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Abstract

For equity fund managers the attribution and control of risk is a cen-
tral function requiring appropriate volatility forecasts on individual assets
over a number of forecast horizons. This paper assesses the predictive abil-
ity of artificial implied volatility estimates against forecasts provided by
GARCH and E-GARCH for a range of FTSE-100 stocks. From the evi-
dence shown here, implied volatility forecasts are superior to alternative
methodologies over both short- and medium-term forecast horizons. This
finding supports the use of individual equity options data in formulating
an optimal rebalancing strategy for equity portfolios.

1 Introduction

Generating accurate estimates of the future asset volatility has been an area
of some success in finance theory. The academic progress in this area has not
easily translated into standard industry practice despite the obvious need for
good forecasts with model complexity often cited as a central reason. Volatil-
ity forecasting literature is dominated by two principal methodologies the most
common of which is a time-series approach that utilises historical returns pattern
to generate forecasts of return volatility. The rate of innovation that has char-
acterised time-series forecasting has led to the development of often successful
but often complex forecast models that are currently applied in only a limited
context within the financial markets. These models are essentially backward-
looking using previous return patterns and projecting this behaviour forward.
An alternative though less widely studied forecasting method extracts expecta-
tions of volatility from observed option prices. The forward-looking perspective
of option traders implies that observed prices should provide some information
on the returns behaviour of the underlying asset, this is limited by the efficiency
of the options market and the ability of option pricing models to adequately
capture trader’s expectations. The relative ease with which implied volatilities
can be backed-out of observed option prices is an attractive feature for some



market preactitioners, such as portfolio managers who have a requirement for
easily available and accurate volatility forecasts for individual assets over short
and medium term horizons.

This paper provides a comprehensive examination of individual equity op-
tions quoted on the London International Financial Futures Exchange (LIFFE)
and compares their predictive ability to the most commonly cited time-series
approaches, namely GARCH (1,1) and E-GARCH (1,1). The use of a sample of
individual equity options represents a signifcant extension of previous work in
the area which has primarily focused on index options. The majority of studies
examining the forecast performance of implied volatility have focused on index
options where issues around liquidity and data availability are less of a concern.
The Chicago Board of Trade Volatility Index (VIX) is a weighted average of 8
OEX (S&P 100 Index) put and call options available since 1993 and its applica-
tion as a forecasting instrument by market participants and is a good example
of how this data has been used to provide an indication of future volatility at
the market level. At the level of individual assets models such as GARCH (1,1)
and its extensions dominate the forecasting literature and have proved to be
relatively successful in a univariate context. The increase over the last ten years
in the number of securities on which options trade now means that there is an
extensive source of information in the options market for portfolio managers
that is an attractive alternative to these using GARCH-based approaches.

The difference between forecasts provided by both methodologies can be un-
derstood in the context of information arriving to the market as either expected
announcements or unexpected news. A specific volatility pattern is associated
with each type of event. For many securities volatility often declines in ad-
vance of expected announcements, such as an earnings report or the result of
a corporate legal action, as traders and institutional investors adopt a ’wait
and see’ approach. In the trading period immediately following the announce-
ment volatility will usually spike with a more pronounced rise in volatility in
the case of negative news. In both cases volatility will then gradually return
to some normal level as market participants reassess the value of the security.
Forecasting approaches based on historical volatility fail to adequately capture
this dynamic. The decline in volatility prior to an announcement is included
in near term forecasts and should a short-term volatility jump occur on the
announcement date it will remain dominant in the short-term forecasts leading
to an overestimation of actual volatility in subsequent time-periods. Despite
the limitations of the underlying assumptions of standard pricing models, the
pricing rationale of traders should intuitively recognise the difference between
short-term rises in volatility levels due to company specific announcements and
more general increases in volatility that reflect fundamental conditions affecting
stock volatility. In the case of individual options the challenge is to exploit this
potentially valuable information content in a portfolio setting.

The forward-looking expectations reflected in option prices has potentially
strong applications in some specific financial decision-making, such as those
taken by institutional equity investors. In actively managed equity porfolios



a set of assets is selected based on the manager’s preference. The timing and
extent of the rebalancing decision over the holding period is generally undertaken
in an ad hoc manner, either calendar-based (rebalancing may occur monthly
or quarterly) or volatility-based. The development of an optimal rebalancing
strategy where the cost of transacting is a primary input requires the fund
manager to have access to the most appropriate volatility forecasts for individual
assets over a number of forecast horizons.

