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Abstract
We consider a portfolio optimization problem for an investor who faces convex

transaction costs on trading a stock. The linear component in these costs defines a
no–trading zone, while the nonlinear component does not allow trading the stock at
an arbitrary rate. The latter component results from a stock illiquidity for a market
maker and causes a stock illiquidity for a price–taking investor. We consider the effects
that stock illiquidity has on an investor’s optimal trading and his welfare when the
stock path is continuous, when the stock may crash, and when there is a second stock
that is perfectly liquid. We find that even though the illiquid stock allocation could
be of any proportion in the portfolio, an investor has a highest expected utility when
this allocation is the same as that in the liquid market. Thus, no flight to liquidity in
the presence of liquid securities. This conclusion remains unchanged for any degree of
convexity of a nonlinear term in the transaction costs. Moreover, this degree also does
not affect the shape of the no–trading zone. We find that portfolio volatility can often
be too high, making a risk–averse investor willing to hold a liquid stock with negative
risk premium, as if he is a risk lover, just to avoid facing illiquidity. Thus, a substantial
discount of the illiquid stock price. If the illiquid stock undergoes crashes, then in many
states, an investor discounts the stock return for crashes at a much higher rate than
he does the liquid stock for the same crashes. If an investor has an access to a second,
perfectly liquid, stock, then allocations to the two stocks are considerably different
from those in a liquid market. Finally, we confirm the limits to arbitrage by showing
that an investor takes a risky position in the presence of arbitrage opportunities.
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1 Introduction

Market illiquidity has recently become a topic of active theoretical research. One can

distinguish between at least three directions in this research. The first direction considers

illiquidity caused by the market power of some investors.1 The second direction assumes

that difficulties in trading result from the presence of proportional or fixed transaction

costs2, while the third direction assumes limits on the rate of trading securities.3 In the

former direction of research trading is costly, so an investor chooses to trade only at discrete

random times at the infinitely large rate, while in the latter direction, trading is costless,

but its rate is exogenously limited or zero.4

Treatment of market illiquidity is often related to a market microstructure. An investor

trading in the market has to pay transaction fees, face a bid–ask spread and may also

encounter with a price impact. The transaction fee is typically only a fraction of a percent of

traded volume or a number of shares and contributes very little to the market illiquidity. On

another hand, a bid–ask spread implicitly charged by a trader5 could be more substantial.

It depends on the search costs, inventory costs and also possible asymmetric information

faced by a trader. Existing treatments of a portfolio choice of an investor in the presence

of transaction costs traditionally assume that these costs are linear and include the bid–ask

spread.6 It follows that the first and the second views on market illiquidity are related to

the market microstructure. However, the economic origin of the third view is not always

well–established.

The goal of our paper is to understand the optimal behavior of an investor who trades

continuously, but cannot trade as many shares as he would like to and is unable to reach his

best allocations. We model a stock illiquidity for an investor by assuming that transaction

costs on trading this stock are convex. We consider an investor who is a price–taker, thus

neglecting the illiquidity of the market resulting from a price–impact. If the market becomes

illiquid, a trader may have to hold shares which decrease his utility, spend considerable

time searching for another investor to close a transaction or face substantial asymmetry of

information. Naturally, if a stock becomes less liquid, a trader will increase the costs for

1This view on liquidity is developed by a number of authors including Frey (1998), Cetin, Jarrow, and
Protter (2004), Cetin, Jarrow, Protter, and Warachka, (2004), He and Mamaysky (2005), Liu and Yong
(2005), and Pereira and Zhang (2005).

2It has been explored by many authors including Constantinides (1986), Vayanos (1998, 2003), Lo,
Mamaysky, and Wang (2004), and Jang, Koo, Liu, and Loewenstein (2004).

3This view is advocated by a number of authors including Longstaff (2001, 2005) and Kahl, Liu, and
Longstaff (2003).

4See Longstaff (2001) or Kahl, Liu, and Longstaff (2003), and Longstaff (2005), respectively.
5We assume that a trader is a market maker or a dealer who trades from his own account.
6The literature on portfolio optimization in the presence of proportional transaction costs is vast. Its well–

known examples include Constantinides (1986), Davis and Norman (1990), Duffie and Sun (1990), Dumas
and Luciano (1991), Vayanos (1998, 2003), Liu and Loewestein (2002), Liu (2004), and many others.
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an investor to trade this stock to compensate for possible losses resulting from illiquidity.

Higher costs are defined by an increasing bid–ask spread included in the costs. Moreover,

the faster an investor needs the stock shares to be traded, the higher the costs would be. As

a result, a market becomes illiquid for an investor who endogenously chooses to trade at a

finite rate and is not able to reach his best allocations. Therefore, we connect the third view

on market illiquidity discussed above with the market microstructure.

Our approach stands between two extreme cases: One when a stock cannot be traded at

all and the other when an investor can trade it at an infinite rate. Both cases are the limits

of our model. In many economic settings, these two extreme approaches are more convenient

due to their relative simplicity. Examples include an investor’s trading in a perfectly liquid

market and optimization by an insider who cannot sell his shares. On the other hand, many

markets are captured much better by our model. Examples include extreme market episodes

such as the 1987 stock market crash and the 1998 financial crisis.7

In our approach we do not model a trader. A trader provides market liquidity and

conducts actual trading between investors. Modelling his behavior depends on numerous

details which dramatically affect the resulting costs for an investor. These details include the

preferences of a trader, the search procedure, the information available, and etc. Since many

of these details are unknown, their explicit modelling will result in costs for an investor which

are likely to be too specific. We take a phenomenological approach to market illiquidity by

describing the presence of a trader through the convex costs faced by an investor. It turns

out that our conclusions remain unchanged qualitatively and a number of them does not

change even quantitatively if we vary the convexity of the transaction costs. Therefore, our

results are robust with respect to many details of the behavior of a trader.

We assume that transaction costs are linear in the rate of trading when the trade is slow,

and convex when the trade is fast. The linear term in the transaction costs generates a

no–trading zone. Because the effects resulting from this term have been thoroughly studied,

we concentrate on studying the impact from nonlinearity in the transaction costs. Hence,

our further discussion in Introduction is related to the case where the linear component in

the transaction costs is absent. In Sections 2–5, we will also present new results related to

the linear component in the transaction costs.

We consider a portfolio choice of an investor who trades a liquid bond and an illiquid

stock market in the economy with a constant investment opportunity set. The stock market

can have a continuous path or it can be susceptible to crashes. The last situation is rather

common since a market’s illiquidity is often triggered by its crash (for example, the 1987

stock market crash and its resulting illiquidity). We also identify optimal strategies for an

7Our analysis can be easily extended to an illiquid bond market. For the empirical results, see Amihud
and Mendelson (1991), Boudoukh, and Whitelaw (1991), and Kamara (1994).
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investor who, besides having a liquid bond and an illiquid stock, has access to a perfectly

liquid stock. Both stocks are significant for the stock market. This situation is typical as

an investor often has to choose between liquid and illiquid stocks. Moreover, two stocks

can be perfectly correlated, generally implying access to arbitrage opportunities. The given

situation is related to markets where two securities providing identical cash flows, but having

different liquidities, also have different price dynamics which may allow an arbitrage.

Our main conclusions are following:

1. We find that in the presence of stock illiquidity, an investor can be forced to be in states

with any relative amount of stock holdings. However, he achieves a highest indirect utility

when his allocations lie on the Merton line. This result is independent from the degree of

convexity of the transactions costs. It implies that if an investor trades an illiquid stock,

then no matter whether the liquid security is a bond or another stock, or whether the illiquid

stock may undergo crashes, an investor does not try to reduce his holdings of the illiquid

stock. Thus, flight to liquidity does not occur. Notice that the flight to liquidity cannot be

caused by a stock illiquidity per se, but it could be triggered by additional features attributed

to an illiquid stock. For example, it could be caused by an increasing volatility of an illiquid

stock return.

No flight to liquidity does not mean, however, that the price of the illiquid stock does not

change. Welfare analysis shows that an investor substantially discounts his holdings of the

illiquid stock. This could lead to a noticeable fall of the illiquid stock price. We find that the

presence of stock illiquidity can put an investor in states where his portfolio has excessive

volatility. This volatility could be so strong, that a risk averse investor would be willing to

replace his illiquid stock holdings with the same value holdings of a stock that has negative

risk premium. Therefore, the expected returns of the illiquid stock could be very high.

2. If an investor trades two stocks one of which is illiquid, then holdings of both risky

securities would be substantially different from those where both stocks are liquid. If there

is a noticeable correlation between two stocks and the illiquid stock holdings are small, then

an investor always reduces his allocations in the liquid stock to that in the liquid market

with one stock. If volatility of the illiquid stock holdings is too high, he adjusts allocations

in the liquid stock to reduce cumulative volatility. In particular, if a correlation between two

stocks is positive, then an investor can take a short position in the liquid stock even if this

position is significantly positive in a perfectly liquid market. Allocations to a liquid stock

are similar but less pronounced, if two stocks are independent.

We find only minor quantitative differences in the last results between the cases where

illiquidity is very strong, moderate or even small. It follows that the described impacts

on liquid stock portfolio allocations can be significant even when stock illiquidity is

minor, leading to incorrect conclusions about investors’ rationality and market efficiency,
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if illiquidity is neglected.

3. In the special case when two traded stocks have perfect correlation, we recover the

familiar story of limits to arbitrage: An investor considers arbitrage opportunities on an

equal basis with other investment opportunities. He offsets the risk of his position in an

illiquid stock with the one in a liquid stock and takes additional position in a liquid stock

that is the same as in the absence of an illiquid stock.8

4. We consider optimal portfolio rules when, in addition to stock illiquidity, an investor

faces the possibility that this stock may crash. We find that in the presence of stock crashes,

an investor can easily find himself in states where he is willing to substitute his stock holdings

with substantially positive risk premium by those of a stock with a continuous path and

negative risk premium. Moreover, at many states he discounts the illiquid stock return for

crashes at a much higher rate than he does the returns of a liquid stock experiencing the

same crashes.

5. If the linear term is present in the transaction costs, then the shape of the no–

trading zone is independent from the degree of convexity of the costs. This result indicates

that our approach can be used to study the no–trading zone. A traditional analysis of

an investor’s trading in the presence of proportional transaction costs requires solving a

challenging stochastic singular control problem (e.g., Shreve and Soner, 1992). Our approach

can be used to study the no–trading zone for an investor with arbitrary preferences in the

arbitrary market (see also conclusion 6) avoiding singularities of controls.

6. Finally, in Appendix C we verify that the above conclusions hold if the investment

opportunity set is stochastic. In particular, we consider portfolio rule for an investor in the

market with stochastic volatility of the stock return. We confirm that the expected utility

function is maximized at allocations which are also optimal in the liquid market. Moreover,

the no–trading zone is not affected by the convexity of the transaction costs.

An approach related to ours is taken by Longstaff (2001) who assumes that stock shares

can be traded at a rate which is bounded from above and below by constants. As a result,

an investor always chooses to buy or sell shares at the constant rate. This behavior implies

that some compositions of the portfolio cannot be reached and that the expected utility

function of an investor is maximized at portfolio weights which are substantially different

from those in the perfectly liquid case. Longstaff maximizes expected utility function of

an investor with respect to his initial allocations and studies its deviation relatively to his

expected utility function in the perfect market. In our model, stock illiquidity is related to

the market microstructure and an investor can choose any finite rate of trading and reach

any proportion of stock holdings, by possibly paying very high fees. Contrary to Longstaff’s

8Related results can be found in Basak and Croitoru (2000, 2003), Liu and Longstaff (2004), and Isaenko
(2004).
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model, our investor achieves the highest expected utility function at allocations which are

optimal in the liquid market.9 Moreover, we analyze optimal trading and welfare of an

investor when his allocations are not utility–maximizing. A situation resulting from the

market illiquidity that is not studied elsewhere. In addition, we analyze trading volume and

optimal allocations by an investor in the presence of a second, perfectly liquid stock, as well

as in the case where an illiquid stock may undergo crashes. Both markets are very common

in practice.

The second paper which is related to ours is the one by Kahl, Liu, and Longstaff (2003).

These authors consider a portfolio choice by an entrepreneur who cannot trade his firm’s

stock shares but is not restricted in trading other securities. Inability of investor to trade

stock shares of his firm can be formally interpreted as if his firm’s stock is illiquid. If so, our

special case when the cost of trading of an illiquid stock is very high and a liquid stock is

present resembles their model and some of their conclusions are similar to ours. However,

illiquidity in our model is not extreme as investors can trade the security at a flexible and

possibly high rate. Moreover, an investor in our model trades an illiquid stock that is essential

for the stock market rather than a small stock with idiosyncratic risk as in Kahl, Liu, and

Longstaff (2003). Overall, our analysis applies to trading by an investor in an illiquid market,

rather than to an insider’s transactions in a perfectly liquid market.

