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Abstract

We investigate the possibility of an arbitrage free model for the term structureof in-
terest rates where the yield curve only changes through a parallel shift.We consider HJM
type forward rate models driven by a multidimensional Wiener process as well as by a gen-
eral marked point process. Within this general framework we show that there does indeed
exist a large variety of nontrivial parallel shift term structure models, and we also describe
these in detail. We also show that there exists no nontrivial flat term structure model. The
same analysis is repeated for the similar case, where the yield curve only changes through
proportional shifts.

Key words: bond market, term structure of interest rates, flat term structures.
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1 Introduction

The Macaulay or Redington duration measure for a fixed income portfolio, cf. the classical
papers [18] and [21], uses the yield of the portfolio itself as the discount rate in calculating the
weights. It is well known that this can only be a fully valid risk measure, comparable across
different bonds and portfolios in a meaningful manner, if the term structure is flat and undergoes
a parallel shift. Fisher and Weil showed in [13] that the assumption of a flat term structure could
be discarded while maintaining the assumption of a parallelshift if one calculated the duration
in accordance with weights derived from the actual term structure instead of an assumed flat
term structure.

The issue of parallel shifts has been a recurrent one in the literature. It was noted by Ingersoll,
Skelton and Weil in their seminal paper [16] from 1978 that a flat term structure and a non-
infinitesimal parallel shift are incompatible with the “no arbitrage” requirement. This lack of
consistency with the “no arbitrage” requirement has been noted by other authors in different
model frameworks, see e.g. [8] and [19]. In [1], Armerin recently showed this in a rather
general framework where the short term rate of interest was only assumed to be a continuous
semimartingale.

Both before and after the publication of [16], numerous parameterized models for term structure
shifts− often referred to as “shift functions”− have been introduced.1 The historical back-
ground is well described by Ingersoll et. al. in [16]. Their analysis put some “order in chaos”
by noting that for an already at that time voluminous literature on term structure changes little
attention had been given to the question of compatibility with the “no arbitrage” requirement.
They characterized the situation in the following way ([16], pp. 630-31):

“Largely missing, however, are any equilibrium considerations in modelling the stochas-
tic process governing the yield structure. .... Fisher and Weil and other authors assumed
additive shifts in the term structure that cannot occur in equilibrium in a competitive mar-
ket. .... Many of those who assumed other types of changes in the yield curvealso did so
without considering whether such shifts can occur in equilibrium or do occur in fact.”

Ingersoll et. al. also analyzed the issue of infinitesimal parallel shifts within the class of con-
tinuous time short rate models driven by a single Wiener process. They showed that for one
particular choice of model, later known as the continuous time version of the Ho-Lee model,
it is possible to have such infinitesimal parallel shifts fora term structure that is a second or-
der polynomial with negative leading coefficient. Within this same class of models they also
showed a particular arbitrage free model with Poisson inputthat allowed for parallel shifts
through jumps. They referred to this possibility as “singular cases” ([16], p. 631 and p. 636,
footnote 6):

“Except for the singular cases discussed in the Appendix, the occurence of non-infinitesimal,
uniform changes in the yield curve implies arbitrage opportunities.”

“As the example below indicates, changes in the yield curve can consist of constant
noninfinitesimal shifts if they occur at any instant with vanishing small probability. How-
ever, in this case duration is not the proper risk measure. This issue is addressed in the
Appendix.”

A related issue concerns the classical textbook recipe for hedging an interest rate sensitive
position: Use a hedge portfolio with (i) thesame duration(ii) the same investment outlayand

1Representative examples of such models are found in, e.g., [15], [20] and [22].
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(iii) a higher level of convexity. This is an apparent arbitrage opportunity, and often portrayed as
such, because no matter the direction of interest movementsthe hedge portfolio will always do
better than the original portfolio− and the more realized interest rate volatility, the better.This
puzzle has usually been explained away as an arbitrage opportunity by pointing to the parallel
shift as an incorrect assumption. However, since parallel shifts are possible the resolution of
the puzzle must be found elsewhere. In [10], Christensen and Sørensen used the parallel shift
model from [16] and resolved the hedging puzzle by means of the partial differential equation
(PDE) for short rate models. In option theoretic terms, the∆-value is analogous to the duration
and theΓ-value is analogous to the convexity. Since the PDE ties the Greeks together, the higher
level of convexity is paid for by a corresponding lower levelof the θ -value in portfolios with
identical duration. Hence, the high convexity portfolio will loose (gain) value relative to the
low convexity portfolio when interest rates show a low (high) level of realized volatility as time
passes.

