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Abstract

This paper studies the interrelations among yield curve factors, market
expectations and monetary policy rates using interbank interest rates across
Euro- and non-Euro countries. The term structure of interest rates can
be summarized by the level and slope factor, whereas curvature is not a
common feature of interbank rates. Interest rates are first modelled in an
equilibrium framework using a two-factor CIR (1985) model, and Kalman
filter is used to extract the two factors under the no–arbitrage restriction.
Impulse response analysis shows that German factors and forecast errors have
the biggest influence on those factors from other markets, and that yield
slope is a useful variable for capturing market expectations. Based on the
estimated factors, theoretcial yields implied by the Expectations Hypothesis
match remarkably well the movements of monetary policy rates, providing a
consistent link between yield curve factors and macro–economic variables and
thus integrating the approaches between no–arbitrage yield curve modelling
and macro–economic based Expectations Hypothesis.
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1 Introduction

Movements in the short-end of the term structure suggest different monetary policy
decisions and the expectations about which held by market participants. Following
the introduction of euro, a single money market yield curve for the euro area was
established. To avoid arbitrage opportunities, all countries adopting the euro should
have similar yield curves, though there exist local differences in the structure of bonds.
The need to compare yield curve data, especially at the very short end of the maturity
spectrum, for different countries may have become unnecessary.

It is easier to define the short-end of term structure using interbank money market
interest rates. The interbank market provides quotes every day for a wide range of
short-end maturities, and participants in the market are top credit quality banks, this
combined with the high liquidity of interbank market implies that the credit premiums
in the rate quotes are small. Furthermore, interbank data are not subject to issues
like specialness or favorable tax treatment that are persistent features of government
bond markets (Malz (1998) [10]). These issues render otherwise identical interbank
money market interest rates from different European countries more comparable for
the purpose of extracting market expectations. Interbank money market interest rates
have been used for their informational or predictive content in a number of studies
(Gerlach and Smets (1996) [5], Malz (1998)), and have been suggested as a valuable
source of information for market expectations and the stance of monetary policy (Malz
(1998)).

The Expectations Hypothesis test in its simplest form uses current spread between
long and short rates to predict a) future short rate changes over the long-rate horization,
or b) long rate changes over the next holding period. The CIR (Cox, Ingersoll and Ross)
(1985) [3] model proceeds to use the stochastic generalizations of equilibrium theory to
explain the term structure of interest rates and to predict how changes in the underlying
variables will affect the term structure. It has a number of practical properties: it can
model some of the heteroskedasticity in the errors, have non-negative bound on the
interest rates, can generate a hump-shaped curve, and is analytically tractable. The
CIR (1985) model has its multi-factor extensions: Longstaff and Schwartz (1992) [9]
analyze a two-factor model and interprete the factors as short-term interest rates and
interest rates volatility. Chen and Scott (1993) [2] further estimate both two-factor
and three-factor models, and give an alternative interpretation for the two factors:
short-term rates and long-term rates; and take interest rate volatility as the third
factor in their three-factor model. They also argue that the estimated three-factor
model is able to capture three common features of the term structure—level, slope and
curvature—that are able to characterize empirically most of the variations in the shapes
of yield curve, as first documented in Litterman and Scheinkman (1991) [8].

This paper takes a step towards the interrelations among the shapes of yield curve,
market expectations and monetary policy decisions, linked by the underlying predicting
factors of yield curves, for Euro and non-Euro countries. This is done by first looking
at how variations in the shapes of interbank money market yield curve are related
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to the underlying predicting factors, then computing theoretical yields based on the
predicting factors under the assumption that the Expectations Hypothesis holds, and
finally analyzing the relations between the theoretical yields and monetary policy rates.

Modelling yield curves using factor representation in the no–arbitrage framework
gives us a way to make explicit the factors affecting the dynamics of the shapes of
yield curves. If similiar monetary policy results in similiar yield curve behaviour, then
yield curve can be useful information variable for monetary policy analysis. Turn-
ing to the modelling focus of macroeconomists, studies on yield curve models found
that both the shapes of yield curve (see Mishkin, 1990a [12], 1990b [13], 1991 [14])
and some macro–economic variables (Bernanke and Blinder(1990) [1]) contain infor-
mation about markets’ expectations of future inflation and real economic activity, an
empirical analysis of yield curve in this context can be used to evaluate jointly the
effectiveness of central banks’ communications with financial markets and the rational-
ity of the expectations held by market participants. Empirically relating yield curve
factors to macro–economic variables thus provides a link between the equilibrium and
no–arbitrage yield curve modelling approach and the macro–economic based Expecta-
tions Hypothesis approach.

The comparisons across Euro and non-Euro yield curves help to assess the impact of
European Monetary Union (EMU) on the short-end of the yield curve, if the impact is
instantaneous and money market yield curves are the first to converge, then they could
be useful benchmark for pricing and hedging short-term interest rates derivatives.

The empirical analysis of the yield curve uses a two-factor CIR (1985) model on
a sample of interbank money market interest rates for two euro countries—Germany
and Finland, and for two non-euro countries–UK and Sweden. The data is weekly and
ranges from April 26, 1995 to May 4, 2005. It covers the period from stage two of
EMU, the introduction of Euro to the post-Euro period. Since monetary policies for
Euro-countries are staged and converging during the sample period, if long rates move
in the direction as dictated by the expected future path of short-term interest rates,
and market participants and central banks attentively ‘read’ the expectations from yield
curve, then under constant term premia, the Expectations Hypothesis would hold in
practice. Upon this note, we compute theoretical yields implied by the Expectations
Hypothesis, then analyze the dynamic relations between the theoretical yields and
monetary policy rates, in order to see whether the computed yields reflect market
expectations for the immediate path of monetary policy rates.

In actual implementations, the dynamic evolutions of yield curve are assumed driven
by two unobservable factors, whereas the cross-sectional relation between yield and
factors are determined by the no-arbitrage condition. The state space form of the CIR
model puts the panel structure in a theoretically consistent way, Kalman filter is used to
estimate the model and extract the two factors. The two factors are found respectively
related to yield level and slope—both determine the shape of yield curve.

The level and slope factors are also dynamically related across markets, with German
factors having a larger influence than others. The two-factor model fits very well three
of the yield curves, namely Germany, Finland, and UK, with the fitted and actual yield
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curves of Germany and Finland lying very close to each other. This confirms the notion
that countries adopting similiar monetary policy have similiar yield curve behavior, and
yield curves can be compactly summarized by two factors—level and slope. For non-
Euro countries, the two-factor model describes UK yield curve considerably better than
Sweden. The loose fit for Sweden yield curve may be a result of forcing independent
error structure while in fact the two factors are correlated to a larger extent than others.

