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ABSTRACT 

This paper examines the relative importance of stochastic volatility and price jumps 

in option pricing by exploiting the differences in option-based and index 

return-based risk-neutral densities. As evinced by the persistent smirked volatility 

smile, this study extracts the risk-neutral densities by exploiting the information 

embedded in the implied volatilities that are smoothed by a kernel regression. On the 

other hand, a canonical valuation approach is adopted to identify the risk-neutral 

density from the observed index returns. Statistical tests and implied risk aversion 

are constructed to investigate the differences between two risk-neutral densities. The 

30-day S&P 500 options under stochastic volatility are found efficiently priced. By 

using a longer horizon of underlying returns, however, we are able to partly 

reconcile the differences between the index and option-implied risk-neutral densities 

after adding a jump component to the index dynamics. Option investors are found 

more risk averse than stock traders except for the 30-day jump-diffusion with 

stochastic volatility. The finding may help illustrate the puzzle that implicit 

volatilities are greater than subsequent realized volatilities. 

 

Key Words: stochastic volatility, price jumps, risk-neutral distributions, canonical 

valuation, risk aversion 
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I. Introduction 

 

It has been widely documented that stock returns exhibit both stochastic volatility 

and jumps. The importance of such risk factors arises not only from time-series 

studies of stock prices, but also from cross-sectional studies of stock options (Bakshi 

et al., 1997; Bates, 2000). An arbitrage-free option pricing model can be reduced to 

the specification of a density function (the state-price density; SPD) assigning 

probabilities to the various possible values of the underlying asset price at the 

option’s expiration (Ross, 1976; Banz and Miller, 1978; Breeden and Litzenberger, 

1978; and Harrison and Kreps, 1979).
1
 This brings us to ask an important question 

of whether option markets after introducing stochastic volatility and jumps correctly 

prices the probabilities of the dynamics of underlying returns. It is certainly 

tempting to answer this question simply by comparing features of the SPD implied 

by S&P 500 option prices to features of the observable time series of the underlying 

asset price. A number of econometric methods are now available to infer SPDs from 

option prices, either by relaxing the Black-Scholes (1973) and Merton (1973) 

log-normal assumption in specific directions (for example, Cox and Ross, 1976; 

Merton, 1976; Jarrow and Rudd, 1982; Bates, 1991; Goldberger, 1991; Madan and 

Milne, 1994; Melick and Thomas, 1997; and Bakshi et al., 1997) or by explicitly 

incorporating the deviations from the Black-Scholes model when estimating the 

option-implied SPD and pricing other derivative securities (for example, Shimko, 

1993; Derman and Kani, 1994; Rubinstein, 1994; Stutzer, 1996; Jackwerth and 

Rubinstein, 1996; Campa et al., 1998; Aït-Sahalia and Lo, 1998; and Dumas et al., 

1998). This paper uses a semiparametric option pricing theory that is more in line 

with the combination of a nonparametric implied volatility surface with the 

parametric option pricing formula. Observed implied volatilities are obtained based 

on the three parametric option pricing models of Black-Scholes’ (1973) constant 

volatility (BS), Heston’s (1993) stochastic volatility (SV), and Bakshi et al.’s (1997) 

jump-diffusion with stochastic volatility (SVJ). A nonparametric kernel regression 

technique (Aït-Sahalia and Lo, 1998) is adopted to reconcile both option pricing and 

observed implied volatility surfaces, and to obtain the corresponding SPD from 

option prices. 

 

Previous studies in the literature have always compared the observed option data to 

the observed underlying returns data, i.e., a risk-neutral density to an actual density 

(Derman et al., 1997; Rosenberg and Engle, 1997; Aït-Sahalia and Lo, 2000; 

                                                 
1
 This approach relies on the assumption of market completeness to tie down the option prices to a 

SPD. 
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Jackwerth, 2000). However, very little is known about aggregate investors’ 

preferences, and there is wide disagreement in the literature regarding what 

constitutes a reasonable value of the coefficient of relative risk aversion (RRA) 

(Mehra and Prescott, 1985; Cochrane and Hausen, 1992). Therefore, there is no 

reason a priori to compare the dynamics of the underlying asset that are implied by 

the option data to the dynamics implied by the actual time series, unless for some 

reason one holds a strong prior view on preferences. Other related studies are 

Chernov and Ghysels (2000) and Pan (2002) who provide an illustration of how 

affine models can exploit multiple information sources in the estimation method in 

an internally consistent fashion. However, econometric techniques that pool 

cross-sectional option prices and time-series information should be treated with 

caution. “Measurement error” can obscure a fundamental incompatibility between 

the time series properties and cross-sectional derivatives prices. Following the work 

of Aït-Sahalia et al. (2001), this paper instead compares two risk-neutral 

distributions implied by options prices and time-series underlying returns. The chief 

difference is that our paper identifies the risk-neutral density from the observed 

unadjusted index returns based on a canonical approach rather than an empirical 

Girsanov’s change of measure adopted by Aït-Sahalia et al. (2001). In the existing 

literature, the difficulty at this point is that we do not observe the data that would be 

needed to infer directly the time-series SPD, since we only observe the actual 

realized values of the S&P 500, not its risk-neutral values. The main novelty in this 

paper is to show that it is nevertheless possible to use the observed asset prices to 

infer ‘directly’ the time-series SPD that should equal the option-implied 

cross-sectional SPD. This paper relies on a canonical valuation approach using the 

relative entropy principle to derive the SPD from underlying returns. It is well 

known in information theory that the relative entropy principle can be justified 

automatically and is consistent with Bayesian method of statistical inference. For 

option pricing, the notion of relative entropy is previously utilized in Buchen and 

Kelly (1996), Stutzer (1996) and Duan (2002). 

 

Our results, using options traded on the S&P 500 index between January 1993 and 

December 1995, show that the majority of option-implied SPDs exhibits systematic 

excessive skewness and kurtosis with respect to the index-implied SPDs and reject 

the null hypothesis that the S&P 500 options can be efficiently priced within the 

limited context of a specification under either stochastic volatility or stochastic 

volatility with price jumps. However, for short-term investment horizon the 

stochastic volatility provides superior performance, while adding a jump component 

to the index dynamics partly reconciles the differences between the index and 
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option-implied risk-neutral densities for long days to expiration. We propose a 

peso-problem interpretation of this evidence: cross-sectional option prices capture a 

premium as compensation for the risk of a market crash, but actual realizations of 

that jump are too infrequent to be consistently observed and reflected in estimates 

drawn from the time series of asset returns. The prediction of this model with jumps 

is that time series SPD estimates should be insufficiently skewed and leptokurtic 

relative to their cross-sectional counterparts, which is exactly what we find 

empirically. The finding is not just restating that the option data exhibit an implied 

volatility smile, which is well-known by now. Instead, this demonstrates that the 

implied volatility smile is maturity-compatible with the dynamics of the S&P 500 

returns as captured by a stochastic volatility dynamic with/without jumps. We then 

design implied risk aversion to exploit the SPD differences as well as statistical tests 

to show how they capture discrepancy across maturities, due to the irrationality of 

option prices (at least during the period under consideration).  

 

The plan of the paper is as follows. Data and their screening procedures are 

discussed first. Following that, the models for obtaining the risk-neutral densities 

either from the time-series index returns or from the cross-sectional option prices are 

presented. In the following section, empirical results for distribution similarity 

comparison and implied risk aversion are analyzed. The final section summarizes 

the main findings. 

 

 

II. DATA 

 

The raw data on the S&P 500 index (SPX) options and contemporaneous index 

levels come from the quotation price history provided by the Chicago Board Options 

Exchange. The SPX option contract is the world’s leading traded European-style 

index option. The period for this paper covers three years, 1993−1995. Trading 

volume for SPX options is significantly higher during the 1990s than during the 

1980s.  This sample period should therefore remove any relative disadvantages of 

using SPX options. Option price calculation requires the risk-free interest rate and 

the expected dividend stream for the S&P 500 index. The Treasury bill rate, taken 

from Datastream, provides the risk-free interest rate. Following standard practice, 

the actual dividends on the index, from S&P Corporation, is used for the expected 

dividend stream. For options expiring in a month or less, the delay between 

announcement and payment of dividends likely eliminates the difference between 

expected and actual dividends. The discrepancy may remain for longer maturities. 
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This study uses the last quotation before 15.00 for each option contract.  

Quotations are taken from Wednesday to minimize the effect of holidays, and from 

the third Wednesday of each month to infer risk-neutral distributions for 30, 100 and 

300 days to expiry. SPX options actually expire on the Saturday immediately 

following the third Friday of the expiration month before or on 24 August 1992.  

After 24 August 1992, SPX contracts cease the trading in the morning of the third 

Friday of maturity month. Therefore, the precise horizon from the third Wednesday 

of each month to the expiration date of the following month is around thirty days.  