As mentioned earlier, the majority of previous studies on implied volatility
have focused on highly liquid datasets of index options. The objective of this
analysis is to provide a comprehensive analysis of the pricing of a range of indi-
vidual equity options with a view to extracting any forward-looking information
on future idiosyncratic or stock-specific volatility patterns. The predictive abil-
ity of options on FTSE-100 stocks are tested over 1-, 5-, 10- and 22-day forecast
horizons and are ranked against popular statistical forecasting methods. The
next section traces the development of the literature on volatility forecasting
and is followed by a detailed analysis of the forecasts provided respectively by
the time-series and the implied volatility approaches. The testing procedure
can be separated into two parts, a preliminary analysis carried out over an ex-
tended sample period ranks forecasts using mean absolute error (MAE) and
root mean square error (RMSE) statistics. In this instance squared returns
are used as the proxy for actual volatility proxy, limiting the tests to a simple
ranking procedure. The use of intra-day (five-minute) returns data facilitates
a more comprehensive analysis of each of the forecasting methods. The infor-
mation content of volatility forecasts can be tested more extensively through
the running of basic and encompassing regressions. In addition, test statistics
developed by Diebold and Mariano (1995) [8] and Harvey-Leybourne-Newbold
(1998) [?, ?] provide a pairwise comparison of each of the forecasting models.

2 Forecasting Volatility

The evolution of time-series models can be traced to the use of simple histori-
cal averages as an estimate of future volatility. This first generation of models
was extended to moving average and exponentially weighted moving averages
(EWMA) specifications, such as the popular EWMA specification provided by
Riskmetrics”™ which were designed to capture volatility clustering. More so-
phisticated attempts to forecast volatility were developed and can be outlined
collectively as ARCH-type models. Pioneered by Engle [11] this approach uses
a maximum likelihood procedure to estimate the conditional variance of re-
turns. The ARCH(gq) model put forward by Engle [11] generated h; , the
one-step ahead variance forecast, based on ¢ past squared returns. The gener-
alised ARCH (GARCH ((p,q)) model (Bollerslev [5]) additionally captures the
volatility persistence and provides a specification much more suited to modelling
financial data. The plain vanilla GARCH (1,1) remains a popular forecasting
tool both for its efficiency and the relative ease of implementation. The pat-
tern of asymmetric volatility observed in financial data presented an additional



requirement on forecasting models and an early solution is provided by [18] in
the form of exponential GARCH (E-GARCH) which captured the negative cor-
relation between stock returns and volatility. This specification now represents
only one of a wide variety of sophisticated ARCH-type models.

The primary alternative to this methodology is to back-out the forward-
looking expectations of volatility implied in option prices. The development of
the Black and Scholes (1973) [16] model marked a significant breakthrough in
option pricing. Although the model makes strong assumptions that diverged
from reality, such as constant volatility, o, no transaction costs, divisible securi-
ties and no arbitrage, it as a widely popular tool for option pricing. Alternative
option pricing models accomodated the possibility of early exercise and were
more suited to the pricing of American-style options such as the binomial ap-
proach adopted by Cox Ross and Rubinstein (1976) [16], the CRR Model.

2.1 Implied Volatility Forecasting

An analysis undertaken by Lamoureux and Lastrapes (1993) looked at the fore-
cast performance of implied volatilities drawn from ten European-style individ-
ual equity options traded on the CBOE for the two-year period from April 1982
to March 1984. Their conclusions indicate that implied volatilities contain infor-
mation above that available in historical prices for forecasts over a 180- to 90—
calendar-day horizon. The findings presented in this paper hint at the potential
for implied volatility as the optimal forecasting approach despite the absence
of the "correct" equilibrium option pricing model, however the results are not
entirely consistent with other contemporary studies.