That yield curve can be well described by the level and slope factors suggests that
changes in short-term interest rates are more predictable around the establishment
of the European Central Bank (ECB) and the introduction of Euro. And the pred-
icatability of short-term interest rates tends to validate the Expectations Hypothesis
(Hardouvelis (1988) [6], Mankiw and Miron (1986) [11], Gerlach and Smets (1996)).
This also suggests that longer-term (6- and 12-month) interest rates might be good
candidates for gauging markets’ expectations about the stance of monetary policy. To
the extent that market expectations can be affected by the predictability of future short
rates, the shape of yield curve as charaterized by the predicting factors can be altered
in a manner more in line with market expectations.

Under the assumption that the Expectations Hypothesis holds, the implied the-
orectical yields, based on the estimated factors from the first stage equilibrium and
no–arbitrage framework, match remarkably well the movements of monetary policy
rates, suggesting that the factors underlying the movements of interbank yield curve
are closely related to monetary policy rates, namely, there is a link between financial
factors and macro–economic variables. This analysis also integrates the no–arbitrage
yield cuve modelling approach with the macroeconomic based Expectations Hypothesis.

The structure of this paper is as follows. Section 2 briefly describes the CIR model
in a multi-factor framework, section 3 casts the CIR model in state space form, and
Kalman filter is used to estimate the state space model and the actual implementation
procedure is presented in section 4. Section 5 gives the data and the estimation results
for the two-factor CIR model, section 6 then analyses the impulse responses of the two
factors across the four interbank money markets, section 7 relates the theoretical yields
implied from the Expectations Hypothesis to monetary policy rates, and finally section
8 summarizes and concludes the paper.

2 The Multi-factor CIR Model

Assume the instantaneous short rate rt is a linear combination of n independent state
variables, or factors, denoted as x1(t), ..., xn(t), that is, we have the following identity:

rt = Σn
i=1xi(t), (1)

and the state variables follow the CIR(1985) square-root process:

dxi(t) = ki(θi − xi(t))dt + σi

√

xi(t)dwi(t), i = 1, ..., n, (2)
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where the parameter ki determines the mean reversion speed of the state variable i to
the long-run mean θi, and σi is the deviation from the mean. The terms w1, ..., wn are
independent standard scalar Wiener processes defined on the actual probability space
(Ω,F ,P). The price for a risk-free zero-coupon bond at time t paying one unit currency
at time T is the expected discounted payoff

P (t, T ) = EQ
t

[

exp

(

−

∫ T

t

rsds

)]

, (3)

where the expectation is taken under the risk-neutral probability measure Q. The
solution for the zero-coupon bond price as a function of the state variables takes the
following form:

Pt(τ, x1, ..., xn) = exp(Σn
i=1(Ai(τ) − Bi(τ)xi,t)), τ = T − t, (4)

Ai(τ) = ln

(

2γie
(γi+κi+λi)τ

2

(γi + κi + λi)(eγiτ − 1) + 2γi

)

2κiθi

σ2
i

,

Bi(τ) =
2(eγiτ − 1)

(γi + κi + λi)(eγiτ − 1) + 2γi

,

where

γi =
√

(κi + λi)2 + 2σ2
i ,

and λi is the market price of risk for the ith factor, it is determined endogeneously from
changing the underlying process from P to Q. Due to this particular function form,
the yields on the zero-coupon bond can be written as a linear function of the factors

Yt(τ) = −
ln Pt(τ)

τ
= −

A(τ)

τ
+

B(τ)

τ
Xt, (5)

where the coefficients A(τ) and B(τ) are time-invariant functions of time to maturity
τ . As the maturity becomes longer and longer, the yield approaches a limit that is
independent of time:

Yt(∞) =
2κθ

γ + κ + λ
. (6)

3 The State Space Form of Multi-factor CIR Mod-

els

The CIR model casted in the state space form involves specification of the measurement
system and the transition system in discrete time dimension. Evenly subdivide the time
interval [0, T ] into M subintervals, let tj = j T

M
, j = 1, . . . , m as the corresponding time
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point, and denote each time step as ∆t = T
M

. This discretization allows us to represent
equation (5) as the following measurement system:

Yt = A + BXt + εt, (7)

where

Yt =











y1(t)
y2(t)

...
ym(t)











, A = −













A(τ1)
τ1

A(τ2)
τ2
...

A(τm)
τm













, B =













B1(τ1)
τ1

B2(τ1)
τ1

· · · Bn(τ1)
τ1

B1(τ2)
τ2

B2(τ2)
τ2

· · · Bn(τ2)
τ2

...
...

. . .
...

B1(τm)
τm

B2(τm)
τm

· · · Bn(τm)
τm













,

and
εt ∼ N (0, H),

H =











h2
1 0 · · · 0
0 h2

2 · · · 0
...

...
. . .

...
0 0 0 h2

m











.

In the measurement system (7), Yt is an m×1 maturity vector of observed yields, and
A is an m× 1 vector of intercepts, the m× n coefficient matrix B is the corresponding
factor loadings. The m×1 vector of measurement errors εt is normally distributed with
mean 0 and variance matrix H , the errors are assumed cross-sectionally and serially
uncorrelated, but with variances differing across maturities. In the state space formu-
lation of interest rates models, we typically have more maturities of observed yields
than the number of factors, i.e. m>n, so that the system is not exactly identified. The
addition of the measurement error term is used to account for the overidentification
problem as well as any data imperfections or model misspecificaton errors.

The transition system is a discretized representation of the continuous-time CIR
model, which involves solving the stochastic differential equation (2) explicitly for the
first two conditional moments, then discretizing over the time intervals using the Euler
scheme. In matrix form, the transition equations take the following form:

Xt = C + DXt−1 + vt, (8)

where

Xt =











x1(t)
x2(t)

...
xn(t)











, C =











θ1

(

1 − e−k1∆t
)

θ2

(

1 − e−k2∆t
)

...
θn

(

1 − e−kn∆t
)











, D =











e−k1∆t 0 · · · 0
0 e−k2∆t · · · 0
...

...
. . .

...
0 0 0 e−kn∆t











,

and
vt| Ft−1 ∼ N (0, Rt),
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Rt =











ξ2
1 0 · · · 0
0 ξ2

2 · · · 0
...