Hence, there are in total 36 “one-month” subperiods from January 1993 to 

December 1995, resulting 324(=36×3×3) risk-neutral distributions of 30, 100 and 

300 days to expiration across three models. Although the choice of estimation 

horizon involves an element of arbitrariness, one month is a standard and natural 

choice of investment horizon. Besides, one-month horizon is chosen to eliminate 

overlapping observations by maintaining a constant estimation window. An 

occasional, slight overlap arises due to the nature of the options expiration calendar, 

but this is of the order of one or two days and should not significantly affect the 

results. All options prices are the midpoints of the bid-ask quotes. Finally the 

integrity of the data is carefully checked to discard clearly invalid observations and 

observations where options quotations violate standard upper and lower boundary 

arbitrage conditions and convexity relations. When estimating the risk-neutral 

distributions, to avoid problems of density instability caused by market 

microstructure effects, options priced at or below 25¢ and options with five or less 

days to maturity are excluded.
2
 Table 1 presents characteristics of the whole data 

sample across maturity and moneyness, where moneyenss is defined as 

( ) XDS tt −  and tD  is the present value of all cash dividends paid over the life of 

the option. Average option quotes range from 0.65 dollar for deep OTM short-term 

calls to 74.77 dollar for deep ITM long-term calls. Bid-ask spreads range from 0.16 

dollar for short-term deep OTM calls to 1.05 dollar for long-term deep ITM calls. 

The time-series data from Datastream consist of the S&P 500 index and one-month, 

three-month and one-year Treasury bill rates, as the risk-free rates for 30, 100 and 

300 days to expiration, on a daily basis from January 1990 to December 1995. The 

risk-neutral distributions are the “canonical” densities of the 30-, 100- and 300-day 

overlapping returns over the 3 years prior to January 1993−December 1995, 

respectively. 

                                                 
2
 These exclusion criteria should reduce problems caused by price discreteness and illiquidity, 

though they are less severe than similar criteria imposed in similar studies. 
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Table 1 Sample Properties of S&P 500 Index Options 

This study includes Wednesday options between 14:45 and 15:00 over the period, January 1993−December 1995.  The option price is calculated as the midpoint of bid 

and ask quotes.  Moneyness is defined as (St−Dt)/X and Dt is the present value of all cash dividends paid over the life of the option. 

 

   
  Days to Expiration 

       
  All Options  Calls  Puts 

            
Moneyness <60 60−−−−180 >180  <60 60−−−−180 >180  <60 60−−−−180 >180 
             

< 0.94 Option price 46.07 35.07 27.36  0.65 2.38 7.42  47.92 44.64 42.93 

 Bid-ask spread 0.96 0.70 0.75  0.16 0.25 0.46  0.99 0.83 0.97 

 Observations 280 826 561  11 187 246  269 639 315 

0.94−0.97 Option price 12.62 14.13 21.25  1.21 5.04 19.47  20.08 21.21 22.95 

 Bid-ask spread 0.54 0.56 0.78  0.17 0.36 0.73  0.78 0.72 0.83 

 Observations 698 811 297  276 355 145  422 456 152 

0.97−1.00 Option price 6.56 12.37 23.81  4.05 12.29 29.34  9.06 12.45 17.79 

 Bid-ask spread 0.35 0.55 0.80  0.26 0.56 0.89  0.44 0.54 0.71 

 Observations 1394 930 393  695 448 205  699 482 188 

1.00−1.03 Option price 7.83 15.91 26.41  12.48 22.33 38.37  3.41 7.81 13.22 

 Bid-ask spread 0.38 0.61 0.79  0.55 0.78 0.95  0.23 0.40 0.62 

 Observations 1425 975 450  694 544 236  731 431 214 

1.03−1.06 Option price 14.40 21.65 29.87  24.59 32.34 48.71  1.60 4.80 9.49 

 Bid-ask spread 0.56 0.65 0.75  0.86 0.86 0.99  0.17 0.32 0.49 

 Observations 1150 868 329  640 531 171  510 337 158 

> 1.06 Option price 33.62 34.98 45.91  46.98 52.67 74.77  0.90 2.67 6.13 

 Bid-ask spread 0.74 0.69 0.79  0.97 0.92 1.05  0.16 0.27 0.44 

 Observations 1277 1026 352  907 663 204  370 363 148 
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III. SPD Inferred from the Time Series of Returns 
 

Our time-series estimator of the SPD g
*
 is based on inferring the density from the 

specific evolution of the asset price, using the canonical valuation approach. Here, we 

assume the dynamic feature contains stochastic volatility with/without jumps and 

occurs only in the one-period conditional mean tµ  and variance tσ  of continuously 

compounded returns { tR , t＝1, 2,…,n}. The standardized return { ( ) tttt Rx σµ−= ; t

＝1, 2,…,n} forms an i.i.d. sequence. Let ( )⋅G  be the empirical density function of 

the standardized returns, i.e., ( )1,0~ Gxt . Given the normalized return, ( )[ ]tt xGz
1−Φ= , 

with ( )⋅Φ−1  being the cumulative density function inversion of a standard normal r.v., 

the tz  becomes a normal-distributed r.v., i.e., ( )1,0N~tz . A key feature of the 

risk-neutral density is its expected return equal to the risk-free rate. Other than the 

expected return condition, there is no a prior reason for the risk-neutral distribution to 

deviate from the objective distribution. Thus, one can call upon the information theory 

to find the risk-neutral density function that minimizes the relative entropy subject to 

its expected value condition. Using the relative entropy principle, the risk-neutral 

density ( )tzg
*  for the normalized return tz  is the solution to the Eq.(1). For some 

value tc , 
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where ( )tzφ  is the standard normal probability density function. It is well known in 

the information theory that Eq.(1) has the solution as shown in Eq (2). 
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where tλ  corresponds to a given value of tc . Note that the value of tλ  is 

determined by the fact that the risk-neutral density must give rise to an expected asset 

return equal to a continuously compounded risk-free rate r  minus the dividend yield 

d (continuously compounded). That is, ( ) ( )∆−
∆−∆− = dr

ttt eSSE
*  where d is the annualised 

continuously compounded dividend rate, defined by ( )∆−−=∆ tt SDivd 1ln  with 

tDiv  the cumulative value of all cash dividends paid over the period between t−∆ and 

t. Consequently, *

tλ  solves the one-period expected gross return of the index in 

Eq.(3), 
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( )[ ] ( ) ( )∆−

∞

∞−

Φ+ =−∫
−

dr

ttt

zG
edzze ttt *

1

λφσµ
 (3) 

 

Using the transformation, the sequence of continuously compounded index returns is 

expressed as { } ( )[ ]{ }ntzGntR tttt ,...,2,1;,...,2,1; 1 =Φ+== −σµ  where tz  is 

the normalized return and has the objective density function of ( )tzφ  and the 

risk-neutral density function of ( )*

ttz λφ − . In other words, under the objective 

probability measure ( )( )[ ] ( )1,0N~1

tttt RGz σµ−Φ= − , whereby under the risk-neutral 

probability measure ( )( )[ ] ( )1,N~ *1**

ttttt RGz λσµ−Φ= − . Therefore, the risk-neutral 

asset dynamics become Eq.(4), 

 

 
( )[ ]**1

* ttt zG

tt eSS
Φ+

∆−

−

= σµ
 (4) 

 

where ( )( )[ ] ( )1,N~ *1**

ttttt RGz λσµ−Φ= − . The path of risk-neutral index price, *

tS , is 

produced and its risk-neutral density ( )τSg
*  is obtained via a kernel density function 

as shown in Eq.(5), 
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where τ corresponds to the 30-, 100- or 300-day period return; Si is the interpolated 

index price; n is the sample size of observed data; Sh  is the bandwidth of index price; 

and ( )⋅SK is a second-order Gaussian kernel function, defined by 

( )( ) ( ) π2/2exp 2

2 uuK −= . 

 

While implementing the canonical valuation method, we consider a simple procedure 

of identifying the empirical distribution ( )⋅G  from a sample of one-period 

continuously compounded asset returns { tR , t＝1, 2,…,n}. We first estimate the 

sample mean tµ  and standard deviation tσ . The empirical distribution function for 

a sample, ( ) },...,2,1;{ ntRR ttt =−= σµ , is formally defined as 

( ) ( ){ }∑
=

≤−≡
n

t

xR tttn
RxG

1

1
1

;ˆ
σµ  where {}⋅1  is an indicator function giving a value of 1 if 

the condition is true and 0 otherwise. Note that the canonical valuation method is 

silent on the period-by-period risk-neutral price dynamic and may limit the ability to 

reflect the market condition. In a spirit similar to the canonical valuation method of 

Stutzer (1996), this study formalizes the risk-neutralization process as a GARCH type 

with/without jumps so that one can infer directly from the price dynamic of the 

underlying asset to establish the risk-neutral pricing dynamic. Different from Duan’s 

(2002) work, this study proposes the discrete-time approximations, as the dynamics of 

index returns, of Heston’s (1993) stochastic volatility and Bakshi et al.’s (1997) 

diffusion-jump with stochastic volatility. The resultant risk-neutral densities, inferred 

from the index returns, are thus directly comparable to corresponding counterparts 
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implicit in option prices incorporating either volatility or jump risk. For comparison 

purposes, an underlying dynamic of constant volatility is also considered. 

