
OPTIMAL ASSET ALLOCATION 

BASED ON UTILITY MAXIMIZATION 

IN THE PRESENCE OF MARKET FRICTIONS 
 

ALESSANDRO BUCCIOL 
University of Padua 

alessandro.bucciol@unipd.it 

RAFFAELE MINIACI 
University of Brescia 

miniaci@eco.unibs.it 
 

April 29 2006 
 

Abstract 
We develop a model of optimal asset allocation based on a utility framework. This applies to a more general 

context than the classical mean-variance paradigm since it can also account for the presence of constraints in 

the portfolio composition. Using this approach, we study the distribution of a measure of wealth 

compensative variation, we propose a benchmark and portfolio efficiency test and a procedure to estimate the 

implicit risk aversion parameter of a power utility function. Our empirical analysis makes use of the S&P 500 

and industry portfolios time series to show that, although the market index cannot be considered an efficient 

investment in the standard mean-variance metric, in our framework the wealth loss associated with such an 

investment is rather small (lower than 0.5%), and is not statistically different from zero when the risk 

aversion is small. The wealth loss is at its minimum for a representative agent with a constant risk aversion 

index not higher than 5. Furthermore we show that, for reasonable levels of risk aversion, the use of an 

equally weighted portfolio is surprisingly consistent with an expected utility maximizing behavior. 

JEL classification codes: C15, D14, G11 
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1. Introduction 

The efficiency of an investment is usually assessed by means of a standard mean-variance 

approach. In the simplest case of no restrictions on portfolio shares, such a framework implies that the 

performance of any investment is measured in terms of its Sharpe ratio, i.e., the expected return over 

the standard deviation of its excess returns. Using such a measure, several statistical tests have been 

developed to establish the efficiency of an investment; among others, the tests proposed by Jobson and 

Korkie (1982), Gibbons et al. (1989), and Gourieroux and Jouneau (1999) are noteworthy. 

The use of the Sharpe ratio is relatively simple and rather intuitive but lacks some important 

features. The most important being that, by acting this way, it is not possible to take account of market 

imperfection when building the optimal portfolio weights. The widespread use of Sharpe ratios depends 

on the well-known fact that their upper limit is reached by any portfolio in the mean-variance efficient 

frontier built as a combination of the market portfolio and the risk free asset. Such a frontier is derived 

disregarding market imperfections, but in their presence it would take a different shape. 

In particular, two kinds of constraints are relevant: transaction costs and inequality constraints. 

Transaction costs are costs incurred when buying or selling assets. These include brokers’ commissions 

and spreads, i.e., the difference between the price paid for an asset and the price it can be sold. 

Transaction costs may be negligible in the case of financial assets, but several authors (among others 

Grossman and Laroque, 1990, Flavin, 2002, and Pelizzon and Weber, 2003) point out how they are 

instead relevant for real assets such as housing1. Following Gourieroux and Jouneau (1999) we know 

that, when equality constraints on some portfolio weights are taken into account, it is however possible 

to translate the original plane in another mean-variance frontier, conditional on the constrained assets. 

Another important market imperfection is represented by inequality constraints. In actual stock 

markets, for instance, short sales are not prohibited, but discouraged by the fact that the proceeds are 

not normally available to be invested elsewhere; this is enough to eliminate a private investor with just 

mildly negative beliefs (Figlewski, 1981). On the contrary, mutual fund constraints are widespread and 

may be seen as one component of the set of monitoring mechanisms that reduce the costs arising from 

frictions in the principal-agent relation (Almazan et al., 2004). Considering these constraints, we would 

be faced with a different frontier of feasible portfolios, of unknown shape, whose relationship with the 

Sharpe ratio is not clear. With only short-sale restrictions in particular, there may be switching points 

along the mean-variance frontier corresponding to changes in the set of assets held. Each switching 
                                                 
1 to such an extent that real assets become illiquid in the presence of transaction costs. In other words, their investment is 
kept as fixed in the short run, and an optimizing investor chooses the composition of her financial portfolio conditional on 
the stock held in real assets. 
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point corresponds to a kink (Dybvig, 1984), and the mean-variance frontier consists then of parts of the 

unrestricted mean-variance frontiers computed on subsets of the primitive assets. 

Notwithstanding this evidence, empirical works often come out with optimal portfolio weights 

in a standard mean-variance framework that take extreme values (both negative and positive) in some 

assets. Green and Hollifield (1992) state that: «[…] The extreme weights in efficient portfolios are due 

to the dominance of a single factor in the covariance structure of returns, and the consequent high 

correlation between naively diversified portfolios. With small amounts of cross-sectional diversity in 

asset betas, well-diversified portfolios can be constructed on subsets of the assets with very little 

residual risk and different betas. A portfolio of these diversified portfolios can then be constructed that 

has zero beta, thus eliminating the factor risk as well as the residual risk». This portfolio is unfeasible 

in practice and, unjustifiably, gets compared with observed investments in terms of Sharpe ratios2. This 

way, we relate actual investments with unrealistic ones, which ensure an even better performance than 

the optimal feasible portfolios. Hence, the comparison is erroneous since it tends to overestimate the 

inefficiency of any observed investment. 

The problem is dealt with in Basak et al. (2002) and Bucciol (2003); following a mean-variance 

approach, these authors develop an efficiency test in which the discriminating measure is no longer 

based on a Sharpe ratio comparison, but on a variance comparison instead, for a given expected return. 

Such a technique, nevertheless, circumvents the above mentioned problem at the cost of neglecting 

some information: it just fixes the value of the expected return, and does not take into account how it 

could affect the importance of deviations in risk. 

In this paper we try, instead, to cope with inequality constraints in a model that pays attention to 

expected returns as well as variance of investment returns. In lieu of working with efficient frontiers, 

we concentrate on the expected utility paradigm. Quoting Gourieroux and Monfort (2005), «the main 

arguments for adopting the mean-variance approach and the normality assumption for portfolio 

management and statistical inference are weak and mainly based on their simplicity of 

implementation». It is well known (Campbell and Viceira, 2002), however, that the two procedures 

provide the same results, under several assumptions. Already Brennan and Torous (1999), Das and 

Uppal (2004) and Gourieroux and Monfort (2005) consider an agent who maximizes her expected 

utility in order to get an optimal portfolio. Brennan and Torous (1999), in particular, define a 

performance measure, based on the concept of compensative variation, which compares the utility from 

an optimal investment with that resulting from a given investment. Drawing inspiration from this strand 
                                                 
2 Any portfolio is indeed proportional to the zero-beta portfolio since the two fund separation theorem holds. 
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of literature we will subsequently show that, using a specific utility function, this procedure boils down 

to maximizing a function of mean and variance of a portfolio, for a given risk aversion; furthermore, 

the measure of compensative variation has the intuitive economic interpretation of the amount of 

wealth wasted or generated by the investment, relative to the optimal portfolio. The main contribution 

of this paper is to characterize the asymptotic probability distribution and confidence intervals of this 

measure of compensative variation; this will permit us to conduct statistically valid inference, and 

therefore to test for portfolio or benchmark efficiency. This task is made difficult, nevertheless, by the 

presence of inequality constraints. 

The paper is organized as follows: section 2 compares the standard mean-variance approach 

with our method based on expected utility maximization. It shows the underlying algebra of the agent’s 

problem, and introduces a measure of wealth compensative variation. Section 3 specifies the efficiency 

test, by means of a weak version of the central limit theorem and the delta method. This procedure does 

not permit to run the test for extreme null hypotheses (e.g., all the wealth is wasted), but is enough to 

construct confidence intervals. Section 4 describes the statistic in a closed-form expression when there 

are no inequality constraints, and examines analogies with optimal portfolios derived in a mean-

variance framework. Section 5 presents a fruitful way to estimate the relative risk aversion parameter 

using the data. In the absence of constraints, the expression can be derived in a clear closed-form 

expression; otherwise it can be obtained numerically. In section 6 we describe the data used in the 

empirical exercise, the S&P 500 index and 10 industry portfolios for the U.S. market. We further run 

some tests to assess the efficiency of the S&P index and a equally weighted portfolio; we also compute 

the optimal risk aversion parameters and assess the importance of any single constraint. In section 7 we 

study the empirical distribution of our test, running several block bootstrap simulations. Lastly, section 

8 summarizes the results and concludes. 

 

2. Agent’s behavior 

Disregarding constraints, we may assess the efficiency of an investment by comparing its 

Sharpe ratio with the optimal, as shown in figure 13. It is the case, for instance, of the test proposed by 

Jobson and Korkie (henceforth JK, 1982) in a portfolio setting. The optimal Sharpe ratio depicts the 

slope of the efficient frontier which includes a risk free asset within the endowment. The greater the 

difference between the two ratios, the greater the inefficiency of the observed investment (figure 1). 

                                                 
3 Although in the figure we draw an optimal portfolio with the same expected excess return as the observed investment, 
there are infinite optimal portfolios with the same Sharpe ratio; they differ only in the share invested in the risk free asset. 



 4

Figure 1. 

Measures of efficiency – mean-variance framework 

 
 Some other tests, such as the one in Basak, Jagannathan and Sun (BJS, 2002), fix the level of 

expected return *μ  and consider the difference between the two variances, 2
1σ  and 2

2σ , namely the 

lowest achievable variance minus the observed variance. The smaller this difference (negative by 

construction), the higher the inefficiency of the observed investment. A caveat of this approach is that 

one dimension of the problem, the expected excess return, is kept fixed and therefore completely 

neglected by the efficiency analysis. It is however difficult to think of different ways to face this 

problem, since the shape of the efficient frontier does not admit a closed-form representation in the 

presence of inequality constraints. 

A reasonable alternative is to consider an expected utility framework instead of a mean-variance 

approach. It is well known that the two methods are equivalent under several assumptions; Campbell 

and Viceira (2002), for instance, argue that a power (or CRRA) utility function and log-normally 

distributed asset returns produce results that are consistent with those of a standard mean-variance 

analysis. The property of constant relative risk aversion, moreover, is attractive and helps explain the 

stability of financial variables over time. 

We then draw inspiration from Gourieroux and Monfort (2005) and study the economic 

behavior of a rational agent who maximizes her expected utility of future wealth. The authors explain 

that such an approach is appropriate even when return distributions do not seem normal; in our context, 

this framework also takes account of constraints in portfolio composition. 

In figure 1 the indifference curves for observed and optimal portfolios is drawn. The optimal 

portfolio does not need to be the same as the one in the mean-variance framework; we know (see §4) 
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that, in the absence of constraints, it differs only in the fraction invested in the risk free component. Our 

test, then, accounts for the distance between the two indifference curves; the greater the distance, the 

greater the inefficiency. The reason why we base our work on this measure is that, in the presence of 

market frictions, it is no longer true that the Sharpe ratio is an adequate quantity to assess the efficiency 

and, at the same time, the simple difference between variances considers just part of the available 

information. 

Brennan and Torous (1999) analyze the same problem in a portfolio choice framework with a 

power utility function and come up with a measure of compensative variation that calculates the 

amount of wealth wasted when adopting a suboptimal portfolio allocation strategy; the same concept is 

used in Das and Uppal (2004) when assessing the relevance of systemic risk in portfolio choice. 

In the following sections we show how this measure of compensative variation can be used to 

develop an efficiency test whose validity is not affected by the presence of equality and/or inequality 

constraints on the portfolio asset shares. 

 

2.1. An approach based on utility comparison 

According to Brennan and Torous (1999), an investor is concerned with maximizing the 

expected value of a power utility function defined over her wealth at the end of the next period: 

( )
1 1

1
t dt

t dt
WU W

γ

γ

−
+

+

−
=

−
 

where 0>γ  is the relative risk aversion (RRA) coefficient and t dtW +  the wealth at time t dt+ . 

