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Testing Probability Calibrations

Abstract

Probability calibration is the act of assigning probabilities to

uncertain events. We develop a testing procedure consisting of

two components to check whether the ex-ante probabilities are

in line with the ex-post frequencies. The first component tests

the level of the probability calibration under dependencies. In

the long run the number of events should equal the sum of as-

signed probabilities. The second component validates the shape,

measuring the differentiation between high and low probability

events. Out of it we construct a goodness-of-fit statistic which is

asymptotically χ2-distributed and further a traffic light system

for a time-series of forecasts.

JEL Classification Codes: C12, C52, and G21

Key Words: Receiver Operating Characteristic (ROC); Credit

scoring; Probability of Default (PD) validation; Basel Commit-

tee on Banking Supervision; Bernoulli mixture models.



According to Foster and Vohra [1998] probability calibration is the act

of assigning probabilities to an uncertain event. Since 1965, the US National

Weather Service has been in the habit of making and announcing ”proba-

bility of precipitation” forecasts. Such a forecast is interpreted to be the

probability that precipitation, defined to be at least 0.01 inches, will occur

in a specified time period and area. The earliest known reference to proper

probability forecasting dates back to the meteorological statistician Brier

[1950] and much of the early literature on proper probability forecasting

is inspired by meteorology as in Murphy and Epstein [1967], Winkler and

Murphy [1968], Epstein [1969], Murphy [1970] and works cited in them.

Later game theory and in particular horse racing attracted the inter-

est of probability forecasters as in Hoerl and Fallin [1974], Snyder [1978],

and Henery [1985]. The aggregated subjective probability that a horse wins

a race is forcasted from the odds of that horse.1 Today, probability fore-

casts include various applications: Medicine (e.g. Lemeshow and Le Gall

[1994], and Rowland, Ohno-Machad, and Ohrn [1998]), weather prediction

tasks (e.g. DeGroot and Fienberg [1983]), game theory (e.g. Fudenberg and

Levine [1999]), in the context of pattern classification (e.g. Zadrozny and

Elkan [2001]), and Zadrozny and Elkan [2002]), and credit scoring (e.g. Stein

[2002]). In this paper we limit ourselves to the consideration of probability

calibration of credit scoring models even though the validation procedures

we are presenting can be applied to various fields.

A credit scoring system is mainly an ordinal measurement instrument

that distinguishes between low and high default risk – the risk that a bor-

rower does not comply with the contractual loan agreement, i.e. by not

paying interest. Upfront, credit scoring is meant to deliver a ranking of

1This is true since betting on horses does not involve systematic risk, i.e. the amount
of money lost equals the amount won among the aggregate of bettors and race track.
Therefore, a horse bet wager is not rewarded with a risk premium and probabilities can
be derived from the odds (see Harrison and Kreps [1979] on the relationship between
pricing, systematic risk, probabilities and equivalent martingale measures).
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obligors, i.e. the higher the score the worse the creditworthiness. But when

it comes to pricing of loans or to quantitative risk assessments one needs to

map the ordinal score into a metric measure or into a probability of default

(PD), respectively.

A major obstacle to backtesting of PDs is the scarcity of data, caused

by the infrequency of default events and the impact of default clusterings.

Due to correlation between defaults in loan portfolios caused by economic

up- and downswings, observed default rates can systematically exceed the

critical values if these are determined under the assumption of independence.

This can happen easily for otherwise well-calibrated rating systems. As a

consequence, on one hand, tests based on the independence assumption

are rather conservative, with even well-behaved rating systems performing

poorly. On the other hand, tests that take into account correlation between

defaults will only allow the detection of relatively obvious cases of rating

system miscalibration.

An accurate PD calibration of rating models is primarily required by

competition among banks. Competition brings prices down. A correctly

calibrated and powerful credit scoring systems has the capability to signifi-

cantly increasing profits by both reducing losses and increasing revenues even

in a saturated and competitive market. On the other side a bank operating

under a poorly calibrated model experiences adverse selection by attracting

bad loans. According to Stein [2005] and Blöchlinger and Leippold [2005]

small differences in accuracy between banks result in several millions of profit

differences. Hence, the testing procedure on probability calibration must be

powerful against alternatives with large economic impact. If two probability

calibrations will only result in small profit differences then the test statistics

do not need to be very powerful. Secondarily, an accurate PD calibration is

also required by regulating authorities like the Basel Committee on Banking

Supervision.
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For the validation of probabilites of default, the Basel Committee on

Banking Supervision [2005] differentiates between two stages: validation of

the discriminatory power of a rating system and validation of the accuracy

of the PD quantification. The two stages are highly interrelated. For in-

stance, a rating systems with no discriminatory power results in a flat or

”horizontal” PD function – all obligors get the same PD irrespective of their

credit score.2 A perfect scoring system necessitates a set of score values with

PD one and the complementary set with a probability of zero (what we call

”vertical” PD function).

A recent example of a test on the accuracy of the PD quantification is

given by Balthazar [2004], relying heavily on simulation methods. Tasche

[2003] presents a method avoiding simulations but requiring approximations.

The Basel Committee on Banking Supervision [2005] has in detail reviewed

the literature with respect to calibration tests (i.e. binomial test, χ2-test,

normal test and the traffic lights approach of Blochwitz, Hohl, and Wehn

[2005]), but the committee has to conclude that ”at present no really pow-

erful tests of adequate calibration are currently available. Due to the cor-

relation effects that have to be respected there even seems to be no way

to develop such tests. Existing tests are rather conservative [. . .] or will

only detect the most obvious cases of miscalibration.” Other studies come

to similar conclusions, e.g. Blochwitz, Hohl, Tasche, and Wehn [2004] note

”that further developments in the field of PD validation might not reach

much improvement. Nevertheless, this is only a conjecture so that further

research for its verification is needed.” A further shortcoming of the reviewed

methods, not mentioned by the two studies, is that they are only applicable

under grouping of obligors into rating classes or other weighting schemes. If

the PD calibration is continuous in the sense that two obligors have almost

surely different PDs then all tests reviewed by the Basel Committee fail.

2The Basel Committee also uses the term ”pool PD” for the ”horizontal” PD function.
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Altogether, approaches to the validation have to be made that should be

understandable by a bank’s practitioners as well as by examiners who are

responsible for auditing the appropriateness and adequacy of the estimation,

modeling, and calibration procedures.

In a well-calibrated model, the estimated default frequency is equivalent

to the default probability. This observation needs to be transformed into a

statistical hypothesis that allows a powerful testing procedure. Note, a well-

calibrated model implies two testable properties. First, a well-calibrated

system predicts on average the realized number of events. Second, it also

forecasts on average the realized number of events for an arbitrary subpop-

ulation (e.g. only observations with low probabilities). We call the former

property probability calibration with respect to the level – the second prop-

erty with respect to the shape, and we deduce test statistics for probability

level and probability shape as well as a global test statistic. Further, we de-

rive a traffic light tool in order to backtest the probability calibration over a

time series of probability forecasts. This traffic light system generalizes the

approach described by Blochwitz, Hohl, and Wehn [2005].

We contribute to the literature by deriving new test statistics that are

not subject to the above mentioned shortcomings – e.g. our testing procedure

allows continuous PDs, we explicitly take default correlation into account

and we do not rely on Monte Carlo simulations. We proceed the following

way: In Section 1 we outline basic assumptions and definitions. Section

2 derives test statistics on a one-period basis for level and shape, and the

two tests are combined into a global test statistic. We provide a simulation

study on the robustness of our proposed framework and compare it to the

χ2-test of Hosmer and Lemeshow [1989]. Section 3 generalizes the global

test statistic so that it can be applied over a time-series of default forecasts.

Finally, Section 4 outlines our conclusions.
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1 Assumptions and Definitions

We make three basic assumptions regarding homogeneity, orthogonality, and

monotonicity.

Assumption 1.1 (Homogeneity). The loan portfolio consists of n oblig-

ors. To each obligor i we assign a binary default indicator Yi and a credit

score Si. Further, we assume k < n systematic risk factors V. S, Y, and

V are random variables on the probability space (Ω,F , P). The portfolio is

homogeneous in the sense that the random vector (S,Y,V) is exchangeable,

so that

(S1, ..., Sn, Y1, ..., Yn, V1, ..., Vk) v (SΠ(1), ..., SΠ(n), YΠ(1), ..., YΠ(n), V1, ..., Vk)

for any permutation (Π(1), ...,Π(n)) of (1, ..., n).