 

 

3.1 Constant Volatility 
 

The BS option pricing model assumes that the asset price follows a geometric 

Brownian motion given below, 

 

 tSSt dwdtSd ,

2

2

1
ln σσµ +








−=  (6) 

 

where tS  is time-t index price; Sµ  is the annualized expected percentage rate of 

return due to price risk; 2σ  is the annualized variance of index returns; and tSw ,  is 

the Wiener process. Following Nelson (1990), a discrete-time process becomes, 

 

 tSSt xR ,

2

2

1
∆+∆−∆= σσµ  (7) 

 

where ( )1,0N~,tSx  and ∆  corresponds to 30, 100 or 300 days on an annualized 

basis. tR  is the one-period continuously compounded rate of return, defined by 

( )∆−−= ttt SSR lnln , which follows a normal distribution with mean, 

22∆−∆= σµµ St , and standard deviation, ∆= σσ t . The likelihood function for an 

individual return conditional on the information set ∆−tI  is given by, 

 

 ( ) 2
2

,
1

2

1
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tt eIRf
−

∆−
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=
σπ

 (8) 

 

The parameter space for this model is { }σµ ,S=Ξ . By maximizing the log-likelihood 

function of the returns { }ntRt  ..., 2, ,1, = , the estimated parameter vector, { }σµ ˆ,ˆˆ
S=Φ , 

is obtained. We then use the standardized returns, calculated as ( ) tttt Rx σµ ˆˆˆ −=  

with 2ˆˆˆ 2∆−∆= σµµ St  and ∆= σσ ˆˆ
t , to estimate the preference parameter *

smoothλ  

via Eq.(3). 

 

Note that under the geometric Brownian motion assumption the one-period 

continuously compounded return tR  (or equivalently, its standardized return tx ) has 

a normal distribution, implying that ( ) ( )tt xxG Φ=  and ( )[ ] tt xzG =Φ−1  where 

( )1,0N~tz . Thus, *

smoothλ  satisfying Eq.(3) is ( )[ ] ∆∆−∆− σµSdr .  

Consequently, the risk-neutral index price dynamic becomes, 
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where ( )[ ] ( )1,N~ *

smooth

*

smooth

*1** λλ+==ΦΦ= −
tttt xxxz  and ( )1,0N~tx ; 

∆+= σλ*

smooth

*

tt RR . Its risk-neutral density ( )τSg
*  can be obtained via a kernel 

density function as shown in Eq.(5). 

 

 

3.2 Conditional Heteroskedasticity (GARCH-SV) 
 

Heston (1993) assumes that asset return variance follows a mean-reverting square root 

process shown as follows, 
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where tSw ,  and tw ,ν  are standard Wiener processes governing the dynamics of 

index returns and its instantaneous variance tν . νκ  presents the mean-reverting 

speed of the variance process towards its long-term mean νθ  with variation 

coefficient νσ . By the Euler method the stochastic difference process of Eq.(10) 

becomes, 
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Following Nelson (1990, 1991), Taylor and Xu (1993), Corradi (2000) and Heston 

and Nandi (2000), an appropriate GARCH-type model for continuously compounded 

returns tR , which approximates Eq.(8) as time interval approaches zero, is proposed 

here. Define ∆≡ tth ν , ∆−≡ νκ1B , ∆≡ νθµh , ∆≡ νρσC , tSxD ,

2 var/)1( ρσν −∆≡ , 

and ( )   var/)1( ,,,

2

,, tStStStSt xExxxx −−+≡ ρρν  in which the proposed tx ,ν  has 

mean 0, variance 1 and is correlated with tSx ,  by ρ . The discrete-time version of 

Heston’s stochastic volatility (henceforth, GARCH-SV) can be represented by,  
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( ) ( ) . 0 ,0 ,signsign ,0 ,1 ,0 where ∆<<>=∆<<<> thS hDCB ρµµ The continuously 

compounded rate of returns tR  has mean 2tSt h−∆= µµ  and standard deviation 

tt h=σ . The likelihood function for an individual return conditional on the 

information set ∆−tI  is shown as follows, 

 

 ( ) ( )∆−∆− = ttS

t

tt Ixf
h

IRf ,

1
 (13) 

 

where ( )
tSxf ,  is the probability density function of a standard normal-distributed  

random variable tSx ,  given by, 

 

 

( )

ππ

µ

π

21var   , 2           

2
with  

2

1

,,

,

2

,

2
,

−==

+∆−
=

=
−

∆−

tStS

t

tSt
tS

x

ttS

xxE

h

hR
x

eIxf tS

 (14) 

 

The parameter vector of interest, { }0,,,,, δµµ DCBhS=Ξ  where 0δ  is the parameter 

determining the initial value of variance, is estimated by maximizing the 

log-likelihood function of the daily returns { }ntRt  2,..., 1, , = .   

 

Under these settings, *

smoothλ  satisfying Eq.(3) is solved via a numerical procedure.  

Consequently, the risk-neutral index price dynamic becomes,  
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where ( )1,N~ *

smooth

* λtz ; ** 5.0 tSt h−∆= µµ ; *

smooth,

*

, λ+= tStS xx ; *

smooth,

*

, λ+= tStS xExE ; 

and **

smooth,

***  )()( 5.0 ttStttttt hxhhhhRR λ+−+−−= . Its risk-neutral density 

( )τSg
*  can be obtained via a kernel density function as shown in Eq.(5). 

 

 

3.3 Conditional Heteroskedasticity and Jumps (GARCH-SVJ) 
 

Given that the pure-diffusion model of Heston (1993) cannot produce enough excess 

skewness and kurtosis to reconcile observed tail-fatness of the stock return 

distribution (Andersen et al., 1998), nor can it easily match the “smirkiness” exhibited 

in the cross-sectional options data (Bakshi et al., 1997; Bates, 2003), the extension to 

include jumps is well motivated. Following the work of Bates (1996), Bakshi et al. 

(1997) and Pan (2002), we assume that the logarithmic index price follows a 

diffusion-jump with stochastic volatility process shown as follows, 
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where tJ  is the percentage jump size of the index price following a lognormal with 

mean ( ) 21ln 2

JJ σµ −+  and variance 2

Jσ . tq  is the jump frequency of the index 

price driven by a Poisson process with intensity Jλ . The Poisson process is assumed 

to be independent of two Wiener processes tSw ,  and tw ,ν . The terms of Sµ  and 

JJ λµ  correspond to the expected percentage rates of return caused by the diffusion 

and jump factors, respectively, of the index price.  As inspired by the literature, one 

of its discrete-time processes (henceforth, GARCH-SV-Jump) can be represented by, 
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






−+

−++−+=

++−∆=

∆+

=

∑

λ

σσµ

µµ

µ

 (18) 

 

( ) ( ) . 0 ,0 ,0 ,0 ,signsign ,0 ,1   where >>∆<<>=∆<<< JJth hDCB σλρµ tjY ,ln  is 

the jump size of the logarithmic return given a Poisson-distributed j
th

 jump occurring 

at time t. The logarithmic return therefore follows a mixture distribution of normal 

and Poisson densities with mean ( )[ ] ∆−++−∆= JJJtSt h λσµµµ 21ln2 2  and 

variance ( )[ ]{ } ∆+−++= JJJJtt h λσσµσ 2222 21ln . The likelihood function for an 

individual return conditional on the information set ∆−tI  is shown as follows, 

 

 ( ) ( ) ( )∑
∞

=

∆−

∆− =
+

∆
=

0

,SVJ
2

1

!j

tt

Jt

j

J
tt jNxf

jhj

e
IRf

J

σ

λλ

 (19) 

 

where ( )jNxf tt =,SVJ  is the probability density function of standard 

normal-distributed random variable tx ,SVJ  with mean 0 and variance 1 conditional on 

the occurring of j jumps, displayed as follows, 
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1 2
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t

x
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 (20) 

 

The parameter space for GARCH-SV-Jump is { }JJJhS DCB σµλδµµ ,,,,,,,, 0=Ξ  

with 0δ  determining the initial value of variance, which can be estimated via a 

maximum likelihood method.   