Our investor holds a benchmark b 4. We assume that the price b
tP  at time t  of the benchmark 

follows the stochastic differential equation 

(1)     ( )0

b
b bt

b b t b b tb
t

dP dt d r dt d
P

μ σ β η σ β= + = + +  

where bμ  (expected return) and bσ  (standard deviation) are constants, and b
tdβ  is the increment to a 

univariate Wiener process. In this framework, the overall wealth tW  evolves with b
tP : 

b
t t

b
t t

dW dP
W P

=  

                                                 
4 A standard against which the performance of a security, index or investor can be measured. We use this term according to 
Basak et al. (2002), but we could instead consider a mutual fund, a pension fund etc. 
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Using a property of the geometric Brownian motion, equation (1) implies that, over any finite interval 

of time [ ],t t dt+  

( ) ( ) ( )2 21 1
2 2

b b b b
b b b t dt t b b b t dt tt dt t dt

t dt t tW W e W e
μ σ σ β β μ σ σ β β+ +

⎛ ⎞ ⎛ ⎞− + − + − − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

+ = =  

with ( )tNb
t ,0~β . In turn this implies that t dtW +  is conditionally log-normally distributed: 

( ) 2 21| ~ log ,
2t dt t t b b bW W LN W dt dtμ σ σ+

⎛ ⎞⎛ ⎞+ −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

with expectation 

[ ] ( )

( )

2

2 2

1
2

1 1
2 2

|
b bb b b t dt t

b b b
b

dt

t dt t t

dt t dt t dt
t t

E W W W e E e

W e e W e

μ σ σ β β

μ σ σ μ

+

⎛ ⎞−⎜ ⎟ −⎝ ⎠
+

⎛ ⎞− + −⎜ ⎟
⎝ ⎠

⎡ ⎤= =⎢ ⎥⎣ ⎦

= =

 

Therefore, the expected utility associated with the benchmark is given by 

( ) ( ) ( )

( )( ) ( ) ( ) ( )

( ) ( )

22 2

2

1log1

1 11 log 1 11 log 2 2

11 11 2

1 1| , , , | 1 | 1
1 1

1 1| 1 1
1 1

1 1
1

t dt

t b b b
t dt

b b

W
t dt b b t t dt t t

W dt dtW
t

dt dt

t

E U W W E W W E e W

E e W e

W e

γγ

γ γ μ σ σ γγ

γ μ σ γ γγ

μ σ γ
γ γ

γ γ

γ

+

+

−−
+ +

⎛ ⎞− + − − + −⎜ ⎟− ⎝ ⎠

− − −−

⎛ ⎞⎡ ⎤⎡ ⎤⎡ ⎤ = − = − =⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦− − ⎝ ⎠

⎛ ⎞
⎡ ⎤= − = − =⎜ ⎟⎣ ⎦ ⎜ ⎟− − ⎝ ⎠

⎛
= −⎜− ⎝

( ) 211
1 21 1

1
b b dt

tW e
γ μ γσ

γ

γ

⎛ ⎞− −⎜ ⎟− ⎝ ⎠
⎛ ⎞⎞

= −⎜ ⎟⎟ ⎜ ⎟−⎠ ⎝ ⎠

 

In order to study the efficiency of such an investment, an investor compares its performance 

with that of the best alternative: a portfolio of primitive assets. The endowment is given by one risk 

free asset (with return 0r ) and a set of n  risky assets (with return , 1,...,ir i n= ). 

Calling iw  the fraction of wealth allocated to the i-eth risky asset, w  the vector of iw ’s and 

( )1 'w ι−  the residual fraction invested in the risk free asset, the overall wealth evolves as 

( )( ) ( )

( ) ( )

1 2

0 0

1 2

0

t
p p t

t

p p t

dW w r r dt w w d
W

w r dt w w d

μ ι β

η β

′ ′= − + + Σ =

′ ′= + + Σ

 

where tdβ  is the increment to an univariate Wiener process, and pμ  and pΣ  are the vector of the 

expected returns and the covariance matrix of the primitive assets. 

 

 



 7

Following the computation already made for the benchmark case, the expected utility is 

( )
( ) ( )( )0 0

11
1 2

1
1| , , , 1

1
p pw r r w w dt

t p p t tE U W W W e
γ μ ι γ

γμ γ
γ

⎛ ⎞′ ′− − + − Σ⎜ ⎟− ⎝ ⎠
+

⎛ ⎞
⎡ ⎤Σ = −⎜ ⎟⎣ ⎦ ⎜ ⎟− ⎝ ⎠

 

We consider a “buy & hold” strategy in which the investor observes the asset returns at time t  and 

makes her choice once and forever; it is intended to represent the type of inefficiency in portfolio 

allocations induced by the status quo bias described in Samuelson and Zeckhauser (1988). 

The optimal portfolio *w  is defined as 

(2)    ( )*
1arg max | , , ,t p p tw

w E U W Wμ γ+⎡ ⎤= Σ⎣ ⎦  

subject to several constraints (equality, inequality, sum to one etc.) on its composition: 

Aw a=  

lb w ub≤ ≤  

A natural way to assess the performance of the benchmark, then, is to compare its expected 

utility with that resulting from the optimal portfolio. In accordance with Brennan and Torous (1999) 

and Das and Uppal (2004), we establish this comparison by means of a compensative variation metric. 

In other words, we pose the question of what level of initial wealth *
tW  is needed to obtain with the 

optimal portfolio the same expected utility as with the benchmark and initial wealth tW ; this technique 

is graphically described in figure 2. 

Figure 2. 

Measures of efficiency – expected utility framework 

 
Note: the figure shows the case 0CV >  only. 
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In formulae, we impose that 

( ) ( )*
1 1| , , , | , , ,t p p t t b b tE U W W E U W Wμ γ μ σ γ+ +⎡ ⎤ ⎡ ⎤Σ = ⎣ ⎦⎣ ⎦  

where we want to derive *
t tW W CV= − , with CV  amount of wealth wasted (if positive) or generated 

(if negative) by the benchmark instead of using the best alternative. 

Therefore, 

( ) ( ) ( )( ) ( )* * * 2
0 0

1 1 111 1
2 2

1 1
p p b bw r r w w dt dt

t tW CV We e
γ γγ μ ι γ γ μ γσ

γ γ

− ⎛ ⎞ ⎛ ⎞−′ ′− − + − Σ − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

−
=

− −
 

so that 

( )( )2 * * *
0 0

1 11 exp
2 2t b b p pCV W dt w r r w w dtμ γσ μ ι γ

⎡ ⎤⎧ ⎫⎛ ⎞ ⎛ ⎞′ ′= − − − − + − Σ⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭⎣ ⎦

 

or, in relative terms, 

( )

( )( )

2

2 * * *
0 0

2 * * *

, , , ,

1 11 exp
2 2

1 11 exp
2 2

b b b p p
t

b b p p

b b p p

CVcv cv
W

dt w r r w w dt

dt w w w dt

η σ η γ

μ γσ μ ι γ

η γσ η γ

= Σ = =

⎡ ⎤⎧ ⎫⎛ ⎞ ⎛ ⎞′ ′= − − − − + − Σ⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭⎣ ⎦

⎡ ⎤⎧ ⎫⎛ ⎞ ⎛ ⎞′ ′= − − − − Σ⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭⎣ ⎦

 

with ( ],1bcv ∈ −∞ . This function has a clear economic interpretation: it measures the amount of wealth 

that the agent wastes (if positive) or generates (if negative) with respect to the initial level of wealth, 

when using the benchmark instead of the best alternative. 1bcv =  means that the benchmark is 

completely inefficient (the agent is wasting 100 percent of her wealth); bcv → −∞ , instead, means that 

the benchmark is totally efficient (the agent is generating infinite new wealth). 

In case we want to assess the efficiency of a portfolio ω , instead of a benchmark, against the 

optimal portfolio w , it is easily shown that the relative wealth loss is 

( ) * * *1 1, , 1 exp
2 2p p p p p p p

t

CVcv cv dt w w w dt
W

η γ ω η γω ω η γ
⎡ ⎤⎧ ⎫⎛ ⎞ ⎛ ⎞′ ′′ ′= Σ = = − − Σ − − Σ⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎩ ⎭⎣ ⎦
 

with [ ]0,1pcv ∈  since the observed portfolio ω  comes from the same space of primitive assets as the 

optimal portfolio *w . When pcv = 0 the agent is investing in a portfolio that does not waste any wealth; 

it is, in other words, efficient. 
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We are able to associate to bcv  and pcv  a standard error, a confidence interval and an efficiency test. 

This will be shown in the next section, referring primarily to the benchmark case. Before proceeding 

with the algebra, it turns useful to define a simpler expression: 

( ) ( )2

* * * 2

1, , , , log 1

1 1
2 2

b b b p p b

p p b b

cv
dt

w w w

λ λ η σ η γ

η γ η γσ

= Σ = − − =

⎛ ⎞ ⎛ ⎞′ ′= − Σ − − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

(3) 21 1max
2 2p p b bw

w w wη γ η γσ⎧ ⎫⎛ ⎞ ⎛ ⎞′ ′= − Σ − −⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭

 

in the case of a benchmark, and likewise pλ  for the portfolio. 

It is worth pointing out that the optimal weights *w  in the agent’s problem (2) are the same as we 

would get by maximizing bλ  or pλ  in (3) subject to the same constraints. From the investor’s point of 

view, therefore, maximizing the expected utility or its transformation is equivalent. 

Below we ignore the constant term that involves dt 5, for the sake of simplicity and since it 

disappears when computing the test statistic. 

 

3. Development of an efficiency test 

The function ( )2, , , ,b b p pλ η σ η γΣ  depends on unknown moments6 and has to be replaced with a 

consistent sample estimate, defined as 

(4)   ( )2 21 1, , , , max
2 2b b b p p p p b bw

e s e S w e w S w e sγ γ γ⎧ ⎫⎛ ⎞ ⎛ ⎞′ ′= = − − −⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭

A A  

subject to the constraints 

Aw a=  

lb w ub≤ ≤  

We solve, therefore, the maximization problem using a function of sample moments instead of 

true moments. As a consequence, we need to take account of sampling errors and derive a statistical 

distribution for the bA  function. Yet establishing its exact distribution is both cumbersome and useless. 

It is cumbersome because the presence of inequality constraints hinders the recourse to standard 

statistical procedures; it is useless as, even if we knew the exact distribution, it would in the end be a 
                                                 
5 The reader can assume that 1dt = . 
6 Let us assume for now to know the relative risk aversion coefficient γ . 
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mixture of different distributions. De Roon et al. (2001), dealing with inequality constraints, conclude 

that their statistic is asymptotically distributed as a mixture of 2χ  distributions. Therefore, even if we 

computed the exact distribution, this could be used only through numerical simulation. It would in fact 

be exactly the same procedure we should follow in the case of not knowing the exact distribution of bA . 

Another possibility is to approximate the exact distribution by means of the delta method. 

Following Basak et al. (2002), we can use a weak central limit theorem to establish that the first and 

second moments of returns are asymptotically normally distributed; we can then calculate the 

derivative of bA  relative to ( )2, , ,b b p pe s e S , obtaining a first-order approximation of the exact 

distribution of ( )2, , , ,b b p pe s e S γA . The procedure is described in detail below. 

First of all, we recognize that the only source of randomness in ( )2, , , ,b b p pe s e S γA  is given by 

the non-central first and second moments of the primitive assets and the benchmark. Since working 

with vectors is more convenient than with matrices, once we define 

1

1 T

b bt
t

e e
T =

= ∑ ; 2 2 2

1 1

1 1T T

b bt bt b b
t t

M M e s e
T T= =

= = = +∑ ∑  

1

1 1

1 1 p tT T

p pt
t t

pnt

e
e e

T T
e= =

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑ # ; 1 1

1 1T T

p p p pt pt pt
t t

M S e e M e e
T T= =

′′= + = =∑ ∑  

we consider the vector TX  as 

(5)  ( ) ( )1 1 1

1 1 1

p pt

T T Tb btT t
T t

t t tT tp pt

b bt

e e
e eee

X X
MT T Tvech M vech MM

M M
= = =

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎡ ⎤ ⎣ ⎦ ⎣ ⎦⎡ ⎤⎢ ⎥ ⎢ ⎥
= = = = =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

∑ ∑ ∑  

where the operator vech  takes all the distinct elements in a symmetric matrix: 

( ) 2 2 2
1 2 1 1 2 2pt pt p t p t p t pnt p t p t pnt p t pntvech e e e e e e e e e e e ′′ ⎡ ⎤= ⎣ ⎦" " "  

It is worth stressing one more time that the benchmark returns come from a different, although possibly 

correlated, parametric space than those for the primitive assets. As a consequence the benchmark could 

be either more or less efficient than the portfolio. 
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We require (i) { }, 1tX t ≥  to be a sequence of stationary and ergodic random vectors with mean 

[ ]tE X X
M
η⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

 and covariance matrix ( )cov tX = Λ  with Λ  non-singular; this is commonly 

assumed in the financial economics literature. 

