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Abstract

The implications of the two-fund separation theorem have been care-
fully examined in the literature for the case of mean-variance preferences.
However, even though the two-fund theorem applies to the whole class
of HARA utility functions, its implications for the e¢ ciency sets spanned
by these preferences are much less known. Without dealing with general
equilibrium issues, the goal of this paper is to show how most of the well-
known constructions which arise in connection with the former subclass,
extend in a relatively natural way to the whole latter set of preferences.
Furthermore, graphical illustrations of the HARA portfolio problem that
parallel mean-variance geometry are also provided. Along the same lines,
It is also shown how the general problem can be seen as a choice between
two parameters, one measuring reward and the other one measuring risk.

1 Introduction

The youth years of �nancial economics are clearly dominated by the early results
of portfolio choice theory. Among other things, the contributions of Markowitz
(1957) together with the derivation by Tobin (1958) of the two-fund theorem,
always in the context of mean-variance preferences, play a crucial role in devel-
oping the �rst general equilibrium model of asset pricing, i.e. the CAPM. These
two �elds of �nance marched closely together until the seminal work of Lucas
(1978) which implies a radical change of perspective. From this point onwards,
it becomes clear that it is not necessary to solve a portfolio choice problem in
order to model the behavior of asset prices. The consumption-based approach
allows asset pricing to (partially) abandon its early companion and walk its way
mostly alone. The GMM technology of Hansen (1982) pushes further in this
direction and it helps creating a new approach where the stochastic discount
factor (SDF) is to be the main focus.
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The portfolio problem unexpectedly pops up again in asset pricing a few
years later with Hansen and Jagannathan (1991) and their diagnostic tool based
on the well-known volatility bounds on the stochastic discount factor. These
authors show a duality relationship between the mean-variance problem and
the minimum variance SDF. This connection relies heavily on the orthogonal
decomposition of the mean-variance frontier previously derived by Hansen and
Richard (1987). The link has recently been further emphasized by Cochrane
(2001) in a series of results labeled equivalence theorems.
However, it is somehow surprising that all these constructs and links have

mainly been presented as properties con�ned to the mean-variance world when
they can in fact be seen as implications of the two-fund theorem. For example, in
the work of Snow (1991), Stutzer (1995) and Bansal and Lehnman (1997) where
new bounds on the SDF are established, the underlying presence of the portfolio
problem is once again relatively hidden. As it turns out, the two-fund theorem
applies to a much more general set of preferences (Cass and Stiglitz (1970)). As
a consequence, the previous results obtained in the mean-variance framework,
extend in a very natural way to whole family of HARA utility functions.
The �rst goal of our paper is to prove this point. In particular, we present

a generalization of Hansen and Richard�s decomposition and its links with the
derivation of bounds on the SDF and the portfolio problem. Also, we formulate
Cochrane�s equivalence theorems in the context of the e¢ ciency sets spanned
by the above general class of preferences. Finally, we show how Roll�s tracking
error minimization (1992) can be posed in this more general setup. Some of our
results in this direction try to formalize some connections already pointed out
by Cerny (2003).
Our second goal is more illustrative and it is aimed at providing new in-

sights. Most practitioners have in most cases turned their backs to the use of
preferences that satisfy sensible economic assumptions. This may be partially
explained by the fact that, as opposed to the other elements of the HARA
family, mean-variance analysis provides an appealing two-parameter framework
together with a whole battery of geometric interpretations which after all are
a strong selling point. With this observation in mind, we show that similar
graphical illustrations for the general HARA portfolio problem can be produced.
Furthermore, we argue that the investor�s decision in this context can also be
seen as a choice between two parameters, one being a measure of reward and
the other one a measure of risk. Once again, the two-fund theorem is at the
root of these derivations.
The paper is organized as follows. The second section deals with notational

issues. Section 3 presents some key results whose implications for portfolio
theory are presented in Section 4. The link between the SDF and the portfolio
problem is further discussed in Section 5. Finally, Section 6 concludes.
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2 Preliminary and notational issues