Finally, Cetin and Rogers (2005), and Rogers and Singh (2006) have independently from

us used convex transaction costs for defining market illiquidity for an investor in discrete and

continuous time settings, respectively. However, the goal of the first paper is a derivation of

the equation for the value function, while the second paper analyzes option prices.

Our paper contributes to growing theoretical literature on the market’s illiquidity. In

addition to the above–cited references, important contributions include Lipman and McCall

(1986), Amihud and Mendelson (1986), Grossman and Miller (1988), Grossman and Laroque

(1990), Boudoukh and Whitelaw (1993), Holmstrom and Tirole (2001), Weill (2002), Acharya

and Pedersen (2003), Huang (2003), Duffie, Garleanu, and Pedersen (2003a, 2003b), O’Hara

(2003), Vayanos and Wang (2003), Eisfeldt (2004), Brunnermeir and Pederson (2005), Huang

and Wang (2005), and many others.

The rest of the article is organized as follows. Section 2 describes the model. Section 3

presents results of the optimal control problem faced by an agent who trades a bond and

one illiquid stock with a continuous path. Section 4 derives portfolio rules for an investor

who, besides holding an illiquid stock, can also trade a perfectly liquid one. Both stocks

have continuous paths. Section 5 presents optimal allocations of an investor who trades

an illiquid stock that may undergo crashes. Section 6 summarizes. Appendix A describes

9Contrary to our assumption, Longstaff (2001) assumes that the volatility of a stock return is stochastic.
However, this assumption does not change the nature of our conclusions, as verified in Appendix C.
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the solutions of the optimization problems introduced in Sections 2, 4, and 5, Appendix B

identifies the conditions for absence of arbitrage opportunities in the market with two stocks,

while Appendix C solves a portfolio–choice problem in the market with stochastic volatility

of the stock return.

2 The Basic Model

2.1 The Asset Market

We consider a markovian economy with a finite horizon T where there is a single perishable

consumption good that we treat as the numeraire. We assume a filtered probability space

(Ω,F , {Ft}, Q). Uncertainty in the model is generated by a standard one–dimensional

Brownian motion W . In Section 4, we assume that uncertainty is generated by a standard

two–dimensional Brownian motion W = (W1,W2). In Section 5, we assume that uncertainty

in the model is generated by a standard one–dimensional Brownian motion W and by

independent Poisson process P . In all cases Wt is adapted and so is Pt.

Investors can continuously trade two securities: a riskless bond and a stock. The riskless

bond has the price dynamics

dBt = Btrdt, (1)

where r denotes a constant interest rate. The price of the stock St follows the geometric

Brownian process

dSt = St(µdt + σdWt), (2)

where σ is positive.

Because only one stock is available, we interpret it as a stock market. In Sections 4 and 5,

we consider trading two stocks and trading one stock with crashes, respectively, which will

be described therein.

We assume that trading stock shares takes place at a finite rate u, that is

dNt = utdt, (3)

where N is a number of shares hold by an investor.

This assumption is justified by the costs of trading stock shares. We require that trading ∆N

shares of stock within time interval ∆t will costs α|∆N | = α|u|∆t dollars. We also assume

that the cost percentage α increases with the rate of trading |u| as α1 +α2|u|ε, where α1, α2,

and ε are positive constants. Hence, for trading ∆N shares an investor must pay a fee equal
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to (α1|u| + α2|u|1+ε)∆t dollars. For simplicity of exposition, we require that coefficients α1

and α2 be the same for the purchasing and selling of shares. If the market is liquid, the

dependence of α on |u| is very weak and could be neglected. However, if the market becomes

illiquid then coefficient α2 becomes significant. The chosen representation of the transaction

costs is intuitive. When the market is illiquid, it becomes more difficult for a trader to find

stock shares. The faster shares have to be bought (sold) the more difficult it is to find their

seller (buyer). To compensate for facing extra risk and effort, the trader imposes higher costs

on an investor.

The term α1|u| in the transaction costs represents the common proportional transaction

fees paid for trading stock shares, while the term α2|u|1+ε captures the difficulty of trading

shares at a high rate. The latter term does not allow the rate of trading u to be infinite,

even though it can be large: The higher the u at fixed ∆N , the more costly it is to trade for

an investor. Naturally, share holding N becomes absolutely continuous and can be given by

expression (3). We emphasize the difference between our way of making u finite and that of

Longstaff (2001). Longstaff simply requires that the rate of trading be bounded from above

and below, implying that some portfolio compositions cannot be reached if S is a diffusion

process and consumption is not allowed. In our model, any portfolio composition can be

reached, but at the expense of losing money on costly portfolio adjustments.

Notice that an investor could have placed the buy (sell) order between many traders to

buy (sell) ∆N shares within time ∆t and considerably reduced the nonlinear component in

transaction fees. Then stock illiquidity substantially decreases for this investor. We assume

that this opportunity is limited either by a small number of traders, considerable time and

effort required to place the orders between many traders, or fixed transaction fees charged

by each trader. The last factor is not present in our model since it is not important for our

goal, but it can become important in preventing diversification of the order.

2.2 The Investor’s Problem

An investor is a price–taker who has CRRA–preferences that support only consumption at

time T . The optimization problem faced by this investor is10

max
u∈R

E0

(
Xγ

T

γ

)
(4)

dXt = [rXt + NtSt(µ− r)− α1|ut| − α2|ut|1+ε]dt + NtStσdWt, (5)

10Existing papers on portfolio optimization in the presence of proportional transaction costs often assumes
that an investor sells all his stock shares at time T and consumes from his money market account. In our
approach, an investor chooses not to sell the stock shares at time T . It is likely that an investor will continue
to trade his portfolio after time T but he expects that the liquidity of the market will change and so a new
optimization problem will be formulated. See also Longstaff (2001).
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where γ < 1, γ 6= 0, and X stands for an investor’s wealth.

Since dX depends explicitly on S and N , and u is a rate of trading N (not NS), the

description of the problem is completed by adding equations 2 and 3.

Two remarks are in order. First, we assume that there is no explicit utility maximization

over different initial conditions, that is, an investor cannot choose to be at a given point

of the state variable space at time zero. If an investor can optimize throughout the initial

conditions, then all the effects discussed in this paper would be present, but the expected

magnitudes for some of them could be smaller than at other choices for the initial conditions.

Moreover, there is no solid economic reason that would require utility maximization over

different initial conditions.

Second, we assume that transaction charges are placed on the number of shares instead

of the volume of the stock traded by an investor. Often, charges are placed on the volume, at

least for the linear term in the costs. It is straightforward to modify our model by assuming

that the linear term in the costs is proportional to the volume traded without any qualitative

consequences for our conclusions. If we assume that all charges are proportional to the

volume traded, then the stock allocation θ = NS will have finite first order variation and

the dimension of the state variable space reduces to two. The shortcoming of this assumption

is that the volatility of θ could be zero only if σN = −σ, where NσN is the diffusion coefficient

of N . It is hard to believe that the last equality is true. More realistically, one would expect

that σ > 0 and σN = 0.11

2.3 Optimal Policies with no Transaction Costs

For the purpose of comparison, we describe the optimal strategy of an investor with CRRA–

preferences in the absence of transaction costs (see Merton, 1969). In this case, we call a

stock as (perfectly) liquid. Here, an investor chooses to invest a fixed fraction of his wealth

in the stock and this fraction is independent of the investor’s horizon:

NtSt

Xt

= π̂ ≡ µ− r

(1− γ)σ2
. (6)

This result allows us to say that optimal allocations lie on the “Merton line”. Loosely, we

also say that optimal allocations to a liquid stock lie on the Merton line when this stock may

crash, or when there is a second liquid stock.

The lifetime expected utility of this investor is

U =
Xγ

γ
exp

{
γ

[
r +

(µ− r)2

2σ2(1− γ)

]
T

}
. (7)

11Most of our results remain valid after appropriate modifications in state variables even if we assume that
all fees are proportional to the volume of traded stock.
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Notice that U is quadratic in (µ − r) implying that an investor will benefit from his stock

positions even if µ− r < 0. In this case, the benefits are achieved by taking a short position

in the stock.

Sections 4 and 5 will present the portfolio rules and the expected utilities in an economy

with two liquid stocks, and in an economy with one liquid stock susceptible to crashes,

respectively.

2.4 Optimal Policies with Transaction Costs

We now consider the case when transaction costs are present. Moreover, for simplicity of

calculations we assume from now on that ε = 1. Appendix A analyzes the problem for

arbitrary ε > 0.

One can show that the investor’s problem has a solution only if X ≥ NS ≥ 0, so we

name a line X = NS on the NS−X plane as a solvency line and the area between NS–axis

and a solvency line as a solvency region. The proof of the last result is very similar to that

in Longstaff (2001) and is not presented. In essence, an investor cannot borrow, because a

stock can quickly fall and he would not be able to sell enough stock to have positive terminal

wealth. Furthermore, he cannot short–sell because the stock can rapidly rise and an investor

would not be able to unwind his obligation before his wealth becomes negative. Thus, a

dramatic effect of illiquidity on portfolio composition. Notice that an investor may borrow

or take a short position in the stock if he has an additional source of earnings, for example

from labor income which can hedge the variation in the stock.

The optimization problem (4) can be solved only by the dynamic programming approach.

Furthermore, equations (2), (3), and (5) show that the markovian set of state variables in

the given economy is (S, X, N).

As in Merton (1969), we define an investor’s indirect utility to be

V (t, S,X, N) = max
u∈R

Et

(
Xγ

T

γ

)
. (8)

The appendix shows the Hamilton–Jacobi–Bellman (HJB) equation for this value function.

The first–order condition in the HJB equation gives the optimal rate of trading

u =





VN−VXα1

2VXα2
if VN/VX > α1

0 if − α1 ≤ VN/VX ≤ α1
VN+VXα1

2VXα2
if VN/VX < −α1.

(9)

The last result shows that an investor does not trade when |VN/VX | < α1, but a no–trading

zone is absent if the linear term in the transaction costs is zero. To understand the nature

of the existence of the no–trading zone, one has to consider change in the indirect utility

resulting from a deviation from its maximizing allocations in a stock and that resulting from
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paying fees to adjust the allocations back. Suppose that the original allocation to the stock

N is such that the indirect utility is maximal. (See the next section where we show that the

indirect utility is maximal when NS/X = π̂.) We now perturb this allocation by a small ∆N

which will result in negative change in the indirect utility given by VN∆N . To trade back to

the original allocations within a small time ∆t an investor has to pay (α1|∆N
∆t
|+α2(

∆N
∆t

)2)∆t

dollars so the corresponding change in the value function is −VX(α1|u| + α2u
2)∆t, where

u = ∆N
∆t

. To see whether an investor will or will not trade we have to compare |VN | and

VX(α1 + α2|u|). Suppose that α1 = 0 and α2 > 0, then at an optimal level of trading the

second term becomes VXα2|u| = |VN |/2 which is always less than the first term. Hence, an

investor will always prefer to trade to return to utility maximizing allocations. Now let us

assume that α1 > 0 and α2 > 0. Then it is easy to show that after the substitution of optimal

trading rate into VX(α1 + α2|u|) this term could be above |VN | (if |VN/VX | < α1) or never

above it (if |VN/VX | ≥ α1). Thus, an existence of the no–trading zone. We summarize that

the existence of the no–trading zone when α1 > 0 and α2 > 0, and its absence when α1 = 0,

and α2 > 0 follows from an investor’s ability to recover quadratic costs from stock returns by

slow trading and the inability to do so for linear costs (at least for a range of state variables),

since they are independent from the rate of trading for a given ∆N . These conclusions are

independent from whether trading is continuous or the stock path has an infinite first order

variation. Even though the linear term α1|∆N | alone cannot cause a market illiquidity for

an investor in our approach, we will consider its impact on optimal strategies and document

new findings.

Unfortunately, the equation for indirect utility function cannot be solved analytically

and we reserve to the traditional finite–difference numerical approach. The following section

presents the results of the numerical analysis. We are interested in states of the economy

where stock liquidity is limited. Assuming that these states exist for a reasonably short

period of time, we set the time horizon of an investor to be only one year. In addition, we

choose the following parameters unless specified otherwise: γ = −1, σ = 0.2, µ = 0.07, and

r = 0.01.12

We show results when some of the state variables are fixed. Consideration of the results

for other values of these state variables does not bring any new intuition and thus not

presented. Moreover, some of the results are not new qualitatively, but we still document

them for completeness.

12In the calculations, we choose state variable ln(S) instead of S and consider time and state variables
(t, ln(S), X,N) on the set of values [0, 1]× [−3, 3]× [0, 10]× [0, 3], where the corresponding numbers of the
grid–points are 10× 100× 100× 800. The condition 0 ≤ NS ≤ X is maintained on each point of the grid.
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3 Optimal portfolio with One Stock

In this section we consider an optimal portfolio held by an investor in the presence of

nonlinear transaction costs. We use the solution of the Merton problem described in Section

2.3 as a benchmark.