The expected value on TX  is, therefore, TE X X⎡ ⎤ =⎣ ⎦  and its variance is 

( )

( )( )

( )( ) ( )( )

( )( ) ( )( )

1 1 1

2
1 1

2
1 1

2

1 1 1

1

1

1

T T T

T t t t
t t t

T T

t s
t s

T T

t t t s
t t s t

t s s t

Var X Var X E X X X X
T T T

E X X X X
T

E X X X X E X X X X
T

T E X X X X E X X X X
T

= = =

= =

= = ≠

′⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞⎢ ⎥= = − − =⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦
′⎡ ⎤= − − =⎢ ⎥⎣ ⎦

⎛ ⎞′ ′⎡ ⎤ ⎡ ⎤= − − + − − =⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠
′ ′⎛ ⎡ ⎤ ⎡ ⎤= Λ + − − + − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑ ∑

∑∑

∑ ∑∑

( ) ( )( )

( ) ( )( )

1

1 1

1

2
1 1

1

0 0
1

1 , ,

1 1 , ,

T T

t s t

T T

t s s t
t s t

T

t t
t

T Cov X X Cov X X
T

t Cov X X Cov X X
T T

−

= = +

−

= = +

−

=

⎛ ⎞⎞ =⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎞

= Λ + + =⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞= Λ + − +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑ ∑

∑ ∑

∑

 

from which the long-run covariance matrix 0Λ  is 

 ( ) ( )0 0
1

lim  2 ,T tT t
T Var X Cov X X

∞

→∞
=

Λ = = Λ + ∑ . 

Note, in particular, that we do not exclude a priori the possibility of a correlation between the 

benchmark and the primitive asset returns. Since the benchmark comes from a different parametric 

space than the primitive assets we do, however, exclude a priori a perfect correlation ( 1± ) between the 

benchmark and the portfolio. The benchmark, in other words, can only be partially tracked by a 

portfolio. 

 We require, furthermore, that (ii) 2lim tT
E X δ+

→∞
⎡ ⎤ < ∞⎣ ⎦  and ( )lim TT

Var I S
→∞

′ = ∞  1t∀ ≥ , nI∀ ∈ℜ  

and ( )0,1δ∀ ∈ , where 
1

T

T t
t

S X
=

= ∑ ; (iii) ( ) ( ){ }lim max , 0I t
t Corr I Y I Zρ

→∞
′ ′= =  { }:kY X k sσ∀ ∈ ≤ , 

{ }:kZ X k t sσ∀ ∈ ≥ +  and nI∀ ∈ℜ ; (iv) ( )0
1

,t
t

Cov X X
∞

=

< ∞∑  and ( )0 0
1

,t
t

Cov X X
∞

=

Λ = Λ + ∑  is non-

singular. Condition (ii) is similar to the Lyapounov condition, and is used to show the uniform 
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asymptotic negligibility condition of Lindeberg for the Central Limit Theorem to hold. The total 

variability of the sum, TS , on the other hand, is always required to grow to infinity. Condition (iii) 

ensures asymptotic independence; it is required for applying the Central Limit Theorem for non-i.i.d. 

random variables or random vectors. The first part of condition (iv), the finiteness condition, implies 

that 0Λ  exists and is finite, and that TS  in condition (ii) grows at the same rate as T . Finally the 

second part – the non-singularity of 0Λ  – is required to get a non-degenerate asymptotic distribution 

when applying the Central Limit Theorem. All these (weak) conditions are necessary to apply the result 

1 in Basak et al. (2002, p. 1203) and identify a distribution for the vector TX : 

 ( ) ( )00,d
TT X X N− ⎯⎯→ Λ  

The second step is to obtain the asymptotic distribution of ( ) ( )2, , , , ,Tb b p pe s e S f Xγ γ=A . In 

order to apply the delta method, the optimal solution bλ  in (3) has to be a smooth function of the 

parameters. For this to be satisfied, whenever an inequality constraint is binding, the corresponding 

Lagrange multiplier should be strictly positive. Following our previous notation we need, in other 

words, the vectors of constraints plus the vectors of Lagrange multipliers 2δ  and 3δ  associated with the 

inequality constraints to be strictly positive: 

 ( )*
2 0w lb δ− + >  

 ( )*
3 0ub w δ− + >  

The following conditions (v) and (vi) ensure that this is the case. In order to state the assumptions, 

however, we need the following additional notation. Let { }1 1, , , ,k k ni i i i+… …  be any permutation of 

( )1, , n… . Let ( )1

2

−Σ  be the ( )n k n− ×  matrix consisting of the { }1,k ni i+ …  rows of the 1
p
−Σ ; ( )1

22

−Σ  be 

the ( ) ( )n k n k− × −  principal minor matrix which consists of { }1,k ni i+ …  rows and columns of the 1
p
−Σ ; 

1
11
−Σ  be the inverse of the k k×  principal minor matrix corresponding to the { }1, ki i…  rows and columns 

of the pΣ . Lastly, let 2lb  be the vector consisting of the { }1,k ni i+ …  rows of lb , and 2ub  be the 

corresponding vector of the { }1,k ni i+ …  rows of ub . 
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We thus modify assumption (7) in Basak et al. (2002) and require that (v) all the elements of the 

( )n k− -dimensional vector ( )( ) ( ) ( )( )1
1 1

2 122 2 plb Aγ η δ
−

− − ′Σ − Σ −  are strictly positive. It turns out that 

this condition (v) is sufficient to ensure that ( )*
2w lb δ− +  is a strictly positive vector. 

Note indeed that the first order condition to the maximization problem implies that 

 1 2 3p pw Aγ η δ δ δ′Σ = − + − . 

Hence 

(6) ( ) ( )( )* 1 1
1 2 3

1
p p pw Aη δ δ δ

γ
− −′= Σ − + Σ − . 

To see how assumption (v) works, suppose now that only some elements of *w  given by the subvector 

1

* *, ,
k ni iw w

+
⎡ ⎤⎣ ⎦… , are such that the constraint *w lb≥  holds with equality. We need to show that the 

corresponding subvector of Lagrange multipliers, ( )12 2, ,
k ni iδ δ

+
…  is positive. Without loss of generality 

assume that the last ( )n k−  elements of *w  are such that the lower-inequality constraint is binding. 

Denote the vector of these elements as *
2w  and the rest as *

1w , i.e., * * *
1 2w w w

′⎡ ⎤′ ′=
⎣ ⎦

; therefore *
2 2w lb= . 

Let 21δ  and 22δ , 31δ  and 32δ  denote the corresponding partition of the Lagrange multiplier vector, i.e., 

2 21 22δ δ δ
′⎡ ⎤′ ′=

⎣ ⎦
 and 3 31 32δ δ δ

′⎡ ⎤′ ′=
⎣ ⎦

. From the constraint * 0w lb− ≥ , 21δ  is a zero vector. 

Furthermore, 32 0δ = . Now partition pΣ , 1
p
−Σ , pη  and A , similarly, as 

11 12

21 22
p

Σ Σ⎡ ⎤
Σ = ⎢ ⎥Σ Σ⎣ ⎦

;  
11 12

1
21 22p

− ⎡ ⎤Σ Σ
Σ = ⎢ ⎥Σ Σ⎣ ⎦

 

1 2pη η η
′⎡ ⎤′ ′=

⎣ ⎦
, and [ ]1 2A A A= , with 11Σ  and 11Σ  k k×  matrices, 1η  and 1 1A δ′  are 1k ×  vectors. 

This gives ( )( )* 21 22 22
2 1 22 2

1
pw A lbη δ δ

γ
′⎡ ⎤= Σ Σ − + Σ =⎣ ⎦ . Thus, 

( ) ( )( ) ( )( ) ( ) ( )( )1122 21 22 1 1
22 2 1 2 122 2p plb A lb Aδ γ η δ γ η δ

−− − −′ ′⎡ ⎤= Σ − Σ Σ − = Σ − Σ −⎣ ⎦  

which is positive by the assumption. 
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Analogously, to conclude that 32 0δ >  when *
2 2w ub=  we need the following assumption (vi): all the 

elements of the ( )n k− -dimensional vector ( )( ) ( ) ( )( )1
1 1

1 222 2 p A ubη δ γ
−

− − ′Σ Σ − −  are strictly positive. 

If so, ( ) ( )( ) ( ) ( )( )1 122 21 22 22 21 22
32 1 2 22 1 2 0p pA ub A ubδ η δ γ δ η δ γ

− −
′ ′⎡ ⎤ ⎡ ⎤= Σ Σ Σ − − + = Σ Σ Σ − − >⎣ ⎦ ⎣ ⎦ . 

In case conditions (v) and (vi) hold true, therefore, ( )2, , , ,b b p pe s e S γA  is a continuous function 

with a continuous first derivative in any point except for its boundaries. By means of the delta method 

we thus obtain 

( ) ( )( ) ( )2 2, , , , , , , , 0,d
b b p p b b p pT e s e S N Vγ λ η σ η γ− Σ ⎯⎯→A  

with ( ) ( )0V γ γ′= ∇ Λ ∇ , where 

( ) ( ) ( )2, , , , ,b b p p f X
X X

λ η σ η γ γ
γ

∂ Σ ∂
∇ = =

∂ ∂
. 

Define ( ), | Tw Xδ�  as the Lagrangian and [ ]1 2 3δ δ δ δ=  as the set of Lagrange multipliers: 

( )
( ) ( ) ( )

2

1 2 3

1 1, |
2 2

T p p b bw X w e w S w e s

Aw a l w w u

δ γ γ

δ δ δ

⎛ ⎞ ⎛ ⎞′ ′= − − − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

′ ′ ′− − − − − −

�
 

By making use of the envelope theorem, the gradient ( )γ∇  is consistently estimated by 

( )
( ) ( ) *

*

, , |T T

T T

f X w X w w
D

X X

γ δ
γ

δ δ

∂ ∂ =
= =

∂ ∂ =

�
. 

The derivative is worth 

( ) ( )( )* * * *2 * * * * *2 * * *2
1 1 2 1 2 2

1 11 2 2 2
2 2p b n n nD w e w w e w w w w w w w w wγ γ γ γ γ

⎡ ⎤′′ ′ ⎡ ⎤= + − − −⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

" " "

Lastly, we replace 0Λ  with its standard heteroskedasticity and autocorrelation consistent estimate 0L  as 

proposed by Newey and West (1987) and make use of Bartlett-type weights: 

0 0
1

ˆ ˆ ˆ1 ( )
1

m

j j
j

jL
m=

⎛ ⎞ ′= Ω + − Ω + Ω⎜ ⎟+⎝ ⎠
∑  

with 

( )( )
1

1ˆ
T

T Tj t t j
t j

X X X X
T −

= +

′Ω = − −∑  
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and m  the number of lags to be considered. As suggested by Newey and West (1994), good asymptotic 

properties can be achieved by using the automatic lag selection rule 

(7)      
2 9

int 4
100
Tm

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
. 

Consider therefore the statistic 

(8)    
( ) ( )

1/ 2 1/ 2
1/ 21/ 2

0

ˆ
b b b bt T T
V D L D

λ λ

γ γ

− −
= =

⎛ ⎞′⎜ ⎟
⎝ ⎠

A A  

Under the null hypothesis 0 0: bH λ λ= , ( )1,0~ Nt
a

. Notice that the null can be equivalently written as 

{ }0 0 0: 1 expbH cv cv λ= = − − . This second specification highlights a shortcoming of this procedure: 

since ( ],1bcv ∈ −∞ , we are not able to test whether bcv = 1. A similar issue arises in Snedecor and 

Cochran (1989), when trying to test a null hypothesis on a variance 2 0σ = . In their framework, a 

statistic with an exact distribution exists for any value of the variance, except for 02 =σ , i.e., on the 

boundary of the feasible set. An analogous situation is reported in Kim et al. (2005) when dealing with 

Sharpe-style regressions, used to investigate issues such as style composition, style sensitivity and style 

change over time. The method employed to obtain the distribution and confidence intervals of the style 

coefficients are statistically valid only when none of the true style weights are zero or one. In practice, 

it seems to be quite plausible to have zero or one as the values of some style weights. In our 

framework, nevertheless, such a hypothesis is not economically relevant: it is, indeed, hard to imagine 

a benchmark, however badly managed, able to dissipate all the wealth. We can, however, test any other 

hypothesis, and in particular if bcv = 0, that is, if the benchmark can perfectly replicate the performance 

of the optimal portfolio. 