Consider a two-period frictionless economy where a set of N basis assets are
currently available at a known price and their payo¤s are continuous random
variables whose support is an interval of the real line and at least one of them
is nondegenerated. Without loss of generality, our basis assets are assumed
to have a strictly positive price and hence, their vector of returns denoted by
R = (R1; : : : ; RN ) can be de�ned. The space of attainable payo¤s is thus given
by1

X �
�
x : 9� 2 <N s.t. �TR = x

	
:

Arbitrage opportunities are absent, this guarantees the existence of strictly
positive random variables, m; satisfying

E (mR) = 1

where 1 is a N -vector of ones. Denote by M+ the set of such random variables,
also known as SDF�s, and de�ne the sets

R �
�
R 2 X : 9� 2 <N s.t. �TR = R and �T1 = 1

	
and

Re �
�
Re 2 X : 9� 2 <N s.t. �TR = Re and �T1 = 0

	
;

that is, the set of returns and zero-price payo¤s, respectively.
Consider the static portfolio problem for HARA utility functions given by

max
R2R

E [u;� (R)] (2.1)

where

u;� (R) �

8>><>>:
1

+1 (R� �)
+1 if  < 0;  6= �1

ln (R� �) if  = �1
� 1
+1 (� �R)

+1 if  > 0
� exp (��R) if  =1

(2.2)

and � 2 <. For  < 0 ( > 0), � can be interpreted as a subsistence (satiation)
level, while in the case of negative exponential utility ( =1) it stands for the
coe¢ cient of absolute risk aversion. Each set of utility functions above with
common parameter  will be referred to as an HARA utility class.
For a given , let � be the set of values of � for which a unique solution to

(2.1) exists and let R;� denote the corresponding optimal return. Also, de�ne

R �
�
R;� : � 2 �

	
:

It is well-known that quadratic utility ( = 1), is equivalent to mean-variance
preferences and therefore, the set R1 contains all returns that lie on the mean-
variance frontier. The properties of this particular set, together with its links

1We will omit the label "almost sure" in all relationships involving random variables.
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with asset pricing objects like SDF�s, have been largely examined in the lit-
erature and they are mostly rooted in the two-fund separation theorem. It is
also well-known that this theorem applies to R for all . However, up to our
knowledge, no serious e¤ort has been done in order to establish, with enough
generality, how the above properties and links translate for all the remainder ef-
�ciency sets ( 6= 1) spanned by HARA utility functions. As already advanced,
this will be our goal. It should be noted that even though our results apply,
after minor modi�cations, to all , in order to favor their readability and avoid
a further complication of our notation, we will focus most of our exposition on
the frontiers associated to values of  < �1.
In the absence of a risk-free asset, we will consider the augmented set Xv

resulting from adding an arti�cial constant unit payo¤ with price v to X: In
such case, the objects Rv; Mv

+, and R
v
 will be de�ned as the counterparts of

Rv, M+, and R in X
v, respectively. Obviously, the set Mv

+ is not empty as
long as there is no arbitrage in Xv, or equivalently, as long as v belongs to the
interval (v; v) where2

v � sup
�
�T1 : � 2 <N and �TR � 1

	
and

v � inf
�
�T1 : � 2 <N and �TR � 1

	
:

Finally, whenever a riskless payo¤ is assumed to exist, its return will be
denoted by Rf .

3 The index SDF and its return

Hansen and Richard (1987) and Hansen and Jagannathan (1991) study the
properties of the unique SDF which is also a payo¤ and its associated return.
These constructs have a clear parallel within each HARA utility class which we
know turn to present.

Lemma 3.1 For any strictly monotonic function f , there exists at most one
payo¤ x� 2 X such that f (x�) 2M+.

Proof. Reasoning by contradiction, suppose there is x�f and x
��
f satisfying

E [f (x��)x] = E [f (x�)x] ; 8x 2 X

where x��; x� 2 X. Then

E [f (x�)x�] = E [f (x��)x�]

and
E [f (x�)x��] = E [f (x��)x��] :

2We assume there exists x 2 X such that x � 1:
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Hence,
E f[f (x�)� f (x��)]x�g = E f[f (x�)� f (x��)]x��g

or equivalently,
E f[f (x�)� f (x��)] (x� � x��)g = 0: (3.1)

Now, without loss of generality assume that the function is strictly increasing.
From (3.1) whenever x� > x��, it must be the case that f (x�) > f (x��) and if
x� < x��, then f (x�) < f (x��) : This means that the value inside the expecta-
tion is always strictly positive in those states of nature where x� 6= x�� and zero
otherwise. Thus, in order for (3.1) to hold it must be the case that x� = x��.
Similar arguments will give that if the function is strictly decreasing, the value
inside the expectation is always strictly negative whenever x� 6= x�� and zero
otherwise, which implies also again that x� = x��.