 

Given the parameter Ξ , the cumulative density function of the standardized return 

( ) tttt Rx σµ−=  is computed as 

 

( ) ( ) ( )
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 (21) 

 

where ( )jNx tt =Φ edstandardiz

,SVJ  is the cumulative density function of normal-distributed 

edstandardiz

,SVJ tx  with mean ( ) tJJj σθλ ∆−  and variance ( ) 22

tJt jh σσ+ , given j jumps 

occurring. Alternatively, this density function can be decomposed into two 

components: ( )tx ,smoothΦ  is the cumulative density function of normal-distributed 

tx ,smooth  with mean 0 and variance 2

tth σ  representing the smooth innovations of the 

standardized returns, while ( )
tx ,jumpΦ  is the cumulative density function of 

normal-distributed tx ,jump  with mean ( ) ( )( ) tJJJJj σσµλ /21ln 
22−+∆−  and variance 

22

tJj σσ  given the occurring of j jumps representing the jump innovations of the 

standardized returns. Define ( )[ ]∆−
−Φ= ttt IxFz

1  given as follows. 
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The new r.v., tz , is a compounded-jump distributed random variable with zero mean 

and unit variance having a probability density function, ( )tzg , defined by,  
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where ( ) 21ln 2

JJJ σµθ −+= . By allowing the risk-neutral mean relative jump size 
*

Jµ  to be different from its data-generating counterpart, we accommodate a premium 

for jump-size uncertainty. Similarly, a premium for jump timing risk can be 

incorporated if we allow the coefficient *

Jλ  for the risk-neutral jump-arrival intensity 

to be different from its data-generating counterpart Jλ . In this paper, however, we 

follow Pan’s (2002) work to concentrate mainly on the risk premium for jump-size 

uncertainty, while ignoring the risk premium for jump-timing uncertainty by 

supposing *

Jλ = Jλ . With this assumption, all jump risk premiums will be artificially 

absorbed by the jump-size risk premium coefficient *

JJ µµ − . By the relative entropy 

principle in Eq.(1), the risk-neutral density for tz , i.e. ( )tzg
* , is given by, 
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where *

smoothλ  and *

jumpλ  are associated with the premiums for price and jump risk. 

{ }  , **

tth σ  are the quantities under the risk-neutral probability measure, given by, 
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with 

**

smooth

*

,

*

,  tttStS hxx λσ+=  with ( ) tJJtSttS hhRx ∆−+∆−= θλµ 5.0,  and  

**
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***
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*

,

*

, 2 tttttStS hhxExE λσπλσ +=+= ; 
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In the spirit of Eq.(3), the risk premium-like parameters of *

smoothλ  and *

jumpλ  

corresponding to smooth and jump innovations , respectively, are solved via the 

following Eq.(27), 

 

 

( ) ( )[ ] ( )

( ) ( )
∫ ∑

∫

∫

∞

∞

∞

=

∆−

∞

∞

∞

∞−

Φ+∆−









+

∆−∆
+









=

−−=
−

-
0

2*

2
*

jump*

- 2*

*
*

smooth

*

jump

*

smooth

 

  , 
 

 N
!

              

  ,  N             

  
1

t

j t

J

t

JJ

j

JR

t

t

tR

tt

zGdr

dz
jj

j

e
e

dz
h

e

dzzgee

J

t

t

ttt

σ

σ
λ

σ

θλλ

σ
λ

λλ

λ

σµ

 (27) 

 

where ( )⋅G  denotes the cumulative density function of tz , driven by a compounded 

Poisson process.  We solve *

smoothλ  and *

jumpλ  numerically and choose a kernel 

density function scheme to generate the risk-neutral density ( )τSg
*  of index prices 

according to the following system, 
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3.4 In- and Out-of-Sample Performance of Time-Series Models 
 

Table 2 shows the results from estimating likelihood functions of constant-volatility, 

GARCH-SV and GARCH-SVJ models using index returns of various investment 

horizons, as well as the daily-average absolute percentage forecast errors. In the 

GARCH-SV model the skewness and kurtosis levels of index returns are respectively 

controlled, for the most part, by correlation ∆≡ νσρ C  and volatility variation 

coefficient ( ) ∆+≡ πσν 2-122
DC . The GARCH-SVJ model relies on the same 

flexibility, with the additional features to allows price jumps to occur, which can 

internalize more negative skewness and higher kurtosis without making other 

parameters unreasonable. The implied speed-of-volatility-adjustment ( ) ∆−≡ B1νκ  

is the highest for the 30-day GARCH-SV model. The implied long-run mean variance 

( ∆≡ hµθν ) in the GARCH-SV is 4.38%, 9.61% and 9.96%, respectively, for the 30-, 

100- and 300-day returns, whereas 6.07%, 5.51% and 1.84%, respectively, for the 
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GARCH-SVJ. The variation coefficient νσ  and the magnitude of ρ  are the lowest 

for the GARCH-SVJ. These estimates together present the picture that, to the extent 

that the pricing structure of the index returns can be explained respectively by each 

model, the GARCH-SVJ model’s demand on the ∆= tt hν  process is the least 

stringent as it requires both the lowest νσ  and the lowest ρ  (in magnitude), 

whereas the GARCH-SV requires νσ  and ρ  to be respectively as high as 0.42 

and –076. The GARCH-SVJ model attributes part of the implicit negative skewness 

and excess kurtosis to the possibility of a jump occurring with an average frequency 

of 0.23, 0.28 and 0.28 times per year and an average jump size of –0.13, –0.16 

and –0.16 (with the jump size uncertainty estimated at 0.21, 0.33 and 0.33) for the 30-, 

100- and 300-day returns.
3
 The estimated instantaneous conditional (or “spot”) 

variances tjump νν +  for the GARCH-SVJ are generally smoother than spot variance 

tν  for the GARCH-SV, where ( )[ ]






 +−+= 2

2
25.01ln JJJJjump σσµλν  is the 

(constant) variance per year attributable to jumps. However, the sample path for spot 

variance estimated under the GARCH-SVJ model involves a reflection off the 

minimum value of =jumpν  0.0010%, 3.6135% and 3.5503% for 30-, 100- and 

300-day returns, whereas the path estimated under the GARCH-SV model approaches 

the reflecting barrier at 0=tν . Given estimated slow mean reversion, the estimated 

expected average variance for index returns is close to the spot variance. 

 

 
Table 2 Time-Series Parameters and Market Prices of Volatility and Jump Risks 

The table shows the quasi-maximum likelihood results for three time-series models.  Included are the 

risk premium-like parameters *

smooth
λ  (also represented for *

t
λ  on the constant-volaitlity and 

GARCH-SV models) and 
*

jump
λ . The t-statistics are in parentheses; 

∗
, 

∗∗
 denote significance at the 5% 

and 1% levels, respectively. The parameters B, C and D correspond to continuous-time parameters by 

( ) ∆−≡ B1νκ , ∆≡
h

µθν , ( ) ∆−+≡ πσν 2122 DC  and ( )∆≡ νσρ C . ννν σθκ  and  ,  are 

respectively the speed of adjustment, long-run mean and variation coeffiecint of the diffusion volatility 

∆≡
tt

hν . 
t

v  is the diffusion component of return variance (conditional on no jump occurring). ρ  

denotes the correlation between return and variance innovations, defined by ( )
tvtSt

dwdwCov
,,

,≡ρ  

whereas 
tS

w
,

 and 
tv

w
,

 are each a standard Brownian motion. The parameter 
J

µ  represents the 

mean jump size, 
J

λ  the frequency of the jumps per year, and 
J

σ  the standard deviation of the 

logarithm of one plus the percentage jump size. ( )[ ]{ }
JJJJjump

λσσµν    5.01ln 
2

2
2 +−+≡  is the 

instantaneous variance of the jump components. Expected average variances are a maturity-dependent 

weighted average of spot and steady-state variances computed by ( ) ( ) ( )( ) νθτωντωνν  1 −++=
tjump

E  

with ( ) ( ) ττω ν

τν ke
k

 1
 −−=  for the GARCH-SVJ and ( ) ( ) ( )( ) νθτωντων  1 −+=

t
E  for the 

GARCH-SV.  ∆= **

tt
hν  and *

t
h  is risk-adjusted conditional heteroskedasticity, 

( ) ( )0,1N~ ,  2   
,

*

smooth

**

smooth

*

,

**

,

***

tStttSttSththt
xhxhDxhChBh





 −−+++−+=

∆+
λπλσµµ . 

( )  ˆ APE
ttttOFS

RRR
∆−

−=  shows absoluate percentage forecast errors between actual returns 
t

R  and 

                                                 
3
 Bates (1996, 2000) and Bakshi et al. (1997) also finds that the SVJ is less demanding than the SV on 

the volatility process and its correlation with stock price changes.  For the post-1987 crash years, 

Bates identifies an infrequent negative price jump implicit in SPX futures options of a magnitude 

similar to Bakshi et al.’s (1997) findings. 
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predicted returns 
∆−tt

R̂  given the information set at time ∆−t .  All mean values are reported in the 

table. 