First let us assume that only the quadratic term in the transaction costs is present.

We notice a fundamental difference between optimal trading in our setting and that of the

Merton problem. In the latter case, an investor will have a fixed proportion of his wealth

invested to a stock at any state of the world, which is possible because of an investor’s ability

to trade an arbitrary large number of shares within a very short time interval. Because this

is not true in our setting, an investor’s allocations of stock could be way off from the Merton

line and these allocations would be optimal in the sense that his indirect utility is maximal

for given values of state variables. Depending on the dollar volume allocated to the stock,

an investor prefers to buy or sell shares at an optimal rate. Interestingly, we find that the

boundary between zones of selling and buying stock is a plane in the N−S−X space defined

by the equation NS/X = π̂. That is, if we fix one of the two state variables N or S, then the

value function V (t, ·, ·, ·) reaches its maximum on the Merton line. The size of this maximum

is probably affected by the value of the fixed state variable. However, this effect is very weak

and well within the calculation error. Notice that this result is different in nature from that

of Longstaff (2001): He finds that the border between buy and sell regions is dramatically

affected by stock illiquidity. The difference between our conclusions is caused by the gradual

nature of trading in our case: As NS/X gets further away from the utility–maximizing ratio

π̂ the rate of trading increases in magnitude, while in Longstaff (2001) this rate is always

constant in magnitude. The rate of trading in our case is defined by the tradeoff between

losses in utility due to not optimal allocations to the stock and the costs required to be paid

in order to reach these allocations faster.

Remark 1 We verify numerically that an investor reaches maximum of his expected utility

function on the plane NS/X = π̂ for any level of convexity ε.

It follows that in our model, the flight to liquidity, that is the will to reduce illiquid stock

holdings in favor of bond holdings, does not exist if the illiquid stock is the market stock.

In Appendix C, we confirm that this conclusion also holds if an investment opportunity set

is stochastic. We assume that volatility of a stock return is stochastic and show that the

expected utility function is maximal at allocations that are optimal in the liquid market.

This result does not imply that the price of illiquid stock is the same as the price of stock in

a liquid market. Welfare analysis, to be discussed later, shows that an investor substantially

discounts his holdings of the illiquid stock. This discount may cause a significant fall of the
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illiquid stock price. We also notice that the stock illiquidity is often caused by its sudden fall.

As a result, investors lower their expectations about stock returns and try to decrease their

illiquid stock holdings to reach the Merton line. This reduction has a behavioral nature but

could be incorrectly interpreted as the flight to liquidity. In addition, the fall of the illiquid

stock holdings can be caused by a sudden increase in this stock return volatility. An increase

in the stock return volatility is often comes along with a decrease in this stock liquidity.13 As

a result, investors reduce their holdings of a less liquid stock because of its increased volatility

and not decreased liquidity. The last three remarks also apply to the market with two stocks

and the market with illiquid stock susceptible to crashes to be analyzed in Sections 4 and 5,

respectively.

For welfare analysis, let us define the liquidity premium ∆l to be the amount of the

conditional stock return that an investor is willing to give up to avoid trading the illiquid

stock:

V (t, S,X,N) =
Xγ

γ
exp

{
γ

[
r +

(µ−∆l − r)2

2σ2(1− γ)

]
(T − t)

}
, (10)

or

∆l(t, S,X,N) = µ− r −
√

2σ2(1− γ)

(
1

γ(T − t)
ln

V (t, S,X, N)

Xγ/γ
− r

)
, (11)

where we took into account that the expected utility function in the Merton problem is given

by (7).

Table 1 shows the rate of trading, the expected utilities, and the liquidity premia for

different values of state variable N at t = 0 and fixed S and X when α2 = 0.2 and α2 = 0.005.

This table confirms the intuition about the rate of trading discussed at the beginning of this

section. We also notice that if α2 = 0.2, then the rate of trading is so small that an investor

can never reach his highest expected utility function if the initial allocations are off the

Merton line. As a result, this case is similar to the situation when a stock cannot be traded

at all (for example, see Kahl, Liu, and Longstaff, 2003, and Longstaff, 2005).

Now let us discuss the liquidity premium. Table 1 shows that this premium rises as α2

goes up. It follows from the table that when α2 is large and NS/X ¿ π̂, the expected utility

function is close to the one when no stock is traded (U = Umin ≡ Xγ

γ
exp(Tγr)). Thus, the

liquidity premium is close to µ− r. It decreases as NS/X approaches π̂ and increases again

when NS/X > π̂. The liquidity premium becomes even more extreme than in Table 1 if

stock volatility increases: At high proportions of stock holdings, the expected utility of an

investor becomes even smaller than the one he would have from holding only bonds. For

example, Table 2 shows that if we augment σ from 0.2 to 0.3, the expected utility function

13According to CGFS, during the 1998 crisis, the implied volatility of the S&P index increased from 23%
to 43%, that of the three–month US eurodollar rate from 8% to 33%, and that of the thirty–year US T–bonds
rate from 7% to 14%. See Vayanos (2003).
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of an investor falls below Umin in states with a high proportion of NS/X. This behavior

results from the excessive volatility of an investor’s portfolio.14 We conclude that in some

states of the economy an investor holds so much illiquid stock that he values these holdings

not only below their market value, but also is willing to hold a liquid stock with negative

risk premium, just to avoid facing illiquidity.

Longer than optimal position in the illiquid stock may result from a lowering in investor’s

expectations on stock returns so the stock becomes less attractive implying an excessive

proportion NS/X. It may also follow from a sudden increase in the volatility of the illiquid

stock returns (see footnote 13). For example, suppose that the stock market is liquid and

π̂ = 1.0. Then right before time zero, this market becomes illiquid triggered possibly by its

significant fall, and, as a result, the volatility of its return increases by
√

3. According to

formula (6), an investor’s expected utility is now maximized when NS/X = 0.33 (see also

Table 2). But an investor cannot reach this allocation immediately because it is extremely

expensive for him. Thus, his initial condition would be NS/X = 1.0 and the discount of the

illiquid stock holdings is very high.15

The high values of the liquidity premium show that the existence of times when the

market liquidity is low can explain why the historical stock returns are much higher than

many equilibrium asset pricing models predict. Complete evaluation of the contribution of

the liquidity premium to stock returns requires general equilibrium analysis of the economy.

The shown results are found when T = 1 and γ = −1. If we increase an investor’s

horizon, then the rate of trading grows in magnitude in both directions. This is due to an

extra expected wealth that an investor obtains because of longer stock growth, so he can pay

higher fees for trading shares to improve his allocations. In addition, the liquidity premium

decreases in all states as an investor can reach the highest utility faster. If we increase an

investor’s risk aversion, then the Merton line will increase its slope in the NS − X plane,

so the rate of trading declines at small N and increases in magnitude at large N . Because

higher risk aversion implies higher impassion for volatility, the utility in states with high N

could easily be below Umin. For example, if we set γ = −3 while keeping all other parameters

and state variables X, S as in Table 1, then ∆l = 4.6% and increases fast at NS/X = 0.75

versus ∆l = 0.01% in Table 1.

14As an illustration of this claim, let us consider two securities that have terminal values x̃ and a, where
the former is random and the latter is constant. Assume that Ex̃ > a. Because the utility function is
concave, EU(x̃) < U(Ex̃). However, the last two inequalities do not imply that EU(x̃) > U(a). In fact,
the opposite inequality can be true if the variance of x̃ is large. For example, if x̃ = 2 or 1 with the
same probability 1/2 and a = 1.4, γ = −1, then EU(x̃) = −0.75 < U(a) = −0.714. If we decrease the
variance of the portfolio by diluting x̃ with a to obtain wx̃ + (1 − w)a, where 0 < w < 1, then we can
easily make EU(wx̃ + (1 − w)a) > U(a). This can be seen from the last example if we set w = 0.5, then
EU(wx̃ + (1− w)a) = −0.711 > U(a).

15In extreme cases with initial conditions NS/X > 1.0 or N < 0, an investor may have to default on his
obligations.
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Now let us consider the case when both α’s are positive. In this case the solvency region

splits into the buy, sell, and no–trading zones where an investor buys, sells, and does not trade

stock shares, respectively. The no–trading zone lies between the first two and is separated

from them by straight planes. The linearity of boundaries is defined by the linearity of the

first term in the transaction costs and not by the convexity of the second one.

Remark 2 We find that the shape of the no–trading zone remains unchanged for any choice

of the convexity ε.

The last remark follows from the ability of an investor to recover convex costs by slow trading

and independence of the proportional transaction costs from the rate of trading at the given

∆N . This remark also applies to the case when there is a second, perfectly liquid stock

and to the case when illiquid stock may crash, that are considered in Sections 4 and 5,

respectively. Overall, our approach provides an alternative tool for studying the no–trading

zone comparing to its traditional treatment which deals with a challenging singular stochastic

control problem.

Figure 1 depicts the no–trading zones for an investor in the presence of the linear

component in the transaction costs. Thick solid and dashed lines show the no–trading

zone for S = 1.0 and S = 0.5, respectively, with all parameters being identical. As seen, the

no–trading zone is very wide. This width results from a short time–horizon of an investor

and the no–trading zone narrows as this horizon extends. The shorter the horizon, the

smaller the expected stock return that can be used for paying transaction costs. Hence,

the trade occurs further away from the Merton line (see also Liu and Loewenstein, 2002).

Furthermore, the no–trading zone is wider for the smaller stock price. The reason follows

from the fact that transaction fees are charged on the number of shares traded rather than

the volume of the traded stock, so it is less costly to adjust the stock allocation for a more

expensive stock at a given total stock investment of NS. Therefore, an investor can trade

more volume with more expensive stock. When fees are charged on the volume of the stock

traded, the no–trading zone is independent from the stock price.

The dependence of the no–trading zone on the stock price causes the buy and sell zones

disappear at small S, so that at these values an investor never trades the stock. The stock is

not traded because the loss in the expected utility function due to deviations of allocations

to the stock from the Merton line are always smaller then transaction costs required to pay

for staying inside the solvency region. This effect is illustrated in Figure 2, where we show

the no–trading zone for different stock prices.

Table 3 shows the rate of trading when linear component α1 is equal to 0.005. Not

surprisingly, this rate decreases as the state of an investor approaches the no–trading zone.

Moreover, the rate of trading is dramatically affected by the width of the no–trading zone
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Figure 1: This Figure shows the no–trading zones of an investor when S = 1.0 (thick solid
line) and when S = 0.5 (thick dashed line). The time is zero, and the parameters are fixed
at α1 = 0.005, α2 = 0.2, γ = −1, µ = 0.07, σ = 0.2, r = 0.01, and T = 1.
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Figure 2: This Figure shows the boundaries between the buy and no–trading zones for
different stock prices when α1 = 0.005 and α2 = 0.2. The boundaries between the sell and
no–trading zones are absent since they lie below the solvency line. The time is zero, and the
other parameters are fixed at γ = −1, σ = 0.2, µ = 0.07, r = 0.01, and T = 1.
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(parameter α1): Even slight decrease in this width considerably increases the rate of trading

in both directions.

Comparison of the expected utilities shows that the introduction of the linear term brings

a noticeable change into the welfare of an investor when the nonlinear term is reasonably

small (see Tables 1 and 3 for α2 = 0.005). It implies that if the horizon is short, then

the impact of the no-trading zone on prices could be significant, contrary to the one in the

long horizon (see Constantinides (1986)). Moreover, if the convex term is significant, the

introduction of the linear term has no effect within the accuracy of the display (see Tables

1 and 3 for α2 = 0.2). The last result confirms that α2 = 0.2 is large enough to make the

trading of an investor be essentially negligible.

In Appendix C we study investor’s trading in the presence of linear term in the transaction

costs when volatility of the market stock return is stochastic. Comparison of Tables 3 and

13 shows that the no–trading zone becomes wider if the volatility σ is stochastic and we

condition the state of economy on its value in an economy with the constant investment

opportunities set. If volatility of a stock return is stochastic, then an investor has to trade

more often to stay near the Merton line. Thus, the transaction costs increase making him

trade further away from the Merton line. In turn, widening of the no–trading zone causes

the rate of trade to decrease in both directions.

4 Optimal Portfolio with Two Stocks

In this section we consider the optimal portfolio of an investor who can trade two stocks,

one of which is illiquid (stock 1), while the other is perfectly liquid (stock 2). One can

think of these stocks as those making the stock market. Our goal is to understand how the

presence of the illiquid stock affects the allocation of an investor to the liquid stock. This

goal is motivated by a common situation in markets when the presence of illiquid securities

has a significant effect on the demand for liquid securities. In special instances, these two

securities may be strongly or even perfectly correlated in their returns. In the last case,

arbitrage opportunities may exist in the market.

