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Abstract 

This paper presents forecasting techniques for the British FTSE – 100 and the German 

XETRA DAX indices that derive from normality tests. We use the Moving Average 

(MA) approach for 1, 2, and 3 lags, as well as Auto Regressive (AR) for 1, 2, and 3 

lags based on daily data. The tests produce satisfactory results and investigate that the 

movement of the indices can be explained from these statistical techniques. This 

paper also adopts the traditional Bootstrap test for residuals independence. When 

using Bootstrap the hypothesis of residual independence cannot be rejected and the 

power of the forecasting techniques becomes stronger. Hence, we apply the 

Generalised Method of Moments (GMM) for a non – linear parametric model and we 

try to identify if it is applicable for optimal portfolio selection criteria. The empirical 

results show that a portfolio manager can possibly produce a satisfactory return in the 

long term based on MA, AR, Bootstrap, and GMM techniques. 
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1. Introduction 

 

The aim of this research is to use the Bootstrap method on the British Index FTSE – 

100 and the Xetra DAX indices and to investigate the accuracy of traditional 

forecasting techniques analysing the market movements.  The success of many 

financial strategies is measured by comparisons against a variety of benchmarks. 

Equity tracking funds follow a passive strategy in an attempt to produce high returns 

in conjunction with low risk. Researchers have recently applied extensively the 

bootstrap method but never relation with forecasting techniques which are widely 

used by city practitioners, like the MA (3) and AR (3) tests or the Generalised Method 

of Moments, to the best of our knowledge. 

During the last decade, many studies have carried out research based in bootstrapping 

(see Efron and Tibshirani (1993), which provide a promising tool to practitioners to 

solve the traditionally unsolvable problems. However, there are cases where standard 

bootstrap does not perform properly (see Pin – Huang Chou (2004)) and the results do 

not support the traditional asymptotic theories or simple Markov Chain Monte Carlo 

Methods. Thus, in this paper, we investigate that using specified probabilistic 

conditions which are always in line with real market movements and expectations 

bootstrap produces highly accurate and reliable results in comparison to traditional 

methods which are either based upon the large number distribution properties of the 

observations [Pakes (1986), Rust (1987) and Stern (1997)] or the prior beliefs of the 

authors [Albert and Chib (1993), and Elerian, Chib, and Shephard (2001),], especially 

for inferences based upon small samples. 
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Following the research carried out from Pin – Huang Chou (2004) who investigated 

that the tests were not satisfactory because stock returns are far from iid normally 

distributed we go investigate normally distributed residuals, obtaining satisfactory 

results for our tests for both indices. Compared to Chou (2004) we do not create event 

parameters to introduce special conditions that may lead us to directions that affect 

the market; and that instead of assuming that there exists normality, we observe it.  

Moreover, we systematically test for evidence of heteroscedasticity and multi-

colinearity. We also perform a non-linear model tested with generalised method of 

moments. 

Furthermore, in cases when standard bootstrap procedures do not produce unbiased or 

consistent, refinements are suggested to handle this incompatibility. Specifically, 

Künsch (1989), Politis and Romano (1992), and Freedman (1981) E. Flachaire (2003) 

and James MacKinnon (2002) proposed different novel bootstrap methods to solve 

problems in empirical, econometrical and financial analysis.  

This paper is organised as follows. Section 2 introduces methodological issues of 

employing basic Bootstrap methods. Section 3 provides the empirical evidence 

investigated from the research and provides the results from the applications. Finally, 

section 4 supplements a short conclusion of this paper and provides suggestions for 

further research directions. 
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2. Methodological issues 

 

2.1 The model specification and hypothesis 

In our research we use the AR (1), AR (2), AR (3) and MA (1), MA (2), MA (3) 

forecasting models, we check for the residuals and we apply the bootstrap test on the 

residuals to determine independence checking for p <0.05.  

Standard bootstrap hypothesis test can be explained as follows. Suppose the statistics 

of interest is θ and the null hypothesis we want to test is θ ≤ θ (θ =θ0) for some θ0, 

and the alternative hypothesis is θ ≥ θ0. / √ Var (θ) for some θ0, Then, a pivotal 

statistics V which is a function of θ and θ0 is constructed (e.g. the t statistics usually 

used in regression model is (θ −θ0) / √ Var (θ)). 