Assumption 1.2 (Orthogonality). The conditional distributions of credit

score Si and default indicator Yi are so that

Si|S,V,Y v Si|Yi

Yi|S,V,Y v Yi|Si,V.

On one hand, defaults are correlated through the dependence on com-

mon factors. This means that with respect to default prediction, the credit

score does not subsume all the information generated by macroeconomic

drivers. There are some economic-wide noise factors influencing the true

creditworthiness of obligors which are not predictable by the credit score.

Since these factors affect all obligors they induce default clusterings over

time. A good state of the overall economy leads to a low number of defaults

and vice versa. On the other hand, conditional on the default indicator Yi

the scores Si form an independent sequence of random variables. Therefore,

regarding the forecast of the credit score all the information is contained by
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the default state. In the following, we write SD = (Si|Yi = 1) for the credit

score of defaulters and correspondingly SND = (Si|Yi = 0) for the score

of non-defaulters. Note also, unless degenerated cases, our orthogonality

assumptions imply that it is generally not true that Si|V v Si.

Since we have a homogeneous loan portfolio, according to Assumption

1.1, the probability of default does not depend on i. Hence, we define the

PD function,

PD(s) = P {Yi = 1|Si = s} .

Unfortunately, in practice PD(s) is not observable and has to be defined or

estimated, respectively.

Definition 1.3 (Probability calibration). The act of estimating or ap-

proximating PD(s) by a measurable function

P̃D(s) : R → [0, 1]

is called probability calibration.

The PD function P̃D(s) links the credit score with the estimated default

frequency. Technically we need to assume that P̃D(s) is a measurable func-

tion. We call this mapping probability calibration since an ordinal measure

is mapped into a metric measure. In practice, the score is usually mapped

into a one-year PD. Many financial institutions apply a step function, but

other well-known parametric links are logistic distribution function (logit

model), Gaussian distribution (probit model) or identity link (linear proba-

bility model, discriminant function), but nonparametric links are today also

very common. Regarding the PD function and probability calibration we

make the third and last assumption that concerns monotonicity.
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Assumption 1.4 (Monotonicity). The PD function is montonic, so that

either

PD(s) ≥ PD(t) for all s ≥ t or

PD(s) ≥ PD(t) for all s ≤ t.

Therefore, the PD function is assumed to be either entirely non-increasing

or non-decreasing. If the probability calibration is performed correctly then

we have a functional equivalence to the true PD function.

Definition 1.5 (Functional Equivalence). The PD functions P̃D(s) and

PD(s) are functionally equivalent, if

P̃D(s) = PD(s)

for all s ∈ R.

In hypotheses, it is unnecessary or even impossible to assume that some-

thing is true for every outcome, in our case for every s, but rather only that

it is true of outcomes belonging to an event of probability one. Correspond-

ingly, that some property holds on an event of probability one is, ordinarily,

all that one can establish. That is way we define a weaker property than

functional equivalence – almost sure equivalence.

Definition 1.6 (Almost Sure Equivalence). The PD functions P̃D(s)

and PD(s) are almost surely equivalent, if

P̃D(s) = PD(s)

for almost all s ∈ R.

From a practical perspective, it is inherently impossible to distinguish

two PD functions that are equivalent almost surely but not functionally.
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Even if we have two almost surely inequivalent PD functions the testing for

almost all s may become cumbersome due to a lack of defaulters and/or

observations per s, even for a finite number of rating classes. Therefore, we

focus our attention on two other important properties of the PD function –

level and shape – that will allow a statistical validation procedure.

The PD level, an estimate of the long-run aggregate probabilities of

default for an economy, is the first anchor for a models validity.

Definition 1.7 (Level Equivalence). The PD functions P̃D(s) and PD(s)

are equivalent with respect to the PD level, if

∫ ∞

−∞
P̃D(s)dFS(s) =

∫ ∞

−∞
PD(s)dFS(s),

where FS(t) = P {Si ≤ t}.

We assume that the distribution function FS(t) is known/observable or

it is replaced by the actual distribution, respectively. Note, the PD func-

tion P̃D(s) and the true PD function, the one under which defaults are

generated, are equivalent with respect to the PD level, if P {Yi = 1} =
∫ ∞
−∞ P̃D(s)dFS(s).

The second anchor of the PD function is the shape – the inherent prop-

erty of distinguishing between non-defaulters and defaulters. The distribu-

tion function of defaulters’ and non-defaulters’ FSD
(t), and FSND

(t) are a

function of PD(s). This can be derived explicitly by,

FSD
(t) = P {Si ≤ t|Yi = 1}

=

∫ t

−∞

1

P {Yi = 1}P {Yi = 1|Si = s} dFS(s) (1)

=

∫ t

−∞ PD(s)dFS(s)∫ ∞
−∞ PD(s)dFS(s)

,
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and,

FSND
(t) = P {Si ≤ t|Yi = 0}

=

∫ t

−∞

1

P {Yi = 0}P {Yi = 0|Si = s} dFS(s) (2)

=

∫ t

−∞ [1 − PD(s)] dFS(s)

1 −
∫ ∞
−∞ PD(s)dFS(s)

.

If credit score Si and default indicator Yi are two independent random vari-

able then the non-defaulters’ and defaulters’ distribution function coincide

with the unconditional distribution function of the credit score. In this case

we say the credit score has no discriminatory power and it is irrelevant with

respect to the prediction of a loan failure. The discriminatory power is

visualized by the Receiver Operating Characteristic (ROC) curve. The two-

dimensional graph generated by the survival functions for non-defaulters

and defaulters,

{1 − FSND
(t), 1 − FSD

(t)} for all t ∈ R, (3)

is called the ROC curve. From the definition we see immediately that the

range of the ROC graph is restricted to the unit square. Accordingly, the

area below the curve is limited from above by one and from below by zero.

It is easy to see from (1) and (2) that two almost surely equivalent PD

functions engender the same ROC graph. Further, we can establish that the

ROC curve itself as well as the slope and the area below the graph depend

on the PD function. The area under the ROC curve (AUROC) is calculated

as (see e.g. Bamber [1975], or Blöchlinger and Leippold [2005])

AUROC =

∫ ∞

−∞

∫ ∞

−∞

[
1{x>y} +

1

2
1{x=y}

]
dFSD

(x) dFSND
(y)

= P {SD > SND} +
1

2
P {SD = SND} . (4)
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The last equality follows by orthogonality established in Assumption 1.2.

By the fact that 1 − 1{x<y} = 1{x>y} + 1{x=y} we can also write (4) the

following way,

AUROC =

∫ ∞

−∞

∫ ∞

−∞

1

2

[
1 − 1{x<y} + 1{x>y}

]
dFSD

(x) dFSND
(y)

=
1

2
[1 − P {SD < SND} + P {SD > SND}] .

The AUROC figure represents our quantitative measure for shape equiv-

alence.

Definition 1.8 (Shape Equivalence). Two PD functions P̃D(s) and

PD(s) are equivalent with respect to the PD shape, if

˜AUROC = AUROC.

Figure 1 shows examples of two ROC curves of two PD functions that

are equivalent with respect to shape (and level). It is straightforward to

show that if the function PD(s) is constant the resulting AUROC is equal

to 0.5. Table 1 tabulates five examples of PD functions that are equivalent

the one way or the other – two of the PD functions have AUROC figures

equal to 0.5. In general we can state the following relationships among

functional equivalence, almost sure equivalence, level equivalence, and shape

equivalence

Theorem 1.9. Let P̃D(s) and PD(s) be two PD functions.

a) If the two PD functions are functionally equivalent then they are also

almost surely equivalent.

b) If the two PD functions are almost surely equivalent then they are also

equivalent with respect to the PD level.
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c) If the two PD functions are almost surely equivalent then they are also

equivalent with respect to the PD shape.

Proof. The proof can be found in the Appendix. �

Hence, two functionally equivalent PD functions have the same level and

shape.

2 One-Period-Based Statistic Inference

In this section we derive statistical tests in order to address the problem

whether the empirical default frequency corresponds to the expected default

frequency. We start by comparing these figures for only one observation in

time, typically on a yearly basis.

2.1 Testing of PD Level

One naive approach would be by directly assuming an approximate distri-

bution for the one-period default frequency π̂, e.g. a β-distribution,

P {π̂ ≤ t} ∼=
∫ t

0
β(a, b)−1za−1 (1 − z)b−1 dz, (5)

where β(a, b) =
∫ 1
0 xa−1(1 − x)b−1dx and with a corresponding calibration,

i.e. choosing values for a and b. The following section is supposed to give

some insights regarding the distribution of π̂ or the number of defaulters

N1, respectively.