Our main object of study in this paper is an arbitrage free bond market in a very general contin-
uous time setting, cf. [6]. We investigate if, when, and how it is possible to model an arbitrage
free term structure of interest rates where the yield curve can only change by a parallel shift.
We characterize the conditions under which such parallel shifts can occur using the approach
of invariant manifolds and consistent forward curves developed in [5]. We show that the 2nd
order polynomial example remains the only possibility in such a general environment, when the
dynamics is driven by a multi-dimensional Wiener process. On the other hand; when jumps are
allowed, infinitely many examples that allow for parallel shifts can be constructed, one of them
being the Poisson-driven example from [16]. Finally, as an additional example we also charac-
terize the possibilities under proportional shifts as originally introduced by Bierwag, Kaufman
and Toevs in a multiple of publications, see e.g. [3] and [4].

The paper is organized as follows. In section 2 we introduce the notation used for the bond
market. In section 3 we outline the general model for the dynamics of forward rates used in the
paper. In section 4 the issue of parallel shifts and their compatibility with the general model
used is analyzed. In section 5 we repeat the analysis for the case of proportional shifts. Finally,
section 6 summarizes the conclusion of the paper.

2 The Bond Market

We denote the price at timet of a pure discount bond maturing at timet+x by p(t,x). Note that
we are using the Musiela parameterization, cf. [9], wherex denotes timeto maturity, rather than
the standard parametrization wherex typically denotes timeof maturity. We define the various
interest rates in the usual way.

Definition 2.1

• Theyield yt(x) is defined by

p(t,x) = e−yt(x)x ⇔ yt(x) = − ln p(t,x)
x

.

• The instantaneousforward rate at t+x, contracted at t, is defined by

rt(x) = −∂ ln p(t,x)
∂x

.
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• Theforward rate curve at time t, i.e. the mapping x7−→ rt(x), is denoted by rt .

• Theshort rate Rt is defined by
Rt = rt(0).

• Themoney market accountprocess is defined by

Bt = e
∫ t
0 Rsds

.

We now go on to formally define the concept of a parallel shift term structure, as well as that of
a flat term structure.

Definition 2.2

• A parallel shift term structure model is a term structure model where a.s.

yt(x) = ξt +H(x), ∀(t,x) ∈ R+×R (1)

for some deterministic function H: R+ → R and some adapted processξ .

• A flat term structure model is a term structure model where

yt(x) = ξt , ∀(t,x) ∈ R+×R. (2)

In a parallel shift term structure model all yield curves arethus obtained by− possibly stochastic
− parallel vertical shifts of the fixed yield curveH. In a flat yield curve model, all yield
curves are flat, i.e. constant functions of the time to maturity x, and only change by parallel
vertical shifts. Without loss of generality, we can normalize so thatH(0)=0, and thus have the
identificationξt =Rt .

Obviously, a deterministic term structure model, where theshort rateRt is a deterministic con-
stant, i.e.yt(x)= Rt , is indeed a trivial case. Our goal is to investigate the characteristics of
nontrivial parallel shift models. In order to carry out thisinvestigation we need a formal frame-
work to work in, and we now go on to present this.