Since we know the large sample distribution for ( )2, , , ,b b p pe s e S γA , a confidence interval for bλ  is 

derived by 

 

1 2 0
1 2 1

2 2

1 2 1 2

01 2 1 21 1
2 2

ˆ

ˆ ˆ

b

b b

P z T z
V

V VP z z
T T

α α

α α

λα

λ

−

− −

⎛ ⎞−
= ≤ ≤ =⎜ ⎟

⎝ ⎠
⎛ ⎞

= − ≤ ≤ +⎜ ⎟
⎝ ⎠

A

A A
 

where 
2

1 α
−

z  is the 
2

1 α
− -eth percentile of a standard normal distribution. 
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Since { }0 01 expcv λ= − − , a confidence interval for the wealth loss is 

( )
1 2 1 2

0 1 2 1 21 1
2 2

ˆ ˆ
: 1 exp ,1 expb b b b

V VCI cv cv cv z z
T Tα α

− −

⎧ ⎫⎡ ⎤⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ∈ − − − − − +⎢ ⎥⎜ ⎟ ⎜ ⎟⎨ ⎨ ⎬ ⎨ ⎬ ⎬
⎢ ⎥⎪ ⎪ ⎪ ⎪⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭ ⎩ ⎭⎣ ⎦⎩ ⎭

A A . 

If we are interested in testing portfolio efficiency, once we define 

( ) ( )1 1

1 1T Tp pt
T t

t tp pt

e e
X X

vech M vech MT T= =

⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑  

it is straightforward to see that 

( ) ( )( )

( )( )

* * * *2 * * * * *2 * * *2
1 1 2 1 2 2

2 2 2
1 1 2 1 2 2

1 2 2 2
2

1 2 2 2
2

p n n n

p n n n

D w e w w w w w w w w w w w

e

γ γ γ

ω γ ω ω γ ω ω ω ω ω ω ω ω ω

⎡ ⎤′′ ′ ⎡ ⎤= + − +⎢ ⎥⎣ ⎦⎣ ⎦
⎡ ⎤′′ ⎡ ⎤− + −⎢ ⎥⎣ ⎦⎣ ⎦

" " "

" " "
 

and that a confidence interval for the wealth loss 0cv  is 

( )
1 2 1 2

0 1 2 1 21 1
2 2

ˆ ˆ
: 1 exp ,1 expp p p p

V VCI cv cv cv z z
T Tα α

− −

⎧ ⎫⎡ ⎤⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ∈ − − − − − +⎢ ⎥⎜ ⎟ ⎜ ⎟⎨ ⎨ ⎬ ⎨ ⎬ ⎬
⎢ ⎥⎪ ⎪ ⎪ ⎪⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭ ⎩ ⎭⎣ ⎦⎩ ⎭

A A  

This specification of the test does not hold true for pcv  equal to 0 or 1; in this context, therefore, we are 

not allowed to test either 0 0: 1H cv =  or 0 0: 0H cv = . In particular, we cannot test whether the observed 

portfolio is efficient or not. As in Snedecor and Cochran (1989), however, we may rely on the 

confidence interval to 0cv  and check how far its lower (upper) boundary is from zero (one). 

  

4. Closed-form solutions with no inequality constraints 

The expression of the test derived in §3 still depends on the optimal portfolios. We are able to 

establish their closed-form expression only in the simplest settings, with no inequality constraints; 

otherwise we have to rely on numerical solutions. For instance, a Matlab® code which implements the 

function quadprog can solve the problem numerically. 

 The closed-form solution is feasible when i) there are no constraints at all or ii) there are only 

equality constraints. Below we consider the two cases separately. We establish, moreover, that a strong 

relationship between standard mean-variance and utility paradigms exists; the link is provided by 

deriving the optimal portfolios. In the next part we show the results taking into account only the 

benchmark case; analogous results apply in the portfolio framework. 
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4.1. No constraints 

We call ( )2, , , ,NO
b b p pe s e S γA  the difference between utilities in the case of no constraints: 

( )2 21 1, , , , max
2 2

NO
b b p p p p b bw

e s e S w e w S w e sγ γ γ⎧ ⎫⎛ ⎞ ⎛ ⎞′ ′= − − −⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭

A  

Deriving ( )2, , , ,NO
b b p pe s e S γA  with respect to w  we get: 

 
( )2, , , ,

0
NO

b b p p
p p

e s e S
e S w

w

γ
γ

∂
= − =

∂

A
 

so that the optimal weights are 

(9) * 11
NO p pw S e

γ
−=  

Replacing expression (9) into ( )2, , , ,NO
b b p pe s e S γA  we have then 

( )2 * * * 2

1 1 2

1 2

1 1, , , ,
2 2

1 1 1
2 2

1 1
2 2

NO
b b p p NO p NO p NO b b

p p p p p p b b

p p p b b

e s e S w e w S w e s

e S e e S e e s

e S e e s

γ γ γ

γ
γ γ

γ
γ

− −

−

⎛ ⎞ ⎛ ⎞′ ′= − − − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞′ ′= − − − =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
⎛ ⎞′= − −⎜ ⎟
⎝ ⎠

A

 

We recognize in equation (9) an expression similar to that in the standard mean-variance analysis with 

no restrictions, where the optimal portfolio can be any of the infinite ones with the highest Sharpe ratio. 

The weights of the optimal portfolio with the same excess return br  as the benchmark are then given by 

(10) 
1

1
b p pBJS

NO
p p p

r S e
w

e S e

−

−=
′

 

This expression identifies the optimal portfolio used in Basak et al. (2002), where an agent aims at 

minimizing the variance of her investment given the expected return br . 

It can be shown that, when we impose that the portfolio weights sum to one then: 

 

 the Sharpe ratio of the portfolio (10) is equivalent to the Sharpe ratio of the tangency portfolio 

(TP), 
1

1
p pBJS

TP
p p

S e
w

S eι

−

−=
′
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 the optimal portfolio that maximizes the expected utility of the agent with the highest optimal 

expected utility is the tangency portfolio, i.e., exactly the same portfolio we have in a standard 

mean-variance setting. 

 

The optimal portfolio resulting in our expected utility framework in the case of no constraint is: i) 

equivalent to the optimal one in the mean-variance framework if there are no risk free assets and ii) is 

otherwise proportional. Indeed, both equations (9) and (10) share the same numerator 1
p pS e− ; the 

different denominators just normalize the weights. In other words, the importance of the two quantities 
1

p p p

b

e S e
r

−′
; γ  

is in defining what fraction of wealth, if any, should be invested in the risky assets and consequently in 

the risk free; the relationship between risky shares is instead kept fixed. This implies that the two 

portfolios are on the same efficient frontier; see for instance the two optimal portfolios in figure 1. 

According to the two fund separation theorem, they could be seen as a combination of the tangency 

risky portfolio and a risk free asset. 

 

4.2. Equality constraints only 

 If, instead, we define the function ( )2, , , ,EQ
b b p pe s e S γA  that takes account of equality constraints 

on some of the optimal portfolio weights, 

( )2 21 1, , , , max
2 2

EQ
b b p p p p b bw

e s e S w e w S w e sγ γ γ⎧ ⎫⎛ ⎞ ⎛ ⎞′ ′= − − −⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭

A  

subject to 

 Aw a=  

the Lagrangian is 

( ) ( )2
1 1

1 1, |
2 2

T p p b bw X w e w S we s Aw aδ γ γ δ ′′ ′= − − + − −�  

If we take the derivative with respect to w , 

( )1
1

, |
0 0

T

p p

w X
e S w A

w

δ
γ δ

∂
′= ⇒ − + − =

∂

�
 

(11)     ( )1
1

1
p pw S e Aδ

γ
− ′= +  
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and with respect to 1δ , 

( )1

1

, |
0

Tw X
Aw a

δ

δ

∂
= ⇒ =

∂

�
 

we face a system of two equations that can be solved premultiplying (10) by A , 

( )

( ) ( )

1
1

1* 1 1
1

1
p p

p p p

Aw a AS e A

AS A a AS e

δ
γ

δ γ

−

−− −

′= = +

′⇒ = −

 

from which 

( )

( )( ) ( )

* 1 *
1

1 11 1 1 1 1

1

1 1

EQ p p

p p p p p p

w S e A

I S A AS A A S e S A AS A a Q q

δ
γ

γ γ

−

− −− − − − −

′= + =

′ ′ ′ ′= − + = +
 

Replacing this expression in the objective function we have 

( )2 * * * 2
1 1 1

2
2

2

1 1, , , ,
2 2

1 1 1 1 1 1
2 2

1 1 1 1 1 1
2 2 2 2 2

EQ
b b p p p p b b

p p p p p p b b

p p p p p p b b

e s e S w e w S w e s

Q e q e Q S Q Q S q q S Q q S q e s

Q e q e Q S Q Q S q q S Q q S q e s

γ γ γ

γ γ
γ γ γ γ

γ γ
γ γ

⎛ ⎞ ⎛ ⎞′ ′= − − − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞′ ′ ′ ′ ′ ′= + − + + + − − =⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠
⎛ ⎞ ⎛′ ′ ′ ′ ′ ′= + − − − − − −⎜ ⎟ ⎜

⎝⎝ ⎠

A

⎞
⎟
⎠

 

In order to make a comparison with the existing literature, it turns helpful to split the primitive assets in 

two groups7: 

1

2

w
w

w
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

�
�

; 1

2
p

e
e

e
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

�
�

; 
11 12

12 22
p

S S
S

S S

⎡ ⎤
= ⎢ ⎥

′⎢ ⎥⎣ ⎦
 

and to deal with the constraint 

2 2w ω= �� . 

After some algebra we obtain 

(12) * 1 1
1 11 1 11 12 2

1w S e S S ω
γ

− −= − �� �  

In selecting the optimal values, an agent has then to take into account a hedge term against the 

constrained assets. It is interesting to deal with an equality constraint because it allows us to model the 
                                                 
7 This setting was used in Gourieroux and Jouneau (1999). Their statistic stems from a restricted mean-variance space, 
where the unconstrained portfolio shares are normalized by the constrained shares. 
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presence of transaction costs in some assets that, for this reason, are illiquid. For instance, using Italian 

data and the Gourieroux and Jouneau (GJ, 1999) test, Pelizzon and Weber (2003) observe that housing 

is an important part (nearly 80%) of the overall wealth of Italian households, and the efficiency greatly 

improves when real assets are taken as a fixed component of the overall portfolio. Bucciol (2003) bears 

out their results and shows that the efficiency improves further when inequality constraints are also 

taken into account. 

In a setting à la Gourieroux and Jouneau (1999), we would be given the optimal portfolio as 
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where br  is the expected excess return on the observed portfolio. Given the expected return br  the 

optimal portfolio is exactly the same when computed with the test of Basak et al. (2002). 

Moreover, with the restriction on the sum of weights 
1
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In our utility framework, instead, extending equation (11) to all the primitive assets, the optimal 

portfolio is given by 

1 1
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and, in the case we require the sum to one, 
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i.e., exactly the same equation obtained in a setting à la Basak et al. (2002). Without imposing the sum 

to one, the only difference with GJ and BJS tests is, as before, in the normalization term: on the one 

hand, we have the expression 

( )( )1
2 2 12 11 1

1
1 11 1

br e S S e

e S e

ω −

−

′ ′− −

′

� � �

� �
 



 21

whereas, on the other, we have only the term γ . The same remarks made in §4.1 apply here. 

In summary, despite slight differences the behavior in a setting with no inequality constraints is 

similar to the mean-variance framework. If we add inequality constraints, instead, we do not have any 

closed-form solution for the optimal portfolios, and therefore we are not able to make any analytical 

comparison. 

 

5. The relative risk aversion parameter 

The knowledge of the relative risk aversion parameter γ  is critical to asset allocation choice 

since it is decisive in determining the level of investment in risky assets, as we see for example in 

equation (9). 

By definition, γ  depends neither on time nor wealth: 

 ( )
( )

t
t

t

U W
W

U W
γ

′′
= −

′
 

It is well known, however, (see Stutzer, 2004, for a review) that its exact value for an investor is 

as hard to know as it is to estimate it through an ad hoc question. Rabin and Thaler (2001) believe that 

any method used to measure a coefficient of relative risk aversion is doomed to failure, since «the 

correct conclusion for economists to draw, both from thought experiments and from actual data, is that 

people do not display a consistent coefficient of relative risk aversion, so it is a waste of time to try to 

measure it». 

 In this section we show that it is possible to provide an estimate of the relative risk aversion 

parameter γ  within this framework. Our procedure is closely related to that in Gourieroux and Monfort 

(2005); they test their hypothesis using a statistic which depends on an exogenous preference 

parameter. Should the parameter not a priori be given, they obtain an estimate by minimizing the 

statistic with respect to such a parameter. In our setting, the role of the preference parameter is played 

by γ , the risk aversion coefficient. By solving a similar problem for the objective function we can 

empirically find the implied risk aversion parameter, the one for which the welfare loss is minimized. 

Under the hypothesis that the portfolio is managed in order to maximize the expected utility function, 

the estimator γ̂  then provides a consistent estimate for the utility function. 