We start with restrictive distributional assumptions and over the course

of the section we will relax step by step some of these constraints. We pro-

ceed by deriving test statistics with the following distributional constraints,

i) Yi|S,V,Y v Yi,

ii) Yi|S,V,Y v Yi|V,
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iii) Yi|S,V,Y v Yi|Si,

iv) Yi|S,V,Y v Yi|Si,V.

First i), we assume that the default indicator is orthogonal to credit

scores and systematic factors as well as default indicators of other obligors.

In this case Yi form an independent and identically distributed Bernoulli

sequence with parameter π. Hence, we are in a position to deduce the

limiting distribution in three steps. Firstly, for the number of defaults N1

in a portfolio of n obligors, by the very definition of a binomial distribution,

we derive

N1 v B (n, π) . (6)

Secondly, according to the De-Moivre-Laplace global limit theorem we arrive

at

lim
n→∞

P

{
N1 − nπ√
nπ(1 − π)

≤ t

}
= Φ(t) . (7)

Thridly, according to a basic convergence theorem of Cramér3, we can re-

place the theoretical standard deviation with the empirical one and we still

have an asymptotic Gaussian distribution,

lim
n→∞

P





N1 − nπ√
n

n−1nπ̂(1 − π̂)
≤ t



 = Φ(t) . (8)

Second ii), we still maintain that credit score and default indicator are

independent, in particular Yi|S,V,Y v Yi|V, but induce default clustering

through the supposition of a Bernoulli mixture model. Economic history

shows that the basic assumption of the binomial model is not fulfilled as

3If Xn converges in distribution to X and if Yn converges in distribution to a constant
c > 0 then Xn/Yn converges in distribution to X/c (see Cramér [1946] for a proof)
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borrower defaults tend to default together. As such, default correlations

exist and have to be taken into account. In a mixture model the default

probability of an obligor is assumed to depend on a set of common factors

(typically one). Given the common factors default events of different oblig-

ors are independent. Dependence between defaults hence stems from the

dependence on a set of common factors.

Definition 2.1 (Bernoulli Mixture Model). Given some k < n and

a k dimensional random vector V = (V1, ..., Vk)′, the random vector Y =

(Y1, ..., Yn)′ follows a Bernoulli mixture model if there are functions Qi :

Rk → [0, 1], such that conditional on V the default indicators Y are a vector

of independent Bernoulli random variables with P {Yi = 1|V} = Qi(V).

Due to our assumption of a homogeneous loan portfolio the functions

Qi(V) are all identical, so that P {Yi = 1|V} = Q(V) for all i. It is con-

venient to introduce the random variable Z = Q(V). By G we denote the

distribution function of Z. To calculate the unconditional distribution of

the number of defaults N1 we integrate over the mixing distribution of Z to

get

P {N1 = m} =


n

m




∫ 1

0
zm (1 − z)n−m dG(z). (9)

Further simple calculations give the probability of default π and the joint

probability of default π2

π = P {Yi = 1}

= E [Yi] = E [E [Yi|Z]] = E [P {Yi = 1|Z}] = E [Z] ,

π2 = P {Yi = 1, Yj = 1}

= E [YiYj] = E [E [YiYj|Z]] = E [P {Yi = 1, Yj = 1|Z}] = E
[
Z2

]
.
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where i 6= j. Moreover, for i 6= j

ρY = COV [Yi, Yj ] = π2 − π2 = V [Z] ≥ 0,

which means that in an exchangeable Bernoulli mixture model the so-called

default correlation ρY is always nonnegative. Any value of ρY in [0, 1] can be

obtained by an appropriate choice of the mixing distribution. The following

one-factor exchangeable Bernoulli mixture models are frequently used in

practice:

• Probit-normal mixing-distribution with Z = Φ(V ) and V v N(µ, σ2)

(CreditMetrics and KMV-type models; see Gupton, Finger, and Bha-

tia [1997] and Crosbie [1997]),

• Logit-normal mixing-distribution with Z = 1
1+exp(V ) and V v N(µ, σ2)

(CreditPortfolioView model; see Wilson [1998]),

• Beta mixing-distribution with Z v Beta(a, b) with density g(z) =

β(a, b)−1za−1 (1 − z)b−1 where a, b > 0 (see Frey and McNeil [2001]).

With a Beta mixing-distribution the number of defaults N1 has a so-

called beta-binomial distribution with probability function

P {N1 = m} =


n

m


 1

β(a, b)

∫ 1

0
za+m−1 (1 − z)b+n−m−1 dz

=


n

m


 β(a + m, b + n − m)

β(a, b)
, (10)

where the second line follows from the definition of the β-function. If Z

follows a beta-distribution then the expectation and variance are given by

E [Z] =
a

a + b

V [Z] =
ab

(a + b)2(a + b + 1)
.
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Thus given two of the following three figures, the unconditional probability

of default π = E [Z], the joint probability of default π2 = E
[
Z2

]
and/or the

default correlation ρY = V [Z] we can calibrate the beta-distribution,

a = E [Z]

[
E [Z]

V [Z]
(1 − E [Z]) − 1

]

b = a
1 − E [Z]

E [Z]
.

Bernoulli mixture models are often calibrated via the asset correlation

ρ (e.g. CreditMetrics) and are motivated by the seminal paper of Merton

[1974]. The following proposition shows how asset correlation and default

correlation are related.

Proposition 2.2. Given a homogeneous portfolio, the unconditional prob-

ability of default π as well as the asset correlation ρ in the one-factor Cred-

itMetrics framework, the joint probability of default π2 and the default cor-

relation ρY can be calculated as

π2 = Φ2

(
Φ−1(π),Φ−1(π), ρ

)

ρY = Φ2

(
Φ−1(π),Φ−1(π), ρ

)
− π2,

where Φ2 (., ., ρ) denotes the bivariate standard Gaussian distribution func-

tion with correlation ρ, Φ(.) is the distribution function of a standard Gaus-

sian variable, and Φ−1(.) denotes the corresponding quantile function.

Proof. The proof can be found in the Appendix. �

For an exchangeable Bernoulli mixture model and if the portfolio is large

enough, the quantiles of the number of defaulters are essentially determined

by the quantiles of the mixing distribution.

Proposition 2.3. Denote by G−1(α) the α-quantile of the mixing distribu-
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tion G of Z, i.e. G−1(α) = inf {z : G(z) ≥ α}, and assume that the quantile

function α → G−1(α) is continuous in α, so that

G(G−1(α) + δ) > α for all δ > 0, (11)

then

lim
n→∞

P
{
π̂ ≤ G−1(α)

}
= P

{
Z ≤ G−1(α)

}
= α.

Proof. The proof can be found in Frey and McNeil [2001]. �

In particular, if G admits a density g (continuous random variable) which

is positive on [0, 1] the condition (11) is satisfied for any α ∈ (0, 1).

Third iii), we now work under the assumption Yi|S,V,Y v Yi|Si, so that

the default indicators Yi|Si represent an independent and uniformly bounded

sequence, since |Yi| ≤ 1 for each i. Hence, the Lindeberg condition is satisfied

and the number of defaulters N1 converges to a Gaussian distribution (see

i.e. Proposition 7.13. of Karr [1993]), so that

lim
n→∞

P

{
N1 − E [N1|S]√

V [N1|S]
< t

∣∣∣∣∣S
}

= Φ(t) , (12)

where

E [N1|S] =

n∑

i=1

P {Yi = 1|Si}

V [N1|S] =
n∑

i=1

P {Yi = 1|Si}P {Yi = 0|Si} .

Fourth iv), in the most general case, Yi|S,V v Yi|Si,V, so that defaults

are clustered in the sense that the default indicator depends on the business
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cycle then we can deduce

P {N1 = m|S} =

∫

Rk

∑

P

n∏

i=1

P {Yi = Π(i)|Si,V = v} dFV(v), (13)

where FV(v) denotes the distribution function of V. P denotes the set of the

permutations with m ones and n−m zeros {Π(1), ...Π(m),Π(m+1), ..., Π(n)}
of {1, ..., 1, 0, ..., 0}. Usually, the derivation of the distribution of (13) re-

quires Monte-Carlo simulations or numerical integration procedures. There-

fore, we suggest to approximate the distribution by a beta-binomial distri-

bution derived in (10). In order to calibrate the beta-binomial distribution

we fix the asset correlation ρ and we set π equal to the average default

probability

π =

∫ ∞

−∞
PD(s)dFS(s)

=
1

n

n∑

i=1

P {Yi = 1|Si = s} . (14)

The choice of the parameter ρ is not so obvious. The higher ρ the more are

defaults clustered in time. For instance in the German speaking area and

middle market corporate loans, ρ = 0.05 appears to be appropriate for a one-

year-horizon (see also Tasche [2003]). Internationally, the Basel Committee

on Banking Supervision [2005] considers default correlations, ρY , between

0.5% and 3% as typical.