3 The Model

We consider a financial market model living on a stochastic basis (filtered probability space)
(Ω,F ,F,Q) whereF={Ft}t≥0. The basis is assumed to carry anm-dimensional Wiener pro-
cessW as well as a marked point processµ(dt,dz), on a measurable Lusin mark space(Z,Z ),
with compensatorν(dt,dz). (See below for a more intuitive interpretation). We assumethat
ν([0, t]×Z) < ∞ P-a.s. for all finitet, i.e. µ is a multivariate point process in the terminology
of [17]. For simplicity we also assume that the compensatorν admits a predictable intensity
measure, i.e.ν(dt,dz)=λt(dz)dt. The bond market is assumed to be arbitrage free in the sense
that the measureQ is assumed to be an equivalent martingale measure.
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Remark 3.1 The intuitive interpretation of the point processµ is that we are modeling “events”
which are occuring at discrete points in time, and a very concrete example could be the model-
ing of earth quakes or stock market crashes. As opposed to a more standard counting process
setting, these discrete events are not all of the same type. Instead, every event is identified by
its “mark” z∈Z, where the reader with very little loss of generality may think of Z as Rn. In
the earth quake example, a natural mark would be the strength of the earthquake on the Richter
scale, and in this case the mark space Z would be the positive real line R+.

For term structure shifts, examples of the mark space could be the positive real line; or it could
be interpreted as multiples of 5 basis points due to the central bank’s discretionary changes of
an “official short rate”, cf. [2]. The informal interpretation of the point processµ is thatµ is an
integer valued (random) measure such thatµ has a unit point mass at the point(t,z)∈ R+×Z,
if at time t there is an event of the type z. The interpretationof the intensity measureλ is
− loosely speaking− that λt(dz) is the expected number of events with marks in a “small
set” dz, per unit time, conditional on the information inFt−. Thus the compensated point
processµ̃(dt,dz) = µ(dt,dz)− λt(dz)dt is “detrended” and possesses a natural martingale
property. Note that the existence of an intensity rules out modeling discrete events occuring at
deterministic points in time, i.e. events like "Alan Greenspan is making a speech November 23
at 12:15pm, at which point in time the term structure may change discretely". In more precise
technical terms, an event cannot occur at an accessible stopping time.

We model the bond market by modeling the forward rate dynamics in the form of a Heath-
Jarrow-Morton type model (see [14]) including jumps, as developed in [6]. To this end we
need a proper space of forward rate curves to work in, and from[7] we borrow the following
definition, which is needed for technical reasons, but whichcan be overlooked at a first reading.
See also [12] for an extension of this functional analyticalframework.

Definition 3.1 (The Space of Forward Rate Curves)Consider a fixed real numberγ > 0. The
spaceHγ is defined as the space of all infinitely differentiable functions

r : R+ → R

satisfying the norm condition‖r‖γ < ∞. Here the norm is defined as

‖r‖2
γ =

∞

∑
n=0

2−n
∫ ∞

0

(

dnr
dxn(x)

)2

e−γxdx.

We now go on to define the forward rate dynamics, and to this endwe have to specify the
volatility structures for the Wiener as well as for the jump process. The particular value ofγ
chosen in the definition of the spaceHγ is irrelevant for the arguments to follow, so we simply
drop this subscript from the notation.

• We consider a given Wiener volatility structureσ of the form

σ : H ×R+ → Rm
.

In other words, each componentσi of the volatility vectorσ(r,x) = [σ1(r,x), . . . ,σm(r,x)]
is a real valued functional of the infinite dimensionalr-variable, and a function of the real
variablex. An alternative, and more profitable, way of viewing a componentσi is to see it
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as a mapping where a pointr∈H (i.e. a forward rate curve) is mapped to the real valued
functionσi(r, ·). We will in fact assume that this real valued function is a member ofH ,
which means that we can view each componentσi as avector field σi : H → H on the
spaceH .

• We consider a given jump volatility structureδ of the form

δ : H ×Z×R+ → R. (3)

Thus δ (r,z,x) is a functional of the infinite dimensionalr-variable, and a function of
the Z-valued variablez and of the real variablex. As for the Wiener volatility, we will
instead considerδ from a more geometric point of view. Thus, for eachz∈Z, we will
view δ (·,z, ·) as a mapping where the pointr ∈ H is mapped to the real valued function
δ (r,z, ·). We denote this mapping byδz and we assume that this real valued function is
a member ofH , which means that for every fixedz we can viewδz as a vector field on
H , i.e. is a mapδz : H → H .