From the sample data, we can compute the value of such statistics d. Further, we 

employ the standard bootstrap resampling procedure to calculate the bootstrap sample 

value of V denoted as di* (i=1 2 … n). Thereafter, we calculate the frequency of the event 

that di*is greater than d: 

P*d = (1 / n) ∑n
i=1 I (dn

* ≤ d)       (1) 

this is the bootstrap P-value of the original hypothesis tests.  Suppose P*d<α at a 

given significant level α, we have sufficient reason to discredit the null hypothesis. 

In our research we use the AR (1), AR (2), AR (3) and MA (1), MA (2), MA (3) 

forecasting models, we check for the residuals and we apply the bootstrap test on the 

residuals to determine independence checking for p <0.05.  
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Standard bootstrap hypothesis test can be explained as follows. Suppose the statistics 

of interest is θ and the null hypothesis we want to test is θ ≤ θ (θ =θ0) for some θ0, 

and the alternative hypothesis is θ ≥ θ0. / √ Var (θ) for some θ0, Then, a pivotal 

statistics V which is a function of θ and θ0 is constructed (e.g. the t statistics usually 

used in regression model is (θ −θ0) / √ Var (θ)). 

 

Our hypothesis is based on the assumption that if p>0.05 the hypothesis of residuals 

independence (= forecasting is accurate) is rejected. As we will see later, the results in 

Bootstrap investigate the linearity. 

To perform the test we follow instruction notes from classical text books. Hence, we 

first choose a distance, ε. We then consider a pair of points. If the observations of the 

series truly are iid, then for any pair of points, the probability of the distance between 

these points being less than or equal to epsilon will be constant. We denote this 

probability by c1 (ε). 

Then we consider sets consisting of multiple pairs of points. One way we can choose 

sets of pairs is to move through the consecutive observations of the sample in order. 

That is, given an observation, and an observation of a series X, we can construct a set 

of pairs of the form 

{[Xs,Xt], [Xs+1,Xt+1], [Xs+2,Xt+2],….,[Xs+m-1, Xt+m-1]}          (2) 
 
where m is the number of consecutive points used in the set, or embedding dimension. 

We denote the joint probability of every pair of points in the set satisfying the epsilon 

condition by the probability cm (ε). 
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The Bootstrap test proceeds by noting that under the assumption of independence, this 

probability will simply be the product of the individual probabilities for each pair. 

That is, if the observations are independent then: 

cm(ε) = c1
m(ε)        (3) 

 
When working with sample data, we do not directly observe c1(ε) or cm(ε). We can 

only estimate them from the sample. As a result, we do not expect this relationship to 

hold exactly, but only with some error. The larger the error, the less likely it is that the 

error is caused by random sample variation. The Bootstrap test provides a formal 

basis for judging the size of this error. 

To estimate the probability for a particular dimension, we simply go through all the 

possible sets of that length that can be drawn from the sample and count the number 

of sets which satisfy the condition. The ratio of the number of sets satisfying the 

condition divided by the total number of sets provides the estimate of the probability. 

Given a sample of observations of a series X, we can state this in the following 

mathematical notation: 

 
   cm,n(ε) = [2/(n-m+1)(n-m)]    ∑s=1

n-m+1  ∑t=s+1
n-m+1  Πj=0

m-1 Iε (Xs+j, Xt+j) (4) 
 
where Iε is the indicator function. 
 

                                                                    (5)        
 
Note that the statistics cm,n  are often referred to as correlation integrals. 
 
We can then use these sample estimates of the probabilities to construct a test statistic 

for independence 

 

      (6) 
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where the second term discards the last observations from the sample so that it is 

based on the same number of terms as the first statistic.  

 
Under the assumption of independence, we would expect this statistic to be close to 

zero. In fact, it is shown in Brock et al. (1996) that 

 

      (7) 
 
 
 
where  
 

  (8) 
 
and where c1 can be estimated using c1,n.  k is the probability of any triplet of points 

lying within  ε of each other, and is estimated by counting the number of sets 

satisfying the sample condition 

 

  (9) 
 
 
 
The default is to specify ε as a fraction of pairs, since this method is most invariant to 

different distributions of the underlying series. 