A remark regarding the selection of the various level statistics: If the level

testing of the PD functions span a long period of time, possibly a whole credit

cycle, then the independence assumption for the test statistics in (6), (7), (8),

and (12) is warranted. This is true since by assuming mean ergodicity for the

process the averaged yearly default rate over a business cycle converges to

the unconditionally expected default frequency, and within a cycle defaults

are approximately uncorrelated. Even more subtly, if the yearly default
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events are stochastically dependent, but if the annual default rates p̄t are

uncorrelated over time, then the quotient

∑T
t=1 (p̄t − E [p̄t|Ft−1])√∑T

t=1 V [p̄t|Ft−1]
, (15)

where Ft is a filtration, converges in distribution to a standard Gaussian

random variable. On the other hand, if the aim is to make inference on

short time intervals (typically on a yearly basis) then default correlations

have to be taken into account. In this instance the test statistics in (10) and

(13) are more appropriate.

2.2 Testing of PD Shape

The shape of the PD function is visualized by the ROC curve. The realized

or empirical ROC curve can be plotted against the theoretical ROC graph

and PD miscalibrations can be detected visually. Therefore, the empirical

ROC curve

{
1 − F̂SND

(t), 1 − F̂SD
(t)

}
for all t ∈ R,

where

F̂SD
(t) =

∑
i:Yi=1 1{Si≤t}∑n

i=1 Yi
and F̂SND

(t) =

∑
j:Yj=0 1{Sj≤t}∑n
j=1(1 − Yj)

,

can be compared to the theoretical one as defined in (3).4 The empiri-

cal and true ROC curve are, under the assumptions outlined in Section 1,

asymptotically equivalent what is stated in the following theorem:

4Note the empirical distribution functions are unbiased since

E
[
1{Si≤t}|V,Y

]
= E

[
1{Si≤t}|Yi

]
= P {Si ≤ t|Yi} ,

where the first equality follows by orthogonality (Assumption 1.2). The rest is computa-
tional.
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Theorem 2.4. The empirical and theoretical ROC curve converge almost

surely, so that

sup
0≤β≤1

∣∣∣F̂SD

(
F̂−1

SND
(1 − β)

)
− FSD

(
F−1

SND
(1 − β)

)∣∣∣ → 0

as n → ∞.

Proof. The proof can be found in the Appendix. �

If the assigned default probabilities are too low for investment graded

obligors (too high for sub-investment rated borrowers), but well-calibrated

with respect to the level, we expect the empirical ROC curve to be below the

theoretical ROC curve implied by the PD function. Consequently, the area

below the curve is lower than expected. This can be stated as a proposition:

Proposition 2.5. If we have two monotonic PD functions P̃D(s) and PD(s),

so that

P̃D(s) ≤ PD(s) for all s ∈ S (16)

P̃D(s) ≥ PD(s) for all s ∈ Sc, (17)

for any S ⊂ R, where all elements in S are smaller than the elements in Sc,

and if the inequalities are strict in (16) and (17) for some s with positive

probability measure, so that

0 <

∫

S

P̃D(s)dFS(s) <

∫

S

PD(s)dFS(s) (18)

0 <

∫

Sc

PD(s)dFS(s) <

∫

Sc

P̃D(s)dFS(s), (19)

and if the two PD functions have the same PD level, so that
∫ ∞
−∞ P̃D(s)dFS(s) =

∫ ∞
−∞ PD(s)dFS(s), then

˜AUROC > AUROC
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Proof. The proof can be found in the Appendix. �

We are also in a position to construct confidence bands for the ROC

curve (see e.g. Macskassy, Provost, and Littman [2004]). Out of robustness

considerations we focus our attention on the area below the curve and not

the curve itself. We denote the empirical AUROC figure by ̂AUROCn. This

estimator is given by

̂AUROCn =
1

N0N1

N1∑

i=1

N0∑

j=1

[
1{

SDi
>SNDj

} +
1

2
1{

SDi
=SNDj

}
]

,

where the index i (j) indicates summation over defaulters (non-defaulters)

and where N1 =
∑n

i=1 Yi and N0 =
∑n

i=1 (1 − Yi) denote the number of

defaulters and non-defaulters, respectively. Only for notational convenience

we added a subscript D and ND for the defaulter’s and non-defaulter’s

score, respectively. The AUROC estimator is consistent and unbiased as

derived in the following proposition:

Proposition 2.6. The (conditional) expectation and variance of the esti-

mator ̂AUROCn is equal to

E
[

̂AUROCn|Y
]

= AUROC

V
[

̂AUROCn|Y
]

=
1

4N0N1
[B + {N1 − 1}B110 + {N0 − 1}B001

− 4 {N0 + N1 − 1} {AUROC− 0.5}2
]
.
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Further,

B = P {SD 6= SND}

B110 = P {SD1
, SD2

< SND} + P {SND < SD1
, SD2

}

− P {SD1
< SND < SD2

} − P {SD2
< SND < SD1

}

B001 = P {SND1
, SND2

< SD} + P {SD < SND1
, SND2

}

− P {SND1
< SD < SND2

} − P {SND2
< SD < SND1

} .

Proof. The proof can be found in the Appendix. �

Note, the corresponding event probabilities for the calculation of B, B001,

and B110 are computed out of the distribution functions FSND
(t) and FSD

(t),

respectively, e.g.

P {SD 6= SND} =

∫ ∞

−∞

∫ ∞

−∞
1{x6=y}dFSD

(x) dFSND
(y) .

The limiting distribution of ̂AUROCn is Gaussian:

Proposition 2.7. The AUROC statistic has the following limiting distri-

bution

lim
n→∞

P





̂AUROCn − AUROC√
V

[
̂AUROCn|Y

]

∣∣∣∣∣∣∣∣
Y





= Φ(t) . (20)

Proof. The proof can be found in Lehmann [1951]. �

The theoretical standard deviation in the denominator in equation (20) of

proposition 2.7 can be replaced by the empirical counterpart and the limiting

distributions is still Gaussian according to a basic theorem of Cramér [1946]

(Theorem 20.6, see also Bamber [1975]). Proposition 2.6 and Proposition 2.7

are generalizations of the seminal papers of Wilcoxon [1945] as well as Mann
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and Whitney [1947]. The following Wilcoxon-Mann-Whitney Corollary is

therefore appropriate in case of the ”horizontal” PD function.5

Corollary 2.8 (Wilcoxon-Mann-Whitney). If SDi
and SNDj

form two

independent as well as identically and continuously distributed sequences and

if they are independent among one another then

E
[

̂AUROCn|Y
]

=
1

2

V
[

̂AUROCn|Y
]

=
N1 + N0 + 1

12N1N0
,

with the limiting distribution

lim
n→∞

P





̂AUROCn − 1
2√

N1+N0+1
12N1N0

∣∣∣∣∣∣
Y



 = Φ(t) .

There are a number of standard statistical measures to describe how

different defaulters and non-defaulters are in their characteristics. These

measure how well the PD function separates the two groups, we looked at one

measure – the ROC statistic. In Thomas, Edelman, and Crook [2002] we find

other measures – like the Mahalanobis distance and Kolmogorov-Smirnov

statistics. Theoretically, these statistics are suited as well to perform shape

tests.

2.3 Goodness-of-Fit

In the two previous sections we have derived level and shape statistics. Usu-

ally the limiting distributions of the test statistics are standard normal. If

the distribution is (asymptotically) different from a standard Gaussian one

5Note that the expectation for the AUROC statistic is also 0.5 for the case when the
two continuous distributions are not identical but have only the medians in common,
resulting in a non-diagonal ROC curve, but in this case the variance has to be derived as
shown in Proposition 2.6. However, a non-diagonal ROC graph with AUROC 0.5 violates
the monotonicity assumption of the PD function.
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transforms the realized estimate into a standard normal quantile according

to the following lemma.