�

Proposition 3.2 For a given  < �1; there exists at most one payo¤ x 2 X
such that x 2M+.

This proposition merely guarantees that there is only one payo¤ (given its
existence) which raised to the  power is also an strictly positive SDF. Its proof
is a straightforward application of an auxiliary Lemma stated in the Appendix.
In the sequel, the random variable x will be referred to as the  index SDF.
For  = 1 (mean-variance), Hansen and Richard (1987) show that the law

of one price is a su¢ cient condition for the existence of a unique payo¤ (not
necessarily positive) which is also an SDF. For more general cases, it is not easy
to specify these conditions, although a characterization in terms of the existence
of a solution to the portfolio problem is possible as we shall see below.
Also, the above authors prove that the return of x1 has the minimum second

moment in R. This �nding has a very natural extension.

Proposition 3.3 For a given  < �1; assume that x exists and let R be its
return. Then

E
�
R+1

�
= min

R2R
E
�
R+1

�
: (3.2)

Proof. By de�nition, x has price equal to E
�
x+1

�
and hence,

R =
x

E
�
x+1

� : (3.3)

Also, by de�nition, x satis�es

E
�
xR

�
= 1; 8R 2 R

which, from (3.3), can be equivalently stated as

E
�
RR

�
=
�
E
�
x+1

���
; 8R 2 R; (3.4)
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giving that R satis�es the �rst-order conditions of problem (3.2). Since for any
 2 , the function f (x) = x+1 is strictly concave in <++, from Proposition
3.2 it follows that the above conditions are su¢ cient and necessary conditions
for a (unique) global minimum.

�

Remark 3.4 From the above proof, it is easy to see that

x =
R

[E (R)Rf ]
1=
: (3.5)

We divide our next set of results in two subsections covering the existence
and absence of a riskless asset.

4 Portfolio theory results for HARA utility

X has a riskless payo¤

Assume there is a constant payo¤ in X with return Rf . As it turns out, problem
(2.1) has a solution a solution for any � < Rf given the existence of x . Actually,
these two facts can be proved to be equivalent thereby giving the following
characterization.

Proposition 4.5 For a given  < �1, x exists if and only if � =
�
�1; Rf

�
.

Proof. (necessity) For a given � 2 <, the �rst-order conditions of portfolio
problem (2.1) give that if a return R;� is optimal, it must satisfy

E [(R;� � �) R] = �; 8R 2 R (4.6)

for some constant � 2 <++. Given that by assumption our basis assets have a
continuous probability distribution whose support is an interval of <, it is also
clear that

R;� � � > 0 (4.7)

Since x exists, it is clear from (3.4) that

R;� = R + �

�
1� R

Rf

�
satis�es (4.6) and (4.7) as long as � 2

�
�1; Rf

�
. Furthermore, from identical

arguments as the one in the proof of Proposition 3.3, it is clear that (4.6) and
(4.7) are necessary and su¢ cient conditions for a unique global maximum of
the portfolio choice problem. It remains to check that no solution exists for
� =2

�
�1; Rf

�
but this is trivial since the absence of arbitrage guarantees that

there is no R 2 R such that
R�Rf > 0
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which from (4.7) gives that no solution exists for � � Rf .
(Su¢ ciency) Assume that � =

�
�1; Rf

�
. Then, there is a solution to

the portfolio problem for � = 0, or equivalently, there exists a return R� 2 R
satisfying

E [(R�)

R] = �; 8R 2 R

for some constant � 2 <++. Hence,

R�

�
2M+

which together with
R�

�1=
2 X

gives the desired result.
�

Hansen and Richard (1987) introduce an orthogonal decomposition of the
mean-variance frontier. In particular, they show that a return R is mean-
variance if and only if it can be expressed as