 

 

 

 

 

 

 Constant Volatility  GARCH-SV  GARCH-SVJ 

Parameters 30 100 300  30 100 300  30 100 300 

S
µ  

0.0781
**

 

(74.38) 

0.0747
**

 

(73.08) 

0.0852
**

 

(83.32) 

 0.0798 

(1.35) 

0.0911
**

 

(4.14) 

0.0986
**

 

(15.84) 

 0.1054 

(0.38) 

0.0657 

(0.60) 

0.0677
**

 

(13.84) 

S
σ  

0.1177
**

 

(114.62) 

0.1101
**

 

(107.61) 

0.0790
**

 

(75.85) 

 
   

 
   

h
µ     

 0.0052 

(0.65) 

0.0381 

(0.80) 

0.1186 

(0.85) 

 0.0072 

(1.18) 

0.0219 

(0.84) 

0.0219 

(0.55) 

B     
 0.6888

*
 

(2.21) 

0.8028
**

 

(3.99) 

0.5815 

(1.42) 

 0.782
**

 

(2.92) 

0.7227
**

 

(4.84) 

0.7286
**

 

(4.12) 

C     
 −0.0369 

(−0.59) 

−0.0782
**

 

(−34.97) 

−0.2715 

(−0.99) 

 −0.0212 

(−1.11) 

−0.0105 

(−0.37) 

−0.0105 

(−0.23) 

D     
 0.0559 

(0.63) 

0.1158 

(1.10) 

0.3843 

(1.08) 

 0.0370 

(0.71) 

0.0247
**

 

(7.25) 

0.0383
**

 

(3.09) 

startup     
 0.0774

**
 

(5.81) 

0.0066 

(0.45) 

0.8815
**

 

(30.04) 

 0.0811
**

 

(6.57) 

1.0000 

(0.92) 

1.0000
*
 

(2.25) 

( )% 
t

ν  11.7743 11.0068 7.8980  12.9982 14.5649 15.8881  14.3464 14.4941 8.6916 

J
λ     

 
   

 0.2332
**

 

(11.85) 

0.2768
**

 

(2.79) 

0.2768
**

 

(78.11) 

J
µ     

 
   

 −0.1257
*
 

(−2.22) 

−0.1594 

(−0.49) 

−0.1574
**

 

(−12.22) 

J
σ     

 
   

 0.2073
**

 

(4.08) 

0.3313 

(0.25) 

0.3293 

(0.89) 

( )%
jump

ν     
 

   
 

16.0227 20.1117 19.9396 

( )%
jumpt

νν +          23.8946 21.5435 19.8574 

( ) ( )% νE  11.7743 11.0068 7.8980 
 
14.0805 16.3436 19.5105 

 
22.9643 25.6064 22.1046 

νκ      2.6141 0.4970 0.3515  1.8311 0.6987 0.2280 

νθ      0.0438 0.0961 0.0996  0.0607 0.0551 0.0184 

νσ      0.4201 0.2641 0.2998  0.2604 0.0474 0.0221 

ρ      −0.7366 −0.7441 −0.7606  −0.6643 −0.4183 −0.3286 

*

smooth
λ  

0.0542 

(0.00) 

0.1443 

(0.01) 

−0.1378 

(0.01) 

 0.0063
**

 

(4.67) 

−0.0004
**

 

(5.74) 

−0.0742
**

 

(6.21) 

 0.0524
**

 

(8.85) 

0.0354
**

 

(6.21) 

−0.1378
**

 

(7.93) 

*

jump
λ     

 
   

 −0.0120
**

 

(8.10) 

−0.0188
**

 

(6.31) 

−0.1054
**

 

(10.83) 

( )% *

t
ν      12.8131 14.6079 16.8226  11.3170 13.6622 10.8941 

OFS
APE  1.7573 2.4750 5.2299  1.5636 1.8908 3.0676  1.3987 1.4899 1.3674 
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Finally, the fact that incorporating jumps seems to enhance the GARCH-SV model’s 

fit is further illustrated by each model’s absolute percentage forecast errors ( OFSAPE ) 

on an average day.  The out-of-sample forecasts rely on previous month’s index 

returns to back out the required parameter values and then use them as input to 

compute current day’s model-based index returns. The absolute percentage pricing 

error is computed based on subtracting the model-determined price (
∆−tt

R̂ ) from its 

observed counterpart ( tR ). For the constant-volatility, 

∆=
∆− Stt

R µ̂ˆ . 

For the GARCH-SV,  

( ) ( ) ( )[ ]htthttttStt
hEBhEhER µµµ ˆ ˆˆ  with  

2

1
ˆˆ −+=−∆= ∆−∆+∆−∆−∆−

. 

 

For the GARCH-SVJ, 

( ) ( ) ( ) ( )[ ]htthttJJJttStt
hEBhEhER µµσµλµ ˆ ˆˆ  with   ˆ

2

1
ˆ1ln ˆ

2

1
ˆˆ 2 −+=∆





−++−∆= ∆−∆+∆−∆−∆−

 

This procedure is repeated for each horizon and each day in the sample, to obtain the 

average absolute percentage pricing errors,  )/ˆ( APE ttttOFS RRR
∆−

−= . These steps 

are separately followed for the constant-volatility, the GARCH-SV and the 

GARCH-SVJ models. The OFSAPE  across 30-, 100- and 300-day index returns is 

1.56 (1.76), 1.89 (2.48) and 3.07 (5.23) for the GARCH-SV (constant-volatility), 

while 1.40, 1.49 and 1.37 for the GARCH-SVJ. Allowing jumps to occur does 

improve the GARCH-SV model’s out-of-sample fit further. 

 

 

3.5 Volatility and Jump Risk Premiums of Time-Series Models 
 

Volatility and jump risks are priced via the terms *

smoothλ  and *

jumpλ , respectively, in 

the risk-neutral dynamics of index returns. For a positive (negative) coefficient 
*

smoothλ  or *

jumpλ , the mean growth rate of the return process tR  is, therefore, 

**

smooth tσλ  or **

jump tσλ  higher (lower) under the risk-neutral measure than under the 

data-generating measure.
4

 Table 2 shows that the volatility-risk premium-like 

coefficient is estimated to be significant from zero for the GARCH-SV and 

GARCH-SVJ, which is consistent with the findings of Guo (1998), Benzoni (2000), 

Poteshman (2000), Bakshi and Kapadia (2003) and Chernov and Ghysels (2000).  

The role of jump-risk premium-like coefficient for the GARCH-SVJ implies positive 

and significant premiums for the jump-size uncertainty. The constant-volatility model 

has an insignificant risk-premium structure. One possible explanation is that 

investors’ aversion to volatility uncertainty or jump risks is not incorporated. Figure 1 

displays implied risk-neutral probability density functions across models from index 

returns using the canonical valuation approach. The implied probability distributions 

in the 300-day period are somewhat leftskewed and platykurtic. That is, the mean of 

the distribution tends to be to the right of the mode and the mode tends to be less 

                                                 
4
 The discrepancy between 

t
R  and *

t
R  also depends on the difference between 

t
h  and *

t
h . 
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pronounced than the mode of the corresponding lognormal distribution. In contrast, 

the 30-day distributions become more left-skewed and change from platykurtic to 

leptokurtic.  This adjustment is pronounced by the GARCH-SVJ. Thereafter, we 

observe consistent levels for both skewness and kurtosis. The short-term distributions 

are significantly more left-skewed than in the long-term period and the mode is 

persistently more pronounced than the mode of the corresponding lognormal 

distribution. 

 
 

Figure 1. Canonical risk-neutral densities of S&P 500 indexes with 30-, 100- and 300-day 

investment horizons over the period January 1993−−−−December 1995. The canonical probability 

distributions in the 300-day period are somewhat left skewed and platykurtic. That is, the mean of the 

distribution tended to be to the right of the mode and the mode tends to be less pronounced than the 

mode of the corresponding lognormal distribution. In contrast, the 30-day distributions become more 

left-skewed and change from platykurtic to leptokurtic. This adjustment is pronounced by the 

GARCH-SVJ. 

 

 

 

IV. SPD Inferred from Cross-Sectional Options 
 

This section extracts the risk-neutral density ( )τSf
*  implicit in option prices. 

Avoiding parametric assumptions on the density driving the observable asset’s price, 

this study follows Bahra’s (1997) work to adopt Breeden and Litzenberger’s (1978) 

butterfly-spread strategy to back out the risk-neutral density that is directly 

comparable to the one inferred from the time-series model. This method can also 

extend to incorporate the information of volatility or jump risk embedded by the 

prices of SPX options. To implement the butterfly-spread strategy, an approach for 

interpolating and extrapolating option prices of arbitrary strikes and expirations is 
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required. In practice, traders often quote option prices by means of the Black-Scholes 

implied volatilities corresponding to given strike and expiry. Hence, one may end up 

interpolate and extrapolate implied volatilities, as opposed to option prices. These 

volatilities are then converted to option prices through the Black-Scholes formula.  

