Yield 

The table reports the MLE estimation outputs for the Gaussian VAR(1) model: 

ttt zz ε+Φ+= −1µ  

where zt  includes continuously compounded monthly excess asset returns and the dividend yield, and ),( ~ Σ0ε Nt . t 
statistics are reported in parenthesis under the corresponding point estimates. Bold coefficients imply a p-value of 0.1 or 
lower. 
 

 Stockst Bondst 
Real 

Estatet 

Dividend 
Yieldt 

 µµµµ’ 
 -0.029 

(-1.235) 
-0.004 

(-0.562) 
-0.014 

(-0.854) 
0.001 

(1.963) 
 ΦΦΦΦ’ 
Stockst-1 

0.109 
(1.028) 

0.028 
(0.864) 

0.143 
(1.947) 

-0.001 
(-0.249) 

Bondst-1 
0.072 

(0.253) 
0.066 

(0.749) 
0.165 

(0.832) 
-0.002 

(-0.257) 

Real Estatet-1 0.067 
(0.448) 

-0.114 
(-2.478) 

0.110 
(1.055) 

-0.003 
(-0.796) 

Dividend Yieldt-1 
1.262 

(1.428) 
0.290 

(1.064) 
0.651 

(1.058) 
0.952 

(40.238) 
 

 

 

Table 4 
Bayesian Coefficient Estimates for a VAR(1) Model of Excess Returns and the Dividend Yield 

The table reports the Bayesian posterior means for the coefficients of the Gaussian VAR(1) model: 

ttt zz ε+Φ+= −1µ  

where zt  includes continuously compounded monthly excess asset returns and the dividend yield, and ),( ~ Σ0ε Nt . 
The standard errors of the Bayesian posterior densities are reported in parenthesis under the corresponding posterior 
means. The posteriors are obtained from a standard uninformative prior, 2)/2-(n||)p(C, +Σ∝Σ , where C = [µµµµ’ ΦΦΦΦ’]’ is the 
matrix of the coefficients in the VAR model and n is the number of variables (4) in the multivariate system. 
 

 Stockst Bondst 
Real 

Estatet 

Dividend 
Yieldt 

 µµµµ’ 
 -0.029 

(0.024) 
-0.004 
(0.007) 

-0.014 
(0.017) 

0.001 
(0.001) 

 ΦΦΦΦ’ 
Stockst-1 

0.109 
(0.108) 

0.028 
(0.033) 

0.143 
(0.074) 

-0.001 
(0.003) 

Bondst-1 
0.075 

(0.293) 
0.066 

(0.090) 
0.166 

(0.204) 
-0.002 
(0.008) 



 

 

Real Estatet-1 0.068 
(0.151) 

-0.114 
(0.047) 

0.111 
(0.105) 

-0.003 
(0.004) 

Dividend Yieldt-1 
1.256 

(0.896) 
0.289 

(0.278) 
0.653 

(0.625) 
0.952 

(0.024) 
Table 5 

Classical Parameter Estimates for a VAR(1) Model of Excess Returns and the Dividend Yield – 
Restricted Asset Menu 

The table reports the MLE estimation outputs for the Gaussian VAR(1) model: 

ttt yy ηµ +Φ+= −1  
where zt  includes continuously compounded monthly excess asset returns and the dividend yield (but not excess real 
estate returns), and ),( ~ Λ0Ntη . t statistics are reported in parenthesis under the corresponding point estimates. Bold 
coefficients imply a p-value of 0.1 or lower. 
 

 Stockst Bondst 
Dividend 

Yieldt 

                                                                                            µµµµ’ 
 -0.029 

(-1.248) 
-0.004 

(-0.612) 
0.001 

(1.980) 
                      ΦΦΦΦ’ 

Stockst-1 
0.135 

(1.558) 
-0.017 

 (-0.603) 
-0.002 

(-0.840) 

Bondst-1 
0.096 

(0.349) 
0.025 

(0.289) 
-0.003 

(-0.420) 

Dividend Yieldt-1 
1.257 

(1.449) 
0.298 

(1.086) 
0.952 

(40.932) 
 

 
 

 

Table 6 
Bayesian Coefficient Estimates for a VAR(1) Model of Excess Returns and the Dividend Yield – 

Restricted Asset Menu 
The table reports the Bayesian posterior means for the coefficients of the Gaussian VAR(1) model: 

ttt zz ε+Φ+= −1µ  
where zt  includes continuously compounded monthly excess asset returns and the dividend yield (but not excess real 
estate returns), and ),( ~ Σ0ε Nt . The standard errors of the Bayesian posterior densities are reported in parenthesis 
under the corresponding posterior means. The posteriors are obtained from a standard uninformative prior, 

2)/2-(n||)p(C, +Σ∝Σ , where C = [αααα’ B’]’. 
 