We need some regularity assumptions, and the main ones are asfollows. See [5] for technical
details.

Assumption 3.1 We assume the following:

• For each i=1, . . . ,m the volatility vector fieldσi : H → H is smooth.

• For each z∈ Z the vector fieldδz is smooth onH .

• The intensity measure has the formλt(dz)=λ (rt ,dz) where, for each fixed r∈ H , the
intensity measureλ (r, ·) is a deterministic nonnegative measure on Z.

The assumptions above will ensure that the forward rate processr is an infinite dimensional
Markov process, and we can now go on to specify the forward rate dynamics.

Assumption 3.2 (Forward rate dynamics)
We assume that the forward rates have dynamics of the followingform.

drt(x) = α(rt ,x)dt+σ(rt ,x)dWt +
∫

Z
δ (rt ,z,x)µ(dt,dz). (4)

Remark 3.2 The interpretation of the point process integral above is the following: If at time
t we have the forward rate curve rt , and there is an event of type z, then the forward rate with
maturity x will have a jump of sizeδ (rt ,z,x).

Since we are modeling directly under a martingale measure, we now need some sort of “drift
condition” relatingα to σ andδ . In [6] the standard HJM drift condition was extended to the
case of a driving point process, and in the Musiela parameterization we easily (see [5]) obtain
the following basic result.
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Proposition 3.1 (The Drift Condition) Under the assumption that the measure Q is a martin-
gale measure for the bond market, the following relation holds

α(r,x) =
∂
∂x

r(x)+σ(r,x)
∫ x

0
σ(r,s)ds−

∫

Z
δ (r,z,x)e−D(r,z,x)λ (r,dz), (5)

where

D(r,z,x) =
∫ x

0
δ (r,z,s)ds. (6)

We thus have the following infinite dimensional SDE for the forward rates.

Proposition 3.2 (The Forward Rate Equation) Under the assumption that the measure Q is
a martingale measure for the bond market, the forward rate dynamics are given by the following
equation

drt =

{

Frt +Hσ(rt)−
∫

Z
δ (rt ,z)e

−D(rt ,z)λ (rt ,dz)

}

dt (7)

+σ(rt)dWt +
∫

Z
δ (rt ,z)µ(dt,dz). (8)

Here D is defined as above, the operatorF is defined by

F =
∂
∂x

,

and the operatorH is defined by

Hσ(r,x) = σ(r,x)
∫ x

0
σ(r,s)ds.

4 Parallel Shifts

We now go on to investigate the possibility of parallel shifts, and we start by noting that parallel
shifts in the yield curve of the form

yt(x) = ξt +H(x), (9)

corresponds to parallel shifts of the forward rate curve of the form

rt(x) = ξt +h(x), (10)

where

h(x) =
d
dx

{H(x) ·x} = H(x)+H ′(x)x. (11)

We note in passing that the earlier normalisationH(0) = 0 impliesh(0) = 0. In vector space
notation, this means that

rt = ξt ·e+h, (12)

where the functione∈ H is defined by

e(x) = 1, ∀x∈ R+.

We note that equation (12) says that the forward rate curve (viewed as a point inH ) always
stays on the straight line inH , which passes through the pointh and has directione. We thus
have the following result.
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Proposition 4.1 The model admits parallel shifts if and only if the the linearmanifold M

defined by
M = h+R·e, (13)

is invariant under the action of the forward rate equation.

In the language of [5] this means that the model admits parallel shifts if and only if the forward
rate equation isconsistentwith the manifoldM . We can thus use the results from [5] concern-
ing consistency, but this requires us to write the forward rate equation on Stratonovich form.
This is easily done, and we recall the following result from [5].