R = R1 + wR
e
1

where w is any real number and Re1 is the zero-price payo¤ that solves

min
Re2Re

E
h
(1�Re)2

i
: (4.8)

Furthermore, R1 and Re1 satisfy E (R1R
e
1) = 0. This construction holds even in

the absence of a risk-free asset; however, when a constant payo¤ exists, then

Re1 = 1�
R1
Rf
:

Again, this decomposition turns out to be a particular case of a more general
result. De�ne the excess return

Re � 1�
1

Rf
R :

Proposition 4.6 For a given  < �1, assume that x exists. R 2 R if and
only if there is a constant w < Rf such that

R = R + wR
e
 :

Furthermore,
R;� = R + �R

e
 ; 8� 2 � : (4.9)
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We will not show this statement since its proof follows very similar arguments
to the ones used in showing Proposition 4.5. In fact, the former can also be seen
as a corollary of the latter. The same line of reasoning gives that under the
same conditions, Re solves

min
Re2Re

E
h
(1�Re)+1

i
(4.10)

and it satis�es
E
�
(R)


Re
�
= 0: (4.11)

As we see, the parallel of all these constructions is quite clear. A mean-
variance return can always be written as the sum of the minimum second mo-
ment return, R1; and a constant times the excess return that solves (4.8), Re1.
Similarly, a return in R can always be written as the return that minimizes
E
�
R+1

�
, R , and a constant time the excess return that solves (4.10), Re .

The orthogonality between the two objects in the mean-variance case has its
counterpart in their satisfying (4.11).
Obviously, just as the two-fund separation theorem fails to hold in the ab-

sence of a risk-free asset when  6= 1; so does the above decomposition is such
scenario.
It is important to note that our result also identi�es the constant in the de-

composition as the subsistence level � of the corresponding utility function. For
 = 1, this allows to establish the link between the utility-based maximization
and the corresponding mean-variance problem. Speci�cally, from Proposition
4.6 it is easy to see that, R 2 R solves3

max
R2R

�1
2
(� �R)2 (4.12)

if and only if it solves

min
R2R

var (R)

s.t. E (R) = �E (Re1) + E (R1) :

For the e¢ cient part of the mean-variance frontier, the above equivalence can
be stated in an alternative way. Namely, for any � � Rf , R 2 R solves (4.12) if
and only if it solves

max
R2R

E (R) (4.13)

s.t. var (R) =
�
1� �

Rf

�2
var (R1) :

Also, it is well-known that the e¢ cient part of the mean-variance frontier
gives a straight line when plotted in mean-standard deviation space. In partic-
ular (see Hansen and Jagannathan (1991) or Cochrane (2001)), we have that

E (R)�Rf = � (R1)

E (R1)
� (R) 8R 2 R1 (4.14)

3The statement of Proposition 4.6 holds for any  6= 0, except for positive even integers.
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or equivalently,

E (R)�Rf = Rf � E (R1)
� (R1)

� (R) 8R 2 R1 (4.15)

where
�
Rf � E (R1)

�
=� (R1) gives the highest Sharpe ratio available in X: This

equation relates the two relevant parameters of the mean-variance problem.
Clearly, a link between � and the mean and variance of the optimal return

can be easily derived for  2 , since under the conditions of Proposition 4.6,
we also have that

E (R;�) = �E
�
Re
�
+ E (R) (4.16)

and

var (R;�) =

�
1� �

Rf

�2
var (R) ; (4.17)

which by factoring out � in (4.17) and plugging it into (4.16) gives a relationship
that replicates (4.15), that is,

E (R)�Rf = E (R)�Rf
� (R)

� (R) 8R 2 R : (4.18)

However, this equation has less interest when  6= 1 since in that case the
mean and standard deviation are not proper parameters of the portfolio choice
problem (note that the slope of the line given in (4.18) is not necessarily the
highest Sharpe ratio attainable in X). In other words, when  6= 1 these two
moments are no longer the relevant measures of reward and risk, respectively
(nor the Sharpe ratio the appropriate reward-to-risk measure). At this point a
natural question may be raised: is it possible to give economic intuition to the
elements of R in a way that parallels the arguments above when  6= 1? The
following results suggest a potentially positive answer to this question for the
case.4