We assume that the dynamics of the stocks are given by

dS1t = S1t(µ1dt + σ1dW1t), (12)

dS2t = S2t(µ2dt + σ2dW2t), (13)

where the standard Brownian motions W1 and W2 have the correlation coefficient ρ and

µ1, µ2, σ1, and σ2 are constants, the last two of which are positive. The dynamics of an
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investor’s wealth follows

dXt = [rXt + N1tS1t(µ1 − r) + Xtπ2t(µ2 − r)− α1|u1t| − α2u
2
1t]dt

+ N1tS1tσ1dW1t + π2tXtσ2dW2t, (14)

where N1 is the number of stock 1 shares and π2 is the proportion of an investor’s wealth

allocated to stock 2.

First we identify the conditions for the absence of arbitrage. To do so, we introduce its

definition:

Definition 1 An arbitrage (a free lunch) is a self–financed portfolio process such that the

associated wealth process X(·) satisfies

X0 ≥ 0, XT > X0e
rT . (15)

An arbitrage is a portfolio process whose wealth grows locally risklessly with a rate higher

than the instantaneous interest rate. In Appendix B we show that, similar to perfect markets,

arbitrage opportunities are possible only if ρ = 1 and ∆ ≡ µ1−r
σ1

− µ2−r
σ2

6= 0 or if ρ = −1 and
µ1−r

σ1
6= −µ2−r

σ2
.

We will determine the decision rules of an investor and compare them to the benchmark

case when both stocks are liquid:

π̂i ≡ 1

σi(1− γ)(1− ρ2)

[
(µi − r)

σi

− ρ
(µj − r)

σj

]
, i, j = 1, 2, (16)

V (t,X) =
Xγ

γ
exp

{
γ

[
r +

1

2(1− γ)(1− ρ2)
(17)

×
(

(µ1 − r)2

σ2
1

+
(µ2 − r)2

σ2
2

− 2
(µ1 − r)(µ2 − r)

σ1σ2

ρ

)]
(T − t)

}
.

Formula (16) implies that holdings of one stock are independent from the presence of

the other when the two stocks are independent. As the number of independent stocks

increases, the aggregate risk exposure of an investor increases proportionally. Nonetheless,

the probability for the portfolio wealth to fall below a certain threshold diminishes because

of diversification. If stocks are positively/negatively correlated, then an investor takes a

shorter/longer positions in stocks to reduce his exposure to the correlated parts of risks.

The correlated risks can also be reduced by hedging. If stocks are perfectly correlated and

their conditional Sharpe ratios are different, an investor takes infinite opposite positions in

the two stocks to take advantage of arbitrage. If ρ = 1 and the conditional Sharpe ratios of

the two stocks are the same, then an investor is indifferent between the two stocks. Finally,

we notice that an investor always chooses a market portfolio since πi is independent from an

investor’s wealth.
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If stock 1 is illiquid, an investor cannot short or take a very long position in stock 1 if

|ρ| 6= 1, because unpredictable variations in this stock cannot be completely hedged away.

Perfect hedging is possible, however, if |ρ| = 1, thus allowing positions with N1 < 0 and

N1S1 > X.

We present the HJB equation for the value function V (T, S1, X, N1) of the given problem

in Appendix A. The first–order conditions in this equation provide the optimal policies for

an investor:

u1 =





VN1
−VXα1

2VXα2
if VN1/VX > α1

0 if − α1 ≤ VN1/VX ≤ α1
VN1

+VXα1

2VXα2
if VN1/VX < −α1,

(18)

π2 = −VX(µ2 − r) + (VXXN1S1 + VXS1S1)ρσ1σ2

XVXXσ2
2

. (19)

Clearly, an investor can maintain any proportion π2 at any time by trading bond and stock

2 at a possibly infinite rate.

Let us also introduce the liquidity premium ∆l1 of stock 1 to be the amount of this stock

conditional return that an investor is willing to give up to avoid trading illiquid stock. As

follows from equation (17), indirect utility is not always a monotonically increasing function

of µ1 when ρ 6= 0. Thus, ∆l1 is not an accurate description of an investor’s welfare when

ρ 6= 0 so we use it only when ρ = 0:

V (t, S1, X, N1) =
Xγ

γ
exp

{
γ

[
r +

1

2(1− γ)

(
(µ1 −∆l1 − r)2

σ2
1

+
(µ2 − r)2

σ2
2

)]
(T − t)

}
,

or

∆l1(t, S1, X, N1) = µ1 − r − σ1

√
2(1− γ)

(
1

γ(T − t)
ln

V (t, S1, X, N1)

Xγ/γ
− r

)
−

[
(µ2 − r)

σ2

]2

.

(20)

In the following subsections we consider three cases: When two stocks are independent

(ρ = 0), when they are imperfectly correlated (0 < |ρ| < 1), and when trading stocks provide

arbitrage (ρ = 1 and ∆ 6= 0). One can verify from the following results that the expected

utility function of an investor is maximal when N1S1

X
= π̂1 if 0 ≤ |ρ| < 1. We conclude that

an investor does not try to get rid of the illiquid stock in the presence of the liquid one. Thus,

the flight to liquidity does not exist. Finally, it is straightforward to verify in all cases, that

an investor chooses not to hold the market portfolio, since the weight of each stock holding

changes differently with the variations in state variables.
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4.1 Trading when ρ = 0

In the case of uncorrelated stocks, expression (19) becomes

π2 = −VX(µ2 − r)

XVXXσ2
2

. (21)

The last result is formally the same as the one in the absence of the illiquid stock. However,

given that the indirect utility depends on the state variable N1, we expect that optimal

allocations to the liquid stock would depend on allocations to the illiquid stock.

The last expectation is confirmed in Table 4 which describes optimal trading when

α1 = 0, α2 > 0, σ1 = σ2 = 0.2 and µ1 = µ2 = 0.07. Contrary to the case of two liquid stocks,

the presence of another stock has an effect on the other’s stock trading. In particular, the

comparison of Table 1 with Table 4 shows that the rate of trading the illiquid stock increases

in the presence of the liquid stock. Managing stock 2 provides additional positive returns and

an investor is better off by forwarding some of them towards covering costs for trading the

illiquid stock. As a result, an investor prefers paying higher fees to achieve best allocation

in the illiquid stock faster. On the other hand, the presence of the illiquid stock has an

effect on the holdings of the liquid stock: When holdings of the illiquid stock are very low,

the proportion of wealth invested in the liquid stock is greater than that when both stocks

are liquid, and when holdings of the illiquid stock are too high, the proportion of wealth

invested in the liquid stock is lower than that when both stocks are liquid. To explain

these allocations, we notice that an investor who maximizes his expected utility function

from the terminal consumption tries to increase a probability of a high consumption and

decrease a probability of a low consumption. In the perfect markets, this goal is achieved by

a combination of substantial risk exposure and diversification. If one stock is illiquid, then

diversification is very restricted. As a result, an investor manages the risk by controlling

the aggregate risk exposure. In particular, when the aggregate risk exposure is low, an

investor increases his allocations to the liquid stock to increase terminal consumption. If

the aggregate risk exposure is too high, an investor decreases his allocations to the liquid

stock to decrease the risk of low consumption. Contrary to the case with liquid stocks, an

investor adjusts position in the liquid stock directly to change the aggregate risk exposure.

Moreover, changing π2 from π̂2 decreases diversification of stocks. Finally, an investor is

much less willing to increase the return and volatility of his portfolio when they are low,

than to give up extra volatility at the expense of the portfolio returns when the former is too

high. This effect follows from the risk aversion of an investor and becomes stronger as this

aversion rises. It strengthens even further if stock 1 becomes more illiquid (α2 increases) or

volatility of its return rises.

Interesting that at low values of N1 the allocations to the liquid stock are not monotonic.

Because in the absence of the illiquid stock π̂ = 0.75, they increase from π2 = π̂ at N1 = 0
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and then decrease as N1S1/X approaches π̂1. It turns out that an investor assumes that

the illiquid stock is absent for trading when N1 is very small and chooses π2 as if only one

liquid stock is being traded. If N1 increases, then an investor treats the illiquid stock as

an underinvested opportunity which he compensates by increasing allocations to the liquid

stock.

Table 4 also shows the liquidity premium ∆1l. Its behavior versus allocation to the

illiquid stock is very similar to that in the economy with one illiquid stock: It is very small

at N1S/X = π̂1 and then increases as N1S/X moves away from π̂1. Because ∆1l is a

discount for one illiquid stock, it is close to ∆l which is a similar discount in the economy

with one illiquid stock (see Tables 1 and 4). Still, ∆1l < ∆l. The last relation results from

interdependence between optimal policies for trading two stocks. As an investor gets an

access to a liquid stock, he improves the management of the risk in an illiquid stock which

allows him to demand a smaller discount for holding illiquid stock.

Finally for the case with α1 = 0, Table 5 presents the optimal trading and the expected

utility function for a longer time horizon when we set T = 5 while α1 = 0, α2 = 0.2, σ1 =

σ2 = 0.2, and µ1 = µ2 = 0.07. First, we point out a dramatic rise in the trading volume of

the illiquid stock for higher T . It is caused by additional returns from both stock holdings

which are forwarded to paying transaction costs. Second, we observe a noticeable change in

the allocation π2 for a longer time horizon: It further increases for low N1S1/X and further

decreases when this ratio is high. As the terminal consumption becomes more remote, an

investor is better off by further adjusting the aggregate risk exposure with stock 2 and

decreasing the diversification of his position. This is done even though the increased rate of

trading the illiquid stock allows for better risk managing by reaching π̂1 before an investor

horizon. Finally, as the time horizon T is extended, an investor can reach π̂1 within a

smaller time–fraction of his horizon. Hence, the effect of stock illiquidity on the expected

utility function (or the illiquidity premium) weakens. Table 5 also shows the impact on π2

coming from a combination of the long–time horizon and high volatility of the illiquid stock.

As seen, π2 can fall as low as 63% of π̂2 at high ratios of N1S1/X.

Now let us assume that α1 = 0.005 and find the resulting effect on the holdings of the

liquid stock. Table 6 shows optimal trading for the two different values of α2 when illiquidity

of stock 1 is strong and when it is moderate. Remarkably, even though the rate of trading

u1 is substantially different for the two values of α2, the allocations to the liquid stock are

almost equal to those when α1 = 0 and α2 = 0.2. This behavior results from the presence

of the no–trading zone: In the short time horizon, this zone for the illiquid stock is so wide

that the allocations to the liquid stock become almost identical to those when the trading

rate of the illiquid stock is close to zero (case with α2 = 0.2).

Comparison of Tables 3 and 6 shows that introduction of the liquid stock makes the
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no–trading zone narrower. The narrowing results from additional returns from the liquid

stock which are used to pay transaction costs for trading illiquid stock. Staying closer to the

Merton line improves the diversification of stocks.

4.2 Trading when 0 < |ρ| < 1

The situation when stocks are completely uncorrelated is rather unusual, even though

instructive. In this subsection, we consider the case when 0 < |ρ| < 1.

Table 7 shows optimal trading and the expected utility function when ρ = 0.5 and stock

returns have identical conditional moments: µ1 = µ2 = 0.07 and σ1 = σ2 = 0.2. As follows

from equation (16), π̂1 = π̂2 = 0.50 so that the expected utility function is highest when

N1S1/X = 0.5. Given the results for ρ = 0, one would expect π2 to be reasonably close to

π̂2. However, we find that π2 undergoes very significant variations around π̂2: If N1S1/X is

small, then π2 is close to π̂ = 0.75, where π̂ is an optimal proportion of wealth allocated to

stock when only a liquid stock is traded, and if N1S1/X exceeds π̂1, then π2 falls considerably

below π̂2. This behavior results from the correlation between the two stocks. If N1S1/X is

substantially below π̂1, a trader can rely only on stock 2 for a risk exposure and will trade

as if only this stock is available, choosing π2 ≈ 0.75. If N1S1/X increases above π̂1, then the

volatility of the portfolio goes up and the only way it can be decreased is by selling stock 2.

Reduction of the liquid stock holdings has very limited effect on the correlated risk since it

remains with the illiquid stock. Thus, an investor sells more liquid stock than he does when

stocks are uncorrelated.

Allocation to stock 2 may change its dynamics at N1S1/X > π̂1 when the correlation

between the two stocks is negative. To compensate for the excessive uncorrelated risk of

his position in stock 1, an investor decreases his holdings of stock 2. However, to reduce

correlated stock, he increases his holdings of stock 2 since it has the dynamics that is opposite

to that of the illiquid stock. Therefore, if the correlation is significant and negative, an

investor will increase his holdings of stock 2 at an excessive volatility of stock 1 holdings.