2.2 Bootstrap 

Using the traditional theory, there exist two major methods in Bootstrap: parametric 

and nonparametric. Using nonparametric bootstrap we can construct confidence 

intervals and perform hypothesis tests. 
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Suppose we draw a sample S = {X1, X2,…., Xn }  from a population P = 

{X1,X2,….,Xn } 

We proceed to draw a sample of size n from among the elements of size S sampling 

with replacement. The result is called bootstrap sample S* = {X1*, X2*, ….., Xn *} 

The important element here is that the population is to the sample as the sample is to 

the bootstrap samples. 

That is  P v. s. S ~ S v. s. S* 

Following this we use the average of the bootstrapped statistics, 

 (10) 
To estimate the expectation of the bootstrapped statistics. Similarly, the estimated 

bootstrap variance of T* 

(11) 
estimates the sampling variance of T, and SE* (T*) = √V*(T*) is the bootstrap estimate of 

the standard error of T. 

The next step is to derive confidence intervals constructed through the classical theory 

in text books (first suggested by Efron (1979)). 

To construct a 100(1-α) percent confidence interval, following the results in equations 

(1) and (2), we have 

(12) 
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Where  is the bootstrap estimate of the bias of 

the statistic T. 

where are the ordered bootstrap replicates of the statistic, and the 

operator indicates rounding to the nearest integer. 
 

However, we shall focus in a more accurate approach which is recommended by 

many literatures the, so called, bias corrected, accelerated percentile (BCa) intervals. 

This type of interval can be calculated from observations through the following steps:  

1. Let correction factor 1 

  (13)
   
where  is the I is the inverse of standard normal cumulative distribution function, is an 

indicator function satisfying: 

 
 

 
2. Let T(-i) be the jackknife1 value of T, and  be the average of T(-i). Then 

correction factor 2 

                                                 
1 Jackknife value T(-i) refers to the value calculated from the sample when the i-th observation is 
removed. For reference see Wei Zhen “Bootstrap Methods with application in Econometrics and 
Finance” 
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    (14)  
3. Having two correction factors at hand, we compute  

  (15) 
where is the standard normal cumulative distribution function. 
 
4. The corrected percentile confidence interval is as follows: 

     (16) 
Where the operator           indicates rounding to the nearest integer as before. Finally, 

note that when a=z=0, BCa confidence interval reduces to the percentile interval 

stated previously. 

 

 

2.3 The Generalised Method of Moments 

The GMM has initially introduced by Hansen (1982) and Hansen and Singleton 

(1982) to estimate parameters defined by Euler conditions. Typically in consumption 

based CAPM (Lucas (1978)) the moment restrictions at date t are: 

Pi,t = Εt [pi,t+1 δ (qt/qt+1) U΄(Ct+1;γ) / U΄(Ct;γ)], i= 1,….,n,   (17) 

where U is a utility function, Pi,t is the observed prices of the n financial assets, qt the 

price of the consumption good, Ct the consumption level and Et denotes the 

conditional expectation given the available information including the lagged values of 
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prices and income. The parameters of interest are the preference parameter γ and the 

psychological discount rate δ. The model is semi-parametric. GMM focuses on the 

estimation of θ = (γ΄δ΄) and disregards the nuisance parameter, that is the joint 

conditional distribution of prices pi,t+1, i = 1,…,n,  and consumption Ct+1. 

Recently different approaches called empirical likelihood, minimum chi – square or 

information based approach, have been proposed to simplify the derivation of a GMM 

parameter and to improve its finite sample properties. The basic idea is to estimate 

jointly the structural parameter θ and the nuisance infinite dimensional parameter 

under the moment restrictions. 

 

3. Empirical Evidence 

 

3.1 MA, AR and Bootstrap 

In this paper we use daily observations for the British index FTSE 100 from 

April1984 till May 2005 and the German Xetra DAX index from November 1990 

until May/2005. In this section we also present tests for Moving Average with 1, 2, 3 

lags and for Auto Regression with 1, 2, and 3 lags.  Table 1 shows AR and MA term. 

Each AR term corresponds to the use of a lagged value of the residual in the 

forecasting equation for the unconditional residual (see table 1). MA represents the 

moving average term. A moving average forecasting model uses lagged values of the 

forecast error to improve the current forecast. A first-order moving average term uses 

the most recent forecast error; a second-order term uses the forecast error from the 

two most recent periods, and so on. It is worth noting that all autoregressive moving 

average (ARMA) processes can be written as vector AR(1) processes, although with a 

possibly higher – dimensional state vector and a possibly singular variance matrix. 
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Table 1: Test for AR (1) and MA (1) for FTSE 100 and XETRA DAX using 1 Lag. 
 