...
. . .

...
0 0 · · · ξ2

n











,

where

ξ2
i =

θiσ
2
i

2κi

(

1 − e−κi∆t
)2

+
σ2

i

κi

(

e−κi∆t − e−2κi∆t
)

xi,t−1,

for i = 1, . . . , n. The dimensions for Xt, C, and D are respectively n × 1, n × 1,
and n × n. Since the state variables are governed by the square-root processes, the
conditional variances of the errors ξ2

i depend on xi,t−1.

4 The Kalman Filter Implementation

The state space formulation of CIR model pools both cross-sectional and time series
information in the interbank interest rates, it also uniquely idenfies the market price
of risk λ that is not identified with other single-dimensioned estimation methods. The
no-arbitrage condition also imposes restrictions on the form that the measurement
equations can take and enforces the consistency of yield curve evolution over time. The
fixed parameters of the state space models are typically estimated using the method
of maximum likelihood for normally distributed errors, and Kalman filter then delivers
the optimal filtered estimates of the unobserved state variables. In the CIR model, the
errors are non-central χ2 distributed, so exact maximum likelihood is not applicable.
However, the method of quasi-maximum likelihood can be used; the method is based
on the exact discrete form of the conditional mean and conditional variance functions
derived from the CIR square-root stochastic process. The quasi-maximum likelihood
estimator is not consistent, but Monte Carlo studies (Chen and Scott (1993), Zhou
(2001) [15]) have shown that compared to other estimation methods like GMM (Gener-
alized Method of Moments) and SMM (Simulated Method of Moments), the magnitude
of biases is not large.

The actual implementation of the state space model begins with finding the appro-
priate initial values for the state variables, which are then used to start the recursive
algorithm in the Kalman filter technique (see Harvey (1991) [7]). The unconditional
mean and unconditional variance of the state vector are used to initialize the Kalman
filter. The unconditional mean for the CIR model is

E
[

X1 | F0

]T
=
[

θ1 θ2 · · · θn

]T
, (9)

where the superscript T denotes matrix transposition, F0 the Filtration at time 0, and
θi the unconditional mean for factor i. The unconditional variance for the CIR model
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is

var [X1| F0] =













θ1σ2
1

2κ1
0 · · · 0

0
θ2σ2

2

2κ2
· · · 0

...
...

. . .
...

0 0 · · · θnσ2
n

2κn













. (10)

The conditional forecast of the measurement equation (7) takes the following form

E [Yt| Ft−1] = A + BE [Xt| Ft−1] , (11)

and the corresponding conditional variance is

var [Yt| Ft−1] = Bvar [Xt| Ft−1] B
T + H, (12)

where the matrices A, B and H are defined in the measurement system (7). The errors
for the conditional prediction in the measurement equations are denoted as

εt = Yt − E [Yt| Ft−1] , (13)

where Yt is the observed yield at time t. The prediction errors are then used to update
the unobserved state variables

E [Xt| Ft] = E [Xt| Ft−1] + Ktεt, (14)

where
Kt = var [Xt|Ft−1] B

T var [Yt|Ft−1]
−1

is the Kalman gain matrix. The conditional variance of the state variables is also
updated as

var [Xt|Ft] = (I − KtB) var [Xt|Ft−1] . (15)

Conditional on the updated values, the forecasts for the transition system are computed
as

E [Xt+1|Ft] = C + DE [Xt|Ft] , (16)

var [Xt+1|Ft] = var [Xt|Ft−1] − Dvar [Xt|Ft] D
T + Rt, (17)

where the matrices C and D are defined as in the transition system (8). Equations
(11) to (17) are the recursive steps in the Kalman filter algorithm. At each time point,
it generates a prediction error εt and a prediction error variance-covariance matrix
var [Xt|Ft−1], which are then used to maximize the likelihood function with respect to
the parameter vector φ̂:

ℓ(φ̂) = −
Nm

2
ln (2π) −

N

2
ln (det (var [Xt|Ft−1])) −

N

2
εT

t var [Xt|Ft−1]
−1

εt, (18)

where N is the total number of observations assuming equal discrete time steps, and
m is the number of yield series. The maximization of the likelihood function is done
using the iterative algorithms of Marquart and Berndt-Hall-Hall-Hausman, computing
numerical derivatives, and setting a convergence criterion of 10−6 for the gradient of
the estimated coefficients.
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5 Estimation of the Two-Factor Models

5.1 Data

The interbank interest rates are obtained from DataStream for four European countries:
Germany, Finland, UK and Sweden. They are respectively coded FIBOR, FNIBC,
SIBOR and BBGBP in DataStream. The selected maturities are 1 month, 3 month,
6 month and 12 month. The observations are weekly, ranging from April 26, 1995 to
May 4, 2005, for a total of 524 data points.

Descriptive statistics for yields and yield spreads are given in Table 1 Panel A and
B, respectively. Panel A shows that at the short-end of the maturity spectrum average
yield curves are increasing, convex functions of maturity. For all the four markets,
average yield curves increase first from 1 month to 6 month then rise more sharply
from 6 month to 12 month. This is confirmed by the average yield spreads in Panel
B that shows more clearly that there is a sharpening of the slopes at the longer end
of the selected maturities. In addition, yields are quite persistent, with first-order
autocorrelations above 0.980 for all markets. Yields at 1-month and 3-month maturties
are more persistent than yields at 6-month and 12-month maturities. Yield spreads, on
the other hand, are less persistent than yields, but the extent of persistence increases
with maturity.

The volatility curves for yield levels in Table 1 Panel A, however, show different
patterns across the markets. The average volatilities for the German and Finnish
interbank markets are increasing, convex functions of maturities, while the Swedish
interbank volatility curve looks like an inverted wedge with a trough at the 6-month
maturity, and the UK interbank volatility has a hump at 3-month and 6-month ma-
turities. The volatilities for yield spreads on the other hand are monotone increasing
functions of maturities, i.e. the spread between 12- and 1-month is more variable than
the spread between 6- and 1-month, which is in turn more variable than the 3-month
yield spread.

Litterman and Scheinkman (1991) shows that about 90% of the variability in bond
yields can be captured by three factors—level, slope and curvature. The results from
principal components analysis of weekly changes in interbank interest rates in Table
2 show that for all the interbank markets, the first factor explains over 98% of the
variability in rate changes, the second factor explains a further 1% of the variability,
and in total three factors are able to explain over 99.9% of the total variations in the
changes of interbank interest rates.