Proposition 4.2 (The Forward Rate Equation: Stratonovich Form)
The forward rate dynamics of (3.2) can equivalently be writtenon Stratonovich form as are
given by the following equation

drt =

{

Frt +Hσ(rt)−
1
2

σ ′(rt)σ(rt)−
∫

Z
δ (rt ,z)e

−D(rt ,z)λ (rt ,dz)

}

dt

+σ(rt)◦dWt +
∫

Z
δ (rt ,z)µ(dt,dz), (14)

where◦ denotes the Stratonovich integral andσ ′(r) denotes the Fréchet derivative ofσ w.r.t.
the variable r.

We can now cite Proposition 6.2 from [5], which is the main result we will use concerning
consistency.

Proposition 4.3 The manifoldM is invariant under the forward rate equation if and only if, at
very point ofM , the drift and volatility vector fields of the Stratonovich forward rate equation
all belong to the tangent space ofM . In other words; we have invariance if and only if the
following collection of vector fields all belong to the tangent space ofM .

Fr +Hσ(r)− 1
2

σ ′(r)σ(r)−
∫

Z
δ (r,z)e−D(r,z)λ (r,dz), (15)

σi(r), i = 1, . . .m, (16)

δz(r), ∀z∈ Z. (17)

We will now apply this result to our particular case, whereM is given by (13) above, but in
order to proceed we have to identify the tangent spaceTM (r) of M at each pointr ∈M . This
turns out to be very easy: sinceM is a linear manifold, the tangent space is spanned by the
vectore, so we have

TM (r) = R·e, ∀r ∈ M .

Thus; the invariance conditions from Proposition 4.3, applied to our case, read as follows.

Fr +Hσ(r)− 1
2

σ ′(r)σ(r)−
∫

Z
δ (r,z)e−D(r,z)λ (r,dz) = ψ(r) ·e, (18)

σi(r) = ϕi(r) ·e, i = 1, . . .m, (19)

δz(r) = γz(r) ·e, ∀z∈ Z, (20)
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for some scalar fieldsψ, ϕi, andγz, where we will use either the notationγz(r) or the notation
γ(r,z), depending on the context. We note that sincee is constant as a function ofx, this means,
in more pedestrian terms, that the objects on the left hand sides of the equations above do not
depend uponx. Furthermore, since eachσi mapsH into the subspaceTM , this also holds for
the Fréchet derivativeσ ′(r). Thus (18) can be replaced by the condition

h′ +Hσ(r)−
∫

Z
δ (r,z)e−D(r,z)λ (r,dz) = ψ(r) ·e, (21)

where we have used the fact that, for anr∈M we haver =h+ξe for some scalarξ , so we have

Fr =
∂
∂x

(h+ξe) = h′.

Written out in detail, (19)−(20) simply says that

σi(r,x) = ϕi(r), i = 1, . . .m, (22)

δ (r,z,x) = γ(r,z), ∀z∈ Z, (23)

After substituting this into (21) we obtain, after trivial calculations

h′(x)+

(

m

∑
i=1

ϕ2
i (r)

)

x−
∫

Z
γ(r,z)e−γ(r,z)xλ (r,dz) = ψ(r). (24)

Integrating this inx over the interval[0,x], assuming enough regularity to allow an application
of the Fubini Theorem, and recalling thath(0) = 0, we obtain

h(x) = −1
2

(

m

∑
i=1

ϕ2
i (r)

)

x2 +ψ(r)x+
∫

Z

{

1−e−γ(r,z)x
}

λ (r,dz). (25)

We can now finally formulate and prove our main result.

Theorem 4.1 For the general model framework defined in section 3 the following is true:

1. There does indeed exist nontrivial arbitrage free parallel shift term structure models.

2. The following conditions are necessary for the existence of a parallel shift term structure
model

• The Wiener forward rate volatilities must be independent of the maturity variable x,
i.e. they must have the form

σi(r,x) = ϕi(r), i = 1, . . .m, (26)

and furthermore, the squared sum

B2 =
m

∑
i=1

ϕ2
i (r) (27)

must be constant as a function of r.
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• The jump volatilityδ must be independent of the maturity variable x, i.e. it must be
of the form

δ (r,z,x) = γ(r,z). (28)

• The integral
∫

Z

{

1−e−γ(r,z)x
}

λ (r,dz) (29)

must be constant as a function of r.