Proposition 4.7 For a given  2 , assume that x exists. Then, R;� and �
solve

max
�2<;R2R

� (4.19)

s.t. E
h
(R� �)+1

i
=

�
1� �

Rf

�+1
E
h
(R)

+1
i

(4.20)

for any � 2 � :

By a close inspection of (2.1) together with Proposition 4.6, the result above
can almost be regarded as tautological and hence, we skip its proof. Neverthe-
less, we believe it helps motivating our reasoning below. For any constant � and

4The mathematical results we will present also apply to the case  > 0: However, their
economic interpretation is much less appealing.
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a given  2 , consider the values

kR� �k+1 �
n
E
h
(R� �)+1

io1=(+1)
(4.21)

and
kR� �k+1+1 = E

h
(R� �)+1

i
: (4.22)

From (2.1), it is easy to see that R;� minimizes (4.22), or equivalently, max-
imizes (4.21). Also, the former is in�nity, or equivalently, the latter is zero if
R � � can take zero values (or negative for that matter). The variance gives
the second moment of a return in excess of is mean, whereas (4.22) gives the
" + 1 moment" of the return in excess of �. The standard deviation expresses
the variance in the same units as R�E (R) just as (4.21) transforms (4.22) into
the same units as R� �. Thus, (4.21) is a natural replacement of the standard
deviation. Last but not least, as opposed to the variance, (4.21) has a meaning
which is in consonance with standard assumptions of economic theory. Namely,
it gives, for some  2 , the CRRA-certainty equivalent of the return R in excess
of �.
On the other hand, � is a guaranteed level of return (as long as risk is not

in�nite/zero). The elements of R happen to maximize this �oor value for a
given level of risk just as the elements of R1 maximize the mean for a given
value of the standard deviation. It can thus be associated with a measure of
reward.
Furthermore, a straight line links the optimal values of these two proxies of

reward and risk, just as the optimal pairs of mean and variance relate through
(4.15). Speci�cally, from Proposition 4.7 we have that

Rf � � = Rf

kRk+1
kR;� � �k+1 (4.23)

Also, the slope of this line is the highest attainable reward-to-risk ratio in X; a
measure that de�nes a generalized Sharpe ratio.5 We will refer to the set of the
optimal pairs of reward and risk as the  frontier which we illustrate in Figure
1. The vertical axis represents a guaranteed value � while the horizontal axis
gives the CRRA-certainty equivalent of the corresponding excess return. For
any R 2 R, the pairs � and kR� �k+1 must give a point below the straight
line. All optimal values lie on the line.
Also, if we denote by � the portfolio weight of the risk-free asset in R , it

is easy to see that the return

R;�ta = R + �
taRe

5Cerny (2002) introduces an extension of the Sharpe ratio to the entire CRRA family of
utility functions. For  2  and R 2 R, his generalized Sharpe ratio, h (R), can be implicitly
de�ned (in the presence of a risk-free asset) as

1 + h2 (R) �
 

Rf

kRk+1

!2
:

Our ratio is thus equivalent to Cerny�s since it gives an identical ranking of investments.
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λ

Rf

γ frontier ( Slope  = )

γ frontier of risky assets

λmin
Rγ,δta

Rγ

1+
−

γ
λR

1
/

+
−

γγRR f

λ

Rf

γ frontier ( Slope  = )

γ frontier of risky assets

λmin
Rγ,δta

Rγ

1+
−

γ
λR

1
/

+
−

γγRR f

Figure 1: Figure 1: The  frontier with and without a constant payo¤.

where �ta � ��Rf= (1� �), is optimal even if we remove the risk-free asset
from X. Thus, the above return is the tangency portfolio in Figure 1. Note
that if � is negative (the case depicted), �

ta > 0 and the tangency portfolio
lies above the horizontal axis, that is,R;�ta � �+1 > kRk+1 .
Otherwise, �ta < 0 and the tangency point is placed in the �gure to the right of
kRk+1 below the horizontal axis.