Plots of the factor loadings in Figure 1 further show that loadings on the first factor
are close to one for the four selected maturities, suggesting that shocks to the first factor
result in parallel shifts in the yield curve. The loadings on the second factor are negative
for 1-month and 3-month maturities but positive for 6-month and 12-month maturities,
resembling a slant upward slope. Thus shocks to the second factor pull yields at the
short- and longer-end of the interbank markets at different directions. Finally, loadings
on the third factor are much smaller relative to others; they are slightly hump-shaped,
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positive for the 3-month and 6-month maturities but negative for the 1-month and
12-month maturities. This means that shocks to the third factor pulls the short- and
long-end yields in one direction but the middle-ranged yields to the opposite direction.

5.2 Estimation Results

From the principal components analysis, a two-factor CIR model can be considered
adequate to capture most of the variations in the shape of yield curves, as the contri-
bution of the third factor is marginal—less than 0.1%. Chen and Scott (1993) compare
the relative performance of two-factor and three-factor CIR models using model pricing
errors for bonds of different maturities, and find that the two-factor model performs
almost as well as the three-factor model.

The empirical implementation of the two-factor CIR model involves setting the
number of maturities m = 4 and the number of factors n = 2 in systems (7) and
(8). The estimation of the parameter set {θ1, κ1, σ1, λ1, θ2, κ2, σ2, λ2, h

2
1, h

2
2, h

2
3, h

2
4} uses

the quasi-maximum likelihood method mentioned in section 4. Maximization of the
likelihood function starts with appropiate initial values for the parameter set, and the
estimation results are given in Table 3.

The results show that the estimated two factors have very different properties (see
Figure 2 for a time-series plot of the two factors). The mean reversions on the first
factor are much slower than those on the second factor. The half-life1 for the first
factor ranges from 4.4 years for the Finnish interbank market up to 63 years for UK
interbank market, while the half-life for the second factor has a value of 0.6 year to 1.8
years.

Figure 3 graphs the factor loadings B(τ) for the interbank markets. The loadings
for the first factor B1(τ) are slightly above one and increases slowly with maturity,
while the loadings for the second factor B2(τ) deline much faster with maturity for all
interbank markets. Thus the first factor affects all rates and determines the general level
of the interest rates, and the second factor has a stronger influence for the shorter-term
rates and resembles the slope factor.

The exact interpretation of the factors can be more clearly seen from their com-
parisons with yield levels and yield spreads. The dynamic series of the two factors
are extracted from the Kalman filter estimation process. The graphs of 3-month yield
levels with the first factors is given in Figure 5, while yield spreads (approximated as
the difference between 12 month and 1 month rates) with the second factor is given in
Figures 6. As the graphs show, the first factor closely follows the movements of yield
level while the second factor behaves like yield spread but with some time lag. Thus
the two unobservable factors delivered by the Kalman filter can be respectively related
to the level and slope of interbank rates.

The market price of risk estimates, λ, are all negative for the first factor (level),
implying a positive risk premium for holding longer-term bonds. The second factor

1Half-life is calculated as ln2

κ
.
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(slope) has a positive market price of risk for all markets. The implied negative risk
premium suggests that the market has expected that the inflation component of longer-
term yields will fall (decreasing slope) as dictated by the central banks’ monetary policy.

The forecast errors are on average close to zero for all maturities except for the
1-month rates. This could be because that the two-factor model cannot fully capture
the variations in 1-month rates or that the observations are more noisy at the maturity
of one month. The dynamic series of the forecast errors are given in Figures 7 and 8.
For all the markets, forecast errors are small in scale and decreasing with maturity, in
general they behave like white noise though there still seem to be some structure left
in the series. This could partly be attributable to the potential cross–correlations or a
third factor (curvature) that has not been accounted for.

To see how closely the forecast errors are related to the curvature factor, Table 4
gives the common sample correlations between the curvature factor2 and the forecast
errors, as well as the cross-sectional correlations among the forecast errors. As the table
shows, the curvature factor is negatively correlated with the 1- and 12-month forecast
errors but positively correlated with the 3- and 6-month forecast errors for all interbank
markets.

The cross-sectional correlations among the forecast errors behave differently for Euro
and non-Euro interest rates markets. For FIBOR and FNIBC, forecast errors at the
shorter-end of maturities (i.e. 1- and 3-month) are both negatively correlated with fore-
cast errors at the longer-end maturities (i.e. 6- and 12-month). The pattern is different,
however, for SIBOR and BBGBP, where the forecast errors are all positively related
except that the pairwise correlation between 3- and 12-month errors are negative. Re-
gressions of the forecast errors on the curvature factor show that loadings are humped
shaped for all markets, positive at 3- and 6-month and negative at 1- and 12-month
maturities. The adjusted R-squares of the regressions for FIBOR, FNIBC, SIBOR and
UK are 18.6%, 17.1%, 18.1%, and 16.7%, respectively. Thus the structure left in the
forecast errors resemble the curvature factor but the relative extent is rather small,
considering that on average forecast errors are about one-tenth the size of interbank
rates.

To assess how well the two-factor model fits the observed yields, the implied model
yields are calculated using the yield–and–factor relation as in Equation (5). Figure 4
shows model implied yields and actual yields for the four studied markets. For three of
the interbank markets—UK, Germany and Finland, the model yields lie slightly below
the actual yields, with almost no distinguishable gap between the two. Thus the two-
factor CIR model provides an adequate characterization for these three money market
yield curves—it is able to fit the levels and the slopes of the yield curves. For the Swedish
interbank market, however, the model underestimates the yield curve by a paralell gap
for all maturities. The different model performances could be partly attributable to
the presence of correlations between the two factors, which are forced to be zero during

2The empirical proxy for curvature is approximated as the difference between two times the 6-month
yield and the sum of 12-month yield and 1-month yield
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the estimation process to avoid complex algorithm. The average correlations of the
estimated factors for Germany, Finland, Sweden and UK are 0.149, 0.055, 0.353, 0.066,
respectively. The relatively higher correlation for the Swedish interbank market that is
not accounted for by the model could be a cause for the loose fit of the yield curve.

On average, both the implied and actual yield curve are slightly upward sloping
with little curvature. This general shape is also confirmed by the principal components
analysis where the third factor (curvature) explains less than 0.1% of the variations in
money market yield curve. Thus curvature is not a common feature of interbank term
structure.