An analysis of the predictive ability of S&P Index Options by Canina and
Figlewski [6] concluded that implied volatilities are of no use when providing
forecasts of index volatility explaining the lack of information content as a result
of option market inefficiency and the assumptions underlying the Black and
Scholes (1973) option-pricing model. Numerous subsequent studies are more in
line with the findings of Lamoreux and Lastrapes which depicts a useful but
biased forecast of future volatility. The bias discovered in implied volatility
forecasts is attributed to the limiting assumption of constant volatility required
by standard option pricing models. The constant estimate of volatility required
by the Black and Scholes (1973) formula is not a close approximation of reality
and therefore results in a biased estimate of asset volatility over the remaining
life of the option. In reality the stochastic nature of stock return volatilities,
misspecification of the terminal stock price distribution and the presence of
early exercise possibilities may all have an impact on the forecast bias of implied
volatilities.

Figlewski [9] provides a number of reasons for the weak results from
tests on implied volatiltiy carried out in those early studies. One of the key
reasons is that the equilibrium option price is difficult to observe due to bid-
ask spreads. In addition there are issues resulting from non-continuous trading.



He states that these market frictions can be exaggerated when using deep-ITM
and deep-OTM options where even a narrow bid-ask spread has a significant
impact on the implied volatility estimate. Another issue surrounding the use of
option prices to forecast volatility is the clientele effect where groups demand
options for specific reasons. One of the commonly cited examples of this type
of ‘clinteleism’ is that of fund managers who purchase put options to protect
against downside risk in their portfolio. The demand for specific types of options
can impact on the market price and result in a bias in forecasts derived from
observed market prices.

Feinstein (1989) and later Corrado and Miller (1994) both provide pos-
itive results on implied volatilities. They find that the Black-Scholes option-
pricing model can recover virtually unbiased stock return volatility estimates
when volatility behaves stochastically identifying the greater sensitivity of at-
the-money options to volatility of underlying stocks than options that are away-
from-the-money. In addition they show that the apparent bias in implied volatil-
ities that result from misspecification of stock price dynamics can also be mini-
mized if implied volatilities are obtained from at-the-money options. Their work
also suggests that implied volatility estimates are nearly indistinguishable across
option pricing models for at-the-money options. In a similar finding Bodie and
Merton (1995) find that the bias associated with implied volatility forecasts can
be mitigated by using short-dated options that are close-to or at-the-money.
Using S&P 500 options for the period 1985-1987 Bates [4] examined the relative
prices of out-of-the-money (OTM) put options and out-of-the-money (OTM)
call options in the expectation that "unusually" expensive OTM puts are in-
dicative of a market assessment of an imminent downturn in the market. In
the case of the October 1987 stock market crash he found expectations of a
market downturn were reflected in options prices in the year before the crash,
however in the period immediately preceding the crash downside risk was not
very pronounced.

Christensen and Prabhala [7] - henceforth CP - looked at S&P index
option prices in the broader context of their predictive ability for the volatility
of the underlying S & P Stock Index. Their results contradicted earlier findings
put forward by Canina and Figlewski [6] and they discount their conculsion of
option market inefficiency. They also note that a regime shift occurred around
the time of the October 1987 crash, explaining the bias that was inherent in op-
tion prices in the time immediately preceding the crash. The results achieved by
CP affirm the superiority of implied volatilities over past volatility in forecasting
the volatility of the S&P 100. A significant conclusion of their study was that
previous studies were weakened by their use of overlapping sampling method.
Their analysis represented a step forward in the analysis of the relationship
between implied and realised volatility. They use a longer sample period of
11% years, significantly longer than previous studies. In addition the volatility
series are constructed with non-overlapping data, providing more reliable regres-
sion estimates that would otherwise be distorted using an overlapping dataset.
Empirical studies that assess the informational content of implied volatility by
regressing ex post realized volatility on ex ante implied volatility have generally



found a bias in forecasts provided.

This study differs from those of Lamoureux and Lastrapes [17] and Chris-
tensen and Prabhala [7] where implied volatility is backed out of option data
based on a single strike price. This is traditionally attributed to wrong choice
of option pricing model, data may not be measured correctly and statistical
problems arise because the sample periods is too short A recent addition to the
literature provided by Penttinen [19] looks at the reasons why implied volatility
slightly exceeds realised volatility most of the time and is lower than realised
volatility during periods of relatively high market volatility.