Lemma 2.9. If the random variable X is distributed according to the con-

tinuous distribution function G, then

P
{
Φ−1 (G (X)) ≤ t

}
= Φ(t)

for all t ∈ R.

Proof. The proof can be found in the Appendix. �

The shape statistic is based on scores conditional on the default indi-

cators. According to the orthogonality assumptions (Assumption 1.2) this

distribution is unaffected by both the number of defaulters N1 and the busi-

ness cycle V, i.e. it is true for all i that6

Si|S,V,Y v Si|Yi, N1,V v Si|Yi.

This means that level and shape statistics are independent. A high figure in

the PD level statistic does not on average imply a high (or a low) number

for the PD shape statistic. We are now in a position to deduce a summary

statistic in order to test globally the null hypothesis of a correctly calibrated

PD function with respect to both level and shape. When performing two

independent significance tests each with size α, the probability of making

at least one type I error (rejecting the null hypothesis inappropriately) is

1 − (1 − α)2. In case of a 5% significance level, there is a chance of 9.75%

of at least one of the two tests being declared significant under the null hy-

pothesis. One very simple method, due to Bonferroni [1936], to circumvent

this problem is to divide the test-wise significance level by the number of

6Note that the σ-algebra generated by Yi, N1 and V, σ(Yi, N1,V), and the σ-algebra
generated by Yi are both contained by σ(S,V,Y), in particular it is true that σ(S,V,Y) ⊇
σ(Yi, N1, V) ⊇ σ(Yi).
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tests. Unfortunately, Bonferroni’s method generally does not result in the

most powerful test, meaning that there are critical regions with the same

size but higher power according to Neyman-Pearson’s lemma. That is why

we resort to the likelihood ratio Λ,

Λ = exp

[
−1

2

(
T 2

level + T 2
shape

)]
, (21)

where Tlevel denotes one of the level statistics in (5), (6), (7), (8), (10), (12),

(13), and (15), Tshape denotes the shape statistic in (20). The statistics are

first transformed into a standard Gaussian quantile according to Lemma

2.9. The likelihood-ratio test rejects the null hypothesis if the value of the

statistic in (21) is too small, and is justified by the Neyman-Pearson lemma.

If the null hypothesis is true, then −2 log Λ will be asymptotically distributed

with degrees of freedom equal to the difference in dimensionality. Hence, we

derive asymptotically

T 2
level + T 2

shape v χ2 〈2〉 . (22)

Therefore, the critical value for the global test in (22) on a confidence level

of 95% (99%) is 5.9915 (9.2103).

2.4 Simulation Study

As the design of our test procedure is based on assumptions as outlined in

Section 1, we check its robustness with respect to violations. A simulation

study allows us to draw conclusions on the robustness of the validation

procedure in case of misspecifications and approximations. For this purpose,

we simulate the true type I error (size of the test) and type II error (power

of the test) at given nominal levels. The performance of our approach is

then compared to the performance of a benchmark statistic, the well-known

and well-documented Hosmer-Lemeshow’s χ2-goodness-of-fit test (see e.g.
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Hosmer, Hosmer, le Cessie, and Lemeshow [1997]). A common feature of

both these tests is the suitability of being applied to several rating categories

simultaneously. Hosmer-Lemeshow’s χ2-test is based on the assumption

of independence and a normal approximation. Due to the dependence of

default events that are observed in practice and the generally low frequency

of default events, Hosmer-Lemeshow’s χ2-test is likely to underestimate the

true type I error, i.e. the proportion of erroneous rejections of PD forecasts

will be higher than expected from the formal confidence level of the test.

Hosmer-Lemeshow’s χ2-test statistic is defined as

T =

C∑

j=1

nj (π̂j − πj)
2

πj(1 − πj)
, (23)

where π̂j are observed default rates, πj are corresponding expected rates,

nj are the number of observations in class j and C is the number of classes

for which frequencies are being analyzed. The test statistic is distributed

approximately as a χ2 random variable with C degrees of freedom.

Both Hosmer-Lemeshow’s χ2-test as well as our global test statistic are

derived by asymptotic considerations with regard to the portfolio size. As a

consequence, even in the case of complete independence in the loan portfolio

it is not clear that the type I errors observed with the tests are dominated

by the nominal error levels. When compliance with the nominal error level

for the type I error is confirmed, the question has to be examined which test

is the more powerful, i.e. for which test the type II errors is lower. Of course,

the compliance with the nominal error level is much more an issue in the

case of dependencies of the default events in the portfolio. The tests should

have small type I and type II error rates for calibrations with economic

significance. The higher the profit impact at stake, the more powerful the

statistics have to be.

We now turn to the simulation setup in order to address the question of
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size and power of the test statistics under various circumstances. To induce

default correlation we model the asset value Y ∗
i for each obligor i,

Y ∗
i =

√
ρX +

√
1 − ρεi,

where εi form an independent sequence that is also orthogonal to the system-

atic risk driver X. Both X and εi follow a standard Gaussian distribution.

The asset correlation between two obligors is denoted by ρ. The higher the

asset correlation, the more the systematic risk factor X dominates, thus

resulting in a collapse of the default rates in either a high or a low overall

default rate in the portfolio. The default event is defined by

Yi =





0 : Y ∗
i > Di

1 : Y ∗
i ≤ Di

, (24)

where Di denotes the distance to default calculated by the standard Gaus-

sian quantile of the default probability and is the same value for all obligors

in a given rating category. For the simulation study we assume that Di is

orthogonal to both X and εi. The distance to default can therefore be in-

terpreted as a ”through the business cycle” credit score. This setup imposes

quite strong assumptions because credit scores are usually computed from

balance sheet information and since the aggregate of balance sheets make up

the economy one might very well argue that such a credit systems is never

fully ”through the cycle”, and it also violates the orthogonality assumption

established in Assumption 1.2.

We consider 4 different correlation regimes (0, 0.05, 0.10, and 0.15) and

3 different numbers of rating classes (15, 10, and 5) resulting in 12 scenar-

ios. We run 10’000 Monte Carlo simulations under each scenario where the

Hosmer-Lemeshow test and our validation procedure are two independent

simulation series. The (unconditional) expected default frequency under the
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data generating process is fixed for all scenarios at 3% (the average default

probability is 2.5% in case of type II error analyses), and the size of the

portfolio is set at 10’000 obligors. The true (alternative) AUROC figures

are 0.6112, 0.6279, 0.6509 (0.6354, 0.6551, 0.6816) for 15, 10, and 5 rat-

ing classes, respectively. Table 2 outlines the rating distribution with the

assigned rating class PDs under the null hypotheses (the data-generating

distributions) and the alternative hypotheses.

For the composition of the global test statistic in (22) we rely on a ”beta”-

approximation for the level Tlevel as in (10) and the statistic Tshape in (20)

for testing the shape. We calibrate the beta-binomial distribution according

to Proposition 2.2 with an average default probability of 3% (2.5%), as

computed by (14), for the type I error analyses (type II) and a fixed asset

correlation ρ of 5% for all but one correlation regime. This gives us the

parameters a = 3.4263 (3.2203) and b = 110.7850 (125.5922) for type I

error considerations (type II). In case of zero asset correlation we omit the

”beta”-approximation and we work with the approximate level statistic as

outlined in (12).

Table 2 and Table 4 report the simulation results under a nominal error

level of 5% and 1%, respectively. The results indicate that under inde-

pendence all test methodologies, Hosmer-Lemeshow’s χ2, global, level, and

shape statistics, seem to be more or less in compliance with the nominal

error levels. However the former test fits the levels worse than the latter

ones – the true type I errors are in absolute terms up to 3% higher than

the nominal levels. Under low asset correlation regimes of up to 5%, the

global test statistic is still essentially compliant with the nominal error lev-

els whereas Hosmer-Lemeshow’s χ2-test is distorted. When compliance with

the nominal type I error is established the power of the test statistics are

assessed via type II error. The global test procedure is more powerful under

independence with true type II error levels around 10% (23%) at 5% (1%)
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nominal level, than Hosmer-Lemeshow’s χ2 resulting in type II errors of up

to about 37% (55%).

Under asset correlation regimes higher than 5% both overall test proce-

dures, Hosmer-Lemeshow’s χ2 and global, tend to underestimate the true

type I error. As a consequence, the true type I errors are higher than the

nominal levels of the test and therefore inducing a conservative distortion.

But the distortion is quite high for Hosmer-Lemeshow’s χ2-test.