Remarkably, the allocation to the liquid stock is essentially the same for both shown

values of α2 even though the trading of stock 1 is negligible if α2 = 0.2 and an investor can

reach the best proportion π̂2 before the end of his time horizon if α2 = 0.005. This effect is

present if correlation between the two stocks is significant. To understand its nature, let us

decompose two correlated sources of uncertainty to two independent ones (e.g., see Shreve,

2004): W1 =
√

1− ρ2B1 + ρB2, W2 = B2, where B1 and B2 are two independent standard

Brownian motions. Then, the wealth of an investor’s portfolio follows

dXt =

[
rXt + N1tS1tσ1

(
µ1 − r

σ1

− ρ
µ2 − r

σ2

)
+ Φρt(µ2 − r)− α1|u1t| − α2u

2
1t

]
dt

+ N1tS1tσ1

√
1− ρ2dB1t + Φρtσ2dB2t, (22)
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where Φρt = ρN1tS1t
σ1

σ2
+ Xtπ2t.

If both stocks are liquid, then it is easy to show that Φρ/X = µ2−r
(1−γ)σ2

2
, which is a position

in stock 2 when two stocks are uncorrelated. Table 7 shows that the risk exposure Φρ/X is

almost the same for all values of N1 and equal to µ2−r
(1−γ)σ2

2
. We conclude that for any position

in illiquid stock 1, an investor takes an additional risk exposure in liquid stock 2, such that an

aggregate exposure to source of uncertainty B2 is equal to that in the absence of illiquidity.

The exposure to the other source of uncertainty B1 is defined by the current position in the

illiquid stock.

Table 7 shows that the described strategy persists for both values of α2. Because Φρ is

independent from u1, π2 does not change with illiquidity of stock 2 (parameter α2). Thus, π2

will not change even if illiquidity becomes small. We conclude that deviations of allocations

to stock 2 from those in the perfectly liquid market could be very significant even when stock

illiquidity is small. Thus, a full consideration of illiquidity is important for finding the best

strategies even when this illiquidity may seem to be small. In the latter case, however, an

investor reaches the Merton line relatively fast. As long as the correlation between stocks is

substantial, we expect that the given strategy is stable with respect to changes in parameters

of the model, the underlying processes as well as the preferences of an investor.

The deviation of π2 from π̂2 becomes even more dramatic if the correlation between the

two stocks increases further. Similar results will be observed if the economy horizon or the

volatility of the illiquid stock return is increased. Table 8 shows optimal policies and the

expected utility function when ρ = 0.8, σ1 = 0.2, T = 1.0, and ρ = 0.5, σ1 = 0.3, T = 5.0

while the other parameters are the same: µ1 = µ2 = 0.07, σ2 = 0.2, γ = −1, and

r = 0.01. If both stocks are liquid, then for the first choice of parameters the allocations are

π̂1 = π̂2 = 0.417, while for the second choice of parameters they are π̂1 = 0.111, π̂2 = 0.667.

As shown, even at N1S1/X = 0.5 the difference between π̂2 and π2 is substantial (especially

for the second set of parameters). It becomes extreme at N1S1/X ≈ 1 when an investor

takes a short position in the liquid stock even though π̂2 > 0.

At this point we notice that an analysis similar to ours for λ2 = 0.2 was conducted

by Kahl, Liu, and Longstaff (2003) for the case when the liquid stock is the stock market

and the illiquid stock cannot be traded at all. While some of their conclusions are similar

to ours, there are major differences as well. Similar results include the behavior of optimal

allocations π2 versus illiquid stock return volatility and risk aversion. The differences include

the behavior of the expected utility function : In our case, it is maximal when N1S1/X = π̂1,

not when N1 = 0 as in Kahl, Liu, and Longstaff (2003). This difference is a consequence of

their illiquid stock being a small stock with an idiosyncratic risk. Moreover, contrary to our

conclusions, these authors find that the deviation of the optimal portfolio weight π2 from this

weight in the unconstrained case decreases as T increases. The difference is caused by the
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presence of intertemporal consumption in the model by Kahl, Liu, and Longstaff (2003). As

the stock stays illiquid for longer time, the consumption in the illiquid market becomes more

important for an investor because of his time preferences. Meantime, longer time horizon in

our model weakens the effect of stock illiquidity because an investor has more time to reach

the utility–maximizing allocations by the time of the terminal consumption. Strengthening

of effects from stock illiquidity in the model by Kahl, Liu, and Longstaff (2003) and their

weakening in our model defines the difference in the behavior of π2 versus T . Above all, the

economic setups in Kahl, Liu, and Longstaff (2003) and our paper are very different: Kahl,

Liu, and Longstaff find portfolio rules of an insider in a perfectly liquid market, while we

find portfolio rules of an investor in illiquid market.

4.3 Limits to Arbitrage, or Trading when |ρ| = 1

Now we analyze the case when ρ = 1. The case when ρ = −1 is similar and will not

be considered. If ρ = 1 and the conditional Sharpe ratios are the same, then an investor

trades only the liquid stock and the problem becomes trivial. Hence, we assume that ∆ 6= 0

and arbitrage is present in the market. This analysis is motivated by a common situation

in markets where financial securities, which are identical in provided cash flows but have

different liquidities, may have substantially different prices. As a result, these securities may

provide arbitrage opportunities. These opportunities will persist in the long run because an

investor can take only a limited advantage of them. Thus, it is interesting to understand the

optimal behavior of an investor in the presence of arbitrage opportunities.

As follows from our discussion in the prologue to this section, the market allows arbitrage

in states where N1 has the same sign as ∆ [see equation (47)]. This arbitrage is limited by

the rate of transactions for stock 1 and applicable fees. Arbitrage may also be available at

states where N1 and ∆ have opposite signs.

Notice that the rate of portfolio growth in equation (47) cannot be made arbitrarily

high since an investor can change N1 only at a finite rate. Accordingly, the expected utility

function of an investor is finite even in the presence of arbitrage opportunities. The finiteness

of the expected utility function makes an investor consider arbitrage as one of many strategies

available for trading, rather than a dominant one. This interpretation is consistent with the

size of the optimal allocation π2 when ρ = 1:

π2 = −VX(µ2 − r) + (VXXN1S1 + VXS1S1)σ1σ2

XVXXσ2
2

. (23)

Contrary to the case where all stocks are liquid, this allocation is finite.

We confirm the above expectations by considering an investor’s optimal portfolio which
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discounted value follows

d

(
Xt

Bt

)
=

1

Bt

{[
Φt(µ2 − r) + N1tS1t)σ1∆− α1|u1t| − α2u

2
1t

]
dt

+ σ2ΦtdW1t

}
,

where Φt = N1tS1t
σ1

σ2
+ π2tXt is the cumulative risk exposure of an investor.

Table 9 reports optimal policies at different values of state variable N1 when (µ1−r)/σ1 = 0.1

and (µ2 − r)/σ2 = 0.3, so the illiquid stock is overpriced with respect to the liquid one. In

all shown states, an investor keeps Φ constant at the level corresponding to the market with

only liquid stock 2. That is, for any position in the illiquid stock, an investor takes a risk–

offsetting position in the liquid stock plus an additional positions in this stock and a bond

which match those in the absence of the illiquid stock. First two positions define a locally

riskless strategy which associated wealth follows Xa(t) =
∫ t

0
(∆N1S1σ1 − α1|u1| − α2u

2
1)dτ .

The last strategy is an arbitrage for states with a significantly short position in stock 1,

since its drift is nonnegative ∀t ∈ [0, T ]. It can also be arbitrage for other states N1 which

are not far from N1 = 0. We expect that the described pattern of trading is stable with

respect to changes in parameters of the model, the underlying processes, and the preferences

of an investor. Thus, we recover a result similar to that in Basak and Croitoru (2000) who

show that in the presence of market frictions an investor considers arbitrage as one of many

strategies if taking advantage of arbitrage is limited.16 Instead of allocating to only arbitrage

strategy, an investor also trades a risky strategy. In our case, the frictions are caused by

stock illiquidity, while Basak and Croitoru treat liquid markets in the presence of short–sale

and long–position constraints. We also conclude that arbitrage opportunities may exist in a

general equilibrium if markets are illiquid.

Notice that an investor offsets the risk of his position in the illiquid stock even when N1

is significantly positive and an arbitrage strategy is not available. By doing this, he removes

the risk related to his position in the illiquid stock which is very difficult to manage by

trading the illiquid stock itself.

Table 10 presents optimal trading in the presence of arbitrage opportunities when

α1 = 0.005. While in the case where |ρ| 6= 1 positive α1 leads to the existence of the

no–trading zone around N1S1/X = π̂1, this zone disappears if |ρ| = 1 and the difference

between the conditional Sharpe ratios of the two stocks is substantial. In the latter case,

an investor chooses allocations so that the volatility of his portfolio equals to the one in the

absence of the illiquid stock, and trades the illiquid stock at an almost constant rate. In

this way, losses due to the linear term in the transaction costs are not big enough to avoid

trading the illiquid stock, and an investor can take advantage of arbitrage opportunities. If

16See also Basak and Croitoru (2003), Liu and Longstaff (2004), and Isaenko (2004).
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the difference between the conditional Sharpe ratios of the two stocks decreases, and arbitrage

opportunities provide smaller premiums, an investor stops trading the illiquid stock near the

negative part of the NS–axis to avoid losses.

Tables 9 and 10 show a dramatic difference in the rate of trading u1 between the cases

when illiquidity is strong (α2 = 0.2) and moderate (α2 = 0.005). However, this rate has a

very small effect on the allocations π2 that are almost equal in the two cases. The reason is

similar to the one in the presence of partial correlation between stocks. An investor keeps

his cumulative risk exposure Φ constant at any level of stock 1 illiquidity. Because Φ is

independent from u, π2 is the same for any level of illiquidity at a given position in illiquid

stock 1. Finally, comparison of Tables 9 and 10 shows that even though the no–trading zone

is absent in Table 10, the presence of the linear term in the transaction costs has a very

strong effect on the rate of trading u1, but a negligible effect on the allocation π2.

5 Optimal Portfolio with Stock Crashes

It is interesting to consider portfolio rules when a stock may undergo crashes. The motivation

behind this consideration is that stock illiquidity is often triggered by its sudden fall in value

or the possibility of a such fall. As a result, stock illiquidity and the probability of its crash

often coexist. Examples include the 1987 stock market crash and the 1998 financial crisis.

During the periods following these crashes, trading in many securities was available but

limited, for some of them substantially. In this section, we consider trading a bond and an

illiquid stock which can be thought of as a market index vulnerable to crashes. But we first

identify portfolio rules when a stock susceptible to crashes is perfectly liquid.

We describe crashes by a Poisson process, so that the stock and an investor’s wealth

follow

dSt = (µ + λδ)Stdt + σStdWt − δSt−dPt, (24)

dXt = [rXt + πXt(µ + λδ − r)]dt + πXtσdWt − δπXt−dPt, (25)

where P is a poisson process with arrival intensity λ and δ is a jump percentage. We assume

that λ and δ are constants. Making λ and δ random will not change the essence of our

conclusions.

Notice that the term λδ in the stock return drift stands to compensate an additional negative

return introduced by crashes. However, following tradition, we do not compensate an

additional variance resulting from crashes.

Appendix A presents the HJB equation for an investor in this economy. The solution of
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this equation reveals his portfolio rule and the value function:

π̂ =
µ + λδ − r

(1− γ)σ2
− λδ

(1− γ)σ2(1− δπ̂)1−γ
, (26)

V (t,X) =
Xγ

γ
exp

{
γ

[
r + π̂(µ + λδ − r)− 1

2
π̂2σ2(1− γ)− λ

γ
(1− (1− π̂δ)γ)

]
(T − t)

}
.

(27)

It follows that π̂ is independent from an investor’s wealth and time horizon. Notice that even

in the presence of stock crashes an investor maintains the fixed proportion of investments to

the stock: Immediately after the stock crashes, and the allocation NS/X falls below π̂, an

investor buys as many shares as needed at an infinite rate to reach optimal proportion. This

proportion is, however, always less than the one in the absence of stock crashes.17 A more

detailed discussion of the effect of crashes on an optimal portfolio with a liquid stock can be

found in Liu, Longstaff, and Pan (2003).

To describe an investor’s aversion to stock crashes, we introduce a crash premium ∆c

defined as the amount of the conditional return of a stock without crashes that an investor

is willing to give up to avoid crashes:

V (t,X) =
Xγ

γ
exp

{
γ

[
r +

(µ−∆c − r)2

2σ2(1− γ)

]
(T − t)

}
, (28)

or, after taking into account result (27)

∆c = µ− r −
√

2σ2(1− γ)

(
π̂(µ + λδ − r)− 1

2
π̂2σ2(1− γ)− λ

γ
[1− (1− π̂δ)γ]

)
. (29)

Notice that ∆c is constant and is always not bigger than µ−r. The first remark follows from

the nature of the CRRA preferences, while the second remark results from the fact that the

expected utility function is always higher in the absence of crashes.