Pentinnen [19] argues that the bias between ex-ante implied and ex-post
realised volatility results from unrealised expectations of infrequently occur-
ring jumps in volatility. His analysis supports the idea that the option pricing
process is an example of rational behaviour on the part of options traders whose
expectations remained unrealised for a period of time. In this study the sample
period provides an opportunity to investigate the comparative performance of
implied volatility over an extended time period that can be divided into ap-
proximately equal time periods chatacterised by low volatility and prolonged
heightened volatility respectively. A review of nineteen papers on this topic by
Poon and Granger [20] finds that despite model weaknesses and issues around
option market efficiency, implied volatility performed well and in some cases
performed better than models based on historical data.

3 Methodology

Options data on individual FTSE-100 equities was purchased from the London
International Financial Futures Exchange (LIFFE). Sixteen individual equity
options were selected wit a continuous sample period available from September
1997 to December 2003. The preliminary analyses uses end-of-day price data
on the underlying assets provided by Datastream to generate squared returns.
Intra-day data purcased from data provider Olsen was used to calculate realised
volatility. This section outlines the estimation process for daily implied volatility
(IV) used as a forecast and sets out the testing procedure used to IV forecasts
against forecasts provided by GARCH (1,1) and E-GARCH (1,1).

3.1 Measuring Volatility

The correct ranking of volatility forecasts requires a consistent proxy for the
‘true’ volatility process. The difficulty associated with ascertaining the correct
proxy is addressed by Andersen and Bollerslev [2] - hereafter AB - who studied
the conditional variance provided by a forecasting model against r?. Squared
returns are a noisy estimate of volatility and in all cases a regression of the



volatility forecast against squared returns would indicate low explanatory power,
in fact the R? resulting from such an analysis would never exceed % In an
analysis where the objective is to assess the fraction of volatility explained by a
forecasting model this would prove to be a severe limitation, however squared
returns are sufficient when ranking the predictive accuracy of various models as
in the preminary test here. The availability of intra-day price data allows us
to extract more detailed information on volatility forecasts. If InS;t =1,...,T
is a series of daily stock prices, and let InSyixe,k = 1,...,m and £ = 1/m
denote a series of five minute observations then a daily estimate of realised
volatility can be constructed as RV; ., = Zzl;ol(ln St+(k+1)e — In SH_(k.){)z. If
In S; is a continuous semimartingale process, and o'2(t) is the instantaneous
volatility of that process then as m — o0o(§ — 0), RVym RN ftt_l ot?(s)ds,
for t = 1,2,...where the r.h.s. is the (daily) integrated volatility. As the time
interval goes towards zero, realised volatility provides a consistent estimator
of the integrated volatility process and extends range of comparisons between
forecasting models.

However as stated above, Awartani and Corradi [3] show that even if the
true unobservable volatility, 012 , is replaced with squared returns, 77, then the
correct ranking of models based on any quadratic loss function will be main-
tained and so realised volatility does not offer significant benefit over squared
returns in this context.

3.2 Deriving Implied Volatilities from Individual Equity

Options

LIFFE provide data on American-style equity options priced using the Cox-
Ross-Rubinstein - henceforth CRR - binomial model with each option having
rights on 1000 shares. The CRR framework splits the time to expiry into sub
periods in which the share value can rise or fall by a known proportion resulting
in a range of final possible share price outcomes. Associated with each of the
final price outcomes is an associate option price and the option value is obtained
by working backwards over the number of periods from expiry, thus allowing
for early exercise and the payment of dividends over the life of the option. The
opportunity of early exercise means that American option prices will trade at a
mark-up over European option prices and this premium is dependant on the cash
flows of the underlying asset. When used to price an option this the necessary
inputs are the current stock price, the exercise price, the risk-free interest rate
and an estimate of the stocks volatility. All of the factors are known except for
the volatility estimate, therefore the forward-looking expectation of volatility is
implied in the observed trading price of options.