It is straightforward to develop a procedure for deriving γ̂  in a portfolio setting. Since the 

function ( ), ,p pe S γA  is always non-negative, we can estimate γ  by choosing the value that makes the 

objective function as small as possible, i.e., leads to the lowest inefficiency. In formulae, we solve 
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subject to several constraints. 

 

5.1. No constraints 

If there are no restrictions, the optimal γ  is chosen by 

11 1ˆ arg min
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γ
γ γω ω ω

γ
−⎧ ⎫′ ′ ′= + −⎨ ⎬

⎩ ⎭
 

It leads us to the first order condition 

1
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which implies 
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Knowing its analytical expression, we can also derive a standard error and a confidence interval for 

ˆNOγ , making use of the same results in §3. 

Let us define 
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Moreover, 
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and ijDS  denotes the derivative of the ( ),i j -eth element of 1
pS − . 

Therefore, the standard error for ˆNOγ  is 
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and, applying the central limit theorem, a confidence interval for ˆNOγ  is 
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5.2. Other constraints 

Analogously, in the case of equality constraints only, it is necessary to solve 
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Deriving with respect to γ , 
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although it is not always true that a real solution exists (it should be p pS q S qω ω′ ′< ) 

When inequality constraints are also present, it is no longer possible to find an exact expression 

for the estimate of the risk aversion parameter γ ; we know, nevertheless, that the function 
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determines the first order condition 
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The optimal γ , therefore, is implicitly defined by the equation 

( ) ( )* *
p pS w S wω ω γ γ′′ =  

The same argument does not hold for the benchmark case, where the function ( )2, , , ,b b p pe s e S γA  

can indeed take on both positive and negative values. In this case we might consider either the value 

that maximizes the objective function (i.e., the benchmark gets the highest efficiency), or the value that 

makes the objective function null (i.e., the benchmark is as efficient as the optimal portfolio). 

 When we consider the value of γ  that maximizes the objective function, we simply need to 

adjust the formulae already derived in the portfolio context: 
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In the presence of inequality constraints, the same situation arises. 

For ˆNOγ  we can also define the standard error, corresponding to the one obtained in a portfolio setting. 

What changes is that 
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and ( )ˆ TNO h Yγ =  with 
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6. Empirical analysis 

 We perform two separate empirical analyses on the efficiency of a benchmark and of a 

portfolio. As a benchmark we use the S&P 500 index8 against a set of ten industry portfolios 

representative of the U.S. market9. The industry is divided into non-durable, durable, manufacturing, 

energy, hi-tech, telecommunication, shops, health, utilities and other sectors. We consider monthly 

returns that cover the period February 1950 through May 2005 (664 observations). 

 Table 1 reports some descriptive statistics for our sample; we notice from panel A that the 

expected return of the benchmark is lower than that of any other primitive asset. This fact has a critical 

impact on obtaining the optimal portfolio when several constraints are required. In a Basak et al. (2002) 

framework, for instance, the efficient portfolio must have the same mean as the benchmark. If using 

these data we also impose short-sale constraints, the problem cannot be solved, since it is not possible 

to obtain any portfolio with such a low mean. 

                                                 
8 Downloaded from http://www.yahoo.com. 
9 Average value-weighted returns, taken from Kenneth French’s website: 
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. 
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In panel B we notice, moreover, that the utilities industry sector guarantees a lower variance 

than the benchmark. This asset therefore dominates the benchmark. We consequently expect the 

benchmark to be an inefficient financial instrument and that our test will detect a high wealth loss. 

Table 1. 

Descriptive statistics for industry portfolios and benchmark returns 

Panel A: Mean 
% NODUR DURBL MANUF ENRGY HITEC TELCM SHOPS HLTH UTILS OTHER BENCHMARK 

 1.0836 1.0241 1.0144 1.1960 1.1993 0.9088 1.0342 1.1782 0.9312 1.0836 0.7274 
 

Panel B: Covariance (normal) and correlation (italic) of percentage returns 
% NODUR DURBL MANUF ENRGY HITEC TELCM SHOPS HLTH UTILS OTHER BENCHMARK 

NODUR 17.892 0.64166 0.81769 0.49454 0.57554 0.62724 0.83830 0.74980 0.63453 0.82366 0.82558 
DURBL 14.968 30.414 0.78544 0.46413 0.62017 0.57020 0.74695 0.49183 0.45877 0.75108 0.78984 
MANUF 16.379 20.512 22.425 0.62428 0.74151 0.61882 0.82430 0.72566 0.54838 0.89333 0.91494 
ENRGY 10.578 12.943 14.948 25.569 0.41925 0.39057 0.44976 0.44836 0.54592 0.60415 0.68284 
HITEC 15.791 22.185 22.777 13.751 42.075 0.59744 0.6874 0.63587 0.31595 0.71070 0.80680 
TELCM 11.334 13.434 12.518 8.4369 16.555 18.250 0.6568 0.54124 0.53258 0.67322 0.74720 
SHOPS 17.389 20.201 19.142 11.153 21.866 13.759 24.049 0.66010 0.51009 0.84001 0.84336 
HLTH 15.757 13.475 17.072 11.263 20.491 11.487 16.082 24.681 0.47911 0.71912 0.76917 
UTILS 10.262 9.6734 9.9285 10.554 7.8355 8.6987 9.5639 9.1005 14.618 0.61203 0.60763 

OTHER 17.037 20.256 20.687 14.939 22.543 14.064 20.144 17.471 11.443 23.914 0.91609 
BENCHMARK 14.430 18.000 17.904 14.268 21.625 13.190 17.090 15.790 9.600 18.512 17.076 

 

 Using these data, we compute the optimal portfolios for our t  test with different levels of risk 

aversion, imposing different constraints (nothing, non-negativity constraints, equality constraints, both 

kinds of constraints). As equality constraints, we require the following: 
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Enrgy Utils
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w w
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+ =

 

to represent a commitment to invest a fixed amount of wealth in “socially useful” industries, 

disregarding their performance. This choice is also motivated by the evidence that, in most cases, these 

two constraints would be binding in the optimal portfolios with no equality constraints (see table 2). 

Such constraints are also compatible with a naive investment strategy. 

 In table 2 we thus report the optimal portfolios for different objective functions and different 

constraints. For each portfolio it is necessary for the weights to sum to one, i.e., there is no risk free 

asset. Therefore, when we refer to the unconstrained case, we mean that one equality constraint (the 

sum to one of the weights) actually holds. Without inequality constraints, the optimal portfolios hold 

several short positions (1 to 3, according to the level of γ ). Such portfolios provide the best 

performance, but are typically unfeasible in reality, and to compare them with an observed benchmark 

or an observed portfolio would be misleading. By imposing non-negativity constraints, the optimal 

portfolios turn out to be composed of only a subset of assets; four primitive assets in particular 
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(durable, manufacturing, shops, other sectors) are never in the investment decisions. Not surprisingly, 

these are the assets which offer the lowest return/risk profiles, or that correlate highly with other assets. 

Table 2. 

Optimal portfolios 
% NODUR DURBL MANUF ENRGY HITEC TELCM SHOPS HLTH UTILS OTHER 

NO CONSTRAINTS 
μ−Σ 48.5868 14.8428 -43.7188 35.5916 12.9201 13.0905 -3.4854 23.8141 25.7680 -27.4096 
BJS* -30.3313 -6.1700 89.4892 -18.7369 -22.8688 63.9575 19.3286 -8.6478 79.3282 -65.3488 
γ=1 267.2189 73.0559 -412.7541 186.1017 112.0687 -127.8298 -66.6888 113.7455 -122.6137 77.6959 
γ=2 144.1036 40.2751 -204.9444 101.3470 56.2365 -48.4753 -31.0980 63.1037 -39.0576 18.5093 
γ=5 70.2345 20.6067 -80.2585 50.4942 22.7372 -0.8626 -9.7435 32.7186 11.0761 -17.0027 

γ=10 45.6114 14.0505 -38.6966 33.5433 11.5708 15.0083 -2.6253 22.5902 27.7873 -28.8400 
γ=20 33.2999 10.7725 -17.9156 25.0678 5.9876 22.9438 0.9338 17.5260 36.1429 -34.7586 

NON-NEGATIVITY CONSTRAINTS 
γ=1 0 0 0 52.1807 10.9537 0 0 36.8656 0 0 
γ=2 0 0 0 49.8126 7.4591 0 0 42.7282 0 0 
γ=5 23.4332 0 0 33.9227 3.5890 0.0102 0 24.2651 14.7799 0 

γ=10 17.0364 0 0 23.0100 0 14.6349 0 16.4329 28.8858 0 
γ=20 13.5149 0 0 17.1718 0 20.9590 0 11.6415 36.7128 0 

EQUALITY CONSTRAINTS (HLTH= 10%, ENRGY + UTILS = 20%) 
BJS* -26.1586 -1.2672 99.2919 -31.5658 -34.3632 79.0682 11.4805 10 51.5658 -58.0516 
γ=1 355.2869 54.8451 -373.2211 173.0075 126.1979 -104.9604 -93.0068 10 -153.0075 104.8585 
γ=2 199.0107 31.8562 -179.6351 89.1949 60.4168 -29.5649 -50.1989 10 -69.1949 38.1151 
γ=5 105.2451 18.0628 -63.4835 38.9074 20.9482 15.6724 -24.5142 10 -18.9074 -1.9309 

γ=10 73.9898 13.4651 -24.7663 22.1449 7.7920 30.7515 -15.9526 10 -2.1449 -15.2796 
γ=20 58.3622 11.1662 -5.4077 13.7636 1.2139 38.2911 -11.6718 10 6.2364 -21.9539 

NON-NEGATIVITY AND EQUALITY CONSTRAINTS (HLTH= 10%, ENRGY + UTILS = 20%) 
γ=1 27.8857 0 0 20 42.1143 0 0 10 0 0 
γ=2 48.3044 0 0 20 21.6956 0 0 10 0 0 
γ=5 52.5340 0 0 20 6.6560 10.8100 0 10 0 0 

γ=10 42.7189 0 0 16.6937 0 27.2811 0 10 3.3063 0 
γ=20 36.0484 0.7459 0 9.8075 0 33.2058 0 10 10.1925 0 

* Optimal portfolio in a mean-variance setting with the same expected return as the benchmark. 
 

With the combination of all restrictions, the equality constraint on the sum of the weights associated 

with the energy and utilities sectors leads to hold a null position on the utilities sector when γ  is small. 

In table 3 we summarize the first two moments of returns on optimal portfolios. We observe 

that, once γ  increases, the expected return and the standard deviation of optimal portfolios in a t  test 

setting decrease, but in such a way that the Sharpe ratio grows. On the other hand, the Sharpe ratio for 

the optimal portfolio in a BJS setting is always much lower, meaning that, when fixing the level of 

expected utility, we neglect important information for optimal portfolio choice. 

Notice, moreover, that there is little difference in performance when equality constraints are 

added. When inserting non-negativity constraints, instead, the portfolio shares are completely different, 

so is their performance. We should expect the Sharpe ratio for an optimal portfolio under t  test to be 

lower with more constraints; yet our test compares utility levels, not Sharpe ratios. For this reason it 

may happen that a Sharpe ratio is higher in a world with more constraints. 
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In the same table we then provide a numerical value for the utility loss, computed as 

 ( )2 * * * 21 1, , , ,
2 2b b p p p p b be s e S w e w S w e sγ γ γ⎛ ⎞ ⎛ ⎞′ ′= − − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
A  

The utility loss indeed decreases when we add more constraints. 

Table 3. 

First two moments of the optimal portfolio returns 
% MEAN STD. DEV. SHARPE UTILITY 

LOSS 
MEAN STD. DEV. SHARPE UTILITY 

LOSS 
 NO CONSTRAINTS NON-NEGATIVITY CONSTRAINTS 

μ−Σ 1.1221 3.5463 31.6414 - - - - - 
BJS 0.7278 4.0471 17.9832 - - - - - 
γ=1 2.2155 11.5833 19.1267 0.9025 1.1898 4.2841 27.7725 0.4559 
γ=2 1.5998 6.4665 24.7398 0.6247 1.1886 4.2638 27.8765 0.4499 
γ=5 1.2303 3.9944 30.8006 0.5303 1.1263 3.8108 29.5555 0.4621 

γ=10 1.1072 3.5016 31.6198 0.6193 1.0554 3.5204 29.9795 0.5608 
γ=20 1.0456 3.3671 31.0534 0.8895 1.0213 3.4470 29.6287 0.8107 

 EQUALITY CONSTRAINTS NON-NEGATIVITY AND EQUALITY CONSTRAINTS 
BJS 0.7274 4.2342 17.1786 - - - - - 
γ=1 2.1218 11.2532 18.8551 0.8465 1.1643 4.5114 25.8071 0.4204 
γ=2 1.5505 6.3986 24.2322 0.5842 1.1406 4.0998 27.8219 0.4157 
γ=5 1.2077 4.1168 29.3372 0.4829 1.1043 3.8465 28.7101 0.4333 

γ=10 1.0935 3.6770 29.7389 0.5426 1.0591 3.6701 28.8568 0.5107 
γ=20 1.0364 3.5585 29.1233 0.7477 1.0300 3.6104 28.5301 0.7042 
Note: the benchmark has a mean of 0.72738, a standard deviation of 4.1292 and a Sharpe ratio of 0.17616. 