  Significance level 5% 
t – test   Probability 

 
Constant  0.058 (0.06)*  0.019 (0.02)* 
AR (1)   0.059 (0.062)  0.0001 (0.0000) 
MA (1)  0.058 (0.059)  0.0353 (0.0357) 
 
R-squared 0.99933 (0.99935) 
* Note: in parentheses the results for XETRA DAX 
 

In addition, from table 1 and figure 1 we see that the forecasting models explain in a 

95% confidence level the movement of both indices. 

 

Similarly, the bootstrap test which has been obtained using 1000 repetitions shows 

(Table 2) that the hypothesis of residual independence cannot be rejected. 

 

 

Table 2: Bootstrap Test (BDS).  

 
 Dimension BDS statistic Std. Error Normal Prob. Bootstrp Prob 
BDS 2  0.04509 0.00152 0.000  0.000 
BDS 3  0.09332 0.002417 0.000  0.000  
BDS 4  0.13394 0.00288 0.000  0.000 
BDS 5  0.16202 0.00300 0.000  0.000 
BDS 6  0.17844 0.00290 0.000  0.000 

 
Note: As we can see p<0.05. Hence, the hypothesis of independence in the residuals is not rejected. 
This implies that there is linearity and that the forecasting is accurate. 
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Figure 1: the residual distribution pattern for FTSE 100. 
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The actual model fits in a perfect manner the observations. We can also see 

the high residuals volatility for period 1999 - 2003. 

 

 

 
The AR (2) and MA (2) explain in a great proportion the market movements (table 3). 
 
 

Table 3: Tests of AR (2) and MA (2).  
 

Significance level 5% 
 
t – test   Probability 

Constant  0.056 (0.057)  0.0030 (0.0034) 
AR (1)   0.055 (0.059)  0.0000 (0.000) 
MA (1)  0.054 (0.056)  0.0000 (0.000) 
 
R-squared 0.9986 (0.999) 
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Once more we see that the histogram satisfies our criteria (figure 2). 
 
Figure 2: the residual distribution pattern using 2 lags for FTSE 100 
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In table 4 the hypothesis of iid in the residuals is not rejected 
 
Table 4: Bootstrap Test (BDS).  

 
Dimension BDS statistic Std. Error Normal Prob. Bootstrp Prob 

BDS 2  0.069174 0.001487 0.000  0.000 
BDS 3  0.12894 0.002363 0.000  0.000  
BDS 4  0.17234 0.002814 0.000  0.000 
BDS 5  0.19956 0.00293 0.000  0.000 
BDS 6  0.215188 0.002831 0.000  0.000 
 
 
 
Furthermore Table 5, 3 lags OLS test produces better probabilistic results when 

compared to 2 and 1 lags OLS the probabilistic statistic. This means that the 

movement of both markets is more accurately explained via the Moving Average 

forecasting technique with 3 lags and the Auto Regressive for 3 lags.  
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Table 5: AR (3) and MA (3) tests.  

 
Significance level 5% 
 
t – test   Probability 

Constant  0.053 (0.054)  0.0005 (0.0005) 
AR (1)   0.054 (0.054)  0.0000 (0.0000) 
MA (1)  0.051 (0.052)  0.0000 (0.0000) 
 
R-squared 0.9980 (0.9987) 
 
 
 

 

Figure 3: the residual distribution pattern using 3 lags.  
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Results from table 6 imply that the hypothesis of independence in the residuals is not 
rejected. 
 
 

Table 6: The Bootstrap test for AR (3) and MA (3).  
 

Dimension BDS statistic Std. Error Normal Prob. Bootstrap Prob 
BDS 2  0.08594 0.00146 0.000  0.000 
BDS 3  0.15098 0.002318 0.000  0.000  
BDS 4  0.19611 0.002760 0.000  0.000 
BDS 5  0.2242  0.002877 0.000  0.000 
BDS 6  0.24011 0.002775 0.000  0.000 
 
 

The tests in the forecasting techniques for AR and MA provide a strong guide to 

outperform the market in the long term. These forecasting techniques can be 

characterised as conservative as long as the portfolio manager does not need to trade 

many times in the market.  