Similarly, one could use a more sophisticated option pricing formula such as the SV 

(Heston, 1993)
5
 or SVJ (Bakshi et al., 1997)

6
 model, to obtain implied volatilities 

given a set of model parameters. More comparable to standard Black-Scholes implicit 

variances, the expected average variance of the SV and SVJ is a maturity-dependent 

weighted average of the spot variance and the steady-state variance. For the SVJ, 

( ) ( ) ( )[ ] ***   1  νθτωντωνν −++= tjumpE  with ( )[ ]






 +−+=  5.01ln  2

2
2***

JJJJjump σσµλν  

( ) ( ) ( )1,0  1 *
*

∈−= − τκτω ν
τκνe , while for the SV ( ) ( ) ( )[ ] **   1  νθτωντων −+= tE .  For a 

given maturity, calls and puts imply smirk-shaped volatility patterns across strike 

prices (see Figure 1 for demonstrating observed implied volatilities from specific 

option pricing models across moneyness and maturity.). Following the work of Bates 

(1991, 1996, 2000), Dumas et al. (1998), Longstaff (1995), Madan et al. (1998), and 

Nandi (1998), this study minimizes the sum of squared dollar option pricing errors to 

obtain an estimate of the implied spot variance tν  for date t and the structural 

parameter values SVΘ  or SVJΘ  for month i, January 1993−December 1995. Table 3 

presents the average of each parameter/volatility series as well as the averaged sum of 

squared in-sample pricing errors (SSE), respectively for the BS, SV and SVJ models.  

The implied spot volatility is on average close across the models, of which 13.86% 

(implied volatility), 13.88% (= tν ) and 13.22% (= *

jumpt νν + ), respectively, for the 

BS, SV and SVJ, which are close across the models. The expected average volatility, 

however, is 14.11% and 14.29% for the SV and SVJ models, compared to 13.86% of 

the BS model. The relative pattern of estimated structural parameters for the spot 

volatility process across the SV and SVJ models is generally consistent with their 

time-series counterparts. In the SV (GARCH-SV) model the skewness and kurtosis 

levels of index returns respectively controlled, for the most part, by correlation ρ  

and volatility variation coefficient νσ  are greater in magnitude than the SVJ 

                                                 
5
 Based on the risk-neutral dynamics of Eq.(10), Heston (1993) provides a closed-form formula for a 

time-t European call option on the underlying S with strike X and expiry T shown as follows, 

( ) ( )

   toingcorrespondfunction  sticcharacteri the

2 ,1 , Re
1

2

1

;,,

0

ln

21SV

jj

j

Xi

j

tTr

tt

Pf

jd
i

fe
P

PXePSTXSC

=

=







+=

−=Θ

∫
∞

−

−−

φ
φπ

φ

 

where { }ρσθκ ννν ,,,
**

SV
=Θ  being the risk-neutral model parameter. 

6
 Given an assumption that the underlying St follows a jump-diffusion with stochastic volatility as 

shown in Eq.(17), Bakshi et al. (1997) provide a closed-form formula for a time-t European call option 

with strike X and expiry T, 
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where the risk-neutral model parameter is { }
JJJ

σµλρσθκ ννν ,,,,,,
****

SVJ
=Θ . 
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(GARCH-SVJ) model, and so do the implied speed-of-volatility-adjustment *

vκ  ( νκ ) 

and long-run mean variance *

vθ  ( νθ ). The GARCH-SVJ model attributes part of the 

risk-neutral index returns to the possibility of a jump occurring with an average jump 

component of −0.0357, −0.0540 and −0.0617, i.e. ( ) ( )
JtJjumpRE λσλθ  **

jump

* +=∆ , for 

30-, 100- and 300-day index returns, while −0.0257 of the SVJ model, i.e. 

( ) ***

JJjump dtRE λθ= , for the SPX options. 

 

 
Table 3 Implicit Parameters and In-Sample Fit of Option Pricing Models 

Each Wednesday in the sample, the structural parameters of a given option pricing model are estimated 

by minimizing the sum of squared pricing errors between the market price and the model price for each 

option.  The average of the estimated parameters is presented.  For each model, SSE denotes the 

average sum of squared errors.  The structural parameters *

νκ , *

νθ  and νσ  are respectively the 

speed of adjustment, the long-run mean, and the variation coefficient of the diffusion volatility 
t

ν .  

The parameter *

J
µ  represents the mean jump size, *

J
λ  the frequency of the jumps per year, and 

J
σ  

the standard deviation of the logarithm of one plus the percentage jump size.  
*

jump
ν  is the 

instantaneous variance of the jump component.  BS, SV and SVJ, respectively, represent the 

Black-Scholes, Heston’s (1993) stochastic-volatility model and Bakshi et al.’s (1997) 

stochastic-volatility model with random jumps.  More comparable to BS implied variances, the 

expected average variance of the SV and SVJ is reported. 

 

Parameters BS  SV  SVJ 
*

νκ    
4.6136 

 
3.2991 

*

νθ    
0.0288 

 
0.0219 

νσ    0.7747  0.4769 
ρ    −0.6639  −0.6887 

( )% 
t

ν    13.8759  10.9115 

*

J
λ    

 
 

0.3784 
*

J
µ    

 
 −0.0776 

J
σ      0.0665 

( )%
*

jump
ν      6.7508 

( )%
*

jumpt
νν +      13.2247 

Implied Volatility (%) 13.8625  14.1076  14.2934 

SSE 2.0175  0.1550  0.1430 
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4.1 Kernel-Regression Implied Volatilities 
 

This study adopts a nonparametric kernel regression to smooth the implied volatility 

(σ ) across the spot index price (S), strike price (X) and time to expiration (T).
7
  

Observed implied volatilities ( )Θ̂ ;,, iiii TXSσ ,backed out from either the Black-Scholes, 

SV or SVJ option pricing model given a set of model parameter estimates Θ̂ ,
8
 

multiplied by a density-like weight, called the kernel function, are summed to give an 

estimate of unobserved volatility ( )TXS ,,σ̂ . A Nadaraya-Watson kernel estimator
9
 

is used as follows, 
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where n is the sample size of observed implied volatilities; ( )⋅Sk , ( )⋅Xk  and ( )⋅Tk  

are the kernel functions of the spot index price (S), strike price (X) and time to 

expiration (T), respectively, defined on the Gaussian-family density function.  As the 

risk-neutral density is related to the second derivative of a call option pricing formula 

with respect to the strike price (see the following section for the details), a Gaussian 

kernel function with order 2, ( ) ( ) ( )2exp21 2

2 zzk −= π , is used as ( )⋅Xk , whereas a 

Gaussian kernel function with order 4 serves for both ( )⋅Sk  and ( )⋅Tk , i.e. 

( ) ( ) ( ) ( )2exp3183 22

4 zzzk −−= π . The bandwidths, Sh , Xh  and Th , determine 

the impact of the kernel functions on each observed implied volatility. Given a larger 

bandwidth and thus an increase in smoothness of interpolated implied volatility 

surface, the kernel estimator induces a greater bias but a smaller variance. The 

tradeoff between bias and variance can determine an optimal value for the 

bandwidth.
10

 The resultant kernel-regression volatilities ( )TXS ,,σ̂  are the basic 

inputs to the butterfly-spread state price density. The kernel-regression volatility 

surface, inferred from SV (SVJ) implied volatilities, absorbs the premium for 

volatility (and jump) risk. 

 

                                                 
7
 Campa et al. (1998) use cubic spline to interpolate the implied volatility surface.  The cubic spline 

interpolation only allows for one point of option price on the same moneyness and maturity, whereas 

the kernel regression provides additional flexibility allowing for multiple option quotes on the same 

option contract. 
8
 There is no extra model parameter for the Black-Scholes formula while the estimate of model 

parameters for the SV model is { }ρσθκ ννν
ˆ,ˆ,ˆ,ˆˆ **

SV
=Θ  and { }

JJJ
σµλρσθκ ννν
ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆˆ ****

SVJ
=Θ  for the 

SVJ model. 
9
 Härdle (1990), Aït-Sahalia and Lo (1998, 2000), and Härdle et al. (2002) use a Nadaraya-Watson 

kernel estimator to explain the regression relationship between dependent and independent variables. 
10

 Aït-Sahalia and Lo (1998) use a rule for the x-variable bandwidth: ( ) ( )pd
nzsch

21 +−
=  

where ( ) hxxz
i

−= ; d=the number of kernel regressors; p=the differentiate order of the 

Nadaraya-Watson kernel estimator; ( )zs = the standard deviation of z ; ( )ncc ln
0

=  with constant 

0
c  and the sample size n. 
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4.2 Inferring Risk-Neutral Probability Densities Directly from the 

Implied Volatilities 
 

Building on Ross’ (1976) insight that options can be used to create pure 

Arrow-Debreu state-contingent securities, Banz and Miller (1978) and Breeden and 

Litzenberger (1978) provide an elegant method for obtaining an explicit expression 

for the risk-neutral density from option prices: the risk-neutral density is the second 

derivative (normalized to integrate to unity) of a call option pricing formula with 

respect to the strike price, multiplied by the risk-free return, shown as follows, 