Equality constraints:Health = 10%, Energy + Utilities = 20%.  
 

In figure 3 we plot the optimal portfolios for the t  test and their indifference curves against the 

benchmark; figure 4 shows the same plots for only 5γ =  and with the efficient frontier. Our test makes 

a comparison between the indifference curves of the benchmark and the optimal portfolio. 

Figure 3. 

Efficient portfolios in a mean-standard deviation plan 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

Benchmark

γ=1

γ=2

γ=5

γ=10
γ=20

Standard Deviation

E
xp

ec
te

d 
R

et
ur

n

Efficient portfolios for t test for different levels of γ - NO Constraints

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

Benchmark

γ=1,2
γ=5

γ=10γ=20

Standard Deviation

E
xp

ec
te

d 
R

et
ur

n

Efficient portfolios for t test for different levels of γ - Non-neg. Constraints

 
 



 29

Figure 4. 

Efficient portfolios in a mean-standard deviation plan, case γ =5. 
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6.1. Benchmark case 

We already know that, by construction, the benchmark is suboptimal in a standard mean-variance 

metric10. Its inefficiency, however, decreases as we add more constraints; in particular, it decreases 

appreciably when we impose non-negativity constraints. Figure 5 plots the amount of wealth wasted 

against the level of risk aversion, for the cases of no constraints and only non-negativity constraints. 

The inefficiency is always lower in the second situation; in many cases, we observe that the benchmark 

wastes less than 0.5% of wealth. The dashed lines represent the confidence intervals for the wealth 

wasted; such an interval is smaller with constraints. 

Figure 5. 

Wealth wasted by the benchmark for different levels of relative risk aversion (%) 

2 4 6 8 10 12 14 16 18 20
-0.5

0

0.5

1

1.5

2

γ

W
ea

lth
 lo

ss
 %

 p
oi

nt
s

Wealth wasted with the benchmark - NO Constraints

 

2 4 6 8 10 12 14 16 18 20
-0.5

0

0.5

1

1.5

2

γ

W
ea

lth
 lo

ss
 %

 p
oi

nt
s

Wealth wasted with the benchmark - Non-negativity Constraints

 

                                                 
10 An unconstrained BJS test, however, would not reject the null of efficiency for the benchmark, obtaining a statistic equal 
to -0.1037 with an associated p-value of 0.9174. The benchmark would actually provide a risk (4.13%) only slightly higher 
than the one (4.05%) of the optimal portfolio with the same expected return (0.73%). 
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 In table 4 we show the result of an efficiency test on the benchmark, where the null hypothesis 

is 

( )2
0 : , , , , 0b b p pH λ η σ η γΣ =  

 The wealth loss does not seem to change a great deal when adding further (especially equality) 

constraints; it is, instead, much more sensitive to the risk aversion parameter, which affects the 

magnitude of the difference between the two variances. Still in table 4, we see that a t  test of efficiency 

rejects the null hypothesis for any risk aversion value and for any combination of constraints, even if its 

realization is smaller in the absence of inequality constraints and when γ  is small. 

Table 4. 

Test statistics and hypothesis testing - benchmark 
% γ=1 γ=2 γ=5 γ=10 γ=20 γ=1 γ=2 γ=5 γ=10 γ=20 

 NO CONSTRAINTS NON-NEGATIVITY CONSTRAINTS 
WEALTH 
LOSS 

0.8984 0.6228 0.5289 0.6173 0.8855 0.4548 0.4489 0.4610 0.5593 0.8074 

STD. ERROR 0.3995 0.1987 0.1054 0.1027 0.1326 0.0782 0.0791 0.0697 0.0821 0.1137 
LOWER 
CONF. INT. 

0.1123 0.2326 0.3222 0.4158 0.6254 0.3015 0.2937 0.3243 0.3982 0.5843 

UPPER CONF. 
INT. 

1.6784 1.0114 0.7352 0.8185 1.1450 0.6079 0.6039 0.5976 0.7201 1.0301 

TEST* 2.2386 3.1248 5.0065 5.9905 6.6505 5.8056 5.6601 6.5968 6.7904 7.0718 
P-VALUE 0.0252 0.0018 0 0 0 0 0 0 0 0 

 EQUALITY CONSTRAINTS NON-NEGATIVITY AND EQUALITY CONSTRAINTS 
WEALTH 
LOSS 

0.8429 0.5825 0.4818 0.5411 0.7449 0.4195 0.4148 0.4324 0.5094 0.7017 

STD. ERROR 0.3791 0.1838 0.0886 0.0820 0.1046 0.0586 0.0503 0.0571 0.0663 0.0880 
LOWER 
CONF. INT. 

0.0970 0.2215 0.3080 0.3802 0.5397 0.3046 0.3162 0.3205 0.3794 0.5291 

UPPER CONF. 
INT. 

1.5833 0.9422 0.6552 0.7018 0.9496 0.5342 0.5133 0.5442 0.6393 0.8740 

TEST* 2.2139 3.1594 5.4253 6.5787 7.0974 7.1481 8.2308 7.5601 7.6640 7.9472 
P-VALUE 0.0268 0.0016 0 0 0 0 0 0 0 0 
* Null hypothesis: wealth loss equal to zero. 

 

We can also derive the optimal relative risk aversion coefficient, i.e., the coefficient that makes 

the performance of the benchmark as good as possible. Table 5 shows that the optimal γ  amounts to a 

reasonable 4.522711. To understand γ , consider the following experiment. An investor is given a 

choice of a fixed sum of money in the next period or a lottery that pays $800 with a probability of 0.5 

and $1,200 with a probability of 0.5. A risk neutral investor would be indifferent between the actuarial 

value of the lottery, $1,000, and the lottery. An investor with 3γ =  is indifferent between $940 and the 

                                                 
11 It would be equal to 4.8050 with the equality constraint, 2.7075 with short-sale constraints and 1.8332 with short-sale and 
equality constraints. The last two values can be obtained only numerically. 
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lottery, and an investor with 5γ =  is indifferent between $900 and the lottery. Gollier (2002), 

furthermore, observes that γ  levels higher than 10 are implausible. 

Table 5. 

Optimal RRA coefficient - benchmark 
BENCHMARK 

NO CONSTRAINTS 
OPTIMAL 

RRA 
S.E. LOWER 

CONF. INT. 
UPPER 

CONF. INT. 
P-VALUE 

RRA 4.5227 1.1153 2.3366 6.7087 - 
WEALTH LOSS (%) 0.5275 0.1093 0.3130 0.7416 - 

TEST 4.8129 - - - 0 
 

The estimated 95 percent confidence interval is acceptable too. Using this coefficient, there is a 

wealth loss of 0.53%, and it is significantly different from zero; a statistical test, indeed, rejects the null 

hypothesis of 0 0cv = ; this implies that there is no risk aversion coefficient for which the benchmark is 

at least as efficient as the optimal portfolio. 

In general, we conclude that the benchmark is inefficient, but its inefficiency turns out to be 

unexpectedly small, even if the benchmark is dominated by one of the primitive assets. 

 

6.2. Portfolio case 

In the following section we consider an application of the portfolio version of our statistic. We 

analyze two cases; we first consider equally-weighted portfolios, to establish how costly naïve 

strategies are. We then analyze how each single constraint can affect our measure of wealth loss. 

 

NAÏVE STRATEGY 

Let us suppose that an agent follows a naïve strategy, i.e., invests exactly the same amount of 

wealth in each of the ten assets. Such a portfolio is inefficient under a mean-variance analysis; a JK test 

run using the 10 industry portfolios, indeed, is worth 17.5876 with a p-value of 0.0403. We wonder, 

therefore, if this portfolio is still inefficient under the framework in this paper. 

There are several reasons for studying a naïve portfolio. First, it is easy to implement because it 

does not require any estimation or optimization. Second, it is empirically proven (Benartzi and Thaler, 

2001) how investors often continue to use such simple rules for allocating their wealth across assets. 

The literature deals with this portfolio, then, since it is simple to use and reasonably easy to implement 

assuming difficulty in diversifying (DeMiguel et al., 2005). In order to empirically arrange the portfolio 

composition as suggested by the theoretical models we need to know, indeed, the parameters of the 

model for a particular set of asset returns and then to solve for the optimal portfolio weights. 
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Figure 6 shows that the point estimate of wealth loss is always below 0.6%, and well below 

0.2% for most levels of risk aversion – except for the smallest and the largest – and with several 

constraints, especially short-sales constraints. In all cases, however, the lower bound of the confidence 

interval reaches the zero point for any 8γ ≤ : for reasonable levels of risk aversion, therefore, we 

cannot reject the null of efficiency of a naïve portfolio. This suggests us that more financially educated 

agents could take just a slightly higher profit by investing in a portfolio different from the naïve. 

Figure 6. 

Wealth wasted with the naïve portfolio 

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

γ

W
ea

lth
 lo

ss
 (%

)

Wealth wasted by the naive portfolio - NO constraints

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

γ

W
ea

lth
 lo

ss
 (%

)

Wealth wasted by the naive portfolio - Inequality constraints

 
Table 6 provides us with the wealth wasted when holding this portfolio instead of the optimal 

under several constraints. The wealth however wasted is smaller (below 0.2%) for γ  between 5 and 10; 

it grows for more elevate and small risk aversions. Notice, however, that when we consider in the 

analysis inequality constraints even in the case of γ = 1 we get a very small amount of wealth loss. 

Given the lower boundary of the confidence interval, however, when γ = 1, 2 or 5 in no case we have 

enough evidence to conclude that the naïve strategy is inefficient. 

We also report the results of the t  test in which the null hypothesis assumes that the amount of 

wealth loss is equal to that obtained with no restrictions. Using the theoretical distribution, just in a few 

cases we have enough evidence for concluding that imposing more restrictions the naïve strategy 

becomes less inefficient: in particular when we consider both constraints. This makes us believe that 

the effect of a combination of constraints may be stronger than the sum of the effects of single 

constraints, because of their interrelations. Adding equality constraints, in particular, does not seem to 

cause relevant differences. We thus argue that, for reasonable levels of risk aversion, according with 

this model it is not possible to conclude that a naïve strategy is inefficient, and that, as we add more 

constraints, the point estimate of its wealth loss decreases significantly for low risk-averse individuals. 
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In this case, therefore, accounting for market frictions helps explain much of the rationale behind the 

recourse to this strategy. 

Table 6. 

Test statistics and hypothesis testing – equally weighted naïve portfolio 
% γ=1 γ=2 γ=5 γ=10 γ=20 γ=1 γ=2 γ=5 γ=10 γ=20 

 NO CONSTRAINTS NON-NEGATIVITY CONSTRAINTS 

WEALTH f  0.5568 0.2741 0.1616 0.2198 0.4280 0.1117 0.0997 0.0935 0.1615 0.3496 
STD. ERROR 0.4050 0.2006 0.0996 0.0921 0.1182 0.0779 0.0777 0.0590 0.0680 0.0972 
LOWER 
CONF. INT. 

0 0 0 0.0391 0.1960 0 0 0 0.0281 0.1589 

UPPER CONF. 
INT. 

1.3475 0.6666 0.3569 0.4001 0.6595 0.2643 0.2519 0.2091 0.2947 0.5399 

TEST* - - - - - -5.7259 -2.2471 -1.1545 -0.8575 -0.8076 
P-VALUE - - - - - 0 0.0246 0.2483 0.3911 0.4193 

 EQUALITY CONSTRAINTS NON-NEGATIVITY AND EQUALITY CONSTRAINTS 

WEALTH f  0.5012 0.2337 0.1143 0.1433 0.2867 0.0763 0.0654 0.0647 0.1114 0.2433 
STD. ERROR 0.3854 0.1869 0.0839 0.0714 0.0898 0.0570 0.0387 0.0419 0.0510 0.0701 
LOWER 
CONF. INT. 

0 0 0 0.0032 0.1106 0 0 0 0.0115 0.1059 

UPPER CONF. 
INT. 