Following the MA forecasting technique in conjunction with the bootstrap test for 

linearity, which secures our forecasting accuracy, we examine (figure 3) that for a 

portfolio manager the 6,000 level in FTSE 100 is a good starting point to close long 

positions and to open short positions. 

However, the MA technique can not give us enough information for the period of 

depression between 2000 and 2003. Indeed, the MA implies that we were in a bubble 

area since 1996. As a result, the exact period of the rapid decline in the stock markets 

is not accurately observed. Consequently, following the MA forecasting technique 

someone should focus on a passive way of investing in the FTSE 100 index. This 

means that a portfolio manager should carry a long position from 1984 until 1996 and 

from 2003 until today.  

As a result, there are several limitations using the MA and AR forecasting techniques. 

Even with satisfactory results from the tests in bootstrap, a portfolio manager should 

have opportunity costs following the above forecasting techniques. This occurs 
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mainly due to the absent of momentum driven factors in the techniques which create 

opportunistic trading and need a more dynamic and flexible approach in asset 

allocation. 

 

3.2 Optimal Portfolio Selection and GMM 

Based on data for FTSE 100 and XETRA DAX we consider a mean - variance 

framework for given α ∈ [0,∞] 

s
min {Jα (s)⁄s∈S} 

Where Jα (s) is the quadratic objection function which ensures the simultaneous 

maximisation of expected return and minimisation of expected risk. 

Jα (s) = - <ε(r),s> + log α<s - 
−

s , Λ(s - 
−

s )> + log (u2),   (19) 

ε(r) ∈Rn is the expected return vector of the set of assets being considered with 

r = ε(r) + ε,         (20) 

ε ~ N (0,Λ) is the random error, Λ∈RnXn is the covariance matrix of the returns, s∈Rn 

is the portfolio weights to be optimally determined, 
−

s  denotes the benchmark weights 

which s should follow closely, and S is the feasible set of these weights, including the 

restrictions specified by the investor. This formulation enables the tracking of 

benchmark
−

s  and has to be tested M times to obtain the optimal portfolio. The error ε 

can be viewed either as the error between the actual retrun and its forecast, ε (r) or the 

error of the return of its historical mean, when ε (r) is equivalent to this mean. The 

parameter u2 describes the overreaction that investors tend to follow and we use it in 

the square root because we want our model to be tested in maximum conditions of 

inefficient market behaviour. Consequently, Λ can be the covariance of the return 

forecast errors or the historical covariance of the return. The parameter log α is the 
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price of risk, interpreted as the shadow price of an associated optimisation constrained 

by the quadratic risk in (18). Accordingly, as log α increases from zero, so does the 

emphasis on caution, or risk aversion. Similarly, a high value of u2 implies that 

investors act irrational. Our objective includes the following components: a chi – 

square distance is used for the optimisation with respect to the conditional 

distributions associated with the sample values of the conditioning variable, whereas 

an information criterion is used for the conditioning value of Jα (s). 

Table 7: Optimal portfolio selection 

 

 

 

Note: *95% confidence interval 

In table 7 we see that the GMM estimator is less than 1, producing an efficient 

estimator of β. Also, we do not reject the hypothesis that a portfolio choice may be 

created using the GMM method in our sample. 

 

 

4. Conclusions 

In this paper forecasting tests for the British Index FTSE 100 and the German 

XETRA DAX index have been made based on iid normality. In our research the 

Moving Average forecasting method with 3 lags is seen to be the most appropriate to 

forecast the future market movements as long as it explains past movement with a 

high degree of accuracy and the actual model fits the observations. 

As it has also been documented the bootstrap method investigates that there is 

independence in the residuals. As a result, the bootstrap method is also appropriate for 

Moment α β u 
E (logu) 0.0408 0.0864 0.0726* 
E(logu2) 0.0613 0.0937 0.0703* 
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both indices. The performances of these tests are satisfactory because the observations 

satisfy the iid condition of normally distributed residuals. Moreover, the application 

of GMM shows the usefulness of this technique to construct an optimal portfolio.  

The forecasting techniques are used to analyse the position that a portfolio manager 

should acquire in the market. The empirical evidence shows that past performance 

determines the most important constituents of the market. Some limitations have been 

observed to demonstrate the disadvantages of the forecasting techniques used in this 

research. 

Further research may be needed at this issue to observe more information that this 

method may provide to portfolio selection strategies. 
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