The implied long yield, as defined in Equation (6), ranges from 0.895 to 1.001 for
the first factor and from 0.648 to 0.742 for the second factor. That the implied long
yield falls within such a narrow range suggests that market expects in the future long
rates will stand close to each other for the examined European markets. And this
expectation seems rational in view of the long-run inflation target set by the European
central banks.

6 Impulse Responses of the Two Factors

If monetary policy actions in one country leads to similiar reactions in other countries, it
would be reasonable to expect that changes in yields and yield spreads are dynamically
related to some extent, and if the linkage is governed by some factors then the factors
may be used to predict changes of yields and yield spreads in other markets. This
section uses impulse respose functions to explore this possibility. We will consider four
groups of impulse responses in turn: 1) responses of factor 1 across markets, 2) responses
of factor 2 across markets, 3) responses of forecast errors across markets, and 4) cross
responses of factors, forecast errors and yield curve curvature within a single market.

The impulse reponse function is obtained by first estimating the following VAR
system:

Ft = C(L) Ft−1 + εt , (19)

where Ft is a vector of the estimated first factors and second factors for the four inter-
bank markets, the forecast errors and yield curve curvature. The term C(L) is a matrix
of second-order lagged polynomials, and εt is a vector of residuals of the estimated
factors. Having obtained the vector of residuals εt, the inverse of the cholesky factor
of the residual covariance matrix P is used to orthogonalize the impulses for easier
interpretation:

νt = Pεt − (0, D) , (20)

where D is a diagonal covariance matrix, and νt is a vector of uncorrelated innovations.
The impulse response function then traces the effects of a one-time shock to one of the
innovations νt on the current and future 13 periods (corresponding to one quarter) of
the estimated factors Ft. Note that the estimated factors for German interbank market
come first in the VAR ordering, and the cholesky transformation P attributes all of the
effect of any common component to the German factors.
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Figures 9 and 10 show that German factors mainly respond to their own shocks,
lasting out to one quarter, the other three markets have less than one-six of the effects.
The German factors also have the largest and longest lasting influence on the Finnish
factors who in turn respond only secondarily to their own shocks. The UK and Swedish
factors respond primarily to their own shocks, and secondarily to shocks of the German
factors. The actual and implied yield curves for euro countries—Germany and Finland,
lie close to each other and are both subject to the dominant influence of German factors
in a similiar way. However, the Finnish factors behave differently in that they are also
affected by local shocks. Non-Euro countries—Sweden and UK, have factors responding
to shocks very differently: Swedish factors respond to shocks from other markets in a
more dispersed way and to a larger extent than UK factors. On the whole, the effects
of the German factors on other markets suggests that decisions by the ECB have a
predominant role in the monetary policy decisions in Euro countries such as Finland
and also have a big influence on other non-Euro European countries such as UK and
Sweden.

For all the markets, the response of factor 1 to its own shocks reaches its maximum
at about period 3 (3 weeks), then slowly declining though at different rates over the
remaining periods. The response of factor 2 to its own shock, on the other hand,
approaches its maximum limit at around period 6 (6 weeks), and remains at that
level untill quarter-end. The different behavior of the two factors in response to the
shocks can be better understood when relating to their interpretations respectively as
level and slope factors. Thus, shocks to yield level have a shorter lagged response and
less significant future effect than shocks to yield spread (slope). The lasting effect of
one-time shocks on yield spread is consistent with the Expectations Hypothesis of the
term structure of interest rates, according to which, current yield spread contains all
information on future short rate changes. Additionally, changes in slopes of Finnish,
Swedish and UK interest rates respond to changes in slopes of German interest rates,
which can be useful information besides domestic data when predicting changes in their
(Finnish, Swedish or UK) future interest rates.

Relative to the impulse responses of factor 1 and 2, the effects of a one-time shock
on the forecast errors die out very quickly for all markets, as shown in Figure 11. This
suggests that the information left in the forecast errors is short-lived and almost of
no forecasting value beyond three months. The German forecast errors, however, still
have the biggest influence on the others. This could be that other interbank markets
respond to news originating from Germany or that there is some structure left in the
errors related to the first two factors (such as cross–correlations).

To explore this possibility, the graph for the impulse responses of the following series:
factor 1, factor 2, forecast errors, and a measure for curvature are presented in Figure
12. The empirical proxy for curvature is approximated as the difference between two
times the six-month rates and the sum of two-month and twelve-month rates.

Since German interbank rates have the dominant effect on other interbank rates,
Figure 12 only presents the four series for 3-month FIBOR. Though the graph is se-
lective, it provides a good summary of the relationships among the factors and their
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respective informational role, which we document below. First of all, the current level
of short rates responds most negatively to shocks on the yield spread, that is, a widen-
ing yield spread indicates lower current short rates. Secondly, yield spread is the only
series that is less affected by others, it is hump-shaped and the response to a one-time
shock is permant, so that when new information changes current short rates, it revises
all future short rates and the expected level of long-term rates. Thus, future short
rate changes are to a large extent predictable and yield spread is a useful measure for
assessing markets’ expectations. Thirdly, forecast errors repond mainly to idosyncratic
shocks in the near term, up to two months. Beyond that, other factors like curvature
and slope have dominant influence. Fourthly, in three out of four cases, the curvature
measure and forecast errors are most closely related—they respond to shocks to a si-
miliar extent, though forecast errors have some of its own idiosyncracies, possibly due
to the missing cross–correlations or the presence of data imperfections and mispricing
errors at the short-end of maturity.

Although the above analyses point to the possibility of including a third factor in the
CIR (1985) model, actual implementations of a three-factor CIR model have a number
of numerical difficulities associated with the estimation procedures. Firstly, the third
factor as presumably interpreted as curvature is rather small in scale relative to the
first two factors, including it makes the task of separating different components harder
and causes non-invertability of the Hessian matrix. More parameters also renders op-
timization of the likelihood function rather difficult. Secondly, direct modelling of the
forecast errors seems to be a better option at first, but even after some scaling of the
data such that the Hessian matrix is invertable, the estimated results for the extracted
factor—the curvature series—are in most cases insignificant and not interpretable. Fur-
thermore, the forecast errors of the forecast errors (of the two-factor model) are almost
indistinguishable from the original series, meaning that the model does not succeed
in explaining any structure in the forecast errors. After such attempts, we conclude
that there is insufficient variation in interbank term structure to require the use of a
third factor and that a two-factor model is enough to capture most of the variations in
interbank term structure of interest rates.