The power of all test statistics decrease with the size of the asset corre-

lation. A test is said to be unbiased if the power for the alternative exceeds

the level of significance. Under asset correlation regimes higher than 5%,

Hosmer-Lesmeshow’s χ2 is biased, the sum of true type I and type II er-

ror exceeds one or is close to one rendering it virtually useless for practical

considerations. This is not the case for the global test statistic even though

the applicability of the procedure might also be limited under very high

asset correlations. A test is considered consistent against a certain class of

alternatives if the power of the test tends to one as the sample size tends

to infinity. By our stringent simulation setup none of the test statistics are

consistent unless the special case of zero asset correlation. According to

the orthogonality assumption established in Section 1 the shape statistic is

consistent even for short time horizons. Over time, also the level analysis,

e.g. (15), provides us with consistent estimators.

Altogether, the global test statistic is more robust and more power-

ful against misspecifications than Hosmer-Lemeshow’s χ2. Unlike Hosmer-

Lemeshow’s χ2 the global test is unbiased for the scenarios considered in the

simulation setup. This is mainly driven by the fact that the shape statistic

is not very vulnerable to misspecifications. Especially for typical scenarios

encountered in practice, ten to fifteen rating classes and asset correlations

around 5%, the shape statistic performs reasonably well. The shape-test is

more or less in line with the nominal error level and it does not lose power
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under small default dependency structures. Credit scores for corporates

anticipate, at least to some extent, economic recessions due to the incor-

poration of financial figures resulting only in small but significant residual

default dependencies. Hence, for scenarios with the highest economic and

pracitical relevance, the global test statistic performs better than Hosmer-

Lemeshow’s χ2.

3 Multi-Period-Based Statistic Inference

In general we can state that the longer the observation time the more reliable

the test results. However, the question might arise whether our proposed

global test statistic over a time-period of T years (one-period approach)

should be split up into T statistics at one year each (multi-period approach).

The reasons are many, for some borrowers we do not know the whole T -year

credit history because they have entered the loan portfolio later or left it

beforehand. This leaves us with the problem of missing observations. It

is also the case that banks are validating and aligning their credit scoring

systems quite regularly by means of incorporating additional information

and/or changing the weighting schemes of input variables. For some scoring

systems a complete default term structure might not be available forcing the

controller to resort to the one-year probabilities of default. In the medium to

long-term a controller, supervisor or developer might rather want to validate

the holistic rating systems than a particular rating model. We therefore

introduce a traffic light system enabling the flexible validation over time.

In Blochwitz, Hohl, and Wehn [2005], a traffic light approach is presented

as a tool to identify poorly calibrated rating grades over a multiple of data

points. Their procedure is applied to one single rating category at any one

time. We extend their approach to simultaneous monitoring of several rating

grades since for rating systems with many grades a purely random rejection

of appropriate estimation for one or two grades becomes very likely.
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Our proposal is based on the assumption of no correlation in time for the

goodness-of-fit statistics in (22). For the traffic-light-statistic, probabilities

with πg +πy +πo+πr = 1 (corresponding to the colors green, yellow, orange,

and red), πg > πy > πo > πr > 0 and a color mapping C(x) are defined by

C (x) =





g if x ≤ F−1
χ2〈2〉 (πg)

y if F−1
χ2〈2〉 (πg) < x ≤ F−1

χ2〈2〉 (πy)

o if F−1
χ2〈2〉 (πy) < x ≤ F−1

χ2〈2〉 (πo)

r if F−1
χ2〈2〉 (πo) < x

,

where F−1
χ2〈2〉 (πy) denotes the quantile function of the χ2-distribution func-

tion with two degrees of freedom. With this definition, under the assump-

tion of independence of the periodical test statistic in (22), the vector

(Lg, Ly, Lo, Lr) with Lc counting the appearances of color c ∈ {g, y, o, r}
will be multinomially distributed with

P {(Lg = lg, Ly = ly, Lo = lo, Lr = lr)} =
(lg + ly + lo + lr)!

lg!ly!lo!lr!
π

lg
g π

ly
y πlo

o πlr
r .

Now the only thing that is left is to construct an order function to all quadru-

ples for ranking all of them according to the difference between empirical

and theoretical PD function. Blochwitz, Hohl, and Wehn [2005] decided to

apply a quite intuitive approach to an order of the quadruples, namely

λ (Lg, Ly, Lo, Lr) = πgLg + πyLy + πoLo + πrLr.

With the severity measure λ (Lg, Ly, Lo, Lr) it is decided if a scoring model

is correctly calibrated for a time series of default forecasts. The smaller

the value of λ (Lg, Ly, Lo, Lr) the more severe we judge the underlying ob-

servation of deviations between empirical and theoretical default frequen-

cies. Although this represents a quite intuitive approach to an order of the

quadruples and despite the fact that counter examples to the order can be

30



constructed, various different constellations in Blochwitz, Hohl, and Wehn

[2005] showed that more sophisticated techniques did not lead to deeper in-

sights. The concept of ordering the quadruples is illustrated in Table 3 for

the example of L = 4 as published in Blochwitz, Hohl, and Wehn [2005].

4 Conclusions

The validation of the probability calibration has several components. Our

goal is to provide a comprehensible tool for backtesting probability calibra-

tions in a quantitative way. We therefore focus on two important quanti-

tative components – level and shape. The level evaluation is based on a

comparison of ex ante expected frequencies and the realized ex post rates.

We propose level statistics that are derived under dependencies, e.g. credit

default correlations are modeled via Bernoulli-mixture models. The second

component, the shape, compares the theoretical area below the receiver oper-

ating characteristic curve (AUROC) with the empirical one. This approach

has the great advantage of visualizing the results through a graph. That

allows us to visually detecting probability miscalibrations and facilitates the

selection of samples for a deeper examination.

In statistics, a test procedure is said to be consistent against a certain

class of alternatives if for each alternative the power of the test tends to

one as the sample size tends to infinity. Consistency, even though it is

usually a rather weak property, is not granted in case of credit scoring.

Due to cross-correlations between obligors consistency can only be achieved

over time. However, our proposed validation procedure is not designated

to distinguish between all functionally different calibrations but those that

are economically relevant. In credit scoring where default events are scarce

compels the model-controller to focus on the most serious miscalibrations

from an economic perspective. A financial institution has to avoid adverse

selection of loans that is mainly caused by level and shape deviations of the
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probability calibration. If the level is too high, the financial institution will

systematically lose market shares to competitors. A too low level might force

the bank out of the loan market since risk-premiums do not cover losses in

the long run. If the probability mapping is wrongly shaped then some groups

of obligors subsidize other groups. For instance, investment grade obligors

are charged too low in comparison to sub-investment rated borrowers. In

the worst case, this might lead to a bank-failure because competitors will

exploit the resulting mispricing of loans.

Our test procedure is meant to be applied to the whole population at a

time but has the great flexibility to be only employed for a subpopulation

(e.g. separation into investment grade and non-investment grade borrow-

ers). We then combine the two components into a global test statistic and

show that it is asymptotically χ2-distributed with two degrees of freedom.

The comparison of the global test statistic and the well-known Hosmer-

Lemeshow’s χ2 was carried out by means of a simulation study. Reliability

with respect to type I error levels as well as power measured by type II error

sizes were examined. Overall, the performance of the global test statistic is

better than the performance of Hosmer-Lemeshow’s χ2. We show that the

global test is more robust against misspecifications especially when it comes

to validating of credit scoring systems where event clusterings have to be

taken into account.

Our testing procedure is also applicable in the case of continuous proba-

bilities where two events have almost surely different (conditional) prob-

abilities. If we are confronted with continuous probabilities or a lot of

categories then existing calibration tests (i.e. binomial test, normal test,

Hosmer-Lemeshow’s χ2-test, and the traffic lights approach of Blochwitz,

Hohl, and Wehn [2005]) are virtually powerless – the true probability might

be anywhere between zero and one. In this case our procedure offers a viable

alternative.
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We extend our methodology for a single data point with the inclusion

of the dimension of time. Missing observations over time, changing the

underlying explanatory variables on a regular basis, or the absence of a

probability term structure, might force the model-controller to divide a long-

period of time (single data point) into sub-periods (multiple data points) in

order to validate the system as a whole. Therefore, we combine a time-

series of global test statistics into a single multi-period test. The proposed

traffic light approach is a rule-based system assessing the differences between

theoretical and empirical event frequencies which has the merit that it is easy

to implement. This approach is an extension of the methodology suggested

by Blochwitz, Hohl, Tasche, and Wehn [2004]. Their method is applicable to

a single rating class at any one time. Our extension allows a simultaneous

monitoring of several rating grades what represents a major step forward

since for systems with many grades/classes a purely random rejection of

appropriate estimation for one or two grades becomes very likely.