Now we turn to the case when a stock is illiquid. Similar to the economic settings

considered in Sections (3) and (4), the position in the illiquid stock is limited by the

constraints: N ≥ 0 and NS ≤ X. The formulation of the HJB equation for the value

function V (t, S,X,N) in this case is given in Appendix A. It follows from the first–order

condition of this equation that optimal trading is affected by crashes only implicitly through

marginal indirect utilities:

u =





VN−VXα1

2VXα2
if VN/VX > α1

0 if − α1 ≤ VN/VX ≤ α1
VN+VXα1

2VXα2
if VN/VX < −α1.

(30)

17When we add crashes to the stock, its expected return does not change but the variance increases. Thus,
the return to risk ratio of the stock decreases making it less valuable to an investor.
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Clearly, when stock crashes are present along with stock illiquidity, the crash premium cannot

be sufficient. Here we introduce a crash–liquidity premium ∆c−l as follows:

V (t, S, X, N) =
Xγ

γ
exp

{
(T − t)γ

[
r +

(µ−∆c−l − r)2

2σ2(1− γ)

]}
, (31)

or:

∆c−l(t, S, X,N) = µ− r −
√

2σ2(1− γ)

(
1

γ(T − t)
ln

V

Xγ/γ
− r

)
. (32)

Apparently, ∆c−l is the return of the liquid stock without crashes that an investor is

willing to give up to avoid facing two imperfections. Table 11 shows the solution of an

investor’s problem when α2 = 0.2 and α2 = 0.005. The crash has a scale of 10% occurring

each ten years on average, so in the absence of stock illiquidity, an investor will always hold

proportion π̂ = 0.73 of the stock.

Similar to the results obtained for an illiquid stock without crashes, an investor can be

at any point in the solvency region. He will trade at a rate depending on how far he is from

the plane NS/X = π̂, where π̂ is the solution of equation (26). The rate becomes higher as

he gets further away from the plane. At the fixed value of one of the two state variables N

or S, an investor’s utility is maximal on the Merton line where he also switches the direction

of trading. We conclude that even in the presence of illiquid stock crashes, the flight to

liquidity, or the willingness to buy more bonds in favor of the stock, does not exist.

Now let us consider the premium. As seen from Table 11, the crash–liquidity premium

decreases at small NS/X until NS/X = π̂ and then starts increasing until NS/X = 1.

Moreover, at very small values of NS/X, ∆c−l is very close to ∆l defined in (11): If the

proportion of stock holdings is small, then the possibility of a stock crash (and hence

further decrease of this proportion) has a relatively small effect on an investor’s ability

to substantially increase stock holdings. When NS/X = π̂, the crash–liquidity premium

is defined by the crash premium, as the liquidity premium is very small. The impact

of illiquidity shows off again for larger proportions NS/X: As NS/X increases from π̂,

the liquidity and crash–liquidity premiums go up. However, they do this at a different

rate: ∆c−l/(∆l + ∆c) is one on the Merton line and increases with NS. For example, if

NS/X = π̂ = 0.730, then ∆c−l/(∆c + ∆l) ≈ 1, however if NS/X = 0.983 and α2 = 0.2 then

∆c−l/(∆l + ∆c) = 1.19. Thus, the two types of imperfections are interdependent and their

impact substantially increases when both are present at high proportion of NS/X.

An investor requires an additional to ∆l + ∆c premium at high proportions of NS/X

because if a stock crashes, he loses more of his wealth than when this proportion is small.

For example, if δ = 10% and NS = X, then in the case of a stock crash an investor loses 10%

of his wealth. If, on another hand, NS/X ≤ π̂, then the loss is less than or equal to 10% of
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π̂X which can be much smaller than 0.1X. As a result, an investor requires an additional

premium for facing both imperfections at the same time.

For a better description of the last effect, we introduce the crash premium in the presence

of illiquidity ∆i
c which captures the impact of stock crashes when the stock is illiquid:

V (t, S, X, N) = V̂ (t, S, X, N ; µ−∆i
c), (33)

where V̂ (t, S, X,N ; µ−∆i
c) is the indirect utility in the market having the illiquid stock with

a continuous path and a return drift µ−∆i
c, while the other market characteristics are the

same as in the market under consideration. Equation (33) is solved numerically with respect

to ∆i
c. Clearly, ∆i

c is a function of time and the current state of the economy. We find that

∆i
c is zero at low values of NS/X and increases above ∆c at high values of NS/X. It follows

that an investor often discounts the illiquid stock return for crashes at a higher rate than he

does the liquid stock returns for the same crashes.

The last results are defined by the size and intensity of the stock crashes: As λ or δ goes

up, so does the ratios ∆c−l/(∆l + ∆c) and ∆i
c/∆c. As an illustration, Table 12 reports the

optimal trading rate and premiums when λ = 3 and δ = 0.1. As seen, ∆c−l/(∆l + ∆c) and

∆i
c/∆c increase with NS/X much faster than they do when crashes occur rarely (see Table

11). As the expected effect from the crashes on the stock value increases, the more this value

is discounted in the illiquid market since an investor will not be able to quickly adjust to

changes in the stock making the possible losses increase.

Table 12 also shows that when δ = 0.1 and λ = 3 the expected utility function of an

investor can fall below Umin. This result has the same nature as the one in the absence

of stock crashes when stock volatility is high, and follows from the excessive volatility in

an investor’s portfolio. Since the addition of Poisson crashes does not change the stock’s

expected return, but it increases its variance, an investor can easily find himself in a state

where he would be happy to hold a liquid stock with a continuous path and a negative risk

premium instead of an illiquid stock of the same volume which is susceptible to crashes.

Clearly, this situation would occur at stock return volatility σ being much lower than in the

case of the illiquid stock with no crashes (compare ∆l in Table 1 with ∆c−l in Table 12).

6 Conclusion

We analyze the optimal behavior of an investor who trades an illiquid stock which we suppose

to be either the whole market index (Sections 3 and 5) or its substantial part (Section 4).

We model stock illiquidity for an investor through the convex costs he has to pay for its

trading. In the absence of the linear term in the transaction costs, the following conclusions
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are obtained. The new findings resulting from the presence of this term can be found in

Sections 2–5.

In the presence of stock illiquidity, portfolio decisions become partly irreversible and this

substantially changes the decision making of an investor. We find that in the presence of

illiquidity, an investor achieves the highest indirect utility when his allocations lie on the

Merton line. This result is independent from the degree of convexity of the transaction

costs. Thus, flight to liquidity does not occur. Furthermore, the presence of stock illiquidity

can put an investor in states where his portfolio has excessive volatility. This volatility could

be so high that an investor, as if he is a risk lover, would be willing to replace his illiquid

stock holdings with a substantially positive risk premium by those of an liquid stock that

has a negative risk premium.

If an investor trades two stocks, one of which is illiquid, then holdings of both risky

securities will be considerably different from the holdings when both stocks are liquid, even

if the two stocks are independent. In the special case where the two traded stocks have a

perfect correlation, we recover the story of the limits to arbitrage: An investor considers

arbitrage opportunities on an equal basis with other investment opportunities and takes a

risky position in their presence.

We consider optimal portfolio rules when, in addition to stock illiquidity, an investor

faces the possibility of a stock crash. We find that the premium for a stock crash could be

much higher than it is when a stock is liquid.

The above findings remain unchanged if the linear term in the transaction costs is present

and small. Furthermore, the shape of the no–trading zone is not affected by the convexity

of the transaction costs. Finally, the listed conclusions hold even if the constant investment

opportunity set is replaced with a stochastic one.
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Appendix A

In this appendix we formulate the HJB equations to be solved for indirect utility functions

when an investor trades a bond and one illiquid stock, one liquid and one illiquid stock,

all with continuous paths, or an illiquid stock that may also undergo Poisson crashes. We

also formulate and solve the HJB equation when the stock is liquid and undergoes Poisson

crashes. The analysis is conducted for an arbitrary positive degree of convexity ε.

If an investor trades a bond and an illiquid stock, then his value function V (t, S, X, N)

solves the following PDE

max
u∈R

{
Vt +

1

2
σ2N2S2VXX +

1

2
σ2S2VSS + σ2NS2VXS

+

[
rX + NS(µ− r)− α1|u| − α2|u|1+ε

]
VX + µSVS + uVN

}
= 0, (34)

V (T, S, X, N) = Xγ/γ. (35)

The first–order condition implies that u = 0 or is a solution of

α1 + α2(1 + ε)|u|ε =

∣∣∣∣
VN

VX

∣∣∣∣. (36)

This equation has a solution for u only if the minimum of its left side is not above its right

side. That is, if α1 ≤ |VN/VX |. In the latter case we find |u| =

(
|VN/VX |−α1

α2(1+ε)

) 1
ε

. Thus, the

optimal rate of trading can be written as

u =





(
VN−α1VX

α2(1+ε)VX

) 1
ε

if VN/VX > α1

0 if |VN/VX | ≤ α1

−
(
−VN−α1VX

α2(1+ε)VX

) 1
ε

if − VN/VX > α1.

(37)

Result (37) provides expression (9) if we replace ε with 1. After substitution of result

(37) into equation (34) we find the PDE for V :

Vt +
1

2
σ2N2S2VXX +

1

2
σ2S2VSS + σ2NS2VXS +

[
rX + NS(µ− r)

]
VX + µSVS

+ ε

(
VN − α1VX

α2(1 + ε)VX

) 1
ε

(VN − α1VX)+ + ε

(−VN − α1VX

α2(1 + ε)VX

) 1
ε

(−VN − α1VX)+ = 0, (38)

where z+ is a positive part of variable z.
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If an investor trades a bond, an illiquid stock and a liquid stock, then his value function

V (t, S1, X, N1) solves the following PDE

max
u1,π2∈R2

{
Vt +

[
1

2
(N1S1σ1)

2 + ρN1S1π2Xσ1σ2 +
1

2
(π2Xσ2)

2

]
VXX +

1

2
σ2

1S
2
1VS1S1

+ (N1S1σ1 + ρπ2Xσ2)σ1S1VXS1 + µ1S1VS1 + u1VN1 (39)

+

[
rX + N1S1(µ1 − r) + π2X(µ2 − r)− α1|u1| − α2|u1|1+ε

]
VX

}
= 0,

V (T, S1, X,N1) = Xγ/γ.

It is straightforward to verify that if ε = 1 then the first–order conditions in the last equation

result in the trading rate u1 and the optimal proportion π2 given by expressions (18) and

(19), respectively. When u1 and π2 are substituted into equation (39), we find:

Vt +
1

2
(N1S1σ1)

2VXX +
1

2
σ2

1S
2
1VS1S1 + N1S

2
1σ

2
1VXS1 + µ1S1VS1

+ [rX + N1S1(µ1 − r)]VX − [VX(µ2 − r) + (VXXN1S1 + VXS1S1)ρσ1σ2]
2

2VXXσ2
2

(40)

+ ε

(
VN1 − α1VX

α2(1 + ε)VX

) 1
ε

(VN1 − α1VX)+ + ε

(−VN1 − α1VX

α2(1 + ε)VX

) 1
ε

(−VN1 − α1VX)+ = 0.

Suppose now that an investor trades a bond and a liquid stock that may experience

Poisson crashes. Then, as follows from the dynamics of portfolio wealth given by equation

(25), the HJB equation for the value function V (t,X) can be written as

max
π∈R

{
Vt +

1

2
σ2X2π2VXX + X

[
r + π(µ + λδ − r)

]
VX + λ

[
V (t,X(1− δπ))− V (t,X)

]}
= 0,

V (T, X) = Xγ/γ. (41)

The first–order condition reads

π̂ = −(µ + λδ − r)VX − λδVX(t,X(1− δπ̂))

σ2XVXX

, (42)

which after substitution into equation (41), gives a PDE to be solved:

Vt + XrVX +
1

2
σ2X2π̂2VXX + X

[
r + π̂(µ + λδ − r)

]
VX

+ λ

[
V (t,X(1− δπ̂))− V (t,X)

]
= 0, V (T, X) = Xγ/γ. (43)

Assume that π̂ is a constant, then it is easy to verify that the last equation is solved by the

indirect utility given by expression (27). This expression implies that the decision rule is in

fact constant and given by expression (26).
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Finally, let us suppose that the stock in the last problem becomes illiquid. Then the

indirect utility function depends on variables S,X,N and the HJB equation for V (t, S, X, N)

becomes

max
u∈R

{
Vt +

1

2
σ2N2S2VXX +

1

2
σ2S2VSS + σ2NS2VXS

+

[
rX + NS(µ− r)− α1|u| − α2|u|1+ε

]
VX + µSVS + uVN (44)

+ λ

[
V (t, S(1− δ), X −NSδ,N)− V (t, S, X,N)

]}
= 0,

V (T, S, X, N) = Xγ/γ. (45)

It is straightforward to verify that the first–order condition in the last equation results in

the trading rate u given by formula (30). When u is substituted into equation (44), we find

Vt +
1

2
σ2N2S2VXX +

1

2
σ2S2VSS + σ2NS2VXS +

[
rX + NS(µ− r)

]
VX + µSVS

+ ε

(
VN − α1VX

α2(1 + ε)VX

) 1
ε

(ε2 − 1)(VN − α1VX)+ + ε

(−VN − α1VX

α2(1 + ε)VX

) 1
ε

(−VN − α1VX)+

+ λ

[
V (t, S(1− δ), X −NSδ,N)− V (t, S, X, N)

]
= 0. (46)

Equations (38), (40), and (46) can be solved only numerically. Because all these equations

are highly nonlinear, standard existence and uniqueness results for their solutions do not

apply. Thus, we simply assume that the solutions exist and that they are unique. Moreover,

we assume that our numerical solutions converge uniformly to the true solutions in the limit

of infinitely small space (and so time) increment.