 Stockst Bondst 
Dividend 

Yieldt 

                                                                                            µµµµ’ 
 -0.029 

(0.024) 
-0.004 
(0.008) 

0.001 
(0.001) 

                      ΦΦΦΦ’ 



 

 

Stockst-1 
0.135 

(0.089) 
-0.017 

 (0.028) 
-0.002 
(0.002) 

Bondst-1 
0.095 

(0.285) 
0.025 

(0.090) 
-0.003 
(0.008) 

Dividend Yieldt-1 
1.259 

(0.895) 
0.298 

(0.283) 
0.952 

(0.024) 
 



 

 

Figure 1 

Buy-and-Hold Optimal Allocation – Ignoring Parameter Uncertainty 
The graphs plot the optimal portfolio weights as a function of the investment horizons when returns follow a Gaussian 
VAR(1) model and parameter uncertainty is ignored (i.e. classical MLE estimates are employed). Three alternative 
coefficients of relative risk aversion are employed. 
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Figure 2 
Buy-and-Hold Optimal Allocation – Effects of Parameter Uncertainty 

The graphs plot the optimal portfolio weights as a function of the investment horizons when returns follow a Gaussian 
VAR(1) model and parameter uncertainty is accounted for (i.e. Bayesian predictive densities are employed). The 
posteriors are obtained from a standard uninformative prior, 2)/2-(n||)p(C, +Σ∝Σ , where C = [αααα’ B’]’ is the matrix of 
the coefficients in the VAR model and n is the number of variables (4) in the multivariate system. 
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Figure 3 
Buy-and-Hold Optimal Allocation – No Predictability and Parameter Uncertainty 

The graphs plot the optimal portfolio weights as a function of the investment horizons when returns follow a Gaussian 
IID model and parameter uncertainty is accounted for (i.e. Bayesian predictive densities are employed). The posteriors 
are obtained from a standard uninformative prior, 2)/2-(n||),p( +Σ∝Σµ , where n is the number of variables in the 
system. 
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Figure 4 
Optimal Dynamic Portfolio Allocation under Predictable Returns 

The graphs plot the optimal portfolio weights as a function of the investment horizons when returns follow a Gaussian 
VAR(1) model and the investor rebalances her portfolio once a year  The VAR is restricted so that only the dividend 
yield predicts future risk premia. Column (a) refers to the case in which parameter uncertainty is ignored (i.e. classical 
MLE estimates are employed), column (b) to the Bayesian case in which estimation risk is taken into account. When the 
horizon T exceeds or is equal to the rebalancing frequency ϕ = 12 months, optimal weights coincided by construction 
with those obtained under buy-and-hold strategies. 
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Figure 5 
Welfare Costs – Ignoring Predictability 

The graphs plot the percentage compensatory variation associated with ignoring the existence of predictability patterns 
in the data, i.e. with using a Gaussian IID model instead of a VAR(1) model. Panel (a) concerns the classical case in 
which MLE parameter estimates have replaced the unknown coefficients; panel (b) the Bayesian case in which 
parameter uncertainty is accounted for (i.e. Bayesian predictive densities are employed).  
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(b) Bayesian Estimates 
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Figure 6 
Buy-and-Hold Optimal Allocation – Restricted Asset Menu 

The graphs plot the optimal portfolio weights as a function of the investment horizons when returns follow a Gaussian 
VAR(1) model. Three alternative coefficients of relative risk aversion are employed. The asset menu is restricted to the 
riskless asset, stocks, and bonds only. Column (a) refers to the case in which parameter uncertainty is ignored (i.e. 
classical MLE estimates are employed), column (b) to the Bayesian case in which estimation risk is taken into account. 
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Figure 7 
Welfare Costs – Ignoring Real Estate 

The graphs plot the percentage compensatory variation associated with ignoring real estate as an asset class, i.e. with 
limiting an investor’s portfolio choice to stock, bonds, and cash. Panel (a) concerns the classical case in which MLE 
parameter estimates have replaced the unknown coefficients; panel (b) the Bayesian case in which parameter uncertainty 
is accounted for (i.e. Bayesian predictive densities are employed).  
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(b) Bayesian Estimates 
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Figure 8 

Sensibility of Optimal Portfolio Weights to the Dividend Yield 
The graphs plot the optimal portfolio weights to each asset class as a function of the initial dividend yield under a 
variety of assumptions on the coefficient of relative risk aversion (2 or 5), the investment horizon (1 or 10 years), and 
the rebalancing frequency (annual or identical to the investment horizon, the buy-and-hold case). Excess asset returns 
are assumed to follow a Gaussian VAR(1) model and estimation is performed either with classical (MLE) (i.e. 
disregarding parameter uncertainty) methods. In each plot, the dotted vertical bar indicates the full-sample mean 
dividend yield and hence locates the portfolio results previously reported in figures 1, 2, and 4. 
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