7 Relating Yield Curve Factors to Macroeconomic

Variables

Given the optimal yield predictions delivered by Kalman filter and the good fit of the
factors to yield curve, it is of interest to relate the estimated factors to the macroeco-
nomic variables used in tests of the Expectations Hypothesis, and analyze their dynamic
interactions.

The Expectations Hypothesis states that changes in long rates are sums of the
expected changes in future short rates over the long-rate horizon, plus zero or constant
term premium. Based on the optimally predicted yields, the theoretical yields consistent
with the Expectations Hypothesis are given as
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yt (τ)EH ≡
1

τ

∑τ−1

i=0
Etyt+i (1) + cτ , (21)

where cτ is the constant term premium and may vary with maturity, but assumed to be
zero in computing the theoretical yields yt (τ)EH . The maturity of interest in Equation
(21) is for 3-month, 6-month and 9-month horizon respectively. The one-period ahead
predicted yields yt+i are spaced at monthly intervals, computed as monthly averages
of the weekly predicted yields for 3-month, 6-month and 9-month maturity from the
first-stage estimation. Yields for the intermediate maturities are linearly interpolated
between adjacent yields.

The theoretical yields are graphed in Figure 13, together with series of policy rates
for the four markets. They are ECB target rates, average bank reference rates, Repo
rates and Bank of England target rates for Germany, Finland, Sweden and UK, respec-
tively. In macro–economic tests of Expectations Hypothesis, interest rates on federal
funds have been shown (Bernanke and Blinder(1990) [1]) to have the most information
content about future movements of the real economy than any other macro–economic
variables such as industrial production, capacity utilization and monetary aggregates.
Hence, central bank policy rates are good forecasting instruments of monetary policy
decisions.

As Figure 13 shows, the theoretical yields match remarkably well the movements of
policy rates, at a consistent gap though the extent varies with markets. The correlations
between the theoretical yields and central bank policy rates are all above 0.90 for all
markets. As theoretical yields are basically linearly weighted functions (A(τ) and B(τ))
of the predicting factors, high correlations between theoretical yields and policy rates
implies high correlations between the predicting factors and policy rates as well. Hence,
there is a close link between the financial factors extracted from the equilibrium and
no–arbitrage framework and the macro–economic factors used by macroeconomists in
tests of the Expectations Hypothesis. The above analyses also suggest that the shapes
of yield curve (as summarized by the predicting factors) embody market expectations
about monetary policy decisions which are empirically proxied by central bank policy
rates.

8 Summary and Conclusions

This paper studies the interrelations among shapes of yield curve, market expectations,
and monetary policy decisions, linked by the underlying predicting factors of interbank
yield curve.

The establishment of EMU and the convergence of monetary policies among Euro
countries lend themselves to such an examination of the relations. Since monetary
authorities determine very short-term interest rates and ‘read’market expectations from
the yield curve, the term structure of interbank money market interest rates can be
seen as the best variable capturing markets’ expectations about the stance of monetary
policy. As monetary policy during the sample period is converging, the expected future
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path of interest rates is more predictable, if markets have rational expectations and
term premia are constant, the Expectations Hypothesis should hold.

The main findings are as follows: firstly, the shapes of interbank yield curve are
very well described by the level and slope factors with little curvature. Secondly, the
level and slope factors for German interbank market have the biggest influence on the
factors for Finnish, Swedish, and UK interbank markets. Thus when predicting future
interest rates movements, German factors are useful information variable. Thirdly,
the response of slope factors to a one-time shock is persistent, meaning that current
yield spread contain all information about future short rate changes. Finally and more
importantly, the two predicting factors can be linked to the central bank policy rates
through the Expectations Hypothesis framework, confirming the notion that the shapes
of yield curve embody market expectations of future monetary policy stance.

The empirical analysis assumes that the variations of yield curve are explained by
two factors and uses the CIR model to describe the process followed by the two unob-
servable factors, the two factors are then extracted using Kalman filter and are respec-
tively interpreted as level and slope factor. Based on the estimated factors, theoretical
yields are derived under the assumption that Expectations Hypothesis holds, and are
shown matching the movements of central bank policy rates remarkably well. The high
correlation between theoretical yields and policy rates builds a link between financail
factors and macroeconomic variables and a link between the no–arbitrage modelling
approach and macroeconomic determinant Expectations Hypothesis approach.

Overall, in a period of monetary policy certainty, the expected future path of short-
term rates are more predictable, market participants tend to hold rational expectations
and the term premia behave more constant, yield curve will then move in line with mar-
ket expectations. Therefore, it is only when markets are uncertain about the stance
of monetary policy and hold inaccurate forecasts that the future short rates become
unpredictable, hence failing the tests of Expectations Hypothesis.
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Table 1: Descriptive Statistics
This table presents the statistical summary of the interbank money market interest rates for four European countries—German, Finland, Sweden and UK, the interest
rates series are respectively denoted as FIBOR, FNIBC, SIBOR, and BBGBP in Panel A of the table. The series in Panel B are the corresponding yield spreads
calculated as the spread of the corresponding maturities over the one-month rates. The Jarque-Bera statistic is for normality test, and Auto denotes the first-order
autocorrelation of the series.

Panel A FIBOR FNIBC SIBOR BBGBP
Yields 1M 3M 6M 12M 1M 3M 6M 12M 1M 3M 6M 12M 1M 3M 6M 12M

Mean 3.285 3.315 3.347 3.451 3.334 3.386 3.452 3.598 4.247 4.288 4.350 4.543 5.505 5.585 5.647 5.796
StdDev 0.820 0.822 0.824 0.838 0.990 1.004 1.029 1.069 1.677 1.669 1.658 1.671 1.205 1.222 1.221 1.215
Max 5.046 5.137 5.195 5.325 5.975 6.125 6.375 6.825 9.030 9.300 9.530 10.040 7.766 7.875 7.938 8.000
Min 2.024 1.958 1.936 1.957 1.985 1.935 1.905 1.885 2.100 2.068 2.065 2.070 3.336 3.391 3.390 3.416
Skew 0.204 0.191 0.182 0.149 0.734 0.684 0.682 0.698 1.542 1.532 1.507 1.458 0.008 -0.008 -0.040 -0.100
Kurtosis 2.327 2.348 2.367 2.322 3.148 3.153 3.284 3.481 5.160 5.298 5.369 5.402 1.903 1.899 1.914 1.927