Appendix B

In this appendix we show that arbitrage opportunities in the setting of Section 4 are possible

only if ρ = 1 and ∆ ≡ µ1−r
σ1

− µ2−r
σ2

6= 0 or if ρ = −1 and µ1−r
σ1

6= −µ2−r
σ2

.

Indeed, if ρ = 1 then W1 and W2 are identical and we can make the volatility of the

portfolio be zero by setting π2 = −N1S1

X
σ1

σ2
. Consequently, equation (14) becomes

dXt = {rXt + N1tS1tσ1∆− α1|u1t| − α2u
2
1t}dt. (47)

If the allocation N1 has the same sign as ∆, the portfolio return can be made locally riskless

and higher than r, because an investor can choose u to be arbitrarily small. Assuming that
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an investor can be in a state where N1 and ∆ have the same sign, we find access to arbitrage

opportunities. If ∆ = 0, then the locally riskless rate of portfolio growth is r− α1|u|+α2u2

X
≤ r

and no arbitrage is available. The proof for ρ = −1 is similar. Finally, if −1 < ρ < 1, then

the portfolio with stocks cannot be made locally riskless and arbitrage will not be available.

Appendix C

In this appendix we show that the main conclusions of this paper do not change if we assume

that investment opportunity set is stochastic. In such a set, the interest rate, the drift and

volatility of the stock return are stochastic. We consider the economy with liquid bond and

illiquid stock market where only the volatility of the stock return is stochastic. Incorporation

of stochastic spot interest rate and stock return drift is straightforward and will not change

the essence of our conclusions.

We assume that stock is a positive process

dSt = St(µdt + σtdWt),

where µ is a constant, W is a standard Brownian motion and σ is a stochastic volatility

following a geometrical Brownian motion

dσt = σtυdWσt, (48)

where Wσ is a standard Brownian motion independent from W 18 and υ is a positive constant.

First, we find optimal allocations when stock is liquid. Here, the economy is markovian and

the HJB equation for V (t,X, σ) is

max
π∈R

{
Vt +

1

2
σ2π2X2VXX +

1

2
σ2υ2Vσσ + [r + π(µ− r)]XVX

}
= 0, (49)

V (T,X, σ) = Xγ/γ. (50)

The first order condition provides

π = −µ− r

σ2

VX

VXXX
.

Let us assume that V (t,X, σ) = Xγ

γ
F (t, σ), then the proportion of wealth allocated to the

stock becomes

π̂ =
µ− r

σ2(1− γ)
(51)

18We assume a filtered probability space (Ω,F , {Ft}, Q). Uncertainty in the model is generated by a
standard two–dimensional Brownian motion (W,Wσ), which is also adapted.
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and F (t, σ) solves the following PDE

Ft +
1

2
σ2υ2Fσσ + γ

[
r +

(µ− r)2

2σ2(1− γ)

]
F = 0, (52)

F (T, σ) = 1. (53)

For the goal of our treatment the solution of the last PDE is not important, so we assume

that it exists and unique but we do not find actual F (t, σ). It follows that the proportion of

investor’s wealth allocated to the stock is not fixed and changes with stochastic volatility σ.

Now let us assume that the stock market becomes illiquid. Here, the set of state variables

includes S, X,N, and σ. Thus, the HJB equation for V (t, S, X, N, σ) is

max
u∈R

{
Vt +

1

2
σ2N2S2VXX +

1

2
σ2S2VSS + σ2NS2VXS +

1

2
σ2υ2Vσσ

+

[
rX + NS(µ− r)− α1|u| − α2|u|1+ε

]
VX + µSVS + uVN

}
= 0, (54)

V (T, S, X, N, σ) = Xγ/γ. (55)

Analysis of the first–order condition for the last equation provides the optimal rate of trading

u given by (37), where V also depends on σ. Thus, the stochastic volatility affects the rate

of trading only implicitly through the marginal indirect utilities. After substitution u into

the last equation we find the PDE for V (t, S, X, N, σ). We solve this PDE numerically and

confirm that the indirect utility is maximal when NS/X = π̂. Moreover, we find that,

conditioned on the value of volatility of stock return, the no–trading zone has a shape of

a positive cone and it is independent from the convexity of the transaction costs. As an

illustration, Table 13 shows the rate of trading and the expected utility function at fixed

values of state variables X, S and σ when ε = 1 and 2. We assume that σ takes values from

0.15 to 0.25 and is fixed at 0.20. Clearly, the expected utility function is maximal when

NS/X = π̂ = 0.75 and the boundaries between trading zones are the same for both values

of ε. This result can be easily extended to the two other economic settings considered in the

paper without any changes. Moreover, our conclusions regarding an investor welfare, rate

of trading and interdependence of allocations to liquid and illiquid stocks will be modified

only quantitatively but not qualitatively if we condition them on the value of the stochastic

volatility or average the results over distribution of σ.
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Table 1: Optimal trading of illiquid stock when α1 = 0

α2 = 0.2 α2 = 0.005
N NS/X

0.04 0.020
0.50 0.246
1.00 0.492
1.52 0.749
1.53 0.753
1.70 0.836
1.85 0.911
2.00 0.983

u U ∆l

0.0660 -0.9787 0.0443
0.0447 -0.9679 0.0150
0.0227 -0.9609 0.0035
0.00001 -0.9585 0.0001
-0.0002 -0.9585 0.0001
-0.0074 -0.9587 0.0003
-0.0140 -0.9593 0.0012
-0.0205 -0.9604 0.0028

u U ∆l

1.801 -0.9719 0.0230
1.235 -0.9648 0.0095
0.633 -0.9600 0.0022
0.005 -0.9584 0.0000
-0.005 -0.9584 0.0000
-0.207 -0.9585 0.0001
-0.391 -0.9589 0.0007
-0.571 -0.9597 0.0017

The table reports optimal trading rate u, expected utility function U , and liquidity premium ∆l when
α1 = 0, γ = −1, µ = 0.07, σ = 0.2, r = 0.01, T = 1, and t = 0, S = 0.497, X = 1.01, so π̂ = 0.75,
Umax = −0.9584, and Umin = −0.9802.

Table 2: Optimal trading of illiquid stock when α1 = 0 and σ = 0.3

α2 = 0.2 α2 = 0.005
N NS/X

0.04 0.020
0.50 0.246
0.67 0.330
0.68 0.332
1.00 0.492
1.30 0.587
1.85 0.911
2.00 0.983

u U ∆l

0.0637 -0.9800 0.0383
0.0172 -0.9731 0.0182
0.001 -0.9725 0.0005

-0.0005 -0.9725 0.0005
-0.030 -0.9744 0.0076
-0.055 -0.9795 0.0336
-0.105 -0.9981 NA
-0.119 -1.0054 NA

u U ∆l

1.287 -0.9746 0.0142
0.358 -0.9708 0.0011
0.005 -0.9706 0.0003
-0.008 -0.9706 0.0003
-0.646 -0.9715 0.0032
-1.249 -0.9743 0.0132
-2.370 -0.9844 NA
-2.676 -0.9883 NA

The table reports optimal trading rate u, expected utility function U and the liquidity premium ∆l when
α1 = 0, γ = −1, µ = 0.07, σ = 0.3, r = 0.01, T = 1, and t = 0, S = 0.497, X = 1.01, so π̂ = 0.333,
Umax = −0.9705, and Umin = −0.9802.
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Table 3: Optimal trading of illiquid stock when α1 = 0.005

α2 = 0.2 α2 = 0.005
N NS/X

0.04 0.020
0.50 0.246
0.75 0.369
1.0 0.492

1.240 0.610
1.244 0.612
1.525 0.750
1.820 0.895
1.824 0.897
2.032 0.999

u U ∆l

0.0537 -0.9788 0.0446
0.0324 -0.9678 0.0148
0.0213 -0.9636 0.0076
0.0105 -0.9607 0.0032
0.0001 -0.9589 0.0006

0.0 -0.9589 0.0006
0.0 -0.9585 0.0001
0.0 -0.9589 0.0006

-0.0001 -0.9589 0.0006
-0.0094 -0.9605 0.0029

u U ∆l

1.399 -0.9749 0.0304
0.972 -0.9664 0.0123
0.706 -0.9630 0.0067
0.354 -0.9605 0.0029
0.004 -0.9589 0.0006
0.0 -0.9589 0.0006
0.0 -0.9585 0.0001
0.0 -0.9589 0.0006

-0.006 -0.9589 0.0006
-0.302 -0.9604 0.0028

The table reports optimal trading rate u, expected utility function U , and liquidity premium ∆l when
α1 = 0.01, γ = −1, µ = 0.07, σ = 0.2, r = 0.01, T = 1, and t = 0, S = 0.497, X = 1.01, so π̂ = 0.75,
Umax = −0.9584, and Umin = −0.9802.

Table 4: Optimal trading of two stocks when α1 = 0 and ρ = 0

α2 = 0.2 α2 = 0.005
N1 N1S1/X
0.04 0.020
0.50 0.246
1.00 0.492
1.52 0.749
1.53 0.753
1.70 0.836
1.85 0.911
2.00 0.983

u1 π2 U ∆l1

0.0703 0.751 -0.9569 0.0437
0.0476 0.755 -0.9462 0.0147
0.0239 0.750 -0.9393 0.0032
0.0000 0.737 -0.9371 0.0000
-0.0001 0.737 -0.9371 0.0000
-0.008 0.730 -0.9373 0.0003
-0.016 0.724 -0.9380 0.0012
-0.022 0.717 -0.9391 0.0029

u1 π2 U ∆l1

1.84 0.751 -0.9501 0.0225
1.26 0.753 -0.9431 0.0092
0.64 0.750 -0.9369 0.0020
0.01 0.740 -0.9371 0.0000
-0.00 0.740 -0.9371 0.0000
-0.22 0.735 -0.9372 0.0002
-0.41 0.731 -0.9376 0.0007
-0.60 0.726 -0.9383 0.0017

The table reports optimal policies u1, π2, expected utility function U , and the liquidity premium ∆l1, when
α1 = 0, γ = −1, µ1 = µ2 = 0.07, σ1 = σ2 = 0.2, ρ = 0, r = 0.01, T = 1, and t = 0, S1 = 0.497, X = 1.01, so
π̂1 = π̂2 = 0.75, Umax = −0.9371, and Umin = −0.9802.
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Table 5: Optimal trading of two stocks when ρ = 0, α1 = 0, and T = 5

σ2 = 0.2 σ2 = 0.3
N1 N1S1/X
0.04 0.020
0.50 0.246
0.67 0.330
0.68 0.332
1.00 0.492
1.52 0.749
1.53 0.753
1.70 0.836
1.85 0.911
2.00 0.983

u1 π2 U ∆l1

0.258 0.763 -0.8068 0.0232
0.174 0.768 -0.7755 0.0088
0.143 0.764 -0.7672 0.0056
0.142 0.764 -0.7670 0.0055
0.085 0.748 -0.7559 0.0014
0.0002 0.701 -0.7521 0.0000
-0.0005 0.701 -0.7521 0.0000
-0.037 0.673 -0.7523 0.0001
-0.065 0.648 -0.7534 0.0004
-0.093 0.621 -0.7574 0.0019

u1 π2 U ∆l1

0.166 0.756 -0.8179 0.0147
0.046 0.746 -0.8012 0.0005
0.0004 0.734 -0.8006 0.0000
-0.003 0.734 -0.8006 0.0000
-0.088 0.698 -0.8052 0.0036
-0.224 0.605 -0.8363 0.0387
-0.225 0.603 -0.8367 0.0395
-0.269 0.564 -0.8542 NA
-0.309 0.521 -0.8741 NA
-0.349 0.470 -0.8982 NA

The table reports optimal policies u1, π2, expected utility function U , and the liquidity premium ∆l1, when
α1 = 0, α2 = 0.2, γ = −1, µ1 = µ2 = 0.07, σ1 = 0.2, ρ = 0, r = 0.01, T = 5, and t = 0, S1 = 0.497, X =
1.01, so π̂1 = π̂2 = 0.75, Umin = −0.9418, while Umax = −0.7521 for σ2 = 0.2, and Umax = −0.8006 for
σ2 = 0.3.