 

 ( ) ( )( ) ( )
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2

2
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,,
exp  (30) 

 

where ( )TXSCt ,,  is the market price of a call option at time t with strike price X, 

expiry T , and the underlying asset price S ; Ttr ,  is the annualized risk-free interest 

rate for the period of time to expiry. The implementation of Eq.(30) can be 

accomplished by selling two call options struck at X and buying one struck at 

XX ∆−  and one at XX ∆+ , often called a “butterfly-spread” strategy.  By 

construction, the price of a butterfly- spread strategy is given by, 
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where 11 +− << iii XXX ; 11 −+ −=−=∆ iiii XXXXX ; N  is the sample size of 

kernel-regression implied volatilities; ( )⋅C  is the model prices for calls based on 

kernel-regression implied volatilities. The risk-neutral density at expiry T can be thus 

obtained after multiplying Eq.(31) by the risk-free growth return. Figure 2 displays 

the resultant price distributions of the S&P 500 without assuming any parametric 

density function, which are in turn the implied probability distribution from market 

data (i.e. the kernel-regression volatilities). Features of skewnesss and leptokurtosis in 

the implied distribution for the S&P 500 are found to be consistent with the volatility 

smile in Table 1, indicating that large price drops are more likely than the geometric 

Brownian motion model predicts (or, at least the market’s opinion, expressed through 

options trading). The extent of the convexity of the smile curves indicates the degree 

to which the market risk-neutral density function differs from the corresponding BS, 

SV or SVJ risk-neutral distribution. In addition, the direction in which the smile curve 

slopes reflects the skew of the market risk-neutral density function: a positively 

(negatively) sloped implied volatility smile curve across moneyness results in a 

risk-neutral density function that is less (more) positively skewed than the 

corresponding BS, SV or SVJ risk-neutral distribution that would result from a flat 

smile curve. As a result, the existence of the volatility smile curve indicates that 

market participants make more complex assumptions than BS, SV and SVJ about the 

path of the underlying index price.   
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30 days 

 

100 days 

 

300 days 

 

Figure 2. Implied risk-neutral densities of SPX options with 30, 100 and 300 days to expiry 

traded in January 1995. The way of estimating the implied risk-neutral density function is by direct 

application of the Breeden and Litzenberger (1978) result to the call option pricing function of either 

Black-Scholes, SV or SVJ. This requires an interpolated call pricing function, c(X,τ), that is consistent 

with the monotonicity and convexity conditions, and that can be differentiated twice. This can be 

achieved nonparametrically, by applying a statistical technique called nonparametric kernel regression. 

 

 

 

V. Statistical Tests of Distribution Similarities 
 

Do stochastic volatility and/or jumps help improve the consistency of risk-neutral 

distributions implicit in the S&P 500 index option market and the cash index market?  

This study answers this question by comparing the risk-neutral density estimated from 

cross-section of S&P 500 option prices to the risk-neutral density inferred from the 

time series density of the S&P 500 index. One (denoted as ( ) 300 100, 30, ,* =ττSg   

days to horizon) is estimated, using a canonical valuation approach, from a sequence 
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of observed index returns assumed to follow constant volatility and stochastic 

volatility with/without jumps. And the other (denoted as ( ) 300 100, 30, ,* =ττSf days 

to maturities) is inferred from option prices based on three option pricing models of 

Black-Scholes (1973), Heston’s (1993) SV and Bakshi et al.’s (1997) SVJ. If the 

difference between ( ) *

τSf  and ( ) *

τSg  happens to be smaller for the SV model 

than for the SVJ model, then we will conclude that an underlying asset imposing 

stochastic volatility without jumps will bring much closer to the corresponding 

underlying dynamic relative to the SVJ case. This will implicate that the superiority of 

the SV model in option pricing relative to the SVJ model. Alternative statistics are 

proposed for comparisons of the resultant risk-neutral densities, consisting of 

Kolmogorov-Smirnov goodness-of-fit test and Kullback-Leibler distance measure. 

 

 

5.1 Kolmogorov-Smirnov Test 

 

The Kolmogorov-Smirnov (K-S) test considers the goodness-of-fit between two 

empirical distribution functions. The first empirical distribution function is given in 

terms of the order statistics, iu , which is an observed value of the cumulative 

distribution function for each expiration at iTS ,  to produce a probability iu . The 

cumulative function ( )iuC , which is the proportion of the iu  equal to or less than 

iu , is calculated from the second empirical distribution function. The K-S statistic is 

defined as the maximum value of ( ) ii uuC − . Given the significant level of 5% 

(1%), the acceptance rates of the K-S statistics to measure the “closeness” of 

risk-neutral densities between the butterfly-spread strategy and the canonical 

valuation approach across alternative models of constant volatility/stochastic 

volatility/jump-diffusion under stochastic volatility model equal 97%/ 100%/ 94% 

(100%/ 100%/ 100%) for the 30 days to expiration, 94%/ 75%/ 69% (100%/ 94%/ 

81%) for the 100-day expiration, and 0%/ 3%/ 81% (17%/ 17%/ 89%) for the 300 

days to expiry. The results suggest distribution similarities between index- and 

option-implied densities only for 30 and 100 days to expiry for the constant- and 

stochastic-volatility models, while incorporating a jump component improves the 

internal consistency for 300 days to expiry. The rejection of density similarities 

indicates mispricing of the constant- and stochastic-volatility models for long-dated 

SPX options. For robust comparison purposes, K-S test results over 72 one-month 

subperiods are graphed in Figure 3. 
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Figure 3. Given the significance level of 0.05, Kolmogorov-Smirnov (K-S) goodness-of-fit tests 

over the period 1993−−−−1995. The K-S test is used to decide if option-implied densities come from a 

population with an index-implied empirical distribution. The K-S test is based on the maximum 

distance between these two cumulative distribution functions. The dots (•) with value of 1 (−1) indicate 

the acceptance (rejection ) of the null hypothesis of distribution similarity for the constant volatility, 

while the symbol of cross (×) with values of +2 or −2 and the symbol of round (ο) with values of +3 or 

−3 are, respectively, for the stochastic volatility and jump-diffusion with stochastic volatility.  

 

 

 

5.2 Kullback-Leibler distance measure 

 

The Kullback-Leibler distance (Kullback, 1959; Kullback and Leibler, 1951) is 

perhaps the most frequently used information-theoretic “distance” measure from a 

viewpoint of theory. The relative entropy of option-implied distributions ( )τSfk

*  

with respect to index-implied densities ( )τSgk

* , called the Kullback-Leibler (KL) 

distance, is defined by 
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While ( )**

kk gfd  is often called a distance, it is not a true metric because it does not 

satisfy the triangle inequality. However, the properties of the relative entropy equation 

make it a convex function of ( )τSfk

* , always nonnegative, and equal zero only if 

( )τSfk

* = ( )τSgk

* . The smaller the relative entropy, the more similar the distributions of 

the index and option data. Note that the measure is asymmetrical and the distance 
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( )**

kk gfd  is not equal to ( )**

kk fgd . If the distributions are not too dissimilar, the 

difference between ( )**

kk gfd  and ( )**

kk fgd  is small. Figure 4 displays the relative 

entropy between index- and option-implied risk-neutral densities across models and 

days to expiration.  The SV with respect to GARCH-SV has a close KL distance 

resemblance to the BS with respect to time-series constant volatility, for 30 days to 

horizon.  The SVJ in general rates its underlying 300-day return level the same as the 

GARCH-SVJ. Finally, the relative entropy shows an appropriate measure of the 

similarity of the underlying distribution for the BS with respect to the constant 

volatility for 100 days to expiration. 

 

 
 

Figure 4. Kullback-Leilber (KL) distance measure over the period 1993−−−−1995. The KL distance 

quantifies the degree of divergence between two distributions. The KL distance is given by their 

relative entropy, ( ) ( )( ) ( ) ( ) ( )( )∑
=

=
n

k

kkkkk
SgSfSfSgSfd

1

*****
ln τττττ , where ( )τSf

k

*  and ( )τSg
k

*  are, 

respectively, option- and index-implied risk-neutral distributions with size n. The KL distance is zero if 

both distributions are equivalent ( ( )τSf
k

* = ( )τSg
k

* ). The smaller the relative entropy, the more similar 

the distributions of these two data sets. Three models are considered here: constant volatility (BS vs. its 

corresponding time-series constant-volatility model), stochastic volatility (SV vs. GARCH-SV), and 

jump-diffusion under stochastic volatility (SVJ vs. GARCH-SVJ). 