For each trading day, equity options have maturities corresponding to the
two near-term months plus two additional months from the January, February
or March quarterly cycles and from which a synthetic implied volatility for each



trading day can be constructed using a simple weighted average approach based
on the option’s 'moneyness’ . Ederington and Guan [12] show that the approach
of commercial providers, who use just a few at-the-money or close-to-the-money
options provides a marginally better forecast than estimates of implied volatili-
ties that include away from the money options. In this case the options dataset
is subject to a daily ranking procedure that yields the two nearest-to-the-money
calls and the two nearest-to-the-money puts for each stock option included in
the analysis, thus excluding options trading far from the money. A weighted
average of these four options is then calculated, thus giving greater emphasis
implied volatility drawn from at- or close-to-the-money options which have been
shown to have greater sensitivity to movements in the underlying asset. The
weighting scheme can be written as

X627F X627F
I = 02— | .1 251 — ——— ) IV,
W7T 0 5(Xc2_Xc1> W1+0 5< XC2_X61> VAQ
Xy — F Xy — F
0.25 (| =———) .1V, 025 (1 — ——2—— .1V, 1
’ (XPZ_Xzﬂ) et ( XPZ_Xpl) " M

where F' is the underlying stock price (face value), X1 and Xco(Xp1and
Xp2) are the strike prices of the closest-to-the-money call (put) options and
IVe and IVye (IVy1and IVps) corresponding implied volatilities. The implied
volatilities for the options at various strike prices are made available by LIFFE
and the Cox-Ross-Rubinstein model is used to estimate the volatility implied
by a quoted option prices. This is done by inverting the model and using the
option mid prices as an input.

There are infrequent cases of gaps in the dataset. In these circumstances
implied volatility for that day is taken to be the average implied volatility over
the entire sample. At every point in time across the sample period the model
provides a one-step ahead forecast of volatility. Volatility forecasts for longer
horizons are estimated by applying the "square root of time rule" is applied. In
the case of the implied volatility forecast, the n day volatility forecast is given

by:
[ n
IV, = %IV}.

where IV, , is the expected volatility over the [¢ + 1,¢ 4 n| period.

IThe 'moneyness’ of an option refers to the distance between the strike price, the price at
which the option can be exercised, and the current price on the underlying asset.



3.3 Statistical Approaches to Volatility Forecasting

As mentioned in the previous section the development of methodologies that
can capture the volatility pattern of an individual asset over time and use
it to forecast future volatility have been the relatively successful in volatility
forecasting. In each of the following cases r, = In(P,) — In(P,_1) is the daily
return on a FTSE 100 stock.

One of the most straightforward methods used to model volatility in financial
data is the exponentially weighted moving average (EWMA) approach used
by Riskmetrics. The estimate of volatility is constructed as the exponentially
weighted moving average of squared returns. It can be written as

on =Aon_y+ (1= Nuj_, (2)

The volatility estimate, o, for day n is calculated from o, _1 available at
the of the previous day, while o,,_1was the volatility estimate for n — 1 made
at the end of day m — 2 , u2_,is the the most recently observed market return
for the asset. This methodology has the advantage of being easily implemented
and provides a simple measure for tracking volatility, however it has been su-
perceded my models that capture additional volatility patterns. The ARCH(p)
process developed by Engle [11] was the earliest model to successfully model
the conditional heteroskedasticity of financial returns by assuming the condi-
tional variance is a weighted average of the squared average of up to p previous
squared unexpected returns. The GARCH model developed by Bollerslev [5] is
a generalization of this model and has proved relatively successful in capturing
additional volatility dynamics. The GARCH(p,q) model includes q autoregres-
sive terms in addition to the ARCH(p). The simple GARCH (1,1) model has
become the most widely used version due to its simplicity and efficacy in pro-
viding short-term forecasts. It can be written as follows:

o2 =9V +aul_y + Boi_, (3)

where v is the weight assigned to V7, , « is the weight assigned to u2_;,and 3
is the weight assigned to o2 _;.The weights must sum to one, so that, y+a+3 =

1. The model specification in this case indicates that o2 is based on the most

recent observation of u? and the most recente estimate of the variance. The
model used to estimate the parameters can be written as

or =w+ou,_ | +Pos_, (4)

where w = pV},.Once w, a and § are known then the long term variance V7,
can be calculated as w/v. As with the EWMA model the "decay rate", § in



this case has a significant impact on how the future volatiltiy estimate utilises
past observations. Maximum likelihood is used to estimate the appropriate
parameters for the model, where the underlying distribution is a student-t form
that takes account of the fat-tailed or kurtotic distribution pattern common
to equity returns. The parameters are re-estimated on a rolling basis. The
GARCH (1,1) model does not capture the asymmetric volatility observed in
financial data, but despite this it remains one of the most popular GARCH
specifications. GARCH specifications. Nelson [18] developed the first asymetric
GARCH model, known as exponential or E-GARCH. The conditional variance
equation in the E-GARCH model introduces leverage terms as follows:

Ino? =5+ g(zn-1) + Blno?_, (5)

where g(+) is an asymmetric response function defined by

9(zn) = Az + 9(l2a| = V2/). (6)

The standard normal variable z, is the standardised unexpected return
€n/0n. When ¢ > 0, and A < 0 negative shocks to returns (z,-1 < 0) in-
duce larger conditional variance responses than positive shocks. One of the
advantages of GARCH models is that a single model can provide volatility fore-
casts for a number of maturities. Forecasts generated from GARCH models
will mean-revert to the a long-term level volatility level that is determined by
the GARCH parameters. Significant differences can occur in the short-term
forecasts provided by symmetric and asymmetric GARCH. The GARCH fore-
cast over h-period horizon is the sum of the instantaneous GARCH forecast
variances, plus double the sum of the forecast autocovariances between returns.
However, the second part of the equation will be very small compared to the
first part. The conditional mean equation is generally a constant so that the
double sum is zero. Eliminating this part of the equation means that h-day fore-
casts can be estimated by adding the j-step-ahead GARCH variance forecasts.
These are then square rooted and annualised to give GARCH h-day volatility
forecasts. It can be written as

h
Ui,t = Z Jt+k (7)
k=1

where U?L,t is the expected volatility over the period [t41, t+n] according to
the GARCH model.

10



4 Empirical Results

The preliminary test in this analysis ranks forecasts provided by alternative
models based on the out-of-sample mean absolute error (MAE) and the root
mean square error (RMSE). The implied volatility forecast is ranked against
forecasts provided by the GARCH (1,1) and E-GARCH (1,1) model for one-day
and 5-, 10- and 22-day forecasting horizon. As mentioned above squared returns
provide a sufficient proxy of true’ for the simple ranking procedure. Given daily
returns r, = In(P,,) —In(P,—_1) the forward-looking realised volatility over a time
horizon of n days can be estimated for different forecast horizons by calculating
the square root of the sum of the squared returns over the n-day period. Squared
returns are calculated ex-post for each of the 16 stocks under analysis so that
at time t, the squared return, SR, for the period [t+1, t+n] is

SRn’t = Zrt2+j (8)
j=1

As pointed out in Christensen and Prabhala [7] the use of overlapping data
results in strongly correlated volatility and leads to problems when used to
test volatility forecasting models. To avoid this a non-overlapping dataset is
used, in this instance a subset of k times is used, where the sampling periods
k are: {1, k, 2k, ...}. The models are tested on a sample of sixteen FTSE-100
stocks and the volatility forecasts provided are tested for the sample period
from 1% March 1997 to 31%¢ December 2003 providing 1,630, one-day forecasts,
326, five-day forecasts, 163, ten-day forecasts and 75, 22-day horizon forecasts.
Occasional gaps appear in the options data and in such cases the previous day’s
observation is used. The sample provided belong to a range of industries and
would be expected to show different volatility patterns across the sample period.

The first part of the testing procedure ranks each of the forecasting tech-
niques for each asset and across each of the forecast horizons using the mean
absolute error (MAE) and the root mean square error (RMSE). The mean ab-
solute error (MAE) is given as

T
1
MAE = TZ ISRt — Yol

t=1

where SR, ; is the squared returns for each asset and Y,, ; is the forecast
of volatility on the individual asset provided by either implied volatility, the
GARCH (1,1) model or the E-GARCH (1,1) model. The root mean square
error (RMSE) of the volatilty forecast and is given by :

11



T
Z(SRn,t - Yn,t)2

t=1

RMSE =

Nl =

and the results provided by this measure are broadly similar to those stated
above for the MAE statistic. The average implied volatility one-day ahead
MAE and RMSE forecast is 0.0278 and 0.0350 respectively, giving a marginally
lower error statistic than that that provided by either the GARCH (1,1)( MAE
is 0.0281, RMSE is 0.0351) or E-GARCH (MAE is 0.0281, RMSE is 0.0352)
specification. Over longer forecast horizons a broadly similar result can be found.