1.2536 0.5995 0.2785 0.2831 0.4625 0.1878 0.1412 0.1468 0.2112 0.3806 

TEST* -0.1444 -0.2160 -0.5645 -1.0723 -1.5754 -8.4570 -5.4016 -2.3142 -2.1288 -2.6382 
P-VALUE 0.8852 0.8290 0.5724 0.2836 0.1152 0 0 0.0207 0.0333 0.0083 

* Null hypothesis: wealth loss equal to the one in case of no restrictions. 

 

 The overall impression, therefore, is that a naïve strategy is not a bad investment at all. This 

conclusion is not new in the literature: Brennan and Torous (1999), for instance, infer from a 

simulation analysis that even an equally weighted portfolio of as few as five randomly chosen firms can 

provide the same level of expected utility as the market portfolio. In DeMiguel et al. (2005), 

furthermore, this strategy performs quite well too. The authors argue then that, even if naïve 

diversification results in a lower performance than optimal diversification, the loss is smaller than the 

one arising from having to use as inputs for the optimizing models parameters that are estimated with 

error rather than known precisely. In most cases, in our analysis we do not have enough information to 

reject the null of efficiency. We are led to believe, furthermore, that even the point estimate of the 

wealth loss is so small that it is actually cheaper than any cost of information search and, thus, many 

investors would prefer this solution to a theoretically more efficient portfolio. 

Lastly, we see in table 7 that the optimal γ  derived using equation (11) takes a value of 

5.068012 and however not higher than 7.3688 in a 95 percent confidence interval. In other words, the 

agent who gets the smaller wealth loss has a risk aversion roughly equal to about γ = 5. The 

                                                 
12 3.8974 with short-sale constraints, 5.7577 with the equality constraint and 3.9223 with short-sale and equality constraints. 
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corresponding wealth loss is 0.1616 percent, and its confidence interval produces a lower bound just 

equal to zero. The wealth loss, therefore, is not significantly different from zero. 

Table 7. 

Optimal RRA coefficient – equally weighted naïve portfolio 
PORTFOLIO 

NO CONSTRAINTS 
OPTIMAL 

RRA 
S.E. LOWER 

CONF. INT. 
UPPER CONF. 

INT. 
RRA 5.0680 1.1739 2.7672 7.3688 

WEALTH LOSS (%) 0.1616 0.0990 0 0.3554 
 

COST OF ADDITIONAL CONSTRAINTS 

In figure 7 we show the pattern of the wealth wasted when comparing the optimal portfolio 

subject to short-sale constraints with the unconstrained optimal portfolio. The level of inefficiency 

decreases sharply after 2γ = , stabilizing soon below 0.1 percent. The lower confidence interval, 

however, is always equal to zero; it means that there is no evidence that adding non-negativity 

constraints worsens the efficiency. We have not considered, nevertheless, the constraints separately yet. 

We wonder, in particular, if some constraints are able to explain more wealth loss then others. 

Figure 7. 

Wealth wasted by the constrained portfolio 
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The experiment that we run in this section is thus the following. Starting from the unconstrained 

optimal portfolio, we add separately each constraint into the analysis, and compute the resulting wealth 

loss given by the recourse to the constrained optimal portfolio instead of the unconstrained optimal 

portfolio. This approach gives an idea of the cost of imposing additional constraints to a portfolio, and 

could in principle be used to compare any pair of nested portfolios, in which one portfolio is optimal 

under more restrictions than the other. Table 8 reports the point estimate of the wealth loss, its standard 

error and its confidence interval for the sole case of γ = 5. 
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Table 8. 

Effect of any constraint on the wealth loss 

5γ =  NODUR DURBL MANUF HITEC TELCM SHOPS OTHER HLTH ENRGY 
+ 

UTILS 
% 0≥  0≥  0≥  0≥  0≥  0≥  0≥  0.1=  0.2=  

WEALTH 
LOSS 

0 0 0.0481 0 0 0.0010 0.0029 0.0112 0.0372 

STD. ERROR 0 0 0.0536 0 0.0005 0.0079 0.0132 0.0260 0.0483 
LOWER 
CONF. INT. 

0 0 0 0 0 0 0 0 0 

UPPER CONF. 
INT. 

0 0 0.1531 0 0.0010 0.0164 0.0288 0.0622 0.1318 

Note: wealth loss is computed by comparing the optimal unconstrained portfolio with the optimal constrained portfolio. 
 

We see that three constraints (non-durable, durable and hi-tech) do not produce any reduction in 

wealth. They are, indeed, largely positive in the optimal unconstrained portfolio. All other constraints 

that cause a wealth loss refer to weights that assume negative values in the unconstrained portfolio, or 

that do not respect the equality. In particular, the most relevant restrictions seem to be the non-

negativity constraint on the manufacturing sector and the equality constraint on the combination of 

energy and health sector. It is worth pointing out, however, that we are talking about tiny amounts, and 

the fact that the lower bound of the confidence interval is equal to zero does not exclude the possibility 

that they are actually equal to zero. 

 The picture that emerges is that no restriction is relevant by itself. A proper combination of 

constraints, instead, may change much more the performance of the optimal portfolio, because of the 

interrelation between constraints. 

 

7. Empirical distribution of the test 

In this section we study how the test performs in small samples. The statistic 

( )2, , , ,b b b p pe s e S γ=A A  is a highly non-linear function of the random variables and for this reason the 

small sample distribution of the test may significantly differ from its normal asymptotic distribution. 

The knowledge of the test small sample properties may have relevant implication in the empirical 

analysis. For instance, in Bucciol (2003) the author makes use of a statistic closely related to the one in 

Basak et al. (2002); partly because of a small sample size, he obtains a generalized efficiency of Italian 

household portfolios, apparently too wide to be explained only with the addition of inequality 

constraints. 

To establish the small-sample properties of our test we then perform a block boostrap (Kunsch, 

1989) simulation. Given the time series of observed data, 
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for 1, ,t T= … , we adopt the following algorithm for a benchmark test: 
 

1. Compute the sample moments pe , be , pS , 2
bs  and consequently the statistics 

* * * 2
0

1 1
2 2p p b bw e w S w e sγ γ⎛ ⎞ ⎛ ⎞′ ′= − − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
A , { }0 01 expcv = − −A  and 

( )2
0

ˆ , , , ,b b p pV V e s e S γ= ; 

2. Define the block size ( )1 5intb T=  according with Hall et al. (1995)13; as a 

consequence the number of blocks is int Tk
b

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 and the length of any bootstrap 

sample is L kb T= ≤ ; 
3. Repeat the following a number N  of times, with 1, ,j N= … : 

a. Generate a random i.i.d. sample { }0 1 1, , ki i i −…  from a discrete uniform 

distribution on { }1, 2, , 1T b− +… ; 

b. Construct a bootstrap pseudo-series { }, 1, ,j
te t L= …  as 1m

j
mb h i he e+ + −=  for 

1, ,h b= … ; 

c. Compute the statistics * * * 21 1
2 2

j j j j j
p p b bw e w S w e sγ γ⎛ ⎞ ⎛ ⎞′ ′= − − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
A  and 

{ }1 expj jcv = − −A ; 
 
The block bootstrap distribution of the statistic ( )2, , , ,b b b p pe s e S γ=A A  is, therefore, ( )1 2

0
jL −A A  for 

1, ,j N= … , with associated a variance ( )( )1 2
0

BB jV Var L= −A A . Such distribution may be used to 

perform any hypothesis testing. If the null is 
00 : HH =A A , a comparison is made between the bootstrap 

realizations and the statistic ( )0

1 2
0 HT −A A ; an analogously algorithm may be implemented for a 

portfolio test. 

In this paper we show results using 1000N = ; smaller or larger values of N  do not seem to 

provide significant differences. Below we show the results for portfolios relative to 5γ = , with no 

constraint or only non-negativity constraints. With other risk aversion parameters and other constraints 

                                                 
13 In this case then b = 3, k = 221 and l = 663. Hall et al. (1995) show that following this rule it is possible to determine 
the optimal block size in the case of estimation of a two-sided distribution function. The optimality is meant in terms of 
minimization of the mean square error of the block bootstrap estimator. 
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the test does not show to behave differently, and neither does with a variable number of primitive 

assets (5 or 30); the following simulation results may apply then to a broad range of data. 

Figure 8 compares the theoretical (dashed line) with the simulated (solid line) distribution for 

the benchmark test; the statistic have been rescaled according with their variance, 0V  for the theoretical 

distribution and BBV  for the simulated distribution. Using this technique we notice that 1) the empirical 

statistic actually appears to be normally distributed, 2) the estimated variance correctly replicates the 

true variance, especially in the constrained case, but 3) the empirical distribution is not centered around 

zero. 

Figure 8. 

Theoretical (dashed line) Vs. simulated (solid line) distribution for the benchmark test 
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The bias 

 1 2
0

1

1 N
j

j
bias L

N =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑A A  

is always higher than zero, with an average value that tends to disappear as L → ∞ . See indeed table 9 

for the benchmark test; it shows results from a Monte Carlo simulation, assuming normality in the asset 

returns. 

Table 9. 

Bias of the benchmark test, 5γ =  
L  500 664 1000 1500 2000 

NO 4.2761 3.6002 3.0366 2.4737 2.0779 
INEQUALITY 1.6333 1.4077 1.2919 1.0786 0.9318 

EQUALITY 3.3044 2.8402 2.4121 1.9639 1.6278 
BOTH 0.9766 0.8293 0.6969 0.5836 0.4765 

Note: bias  in percentage scale. 
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With time series of length L = 2000 we get a bias roughly equal to half of the bias with L = 500. 

The same results apply to a portfolio test; see indeed figure 9 for a graphical comparison. The portfolio 

underlying this analysis is the equally-weighted portfolio. 

Figure 9. 

Theoretical (dashed line) Vs. simulated (solid line) distribution for the portfolio test 
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Table 10 reports the magnitude of this bias for a portfolio test with 5γ =  and shows that, also here, the 

bias is less relevant as L  increases. Note here, as well as above, that the bias is always higher when the 

portfolio allocation problem has a closed form solution. 

Table 10. 

Bias of the portfolio test, 5γ =  
L  500 664 1000 1500 2000 

NO 4.2032 3.6577 2.9276 2.3572 2.0241 
INEQUALITY 1.6535 1.4842 1.2124 1.0692 0.9546 

EQUALITY 3.2445 2.8980 2.3195 1.8604 1.5154 
BOTH 0.9799 0.8638 0.6857 0.5848 0.4702 

Note: bias  in percentage scale. 

 

Bias apart, the two distributions look alike. Correcting the simulated distribution for the bias in 

a Monte Carlo sample, we could indeed replicate almost perfectly the asymptotic distribution of both 

the benchmark and the portfolio test. 

The bias could, however, alter the conclusion of a hypothesis testing. Its presence in small 

samples depends on the application of the delta method to the highly non-linear function 

( )2, , , ,b b b p pe s e S γ=A A . The delta method, indeed, makes use of a first-order Taylor expansion, from 

which 

(15)    ( ) ( ) ( ) ( ), ,T Tb f X f X X Xγ γ γ ′= ≅ + ∇ −A  
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and ( )γ∇  is the gradient of ( ),Tf X γ , following the notation of §3. From equation (15) the 

expectation is worth 

[ ] ( ) ( ) ( ) ( ), ,Tb bE f X E X X f Xγ γ γ λ⎡ ⎤′≅ + ∇ − = =⎢ ⎥⎣ ⎦
A  

since TX  is an unbiased estimator of X . If bA  were actually linear, i.e., equation (15) were true with 

no approximation, the statistic would be unbiased and the asymptotic theory developed on §3 would be 

accurate, even in small samples. To ascertain this we perform a Tapered Block Bootstrap (TBB) as 

developed in Paparoditis and Politis (2001, 2002). TBB represents an improvement of the standard 

block bootstrap for approximately linear statistics since it produces a mean squared error of order 

( )4 5O N −  compared with the ( )2 3O N −  rate of a standard block bootstrap. The main difference with 

the standard block bootstrap is that it pays less importance to the observations at the extremes of any 

block; doing so, the dependency structure underlying the original data is removed more than with a 

non-tapered algorithm. 

Given the original time series { }, 1, ,te t T= … , we define the influence function ( ),tIF e F  as 

 ( ) ( ) ( ),t tIF e F X Xγ ′= ∇ −  

with tX  defined in (5), X  its expectation and F  the underlying distribution function. According with 

(15), therefore, 

( ) ( )
1

1, ,
T

b t
t

f X IF e F
T

γ
=

≅ + ∑A  

Since F  is unknown, we replace ( ),tIF e F  with a sample estimate ( )ˆ,t TIF e F  based on the empirical 

distribution T̂F : 

( ) ( ) ( )ˆ,t T t TIF e F D X Xγ ′= − . 