JB 13.542 12.466 11.640 11.976 47.528 41.338 42.407 47.661 309.526 320.426 320.905 311.531 26.304 26.466 25.907 25.996
Prob. 0.001 0.002 0.003 0.003 0.000 0.000 0.000 0.000 n 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Auto 0.992 0.993 0.993 0.991 0.990 0.991 0.990 0.988 0.991 0.990 0.988 0.986 0.997 0.997 0.996 0.994
Panel B YSPFIBOR YSPFNIBC YSPSIBOR YSPBBGBP
YieldSpread 3M 6M 12M 3M 6M 12M 3M 6M 12M 3M 6M 12M

Mean 0.030 0.062 0.166 0.053 0.118 0.264 0.041 0.103 0.296 0.080 0.143 0.291
StdDev 0.102 0.180 0.288 0.111 0.205 0.331 0.134 0.237 0.386 0.128 0.233 0.387
Max 0.675 0.764 0.997 0.690 0.770 1.140 0.680 0.860 1.330 0.671 0.874 1.294
Min -0.184 -0.332 -0.499 -0.200 -0.340 -0.490 -0.500 -0.660 -0.940 -0.288 -0.535 -0.873
Skew 2.247 0.649 0.270 1.591 0.365 -0.013 0.492 0.113 0.241 0.955 0.021 -0.219
Kurtosis 13.276 3.874 2.713 8.867 3.085 2.379 6.876 3.646 3.021 6.100 3.202 2.976

JB 2746.350 53.478 8.167 972.527 11.805 8.442 349.155 10.225 5.102 289.343 0.935 4.216
Prob. 0.000 0.000 0.017 0.000 0.003 0.015 0.000 0.006 0.078 0.000 0.627 0.121

Auto 0.913 0.961 0.970 0.925 0.954 0.967 0.926 0.962 0.971 0.897 0.947 0.965
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Table 2: Principal Components Analysis of Changes in Interest Rates
This table displays the principal components output based on decomposing the sample correlation matrix of the interest
rates series in each interbank market. The series FIBOR, FNIBC, SIBOR and BBGBP are for Germany, Finland,
Sweden, and UK, respectively. The column ‘Comp1’ and ‘Vector 1’ corresponds to the first principal component, and
so on. The row ‘Eigenvalue’ reports the eigenvalues of the correlation matrix in decending order. ‘Variance Prop’
denotes the proportional variance explained by each component. The second part of Panel A presents the eigenvectors
corresponding to each eigenvalue. A linear combination of the series weighted by the first eigenvector gives the first
principal component, and so on.

Panel A FIBOR FNIBC
Comp 1 Comp 2 Comp 3 Comp 4 Comp 1 Comp 2 Comp 3 Comp 4

Eigenvalue 3.929 0.066 0.003 0.001 3.943 0.054 0.003 0.001
Variance Prop. 0.982 0.017 0.001 0.000 0.986 0.014 0.001 0.000
Cum. Prop. 0.982 0.999 1.000 1.000 0.986 0.999 1.000 1.000

Eigenvectors Vector 1 Vector 2 Vector 3 Vector 4 Vector 1 Vector 2 Vector 3 Vector 4

1M -0.497 -0.636 -0.583 -0.090 -0.498 -0.640 -0.574 -0.114
3M -0.503 -0.251 0.617 0.551 -0.502 -0.248 0.599 0.571
6M -0.504 0.182 0.350 -0.769 -0.503 0.188 0.376 -0.755
12M -0.496 0.707 -0.396 0.312 -0.497 0.702 -0.412 0.301
Panel B SIBOR UK

Comp 1 Comp 2 Comp 3 Comp 4 Comp 1 Comp 2 Comp 3 Comp 4

Eigenvalue 3.970 0.029 0.001 0.000 3.942 0.056 0.002 0.000
Variance Prop. 0.992 0.007 0.000 0.000 0.985 0.014 0.000 0.000
Cum. Prop. 0.992 1.000 1.000 1.000 0.985 0.999 1.000 1.000

Eigenvectors Vector 1 Vector 2 Vector 3 Vector 4 Vector 1 Vector 2 Vector 3 Vector 4

1M -0.499 -0.642 -0.575 -0.089 -0.498 -0.629 -0.582 -0.132
3M -0.501 -0.233 0.607 0.571 -0.503 -0.245 0.555 0.616
6M -0.502 0.166 0.369 -0.765 -0.503 0.156 0.428 -0.734
12M -0.498 0.711 -0.406 0.285 -0.496 0.721 -0.412 0.253

18



Table 3: Estimated Parameters for the Two-factor CIR Models
This table presents the estimated parameters for state-space form of the two-factor CIR model using interbank interest rates. Kalman filter and quasi maximum
likelihood method are used to estimate the parameters. The results in Panel A, B, C, and D are respectively for German, Finland, Sweden, and UK interbank market.
The parameters θ1, k1, σ1 and λ1 denote respectively the estimated mean, mean-reversion, volatility and market price of risk parameter for the first factor, and so on.
The estimated volatilities σh1, σh2, σh3, and σh4 are for measurement errors of maturities 1-month, 3-month, 6-month, and 12-month. The row ‘Half Life’ reports
the average time in years it takes for the factors revert to its long-run mean. And ‘Long Yield’ is the theorectical yield when the maturity approaches infinity. The
parameters are in annual terms.

Panel A. FIBOR
Parameters θ1 k1 θ2 k2 σ1 σ2 λ1 λ2 σh1 σh2 σh3 σh4

Estimates 1.255 0.102 1.799 0.848 0.216 0.200 -0.521 0.423 0.061 0.000 0.000 0.000
SE (0.376) (0.046) (0.121) (0.000) (0.010) (0.009) (0.049) (0.047) (0.003) (0.000) (0.001) (0.002)

Log Likelihood 2834.620
Half Life Factor1 = 6.776 Factor2 = 0.817

Long Yield Factor1 = 0.971 Factor2 = 0.718
Panel B. FNIBC

Parameters θ1 k1 θ2 k2 σ1 σ2 λ1 λ2 σh1 σh2 σh3 σh4

Estimates 1.284 0.157 1.560 1.147 0.225 0.261 -0.500 0.379 0.064 0.000 0.000 0.000
SE (0.237) (0.039) (0.102) (0.000) (0.009) (0.011) (0.037) (0.056) (0.004) (0.000) (0.000) (0.000)