Table 6: Optimal trading of two stocks when α1 = 0.005 and ρ = 0

α2 = 0.2 α2 = 0.005
N1 N1S1/X
0.04 0.020
0.50 0.246
0.75 0.369
1.00 0.492
1.248 0.614
1.252 0.616
1.525 0.750
1.796 0.811
1.800 0.813
2.032 0.999

u1 π2 U ∆l1

0.055 0.751 -0.9567 0.0431
0.033 0.755 -0.9460 0.0142
0.022 0.754 -0.9418 0.0071
0.011 0.751 -0.9390 0.0027
0.0001 0.746 -0.9373 0.0002
0.00 0.746 -0.9373 0.0002
0.00 0.738 -0.9371 0.0000
0.00 0.726 -0.9373 0.0002

-0.0001 0.726 -0.9373 0.0002
-0.010 0.715 -0.9390 0.0027

u1 π2 U ∆l1

1.506 0.752 -0.9529 0.0294
0.944 0.755 -0.9447 0.0119
0.643 0.754 -0.9414 0.0063
0.334 0.752 -0.9389 0.0025
0.004 0.746 -0.9373 0.0002
0.00 0.746 -0.9373 0.0002
0.00 0.738 -0.9371 0.0000
0.00 0.726 -0.9373 0.0002

-0.004 0.726 -0.9373 0.0002
-0.301 0.720 -0.9389 0.0026

The table reports optimal policies u1, π2, expected utility function U , and the liquidity premium ∆l1,
when α1 = 0.005, γ = −1, ρ = 0, µ1 = µ2 = 0.07, σ1 = σ2 = 0.2, ρ = 0, r = 0.01, T = 1, and
t = 0, S1 = 0.497, X = 1.01, so π̂1 = π̂2 = 0.75, Umax = −0.9371, and Umin = −0.9802.
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Table 7: Optimal trading of two stocks when α1 = 0, ρ = 0.5, T = 1 and σ1 = 0.2

α2 = 0.2 α2 = 0.005
N1 N1S1/X
0.04 0.020
0.50 0.246
1.01 0.499
1.02 0.502
1.53 0.749
1.70 0.836
1.85 0.911
2.00 0.983

u1 π2 U Φρ/X
0.034 0.739 -0.9576 0.749
0.018 0.628 -0.9529 0.751
0.0000 0.499 -0.9513 0.749
-0.0001 0.498 -0.9513 0.749
-0.017 0.368 -0.9529 0.743
-0.023 0.324 -0.9543 0.742
-0.028 0.285 -0.9559 0.741
-0.033 0.246 -0.9580 0.741

u1 π2 U Φρ/X
0.997 0.740 -0.9558 0.750
0.525 0.628 -0.9524 0.751
0.003 0.499 -0.9513 0.749
-0.001 0.498 -0.9513 0.749
-0.513 0.370 -0.9524 0.745
-0.687 0.326 -0.9534 0.744
-0.842 0.288 -0.9546 0.744
-0.993 0.249 -0.9560 0.744

The table reports optimal policies u1, π2, and expected utility function U when α1 = 0, γ = −1, µ1 =
µ2 = 0.07, σ1 = σ2 = 0.2, ρ = 0.5, r = 0.01, T = 1, and t = 0, S1 = 0.497, X = 1.01, so π̂1 = π̂2 = 0.5,
Umax = −0.9513, and Umin = −0.9802.

Table 8: Optimal trading of two stocks when α1 = 0 and ρ = 0.5.

ρ = 0.5, σ1 = 0.3, T = 5 ρ = 0.8, σ1 = 0.2, T = 1
N1 N1S1/X
0.04 0.020
0.22 0.110
0.23 0.111
0.50 0.226
0.84 0.417
0.85 0.419
1.00 0.497
1.53 0.749
1.70 0.836
1.85 0.911
2.00 0.983

u1 π2 U
0.044 0.736 -0.8394
0.0006 0.671 -0.8381
-0.0004 0.670 -0.8381
-0.066 0.564 -0.8414
-0.142 0.431 -0.8522
-0.142 0.430 -0.8524
-0.173 0.372 -0.8613
-0.280 0.167 -0.9115
-0.314 0.100 -0.9358
-0.345 0.042 -0.9608
-0.377 -0.017 -0.9915

u1 π2 U
0.014 0.734 -0.9580
0.011 0.667 -0.9572
0.011 0.665 -0.9572
0.006 0.553 -0.9563
0.0000 0.417 -0.9560
-0.0001 0.415 -0.9560
-0.003 0.357 -0.9561
-0.011 0.150 -0.9574
-0.014 0.082 -0.9583
-0.017 0.023 -0.9592
-0.019 -0.035 -0.9603

The table reports optimal policies u1, π2, and expected utility function U when α1 = 0, α2 = 0.2, γ =
−1, µ1 = µ2 = 0.07, σ2 = 0.2, r = 0.01 and t = 0, S1 = 0.497, X = 1.01. The other parameters are shown
at the top of columns 2 and 3. Umin = −0.9418, while Umax = −0.8381, π̂1 = 0.111, π̂2 = 0.667, and
Umax = −0.9560, π̂1 = π̂2 = 0.417 in the setting of the second and the third columns, respectively.
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Table 9: Optimal trading of two stocks when α1 = 0 and ρ = 1

α2 = 0.2 α2 = 0.005
N1

-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5

u1 π2 µX σX

-0.0471 1.970 0.104 0.149
-0.0470 1.724 0.094 0.150
-0.0469 1.483 0.084 0.150
-0.0468 1.237 0.075 0.151
-0.0467 0.996 0.065 0.151
-0.0466 0.750 0.055 0.152
-0.0465 0.504 0.045 0.152
-0.0464 0.263 0.036 0.152
-0.0463 0.017 0.026 0.153
-0.0462 -0.225 0.016 0.153
-0.0460 -0.471 0.006 0.154

u1 π2 µX σX

-1.925 1.968 0.091 0.149
-1.917 1.722 0.082 0.149
-1.909 1.481 0.072 0.150
-1.901 1.235 0.062 0.150
-1.893 0.993 0.053 0.151
-1.885 0.747 0.043 0.151
-1.877 0.501 0.033 0.151
-1.869 0.260 0.024 0.152
-1.861 0.014 0.014 0.152
-1.852 -0.228 0.004 0.153
-1.844 -0.474 -0.006 0.153

The table reports optimal policies u1, π2, as well as portfolio drift µX , and volatility σX when α1 = 0, γ =
−1, µ1 = 0.03, µ2 = 0.07, σ1 = σ2 = 0.2, ρ = 1, r = 0.01, T = 1, and t = 0, S1 = 0.497, X = 1.01.

Table 10: Optimal trading of two stocks when α1 = 0.005 and ρ = 1

α2 = 0.2 α2 = 0.005
N1

-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5

u1 π2 µX σX

-0.0353 1.971 0.104 0.150
-0.0351 1.724 0.094 0.150
-0.0350 1.482 0.085 0.150
-0.0348 1.239 0.075 0.151
-0.0346 0.993 0.065 0.151
-0.0344 0.750 0.055 0.152
-0.0342 0.505 0.046 0.152
-0.0340 0.261 0.036 0.152
-0.0337 0.018 0.026 0.153
-0.0336 -0.224 0.016 0.153
-0.0333 -0.471 0.006 0.153

u1 π2 µX σX

-1.419 1.969 0.093 0.149
-1.412 1.722 0.083 0.150
-1.404 1.480 0.073 0.150
-1.396 1.238 0.064 0.150
-1.388 0.991 0.054 0.151
-1.380 0.748 0.044 0.151
-1.372 0.506 0.035 0.152
-1.364 0.259 0.025 0.152
-1.355 0.017 0.015 0.152
-1.347 -0.226 0.005 0.153
-1.339 -0.473 -0.005 0.153

The table reports optimal policies u1, π2, as well as portfolio drift µX , and volatility σX when α1 = 0.005, γ =
−1, µ1 = 0.03, µ2 = 0.07, σ1 = σ2 = 0.2, ρ = 1, r = 0.01, T = 1, and t = 0, S1 = 0.497, X = 1.01.
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Table 11: Optimal trading with illiquid stock crashes when α1 = 0 and λ = 0.1.

α2 = 0.2 α2 = 0.005
N NS/X

0.04 0.020
0.5 0.2486
1.0 0.492
1.48 0.729
1.49 0.732
1.70 0.836
1.85 0.911
2.00 0.983

u U ∆c−l ∆i
c

0.066 -0.9787 0.0443 0.0000
0.044 -0.9680 0.0151 0.0001
0.022 -0.9611 0.0038 0.0003
0.0001 -0.9589 0.0008 0.0008
-0.0001 -0.9589 0.0008 0.0008
-0.010 -0.9593 0.0013 0.0011
-0.016 -0.9602 0.0025 0.0013
-0.023 -0.9614 0.0043 0.0015

u U ∆c−l ∆i
c

1.75 -0.9717 0.0225 0.0001
1.21 -0.9648 0.0096 0.0002
0.60 -0.9604 0.0027 0.0007

0.0047 -0.9589 0.0008 0.0008
-0.0001 -0.9589 0.0008 0.0008
-0.26 -0.9592 0.0010 0.0009
-0.45 -0.9597 0.0018 0.0010
-0.64 -0.9605 0.0030 0.0011

The table reports optimal trading rate u, expected utility function U , crash–liquidity premium ∆c−l, and
the crash premium ∆i

c when γ = −1, µ = 0.07, σ = 0.2, r = 0.01, T = 1, λ = 0.1, δ = 0.1, and
t = 0, S = 0.497, X = 1.01, so π̂ = 0.730, ∆c = 0.0008, Umax = −0.9584, and Umin = −0.9802. Umax

is found from equation (7).

Table 12: Optimal trading with illiquid stock crashes when α1 = 0 and λ = 3.

α2 = 0.2 α2 = 0.005
N NS/X

0.04 0.020
0.5 0.249
0.84 0.415
0.85 0.417
1.00 0.492
1.50 0.738
1.70 0.836
1.85 0.911
2.00 0.983

u U ∆c−l ∆i
c

0.064 -0.9788 0.0444 0.000
0.026 -0.9699 0.0187 0.0081
0.0007 -0.9680 0.0152 0.0151
-0.0001 -0.9680 0.0151 0.0151
-0.011 -0.9684 0.0159 0.0158
-0.053 -0.9753 0.0316 0.0266
-0.068 -0.9805 NA 0.0269
-0.086 -0.9858 NA 0.0300
-0.099 -0.9905 NA 0.0315

u U ∆c−l ∆i
c

1.45 -0.9737 0.0272 0.0070
0.62 -0.9690 0.0169 0.0111
0.004 -0.9680 0.0151 0.0151
-0.003 -0.9680 0.0151 0.0151
-0.28 -0.9681 0.0154 0.0154
-1.19 -0.9717 0.0227 0.0197
-1.57 -0.9745 0.0294 0.0217
-1.86 -0.9771 0.0376 0.0230
-2.14 -0.9802 0.0590 0.0247

The table reports optimal trading rate u, expected utility function U , crash–liquidity premium ∆c−l,
and the crash premium ∆i

c when γ = −1, µ = 0.07, σ = 0.2, r = 0.01, T = 1, λ = 3, δ = 0.1, and
t = 0, S = 0.497, X = 1.01, so π̂ = 0.417, ∆c = 0.0151, Umax = −0.9584, and Umin = −0.9802. Umax is
found from equation (7).
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Table 13: Optimal trading of illiquid stock with stochastic volatility of return
when α1 = 0.005

ε = 1 ε = 2
N NS/X

0.04 0.020
0.50 0.246
0.75 0.369
1.00 0.492
1.228 0.604
1.232 0.606
1.525 0.750
1.832 0.901
1.836 0.903
2.032 0.999

u U
0.0512 -0.9793
0.0307 -0.9687
0.0200 -0.9647
0.0096 -0.9619
0.0001 -0.9603

0.0 -0.9603
0.0 -0.9595
0.0 -0.9603

-0.0001 -0.9603
-0.0086 -0.9617

u U
0.181 -0.9786
0.140 -0.9685
0.113 -0.9646
0.078 -0.9618
0.008 -0.9603
0.0 -0.9603
0.0 -0.9595
0.0 -0.9603

-0.005 -0.9603
-0.067 -0.9616

The table reports optimal trading rate u, expected utility function U , and liquidity premium ∆l when
α1 = 0.005, α2 = 0.2, γ = −1, µ = 0.07, r = 0.01, T = 1, and t = 0, S = 0.497, X = 1.01, σ = 0.2, so
π̂ = 0.75.
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