The simulation is performed according with the following algorithm: 
 

1. Compute the time series ( )ˆ,t t TY IF e F=  for 1, ,t T= … . By construction, the sample 

average 
1

1 T

T t
t

Y Y
T =

= ∑  is centered at zero; 
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2. Choose an appropriate data-tapering window ( ).nz , with ( ) [ ]. 0,1
n

z ∈  and the block 

size b , such that the number of blocks is equal to int Tk
b

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 and the length of any 

bootstrap sample is L kb T= ≤ ; 
3. Repeat the following a number N  of times, with 1, ,j N= … : 

a. Generate a random i.i.d. sample with replacement { }0 1 1, , ki i i −…  from a discrete 

uniform distribution on { }1, 2, , 1T b− +… ; 

b. Construct a bootstrap pseudo-series { }, 1, ,j
tY t L= …  as 

 ( )
1 2

1m

j
mb h b i h

b

bY z h Y
z+ + −=  for 1, ,h b= … , with ( )

1 2
2

1

h

b b
h

z z h
=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑  

c. Compute the bootstrap sample mean 
1

1 L
j j

L l
l

Y Y
L =

= ∑  

 
The tapered block bootstrap distribution of the statistic TY  is, therefore, 1 2 j

LL Y  for 1, ,j N= … , with 

associated a variance ( )1 2TBB j
LV Var L Y= . We use the TBB sample of statistics j

LY  to simulate the 

distribution of TY . Note that, if equation (15) held without approximation, the distribution of 1 2
TT Y  

and the distribution of ( )1 2
b bT λ−A  would be exactly the same. We interpret, therefore, the 

distribution of 1 2
TT Y  as the distribution of  ( )1 2

b bT λ−A  if bA  were a linear statistic. We then compare 

the distribution of 

 
( )

1 2
1 2

j
j L

TBB TBB

Yt L
V

=  

for 1, ,j N= … , with a standard normal distribution, i.e., our theoretical distribution. 

Following the suggestions in Paparoditis and Politis (2002), we use a trapezoidal shape, 

( )

[ ]
[ ]

[ ]

0,

1 ,1
1 1 ,1

TRAP
c

t t c
c

z t t c c
t t c

c

⎧ ∈⎪
⎪

= ∈ −⎨
⎪ −⎪ ∈ −
⎩

 

with 0.43c =  to minimize the mean squared error of the resulting bootstrap statistic, from which the 

data-tapering window is ( ) 0.43
0.5TRAP

b
hz h z

b
−⎛ ⎞= ⎜ ⎟

⎝ ⎠
. The block size is also chosen according with equation 

(20) in Paparoditis and Politis (2002); such equation is, roughly speaking, a function of the lagged 
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covariance of the original data tX , 1, ,t T= … . According with this procedure, it turns out that the 

optimal block size with these data is equal to 5b = , from which 132k =  and 660 664L kb= = < . 

 We take advantage of this frame and follow the same recipe while running a block bootstrap 

sample. The difference with the TBB, in this context, is that we consider a smaller block size (b = 3 

instead of b = 5), and we do not weigh the simulated data. The reason for doing so relies on our 

concern that a block bootstrap simulation, compared with a TBB sample, could provide a worse 

approximation of the true distribution; since bA  is non-linear, a parallel between the two techniques 

was not possible in the previous simulation. The comparison is, then, made between a standard normal 

distribution and the simulated distribution of the statistics j
TBBt  and j

BBt , where j
BBt  is the equivalent of 

j
TBBt  in a block bootstrap setting. 

 Figure 10 shows the density of the simulated distribution, using either a BB or a TBB 

algorithm, and the theoretical normal distribution of a benchmark test with either no constraints or 

short-sales constraints. We notice that, indeed, they are almost overlapped; this means that, were the 

statistic bA  linear, its asymptotic distribution would actually be a standard normal. Also observe how 

the two simulated distributions obtain analogous values, especially along the tails; this result makes us 

believe that the use of a standard block bootstrap technique in this context may be as accurate as the 

recourse to a TBB approach. 

Figure 10. 

Simulated (BB and TBB) Vs. theoretical distribution for the benchmark test 
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Yet the statistic bA  is non-linear; with the delta method we just operate a first-order 

approximation. This simplification may result poor in small samples, as the above block bootstrap 

simulation attests. If we considered a second-order Taylor expansion, indeed, we would get that 
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( ) ( ) ( ) ( ) ( ) ( )( )21, ,
2

T T T Tb f X f X X X X X X Xγ γ γ γ′′= ≅ + ∇ − + − ∇ −A  

with ( )2 γ∇  hessian of ( ),Tf X γ . Taking its expectation, 

(16)   [ ] ( ) ( ) ( )( )21,
2

T TbE f X E X X X Xγ γ⎡ ⎤′≅ + − ∇ −⎢ ⎥
⎣ ⎦

A  

where the second-order term does not disappear; bA  is, then, biased. We do not go further and make 

( )2 γ∇  explicit since it is the derivative of ( )γ∇ , a complicated function of X  and the optimal 

weights *w , whose relation with X  is in most cases unknown. 

 Given this evidence, and noticed how the block bootstrap technique works well in estimating 

the theoretical distribution, we repeat the analysis in §6 using the block bootstrap instead of the 

standard normal distribution. Table 12 reports the simulated rejection rates and confidence intervals of 

the benchmark test, that can be compared with the results in table 4 with a theoretical distribution. 

Table 12. 

BB rejection rates average for the benchmark test 
% γ=1 γ=2 γ=5 γ=10 γ=20 γ=1 γ=2 γ=5 γ=10 γ=20 

 NO CONSTRAINTS NON-NEGATIVITY CONSTRAINTS 
LOWER 
CONF. INT. 

-1.0297 -0.3384 0.0983 0.2842 0.5258 0.1786 0.1989 0.2558 0.3324 0.5364 

UPPER CONF. 
INT. 

1.0187 0.6812 0.5843 0.7262 1.0738 0.4959 0.4945 0.5147 0.6583 0.9832 

REJ. RATES 0.6180 0.3440 0.0060 0 0 0.0020 0 0 0 0 
 EQUALITY CONSTRAINTS NON-NEGATIVITY AND EQUALITY CONSTRAINTS 

LOWER 
CONF. INT. 

-0.9338 -0.2873 0.1102 0.2742 0.4619 0.2185 0.2384 0.2782 0.3341 0.4902 

UPPER CONF. 
INT. 

1.0210 0.6433 0.5409 0.6225 0.8889 0.4668 0.4532 0.4866 0.5958 0.8532 

REJ. RATES 0.5080 0.2360 0.0100 0 0 0 0 0 0 0 
* Null hypothesis: wealth loss equal to zero. 

 

 Note that, with no constraints or with just equality constraints and for small levels or risk 

aversion, using this distribution we cannot exclude the possibility that the S&P 500 index is efficient. 

The lower bound of the confidence interval, furthermore, is negative, meaning that such index could 

even be more efficient than the optimal portfolio. In any other case, instead, the lower bound is strictly 

positive, meaning that the S&P 500 is not efficiently managed. The fact that the index could be 

efficient in a world with no restrictions and inefficient otherwise seems counterintuitive; the point 

estimate of the wealth loss, indeed, decreases as we add more constraints. The conclusion, however, 

depends on the standard error of the estimate; with more restrictions, the portfolio allocation is more 

limited, and therefore not many options are available to the investor. For this reason, even a smaller 
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amount of wealth loss may be considered inefficient; in other words, our test gets more precise as we 

add more constraints. Also with the theoretical distribution, indeed, in these few cases we obtained 

smaller values for the test statistic. 

 Table 13 reports the rejection rates and the confidence interval of the portfolio test run on a 

naïve portfolio; the table is comparable with table 6. The estimated lower bound in the confidence 

interval is here equal to zero also when γ = 10, not only when γ = 1,2,5; this implies that, even when 

the coefficient of risk aversion is as high as 10, we cannot reject the hypothesis that a naïve portfolio is 

efficient. Note that, in general, the confidence intervals are much smaller than before; for this reason, 

the rejection rates are always lower than the theoretical p-values. In three cases (highlighted) with 

higher values of γ  we reject the null hypothesis, overturning our conclusion from table 6. Adding 

constraints to the standard case, therefore, seems to provide a significant reduction in the wealth loss, at 

least with small levels of risk aversion and for short-sales constraints. The overall impression is that, 

using the theoretical distribution, we accept too much the null hypothesis; this could prove as evidence 

for the high fraction of efficient portfolios observed in Bucciol (2003). 

Table 13. 

BB rejection rates average for the naïve portfolio test 
% γ=1 γ=2 γ=5 γ=10 γ=20 γ=1 γ=2 γ=5 γ=10 γ=20 

 NO CONSTRAINTS NON-NEGATIVITY CONSTRAINTS 
LOWER 
CONF. INT. 

0 0 0 0 0.1071 0 0 0 0 0.0779 

UPPER CONF. 
INT. 

0.6733 0.3297 0.2143 0.3064 0.6011 0.1418 0.1244 0.1263 0.2311 0.4970 

REJ. RATES - - - - - 0 0 0 0.0780 0.2520 
 EQUALITY CONSTRAINTS NON-NEGATIVITY AND EQUALITY CONSTRAINTS 

LOWER 
CONF. INT. 

0 0 0 0 0.0194 0 0 0 0 0.0716 

UPPER CONF. 
INT. 

0.6772 0.3071 0.1598 0.2058 0.4062 0.0945 0.0839 0.0886 0.1637 0.3489 

REJ. RATES 0.148 0.0900 0.0440 0.0280 0.0220 0 0 0 0 0.0020 
* Null hypothesis: wealth loss equal to the one in case of no restrictions. 

 

To summarize, using the block bootstrap distribution we draw conclusion just seldom different 

from those using the asymptotic distribution. In particular, we reject the efficiency of the S&P 500 for 

almost any combination of constraints and levels of risk aversion higher than 2, and we accept the 

efficiency of a naïve portfolio for risk aversion parameters below 10. Adding constraints to the 

analysis, furthermore, seems to decrease significantly the wealth loss, at least with risk aversion 

coefficients lower or equal to 10 and with short-sales constraints. 
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8. Conclusion 

 In this paper we study the efficiency of a benchmark or a portfolio in an expected utility 

framework, dealing with complex problems in which the optimal portfolio depends on weight 

constraints. We consider a measure of compensative variation which reads as the wealth loss between 

optimal and sub-optimal portfolios. We provide its asymptotic distribution and discuss the related 

inefficiency test. We suggest an estimation strategy for the risk aversion parameter based on the 

parameter value that minimizes the wealth loss with respect to the optimal portfolio. This estimate turns 

out to be useful when establishing, for instance, the implicit risk aversion adopted by fund managers 

when building their fund portfolio. The statistic can flexibly deal with equality and inequality 

constraints on portfolio composition, even if the presence of inequality constraints makes it impossible 

to derive a closed-form solution. 

Although we depart from the classical literature of mean-variance analysis, we show that the 

two frameworks are comparable and to some extent provide analogous results; in particular, the 

optimal portfolios without inequality constraints differ only for a normalizing factor. 

 We find the asymptotic distribution for the test and discuss its small sample properties: given 

the evidence from our simulations, we believe that a better way to make use of this statistic is to 

consider its simulated distribution obtained through a block bootstrap (Kunsch, 1989) technique. 

 Our empirical application, based on ten industry portfolios for the U.S. market, shows that there 

is not enough evidence to reject the null of efficiency for a naïve investment strategy with reasonable 

values of the risk aversion coefficient; This conclusion confirms the results in Brennan and Torous 

(1999) and Das and Uppal (2004). The point estimates of the wealth loss, furthermore, are rather small, 

often about 0.10%, and it seems that considering inequality constraints into the analysis really helps 

explain such an apparently inefficient behavior when the risk aversion parameter is reasonably low. 

When using a benchmark, such as the S&P 500, that in the relevant period is dominated by at least one 

industry portfolio, our test does not find enough evidence to conclude for its inefficiency when the 

relative risk aversion parameter is small. In any other case, however, the inefficiency is unexpectedly 

small; the wealth loss is never higher than 0.5 point percentage, and the optimal risk aversion is 

reasonably equal to 5. 

In our agenda we have set two goals for the future. We first plan to focus more in depth on the 

size of the implicit risk aversion parameter used by fund managers when choosing the composition of 

their fund portfolio. We further aim at accounting for a long term perspective within this framework 

and then analyzing the behavior of forward-looking agents with regards to their lifetime portfolios. 
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