No risk-free asset

Suppose now that there is no risk-free asset and letXv and Rv be the augmented
set of payo¤s and returns, respectively, resulting from adding a constant unit
payo¤ with price v to X. De�ne Mv

+, x
v
 ; R

v
 , R

ev
 and Rv as the counterparts

of M+, x ; R , R
e
 and R in X

v, respectively. Obviously, the set Mv
+ is not

empty as long as there is no arbitrage in Xv, or equivalently, as long as v belongs
to the interval (v; v) where6

v � sup
�
�T1 : � 2 <N and �TR � 1

	
6We assume there exists x 2 X such that x � 1:
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and
v � inf

�
�T1 : � 2 <N and �TR � 1

	
:

The random variable xv is now the unique element of X
v such that

�
xv
� 2

Mv
+: Furthermore,

Rv =
xv

E
h�
xv
�+1i

and
Rev = 1� vRv .

Also, for a given  2 ; from our arguments above, it is straightforward to
see that the objects xv ; R

v
 and R

ev
 exist as long as there is a solution to the

portfolio problem in Rv for � = 0: Furthermore, it is also possible to give a
characterization of this existence by using the original set of returns R. Let �v
the weight that Rv assigns to 1=v and de�ne

�v �
��v

v
�
1� �v

� :
Proposition 4.8 For given  2  and v 2 (v; v), xv exists if and only if there
is a solution in R to problem (2.1) for � = �v.

The proof is immediate by using Proposition 4.5 and noting that the return
R;�v belongs to both R

v
 and R . In addition, since the decomposition in (4.9)

applies in Rv , we have that

R;�v = R
v
 + �vR

ev
 : (4.24)

In Figure 1 we have also plotted the  frontier in the absence of a constant
payo¤. It does not produce a straight line any longer and it obviously lies below
the optimal pairs that the inclusion of Rf in R implied. Clearly, the ceiling on
the values of � for with a solution to (2.1) exists; �min � sup � ; must satisfy
�min � v:
Further intuition is given in Figure 4 which provides a graphical illustration

of the result in the proposition above. It shows how the  frontier can be swept
out by means of the tangency portfolios associated with di¤erent values of v.
For each one of them, one can construct the optimal set Rv which when plotted
in the space of the �gure delivers a straight line with slope

� 1

v
Rv+1

whose tangency point with R corresponds to the return (4.24). The plot depicts
this formulation for two di¤erent prices of the arti�cial risk-free asset. The set
of all these tangency points gives the  frontier.
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1/v1

γ frontier

λmin

1/v2

1, v
R δγ

2, v
R δγ

1vRγ
2vRγ

1vRγ

2vRγ

1+
−

γ
λR

1/v1

γ frontier

λmin

1/v2

1, v
R δγ

2, v
R δγ

1vRγ
2vRγ

1vRγ

2vRγ

1+
−

γ
λR

Figure 4: Sweeping out the  frontier.

Performance evaluation

Given the incentives that many professional money managers face, their portfolio
choice is often the solution of the following problem

min
R2R

E
�
R�Rb

�2
(4.25)

s.t. E
�
R�Rb

�
= �

where Rb 2 R is a prespeci�ed benchmark return and � is a target expected
value. The manager�s goal is thus to minimize the variance of the return of
its portfolio in excess of the benchmark�s return (also known as tracking error)
given a target expected performance relative to the benchmark. This problem
is well-known and it has been studied in detail by Roll (1992). For each �, the
optimal portfolio can be easily shown to be equal to the sum of a particular
excess return plus the benchmark itself. Furthermore, this excess return is
identical, up to a constant, across any � and any Rb 2 R: Also, the optimal
return in this case is not mean-variance e¢ cient, unless the benchmark is.
Obviously, the problem above can be posed in terms of quadratic utility as

follows
max
R2R

�1
2
E
h�
� �R+Rb

�2i
(4.26)

and in a similar way as in the previous section, for each target mean in (4.25)
one can �nd a value of � so that problems (4.25) and (4.26) are equivalent.
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Furthermore, given the microeconomic �aws of the quadratic utility/mean-
variance framework, it seems natural to use a HARA utility class which satis�es
standard assumptions and thus, pose the tracking error problem along the same
dimensions of reward and risk that we have already introduced. Hence, consider
the extension of (4.26) resulting from replacing quadratic utility with any other
HARA utility class. For given � and , denote by Rb;� the optimal return of

this general problem and let Rb 2 R be the set of these solutions for any � 2 <.7

Proposition 4.9 For a given  < �1, assume that x exists. In the presence
of a risk-free asset, R 2 Rb if and only if there is a constant w < 0 such that

R = Rb + wRe :

Furthermore,
Rb;� = R

b + �Re ; 8� < 0: (4.27)

Proof. The result follows by plugging (4.27) into the corresponding HARA
problem and using (4.10).