 

 

 

VI. Implied Risk Aversion 
 

To provide an economic interpretation for the differences between option- ( *f ) and 

index-implied ( *g ) risk-neutral densities, this study infers the relative preferences that 
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are compatible with the pair of option and index values. The risk-neutral probabilities 

are an MRS (marginal rate of substitution)-weighted probability density function, 

which are adjusted for risk aversion, time preferences, and other variations in 

economic valuation (Aït-Sahalia and Lo, 2000). Thus, *f  and *g  carry information 

that is relevant for the risk aversion between option and stock investors.  Subject to 

certain conditions such as complete and frictionless markets and a single asset, the 

absolute risk aversion (ARA) is related to the risk-neutral density function, ( )TSh* , 

and the physical density function, ( )TSh , by the representative investor’s utility 

function, ( )TSU , as follows, 
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The Arrow-Pratt measure of relative risk aversion can be inferred by 

ARARRA ×= TS  (see Leland, 1980; Bliss and Panigirtzoglou, 2004). The economic 

theory suggests that the ARA and RRA functions should be positive and 

monotonically downwards sloping for risk-averse investors.
11

 However, some studies 

such as Aït-Sahalia and Lo (2000), Jackwerth (2000), Aït-Sahalia et al. (2001), and 

Rosenberg and Engle (2002) show that the resulting option-implied risk-aversion 

functions are somewhat inconsistent with theory: either U-shaped or generally 

declining but not monotonically so. In contrast, the discrepancy in ARA and RRA 

between option and stock investors provides a new method of inferring risk aversion 

implied by security market prices, together with the informativeness of options, to 

present unique evidence of the term structure of risk preferences, shown as follows, 
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The difference allows us to infer the degree of risk aversion of the option and stock 

traders. A comparison of these two risk-neutral probabilities shows that the 

discrepancies in absolute and relative risk aversions are not constant across states or 

maturity dates, but changes in important nonlinear ways (see Table 4). In most cases, 

option traders are more risk averse than stock traders, with some exceptions in 

risk-neutral densities between the SVJ and GARCH-SVJ models for 30 days to 

horizon. 

                                                 
11

 Some well-behaved functional form for the underlying utility function such as the power function 

has constant RRA, while the exponential-utility function exhibits constant absolute risk aversion. 
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Table 4 Discrepancy in Option- and Index-Implied Risk Aversion Functions across States 

Underlying data are 36×3×3 option- and index-implied risk-neutral distributions across maturities (30, 100 and 300 days to horizon) and 

models (BS/constant-volatility, SV/GARCH-SV, and SVJ/GARCH-SVJ), from January 1993 to December 1995.  Values for the 

representative investors “RRA (ARA) Diff” obtained by subtracting the index-implied RRA (ARA) from the option-implied RRA (ARA). 
 
 30 days  100 days  300 days 

RRA Diff 

(ARA Diff) 

BS vs. 

CONST 

SV vs. 

GARCH-SV 

SVJ vs. 

GARCH-SVJ 
 

BS vs. 

CONST 

SV vs. 

GARCH-SV 

SVJ vs. 

GARCH-SVJ 
 

BS vs. 

CONST 

SV vs. 

GARCH-SV 

SVJ vs. 

GARCH-SVJ 

M 
4.8640 

(0.0107) 

4.3977 

(0.0101) 

−2.7216 

(−0.0059) 
 

2.6957 

(0.0059) 

2.5730 

(0.0061) 

4.6985 

(0.0106) 
 

9.5784 

(0.0228) 

7.3235 

(0.0123) 

7.6142 

(0.0182) 

Mdn 
7.4469 

(0.0165) 

3.6051 

(0.0071) 

−2.5078 

(−0.0058) 
 

4.5045 

(0.0111) 

2.9771 

(0.0070) 

5.1670 

(0.0125) 
 

15.8014 

(0.0323) 

11.5553 

(0.0208) 

12.8274 

(0.0246) 

Max 
29.5697 

(0.0672) 

29.7412 

(0.0692) 

29.8701 

(0.0674) 
 

29.8430 

(0.0682) 

29.2726 

(0.0714) 

29.7688 

(0.0726) 
 

29.7405 

(0.0733) 

29.9507 

(0.0728) 

29.6815 

(0.0700) 

Min 
−26.9062 

(−0.0641) 

−29.3136 

(−0.0666) 

−29.9333 

(−0.0613) 
 

−29.8770 

(−0.0738) 

−29.9195 

(−0.0672) 

−29.0645 

(−0.0610) 
 

−29.6075 

(−0.0467) 

−29.8089 

(−0.0670) 

−29.0154 

(−0.0570) 

Std 
16.9216 

(0.0375) 

16.5405 

(0.0376) 

17.2311 

(0.0381) 
 

18.1824 

(0.0407) 

15.2693 

(0.0335) 

13.8055 

(0.0303) 
 

16.5879 

(0.0323) 

16.0666 

(0.0326) 

16.2086 

(0.0322) 

Skewness 
−0.3888 

(−0.4007) 

−0.4254 

(−0.3767) 

0.3533 

(0.3863) 
 

−0.1830 

(−0.2306) 

−0.2741 

(−0.2245) 

−0.2788 

(−0.2370) 
 

−0.8073 

(−0.5493) 

−0.6397 

(−0.7040) 

−0.7130 

(−0.4563) 

Kurtosis 
2.1134 

(2.1868) 

2.3093 

(2.3320) 

2.2305 

(2.2398) 
 

1.6829 

(1.7564) 

2.3641 

(2.4073) 

2.2991 

(2.1497) 
 

2.3965 

(2.0841) 

2.3160 

(2.6289) 

2.3470 

(2.1763) 
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VII. Conclusions 
 

The dynamics of the underlying fundamental asset cannot be related to option prices 

without additional assumptions or information. One possibility is to assume that the 

risks associated with stochastic volatility or jumps are diversifiable and not priced by 

the market. However, most recent empirical work clearly indicates there are prices for 

volatility and jump risk (Anderson et al., 2002; Chernov and Ghysels, 2000; and Pan, 

2002). Thus, there is evidence of jumps and stochastic volatility in the underlying 

stock index process. In lights of the phenomena, this study incorporates stochastic 

volatility and jumps into the underlying dynamics and adopts a canonical valuation 

method proposed by Stutzer (1996) and Duan (2002) to recover a risk-neutral 

distribution from stock index prices only to avoid making any assumptions on 

investors’ preferences. In particular, while the timer interval between the data shrinks 

to zero, the underlying dynamics constructed as GARCH-like models with/without 

jumps will converge to continuous-time processes under which Heston (1993) and 

Bakshi et al. (1997) build option pricing formulas. The feature enables us to clarify to 

what extent of degrees in the contribution of stochastic volatility and jumps to the 

consistency between option- and index-implied risk-neutral distributions. We extend 

the kernel regression approach to incorporate stochastic volatility and jumps so that 

resultant implied volatilities from option prices contain the information of volatility 

and jump risks.  It is of interest to see whether these two risk-neutral distributions 

inferred from either option prices or index returns are consistent after taking into 

account stochastic volatility with/without jumps. The positive answer gives rise to 

strength the improvement and importance in the incorporation of stochastic volatility 

and/or jumps into both the underlying dynamics and option pricing formulas. This is 

the goal that we expect to achieve. Even though these models turn out to be 

misspecified in terms of the criteria discussed above, results from the tests of those 

models are still informative and could be used on how well those models work for 

practitioners. We are to learn the degree to which cross-sectional option pricing 

patterns are quantitatively consistent with the time series properties of the underlying 

asset and of option prices. The stochastic volatility is found to reconcile the spot and 

option risk-neutral densities for 30 days to expiration, while additionally adding a 

jump component brings densities closer for 300 days to horizon. We propose a 

peso-problem interpretation of this evidence: cross-sectional option prices capture a 

premium as compensation for the risk of a market crash, but actual realizations of that 

jump are too infrequent to be consistently observed and reflected in estimates drawn 

from the time series of asset returns. The option- and index-implied risk-neutral 

probabilities are also compared to gauge the magnitudes of option and stock investors’ 

differences in preferences. Our results show that the option investors possess more 

risk averse than stock traders except for the 30-day jump-diffusion with stochastic 

volatility. The finding may help illustrate the stylized puzzle arising in empirical 

options research that implicit volatilities are greater than subsequent realized 

volatilities.  This can be achieved a negative volatility risk premium that implies 

slower volatility mean reversion under the risk-neutral than under the physical 

probability measure or by a positive jump risk premium that increases risk-neutral 

jump variance and total variance relative to objective jump variance (Chernov, 2003; 

Pan, 2002; and Broadie et al., 2004). However, our finding more or less provides a 

support for the existence of market segmentation in spot and option-market risk 

aversions. The ‘representative agent’ construction and calibration associated with 

implicit pricing kernels and risk premiums, which implies risk dispersal across all 
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agents in the economy until all agents are indifferent at the margin to the systematic 

risks they bear given the prices of those risks, appear inconsistent with the industrial 

organization of stock index option markets, which appears to be functioning as an 

insurance market. Meanwhile, judging appropriate prices of risks is also complicated 

by the empirical rejections of standard asset pricing models such as the CAPM and 

CCAPM. 
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