Log Likelihood 2631.595
Half Life Factor1 = 4.415 Factor2 = 0.604

Long Yield Factor1 = 1.001 Factor2 = 0.648
Panel C. SIBOR

Parameters θ1 k1 θ2 k2 σ1 σ2 λ1 λ2 σh1 σh2 σh3 σh4

Estimates 1.688 0.147 1.655 0.375 0.188 0.223 -0.570 0.805 0.071 0.000 0.000 0.000
SE (0.279) (0.036) (0.167) (0.077) (0.006) (0.012) (0.035) (0.109) (0.004) (0.000) (0.001) (0.001)

Log Likelihood 2597.460
Half Life Factor1 = 4.709 Factor2 = 1.850

Long Yield Factor1 = 0.982 Factor2 = 0.742
Panel D. UKINB

Parameters θ1 k1 θ2 k2 σ1 σ2 λ1 λ2 σh1 σh2 σh3 σh4

Estimates 0.027 0.011 1.889 0.749 0.165 0.267 -0.282 0.483 0.085 0.000 0.000 0.023
SE (0.000) (0.010) (0.204) (0.058) (0.007) (0.017) (0.019) (0.079) (0.004) (0.000) (0.000) (0.006)

Log Likelihood 2325.119
Half Life Factor1 = 63.013 Factor2 = 0.925

Long Yield Factor1 = 0.895 Factor2 = 0.722

19



Table 4: Variance Decomposition of the Interbank Rates
The entries are proportions of the forecast variances of the interbank rates explained by the factors at the forecast
horizon (weeks ahead).

Weeks Factor1 Factor2 Weeks Factor1 Factor2
FIBOR3M 4 35.41 64.56 FNIBC3M 4 46.02 53.82

12 16.26 83.73 12 31.66 68.14
20 7.92 92.06 20 20.75 79.07

FIBOR6M 4 46.35 53.65 FNIBC6M 4 50.03 49.42
12 30.61 69.37 12 41.69 57.61
20 19.97 80.00 20 31.67 67.56

FIBOR12M 4 30.70 69.07 FNIBC12M 4 39.25 59.87
12 22.79 76.99 12 35.07 63.93
20 16.28 83.52 20 28.65 70.37

BBGBP3M 4 30.93 67.42 SIBOR3M 4 48.88 50.21
12 13.70 84.25 12 30.61 68.40
20 6.30 91.43 20 20.07 79.12

BBGBP6M 4 38.20 60.99 SIBOR6M 4 49.32 50.19
12 26.30 72.65 12 35.92 63.68
20 18.77 80.15 20 26.49 73.23

BBGBP12M 4 31.91 67.97 SIBOR12M 4 43.65 56.34
12 25.99 73.90 12 33.73 66.26
20 22.09 77.85 20 27.34 72.65
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Table 5: Correlation Matrix of the Forecast Errors with the Curvature Series
This table provides the common sample correlations between the curvature factor and the forecast errors of different
maturities, as well as the cross-sectional correlations among the forecast errors. The forecast errors are the extracted
Kalman filter prediction errors, they are denoted as ε̂1,t, ε̂3,t, ε̂6,t, and ε̂12,t for maturities 1 month, 3 month, 6 month
and 12 month, respectively. The curvature series (Curv) is proxied by the difference between two times the six-month
rate and the sum of twelve- and one-month rates.

Panel A FIBOR FNIBC
Curv ε̂1,t ε̂3,t ε̂6,t ε̂12,t Curv ε̂1,t ε̂3,t ε̂6,t ε̂12,t

Curv 1.000 1.000
ε̂1,t -0.392 1.000 -0.350 1.000
ε̂3,t 0.519 0.142 1.000 0.500 0.210 1.000
ε̂6,t 0.333 -0.281 -0.116 1.000 0.369 -0.123 0.094 1.000
ε̂12,t -0.444 -0.308 -0.428 0.064 1.000 -0.309 -0.252 -0.366 0.170 1.000

Panel B SIBOR UK
Curv ε̂1,t ε̂3,t ε̂6,t ε̂12,t Curv ε̂1,t ε̂3,t ε̂6,t ε̂12,t

Curv 1.000 1.000
ε̂1,t -0.246 1.000 -0.141 1.000
ε̂3,t 0.500 0.273 1.000 0.490 0.428 1.000
ε̂6,t 0.206 0.138 0.227 1.000 0.304 0.148 0.340 1.000
ε̂12,t -0.389 0.112 -0.216 0.171 1.000 -0.274 0.095 -0.031 0.525 1.000
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Figure 1: Factor Loadings from the Principal Components Analysis
The loadings are obtained from the regression of yield series on the first three principal components
of the correlation matrix, with P1 , P2 , and P3 denote respectively loadings on the first, second,
and third principal components, and the series ending with FIBOR, FNIBC, SIBOR, and UK are
respectively for Germany, Finland, Sweden, and UK interbank markets.
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Figure 3: Factor Loadings from the Two-factor CIR Model
This figure shows the theorectical loadings of the two factors in the CIR model. The loadings are
calculated using equations (4) and (5), with the estimated parameters in Table 3. The upward-sloping
lines are the loadings on the first factors, and the downward-sloping lines are for the second factor.
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Figure 4: Actual and Fitted Term Structures
The actual yield are marked by symbols, and the model yields are denoted by lines only.
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Figure 5: Extracted Factor 1 and Interbank Interest Rates for 3-month Maturity
The marked series are the first factors extracted from the state space formulation of the CIR process,
and the plain series are the actual 3-month interbank rates.
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Figure 6: Extracted Factor 2 and Yield Spread
The marked series are the second factors extracted from the state space formulation of the CIR process,
and the plain series are the spread of 12-month over 1-month interbank rates.
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Figure 9: Impulse Responses of Factor 1 for 3-month Interest Rates
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Figure 10: Impulse Responses of Factor 2 for 3-month Interest Rates
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Figure 11: Impulse Responses of Forecast Errors for 3-month Interest Rates
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Figure 12: Impulse Responses of the Estimated Factors, Forecast Errors, and Curvature
for 3-month FIBOR
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Figure 13: Policy Rates and Theoretical Bond Yields under Rational Expectations
Hypothesis
The policy rates are respectively ECB target rates, average bank reference rates, repo rates and Bank
of England target rates for Germany, Finland, Sweden and UK. The theoretical bond yields are derived
under the assumption that Rational Expectations Hypothesis holds. The graph for Germany on the
upper left starts from 1998, when the ECB target rates began to be available.
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