�

Remark 4.10 For  = 1 (mean-variance), the result above holds for any � 2 <
although the e¢ cient solutions correspond to � > 0. In addition, it is clear from
the above result that R 2 R solves (4.26) for a given � if and only if it solves
(4.25) for � = �E (Re1).

The benchmark -optimal set, Rb ; contains all those returns that maximize
the CRRA-certainty equivalent of the tracking error in excess of the guaranteed
value �. Obviously, � must be negative since absence of arbitrage prevents
any excess return from being positive. Note that Roll�s results carry on to the
general case. Speci�cally, the second term of the decomposition of the optimal
return in (4.27) is always the same for a given �, regardless of the particular
benchmark. Also, this excess return is identical, up to a constant, for any � < 0.

5 The equivalence theorems and the bounds on
the SDF

Next, we explore the connections between the set R and its corresponding
index SDF, x . Cochrane (2001, Chapter 6) develops a whole set of results
labeled equivalence theorems. Among other things, he shows that any return
in the mean-variance frontier gives an SDF, after an a¢ ne transformation; and
that an expected return-beta representation can be obtained by using R1 as a
single factor. Their natural counterparts read as follows.

7Once again, we only treat the case  < �1 even though the result applies to any  after
slight modi�cations.
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Proposition 5.11 For any  2 ,

a) There exists m 2M+ such that

m = (a+ bR)
 (5.28)

for some a; b 2 < and R 2 R if and only if R 2 R .

b) If x exists, then

E (R) = Rf + �R;R

�
E (R)�Rf

�
; 8R 2 R;

where �R;R
� cov

�
R ; R

�
=var

�
R
�
:

Proof. a) Assume that there is m satisfying (5.28). Since a + bR 2 X, from
Proposition 3.2 and (3.5), it follows that

a+ bR =
R

[E (R)Rf ]
1=
: (5.29)

By taking expectations on both sides, we get

a+ bE (R) =
E (R)

[E (R)Rf ]
1=
: (5.30)

Also, by multiplying both sides of (5.29) by x and taking expectations, it
follows that

a
1

Rf
+ b =

1

[E (R)Rf ]
1=
: (5.31)

Now, (5.30) and (5.31) give a system of two equations whose solution for a and
b is

a =
E (R)� E (R)
E (R)�Rf Rf

�
E
�
R
�
Rf
��1=

(5.32)

b =
E (R)�Rf
E (R)�Rf

�
E
�
R
�
Rf
��1=

:

After plugging these expressions back into (5.29), we obtain that

R = R �
a

b

�
1� R

Rf

�
(5.33)

From Proposition 4.6, it only remains to check that �a=b < Rf . Indeed, since
R > 0, it follows from (5.29) that

R > �a
b

which, in the absence of arbitrage, it can only hold if �a=b < Rf .
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Conversely, assume that R 2 R . From the �rst-order conditions of problem
(2.1), it holds that

E
�
(R0 � �) R

�
= RfE

�
(R0 � �)

�
; 8R 2 R

for some � < Rf which together with the assumptions on the distribution of the
basis payo¤s gives that

(a+ bR0)
 2M+

for a = ��b and b =
�
RfE

�
(R0 � �)

�	�1=
:

b) By de�nition x satis�es

E
�
xR

�
= 1; 8R 2 R

which gives
E (R) = Rf �Rfcov

�
x ; R

�
; 8R 2 R;

and from (3.5), the above can be written as

E (R) = Rf �
Rfvar

�
R
�

E (R)Rf
�R;R

; 8R 2 R:

Since this relationship also holds for R and �R ;R
= 1; it follows that

E (R)�Rf = �
Rfvar

�
R
�

E (R)Rf

which gives the desired result.
�

Hansen and Jagannathan (1991) derive a lower bound on the second moment
of any m 2 M based on the index SDF for mean-variance preferences, x1. In
particular they show that

E
�
m2
�
� E

�
x21
�
=
�
E
�
R21
���1

; 8m 2M:

This result has again a natural counterpart for any  2 . Note that R satis�es

E
�
RR

�
= E

�
R
�
Rf 8R 2 R: (5.34)

Now, for any m 2M+, de�ne

Rm �
1

E
�
m

1
+1

�m1=

and let Rm the augmented set that results from adding Rm to R: Note that
since

E
��
Rm

�
R
�
= E

�
m

1
+1

��
8R 2 Rm ;
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we have that

E
�
m

1
+1

��
= E

h�
Rm

�+1i
= min

R2Rm


E
�
R+1

�
� min

R2R
E
�
R+1

�
= E

�
R+1

�
;

which gives,

E
�
m

1
+1

��
� E

�
R+1

�
;

or equivalently,

E
�
m

1
+1

�
�
�
E
�
R+1

���1=
= E

�
x+1

�
: (5.35)

The above arguments can be formalized as follows.

Proposition 5.12 For a given  2 , assume that x exists. Then

E
�
m

1
+1

�
� E

�
x+1

�
=
�
E
�
R+1

���1=
; 8m 2M+:

Note that our derivation clearly shows the relationship between the bound
and the portfolio problem as opposed to the more ad-hoc arguments in Hansen
and Jagannathan (1991), Bansal and Lehmann (1997), Snow (1991) and Stutzer
(1995). Even though Cerny (2003) also uses the portfolio problem, his derivation
is more complex and relies on the corresponding dual maximization.

No risk-free asset

Similarly, these constructions can be exploited to obtain a region of bounds by
replicating the derivation in (5.34)-(5.35).

Proposition 5.13 For given  2  and v 2 (v; v), assume that xv exists. Then

E
�
m

1
+1

�
� E

h�
xv
�+1i

=
n
E
h�
Rv
�+1io�1=

; 8m 2Mv
+: (5.36)

Note that the inequality above can be written ash
E
�
m

1
+1

�i�( 1+1) � E h�Rv�+1i1=(+1) ; 8m 2Mv
+ (5.37)

or equivalently,

1= kmk 1
+1

�
Rv+1 ; 8m 2Mv

+:

Hence, this construction can be graphically derived as follows in Figure 4.
For a given m 2M+, draw a tangency line to the  frontier whose interception
with the vertical axis is its implied risk-free rate. Then, the lower bound (5.37)
is given by the intersection of this tangent with the horizontal axis. The duality
of the portfolio problem and the bounds on the SDF is further illustrated in
Figure (5). As it can be seen, the choice of an implied risk-free rate in the
vertical axis, for example 1=v1, ties the mean of the SDF and it is mapped in
the horizontal axis at the point where the set Rv crosses it.
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Figure 5: Optimal returns and bounds on the SDF

Finally, our extension of Cochrane�s equivalence theorems reads as follows
in the context of this subsection.

Proposition 5.14 For any  2 ,

a) There exists v 2 (v; v) such that

(a+ bR)
 2Mv

+

for some a; b 2 < and R 2 R if and only if R 2 R .

b) If xv exists, then

E (R) =
1

v
+ �R;R

�
E
�
Rv
�
� 1

v

�
; 8R 2 R;

where �R;Rv

� cov

��
Rv
�
; R
�
=var

��
Rv
��

:

6 Conclusion

Practitioners have usually ignored the objections of economists to the use of
mean-variance preferences. Although this may be partially explained by the
di¢ culty that setting the value of the risk-aversion parameter involves, a con-
tributing factor can also be found in the lack of intuitive relationships that
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�nancial academics have provided outside the mean-variance framework. This
paper has tried to make an e¤ort in this latter direction. In addition, we have
emphasized some strong links that tie the static portfolio problem to well-known
objects of asset pricing theory in the context of the whole family of HARA utility
functions.
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