For the five day forecast horizon the MAE for the implied volatility forecast is
0.535 while the forecast error for the GARCH and E-GARCH models are the
same at 0.0537 and this ranking of the forecast approaches is similarly reflected
in the results for ten -day and 22-day forecasts. Ranked according the MAE and
RMSE using non-overlapping data implied volatilities backed out of individual
equity options provide better forecasts than the GARCH and E-GARCH models.
Tables 1 to 4 detail the performance of each of the forecast models for each of
the sixteen assets over the respective forecasting horizons.

The analysis is extended by substituting daily squared returns as a proxy
for actual volatility with realised volatility estimated from intra-day price data
2. Consistent with the findings of Christensen and Prabhala (1998) [7] non-
overlapping data is again used to avoid the problems associated with serial
correlation. Using ordinary regression analysis the forecasts provided by the
three forecast models can be regressed against the ex-post observed realized
volatility over the forward-looking h-day horizon as follows,

RViy = Bg + B1 fmod el ht + €4, 9)

where RV}, ; is the realized volatility estimated from five-minute price data,
and fmod,h,+ is the forecast is provided one of the selected models. In addition
to the basic regression analysis specified above an encompassing regression will
provide information on the efficiency and level of bias of the forecasts.

RVy i = By + Bifmodel,ht + BoRVi -1 + €4, (10)

An inital test for efficiency can be carried out by estimating a t-statistic on
the B, coefficient. A HO: 5, = 0 that cannot be rejected indicates that the
forecast captures all information contained in observed realized volatility, RV}, ;.
A test of the level of bias in the forecast can be carried out using a Fisher test

2The second part of the analysis uses the same set of FTSE-100 stocks as used in the
preliminary analysis. The exception in this case is Dixons Group, five-minute price data was
not available on this stock at the time of writing.

12



where HO: 8, = 0 and 3, = 1 cannot be rejected. A third test examines whether
the forecast is unbiased and efficient if HO: 5, = 0 and 5; = 1 and 8, = 0 cannot
be rejected. This analysis was carried out for the period 1st October 2002 to
31st December 2003 (14 months) for fifteen stocks from the FTSE 100 and a
summary of the aggregate results are provided in tables 5 and 6. In almost
all cases the R? of the basic and encompassing regressions increases as the
forecast horizon lengthens. The results also indicate that the implied volatility
forecasts for the most part outperform the two GARCH specifications over every
forecasting horizon (the only exception to this is a marginal outperformance by
E-GARCH (1,1) over the 22-day forecast horizon, shown in the results for the
encompassing regression). The slightly negative intercept term, 3, exhibited by

the implied volatility forecasts indicates an overstimation of volatility consistent
with previous findings, however this bias is not excessive. The regression results
indicate efficiency in all cases, that is, all information contained in past realised
volatiltity is contained in the forecasts as 55 is for the most part not signficantly
different from 0.

To facilitate a pairwise comparison of each of the models we estimated a t-
type test associated with Diebold and Mariano (1995) [8] where the differential
loss in period ¢ from using model 1 versus model 2 is written as d;11 = ﬂit 11—
ﬂ%’t_‘_l, and d = P! > idiy1 = MSE, — MSE,. The Diebold and Mariano
(1995) [8] test for equal MSE is formed as

DM — MSE, —MSE, _  d
Vvar(MSE, — MSE) \/@ar@
d

= — (11)
VP2 (duss — )2

The DM statistics for both the implied volatility and E-GARCH (1,1) fore-
casts are compared to a t-statistic with equivalent degrees of freedom for each
forecast horizon. An encompassing test using a methodology similar to that of
Diebold and Mariano (1995) [8] is suggested by Harvey, et. al (1998) [?, ?]. This
latter test is more appropriate as Diebold and Mariano (1995) [8] have shown
that their test is oversized over longer forecast horizons (h) and the problem
presents itself in come cases when h = 2. The HLN-test is an attempt to mit-
igate the problem by modifying the methodology developed by Diebold and
Mariano (1995).