We leave it to future studies to further check the robustness and reli-

ability of our validation procedure. For instance, the performance of the

traffic-light approach needs to be compared to the power of the global test

statistic. Such a study should also comment on the subdivision of a single

period into sub-periods for which the global test statistic are applied re-

sulting in a time-series of global tests. Such an optimal subdivision might

prove to be difficult to derive due to a decreasing default correlation over

time. Another string of research might deal with the exact distribution of

the proposed test statistics or some bootstrap methods in order to derive

statistics under less stringent assumptions.

A Appendix

Proof of Theorem 1.9. a) Functional equivalence denotes an equivalence for

all ω ∈ Ω whereas almost sure equivalence denotes an equivalence on ω ∈ A
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where P {A} = 1 and A ⊆ Ω. b) and c) Level and shape of a PD function

denote two expectation measures of a random variable. Two almost surely

equal random variables have the same expectation. �

Proof of Proposition 2.2. Let Y ∗
i and Y ∗

j be the CreditMetrics latent vari-

ables for two obligors, i 6= j. There is only one systematic risk factor X

and, since we have a homogeneous portfolio, the two obligors have the same

weight
√

ρ on that risk factor. Thus,

Y ∗
i =

√
ρX −

√
1 − ρεi

Y ∗
j =

√
ρX −

√
1 − ρεj,

where X, εi, and εj are independent standard Gaussian variables. Hence,

(Y ∗
i , Y ∗

j )′ follows a bivariate Gaussian distribution function with correlation

ρ, also called asset correlation. A default event occurs if Y ∗
i is lower than

a predetermined threshold value C := Φ−1(π), the so-called distance-to-

default. Thus,

P {Yi = 1|X} = P {Y ∗
i ≤ C|X} = Φ

(
C −√

ρX√
1 − ρ

)
= Φ(V ) ,

where V :=
C−√

ρX√
1−ρ

. Note, conditional on X default events are independent,

so that

P {Yi = 1, Yj = 1|X} = P
{
Y ∗

i ≤ C, Y ∗
j ≤ C|X

}
= Φ(V )2 .

Hence, we deduce the variance of Z = Φ(V ),

V [Φ (V )] = P
{
Y ∗

i ≤ C, Y ∗
j ≤ C

}
− P {Y ∗

i ≤ C}2

= Φ2 (C,C, ρ) − π2 = π2 − π2 = ρY ,

where the first line follows by iterating expectations (see Proposition 8.13 of
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Karr [1993]), so that E
[
P

{
Y ∗

i ≤ C, Y ∗
j ≤ C|X

}]
= P

{
Y ∗

i ≤ C, Y ∗
j ≤ C

}
.

�

Proof of theorem 2.4. Consider the inequality

sup
0≤β≤1

∣∣∣F̂SD

(
F̂−1

SND
(1 − β)

)
− FSD

(
F−1

SND
(1 − β)

)∣∣∣

≤ sup
0≤β≤1

∣∣∣F̂SD

(
F̂−1

SND
(1 − β)

)
− FSD

(
F̂−1

SND
(1 − β)

)∣∣∣

+ sup
0≤β≤1

∣∣∣FSD

(
F̂−1

SND
(1 − β)

)
− FSD

(
F−1

SND
(1 − β)

)∣∣∣ ,

if we apply the Glivenko-Cantelli Theorem for the first term on the right

hand side and the theorem of Dvoretzky, Kiefer, and Wolfowitz [1956] and

then the Borel-Cantelli Lemma for the second term, the theorem is proved.

�

Proof of Proposition 2.5. From (16) and (17) as well as the basic integration

rule of monotonicity7 we can derive that

∫ t

−∞
P̃D(s)dFS(s) ≤

∫ t

−∞
PD(s)dFS(s) for all t ∈ S

∫ ∞

t

P̃D(s)dFS(s) ≥
∫ ∞

t

PD(s)dFS(s) for all t ∈ Sc.

Thus, it follows for all t ∈ R,

∫ t

−∞
P̃D(s)dFS(s) ≤

∫ t

−∞
PD(s)dFS(s).

Since the PD functions are equivalent with respect to the PD level, so that
∫ ∞
−∞ P̃D(s)dFS(s) =

∫ ∞
−∞ PD(s)dFS(s), we can normalize the above inequal-

ity to arrive at

F̃SD
(t) ≤ FSD

(t) for all t ∈ R, (25)

7If either 0 ≤ g ≤ h or g and h are integrable and g ≤ h, then
∫

gdF ≤
∫

hdF .
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for some t∗ the inequality is strict, so that F̃SD
(t∗) < FSD

(t∗). With the

similar reasoning we can deduce that

F̃SND
(t) ≥ FSND

(t) for all t ∈ R, (26)

where the inequality is strict for some t∗. Hence, it follows that the difference

in AUROC is

˜AUROC − AUROC =

∫ ∞

−∞

∫ ∞

−∞

[
1{x>y} +

1

2
1{x=y}

]

d
[
F̃SD

(x) − FSD
(x)

]
d

[
F̃SND

(y) − FSND
(y)

]

=

∫ ∞

−∞

∫ ∞

−∞

[
1{−z>y} +

1

2
1{−z=y}

]

d
[
FSD

(−z) − F̃SD
(−z)

]

︸ ︷︷ ︸
≥0

d
[
F̃SND

(y) − FSND
(y)

]

︸ ︷︷ ︸
≥0

.

The first equality comes from the definition of the AUROC figure. The

second equality follows by the substitution rule. The last term is positive

since the integrand is nonnegative and positive for some values and therefore

proving the proposition. �

Proof of Proposition 2.6. The estimate ̂AUROCn is unbiased since

E
[

̂AUROCn|Y
]

= P {SD > SND} +
1

2
P {SD = SND}

=
1

2
[1 − P {SD < SND} + P {SD > SND}]

= AUROC.
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For the computation of the variance we start with the squared ̂AUROCn

figure

̂AUROC
2

n =
1

N2
0 N2

1

N1∑

i=1

N0∑

j=1

N1∑

k=1

N0∑

l=1

1

4

[
1 − 1{

SDi
<SNDj

}

+ 1{
SNDj

<SDi

} − 1{SDk
<SNDl} + 1{SNDl

<SDk}
+ 1{

SDi
<SNDj

,SDk
<SNDl

} + 1{
SNDj

<SDi
,SDk

<SNDl

}

+ 1{
SDi

<SNDj
,SNDl

<SDk

} + 1{
SNDj

<SDi
,SNDl

<SDk

}
]

.

Now, we can differentiate between four different instances:

1. In N0(N0−1)N1(N1−1) cases the defaulters’ indices and non-defaulters’

ones are different, so that i 6= k and j 6= l. In this instance the expec-

tation of the summand in squared brackets is AUROC2 or

1

4
[1 − P {SD < SND} + P {SD > SND}]2 .

2. In N1N0(N0 − 1) cases the defaulters’ indices are equal but the non-

defaulters’ ones are different, so that i = k and j 6= l. In this instance

the expectation of the summand is

1

2
[1 − P {SD < SND} + P {SD > SND}] − 1

4

+
1

4
P {SD1

, SD2
< SND} − 1

4
P {SD1

< SND < SD2
}

+
1

4
P {SND < SD1

, SD2
} − 1

4
P {SD2

< SND < SD1
} ,

what can be rewritten as AUROC − 1
4 + 1

4B110.

3. In N0N1(N1−1) cases the defaulters’ indices are different but the non-

defaulters’ ones are equal, so that i 6= k and j = l. In this instance
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the expectation of the summand is

1

2
[1 − P {SD < SND} + P {SD > SND}] − 1

4

+
1

4
P {SND1

, SND2
< SD} − 1

4
P {SND1

< SD < SND2
}

+
1

4
P {SD < SND1

, SND2
} − 1

4
P {SND2

< SD < SND1
} ,

what can be rewritten as AUROC − 1
4 + 1

4B001.