The test focuses on the covariance between 0 ;41 and ﬂitﬂ — Ut p+1U2 141
where Ct+1 = a17t+1(a17t+17 ﬂ27t+1) = ﬁitﬂ — a17t+1a27t+1 and ¢ = ]Di1 Zt Ct.
The encompassing test proposed by Harvey et al. (1998) [?, ?] is given as
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Under the null that model 1 (GARCH (1,1)) forecast encompasses model 2
(Implied Volatility or E-GARCH (1,1)), the covariance between u; ¢ and uj ¢ —
ug,¢,will be less than or equal to 0, while under the alternative that model 2,
contains addtional information, the covariance should be positive. Tables 7
and 8 summarizes the results for the DM-test for equal accuracy and the HLN
encompassing test for added information for both the implied volatility forecasts
and the E-GARCH (1,1) forecasts where the GARCH (1,1) specification is the
benchmark (Model 1) in this instance.

The DM-test is inconclusive providing no evidence of a dominant model,
however the HLN test is more informative. The HLN-statistic comparing the
implied volatility forecast with GARCH (1,1) is in all cases positive and for the
majority of cases signficant additional information is contained in the implied
volatility forecast not captured by GARCH (1,1). The average HLN-statistic
exceeds the critcal values from the Student’s t-distribution with (P-1) degrees of
freedom for the 1-, 5- and 10— day forecast horizons and is strongly positive at the
22-day horizon. The positive HLN-statistic for the GARCH versus E-GARCH
forecasts shows that the E-GARCH forecast also contains additional information
over all forecast horizons, however it is only significant at the one-day horizon.
The encompassing test indicates that additional forward-looking information
not captured in either GARCH or E-GARCH models, is incorporated into the
pricing of individual equity options.

5 Conclusions

This paper is a comprehensive analysis of the most effective volatility fore-
casting procedures for individual equities trading on the FTSE-100. Using a
number of testing procedures we show how synthetic implied volatilities de-
rived from individual equity options provide better forecasts than the popular
and often more complex, statistical approaches over different forecast horizons.
The forward-looking information contained in traded option prices is compared
against GARCH(1,1) and E-GARCH (1,1) over 1-, 5-, 10- and 22-day forecast
horizons.

A preliminary ranking procedure using the mean absolute error (MAE) and
root mean squared error (RMSE) is carried out using ex-post squared returns
as a proxy for actual volatility. In almost all cases, the forecasts provided
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by implied volatilities perform strongly over all forecast horizons. Intra-day
(five-minute) stock prices can be used to estimate a closer approximation of
‘true’ realised volatility, facilitating a more detailed forecast analysis. A basic
regression and an encompassing regression both provide strong overall evidence
in favour of using implied volatility despite evidence of a slight forecast bias.
Implied volatiltiy forecasts in almost all cases provide the highest R?, while
E-GARCH which allows for asymmetric volatility ranks second-best in terms of
predictive accuracy.

The final set of tests carried out are the Diebold-Mariano (DM) test for
equal accuracy and the Harvey et al. (HLN) encompassing test. While the
results using the DM-test do not suggest a dominant forecasting approach, the
positive HLN-statistic across all stocks and forecast horizons indicates that im-
plied volatility and E-GARCH consistently provide additional forward-looking
information than that contained in the GARCH (1,1) forecast. As the forecast-
horizon increases the HLN-statistic in both cases also increases, however the
HLN-statistic for the implied volatility forecasts is the most strongly positive in
almost all cases, providing evidence that this is the most appropriate forecast
methodology over short and medium term horizons.

Accurate forecasts of stock price volatility are a central decision-making
input for a number of market practitioners. For equity fund managers volatility
forecasts on individual equities over different forecast horizons can provide a
valuable role in the operation of an optimal rebalancing strategy. Although
the predictive ability of option implied volatility has been extensively analysed
in the context of equity indices less attention has been directed at the role of
individual equity options. This paper outlines a simple method for deriving
a hypothetical implied volatility forecast from available options and provides
evidence that it outperforms sophisticated forecasting procedures over a number
of forecast horizons. The speed and simplicity with which implied forecasts can
be obtained and the accuracy of their forecasts provides strong motivation for
their increased use in formulating a rebalancing strategy for partially diversified
equity funds.
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