4. In N1N0 cases the the defaulters’ indices and the non-defaulters’ ones

are equal, so that i = k and j = l. In this instance the expectation of

the summand is

P {SND < SD} +
1

4
P {SND = SD} = AUROC − 1

4
+

1

4
P {SND 6= SD} .

Now, the fact that

V
[

̂AUROCn|Y
]

= E
[

̂AUROC
2

n|Y
]
− AUROC2,

as well as simple arithmetic summations and cancellations lead to the desired

result. �

Proof of Lemma 2.9. From two well-known theorems, see for instance The-

orems 2.47 and 2.48 in Karr [1993] for the proofs, we know that a) G(X)

is uniformly distributed, and that b) Φ−1 (G(X)) is standard Gaussian dis-

tributed. �
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Rating R1 R2 R3 R4 R5 R6 R7 R8

PD(s) 0.0009 0.0018 0.0043 0.0108 0.0339 0.0767 0.1110 0.1500

P̃D(s) 0.0002 0.0008 0.0028 0.0135 0.0339 0.0669 0.0922 0.1500

P̂D(s) 0.0009 0.0018 0.0043 0.0108 0.0339 0.0767 0.1110 0.2000
PD1(s) 0.0154 0.0154 0.0154 0.0154 0.0154 0.0154 0.0154 0.0154
PD2(s) 0.0175 0.0175 0.0175 0.0175 0.0175 0.0175 0.0175 0.0175

dFS(s) 0.0300 0.0700 0.2900 0.3800 0.1900 0.0300 0.0100 0

Table 1: The PD functions PD(s) and P̃D(s) have the same PD level
(=1.54% average PD) and the same PD shape (=75.99% AUROC) even
though they are functionally and almost surely not equivalent. The PD
functions PD(s) and P̂D(s) are equivalent with respect to level, shape and
almost surely, but not functionally. PD(s) and PD1(s) have the same PD
level but different PD shapes whereas PD1(s) and PD2(s) have the same
shape but different levels. Figure 1 depicts the ROC graphs of the PD
functions PD(s) and P̃D(s).
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Figure 1: If two PD functions have the same shape (=area under the ROC
curve) then this does not imply that they have the same ROC graph. The

graph depicts the PD functions PD(s) and P̃D(s) as tabulated in Table 1.
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15 classes 10 classes 5 classes
PD PDβ # PD PDβ # PD PDβ #

0.0053 0.0027 1 0.0058 0.0030 20 0.0075 0.0042 625
0.0068 0.0038 9 0.0084 0.0049 176 0.0144 0.0096 2500
0.0088 0.0053 56 0.0120 0.0077 703 0.0263 0.0205 3750
0.0113 0.0072 222 0.0169 0.0119 1641 0.0455 0.0403 2500
0.0144 0.0097 611 0.0235 0.0180 2460 0.0746 0.0735 625
0.0181 0.0130 1222 0.0320 0.0264 2460
0.0227 0.0173 1831 0.0430 0.0380 1641
0.0281 0.0226 2096 0.0569 0.0535 703
0.0347 0.0293 1831 0.0740 0.0735 176
0.0424 0.0376 1222 0.0948 0.0989 20
0.0515 0.0477 611
0.0620 0.0598 222
0.0742 0.0742 56
0.0882 0.0911 9
0.1039 0.1107 1

Table 2: For the simulation study we consider 3 different numbers of rating
classes (15, 10, and 5). The expected default frequency is fixed for all
scenarios at 3%, and the size of the portfolio is set at 10’000 obligors. The
table outlines the rating distribution along with the assigned rating class
PDs. PD denotes the default probability under the data generating process
whereas PDβ is the assumed PD for type II error analyses.
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Rank gyor # λ Π Rank gyor # λ Π

1 0004 1 0.2000 0.0000 19 1111 24 1.0000 0.0857
2 0013 4 0.3000 0.0001 20 0310 4 1.0500 0.1019
3 0022 6 0.4000 0.0004 21 2002 6 1.1000 0.1057
4 0103 4 0.4500 0.0006 22 1120 12 1.1000 0.1462
5 0031 4 0.5000 0.0012 23 1201 12 1.1500 0.1732
6 0112 12 0.5500 0.0026 24 2011 12 1.2000 0.1957
7 0040 1 0.6000 0.0031 25 0400 1 1.2000 0.2038
8 1003 4 0.6500 0.0034 26 1210 12 1.2500 0.2848
9 0121 12 0.6500 0.0074 27 2020 6 1.3000 0.3185
10 0202 6 0.7000 0.0088 28 2101 12 1.3500 0.3635
11 1012 12 0.7500 0.0110 29 1300 4 1.4000 0.4175
12 0130 4 0.7500 0.0151 30 2110 12 1.4500 0.5525
13 0211 12 0.8000 0.0232 31 3001 4 1.5500 0.5775
14 1021 12 0.8500 0.0299 32 2200 6 1.6000 0.7125
15 0220 6 0.9000 0.0421 33 3010 4 1.6500 0.7875
16 1102 12 0.9000 0.0466 34 3100 4 1.8000 0.9375
17 0301 4 0.9500 0.0520 35 4000 1 2.0000 1.0000
18 1030 4 0.9500 0.0587

Table 3: The table is taken from Blochwitz et al. [2005] and displays all
realizations of the extended traffic light approach for a time series of L =
4. Note, that (πg, πy, πo, πr) = (0.50, 0.30, 0.15, 0.05), # is the number of
realizations of the quadruple with severity λ, Π is the cumulative probability
of observing events of at least the same severity, i.e. quadruples with the
same rank or lower.
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Type I error Type II error
ρ C χ2 Global Level Shape χ2 Global Level Shape

0 15 0.083 0.047 0.049 0.047 0.374 0.118 0.125 0.665
0 10 0.065 0.052 0.046 0.050 0.244 0.099 0.120 0.577
0 5 0.052 0.050 0.045 0.051 0.126 0.072 0.123 0.436
0.05 15 0.721 0.064 0.037 0.077 0.275 0.753 0.935 0.693
0.05 10 0.741 0.065 0.038 0.083 0.231 0.711 0.939 0.640
0.05 5 0.766 0.081 0.035 0.097 0.185 0.635 0.942 0.552
0.10 15 0.801 0.155 0.147 0.098 0.208 0.739 0.844 0.740
0.10 10 0.821 0.161 0.142 0.115 0.183 0.714 0.849 0.692
0.10 5 0.844 0.175 0.140 0.142 0.151 0.663 0.858 0.629
0.15 15 0.845 0.254 0.251 0.117 0.168 0.710 0.758 0.777
0.15 10 0.862 0.267 0.255 0.142 0.145 0.679 0.757 0.734
0.15 5 0.884 0.286 0.242 0.182 0.127 0.655 0.766 0.692

Table 4: Nominal level α = 0.05: For the simulation study we consider 4
different asset correlation regimes (0, 0.05, 0.1, and 0.15) as well as 3 different
numbers of rating classes (15, 10, 5) resulting in 12 scenarios. The estimated
type I and type II error rates based on 10’000 Monte Carlo simulations at
given nominal error level of 0.05 are tabulated.

Type I error Type II error
ρ C χ2 Global Level Shape χ2 Global Level Shape

0 15 0.032 0.010 0.011 0.009 0.553 0.265 0.285 0.845
0 10 0.019 0.011 0.012 0.010 0.422 0.230 0.284 0.782
0 5 0.010 0.009 0.010 0.010 0.259 0.187 0.272 0.660
0.05 15 0.652 0.018 0.006 0.022 0.340 0.859 0.984 0.835
0.05 10 0.682 0.018 0.007 0.020 0.302 0.825 0.983 0.785
0.05 5 0.706 0.027 0.006 0.030 0.258 0.761 0.986 0.705
0.10 15 0.755 0.060 0.055 0.029 0.256 0.845 0.933 0.850
0.10 10 0.776 0.062 0.050 0.033 0.233 0.814 0.939 0.807
0.10 5 0.803 0.073 0.050 0.048 0.198 0.773 0.936 0.748
0.15 15 0.805 0.122 0.131 0.034 0.208 0.821 0.876 0.869
0.15 10 0.826 0.134 0.125 0.045 0.185 0.798 0.877 0.830
0.15 5 0.850 0.147 0.118 0.069 0.163 0.772 0.883 0.790

Table 5: Nominal level α = 0.01: For the simulation study we consider 4 dif-
ferent asset correlation regimes (0, 0.05, 0.10, and 0.15) as well as 3 different
numbers of rating classes (15, 10, 5) resulting in 12 scenarios. The estimated
type I and type II error rates based on 10’000 Monte Carlo simulations at
given nominal error level of 0.01 are tabulated.
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