3. If a forward rate model admits a parallel shift term structure of the form

rt(x) = Rt +h(x), (30)

then h must have the form

h(x) = −1
2

B2x2 +Cx+
∫

Z

{

1−e−γ(z)x
}

λ (dz), (31)

where B, C are constants,γ(z) is a real valued function on Z, andλ (dz) is a positive finite
measure on Z.

4. The conditions above are also sufficient. More precisely:for every h given by (31) above,
there exists a corresponding parallel shift forward rate model, admitting the particu-
lar h as the shift function. The forward rate model is obtainedby choosing constants
ϕ1, . . . ,ϕm, such that

B2 =
m

∑
i=1

ϕ2
i , (32)

and then defining the jump intensity and the forward rate volatilities by the prescription

σi(r,x) = ϕi , i = 1, . . . ,m, (33)

δ (r,z,x) = γ(z), (34)

λ (r,dz) = λ (dz). (35)

Proof. The items 1, 3 and 4 in the statement of the Theorem above are clear from the earlier
arguments. It remains only to prove the necessary conditions. These however, follows imme-
diately from equation (25), plus the observation that sincethe right hand side does not depend
upon r, and since the functionsx, x2, and{e−cx; c∈ R} are linearly independent, the coeffi-
cients in front ofx andx2 must be independent ofr. Thus the integral term in (29) must also be
independent ofr.

For the purely Wiener driven case we have the following corollary, which is an extension of
the corresponding result in [16] and [10], where the study a priori was restricted to short rate
models with constant coefficients and a single driving Wiener process.

Corollary 4.1 The only way to obtain a parallel shift term structure model for a purely Wiener
driven model is when the shift function is a quadratic function with negative leading term, and
the forward rate model is the Ho-Lee model.
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Proof. For a purely Wiener driven model we have, from (31),

h(x) = −1
2

B2x2 +Cx, (36)

with

B2 =
m

∑
i=1

ϕ2
i (r). (37)

This proves that the only possible shape of the shift function is quadratic. Furthermore, we can
define a scalar Wiener processŴ by

dŴt =
1
B

m

∑
i=1

ϕi(r)dWi
t , (38)

and write the forward rate dynamics as

drt(x) =
{

Frt(x)+B2x
}

dt+BdŴt = Cdt+BdŴt . (39)

Thus we have a forward rate model with constant volatility, which we recognize as the Ho-Lee
short rate model, written in forward rate form.

In addition to the result above we also have an easy corollaryconcerning the non-existence of
flat term structure models.

Corollary 4.2 The only way to obtain a flat term structure model is by having a deterministic
constant short rate.

Proof. A flat term structure implies that the functionh(x)=H(x)+H ′(x)x is a constant. From
(25) it then follows thatϕ1, . . . ,ϕm andγ(z) all have to be zero, i.e. we have a zero volatility
model.

Parallel shift models are thus very restricted indeed when jumps are excluded. On the other
hand, parallel shift models with jumps are in no way “singular cases”. An abundance of models
can be constructed in our general framework using compound Poisson processes, Cox processes
and other jump processes now commonly applied in finance. A particular simple example is the
model presented in [16] with only one driving Poisson process with constant intensityλ and a
constantγ-function. In this case, we have from (31) (withB = C = 0):

h(x) = λ
(

1−e−γx)
, (40)

from the relationh(x) = H(x)+H ′(x)x we may integrate, and use the normalisationH(0) = 0
to obtain

yt(x) = Rt +λ
(

1− 1−e−γx

γx

)

. (41)

Note thath above is not the only possible shift function for this model;all shift functions of the
form

h(x) = Cx+λ
(

1−e−γx) (42)

for an arbitrary choice ofC are in fact supported by the model.
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5 Proportional shifts

The proportional shift model has been another model frequently referred to in the duration
literature (see [3] and [4]). Aproportional shift term structure model is a term structure
model where a.s.

yt(x) = ξtH(x), ∀(t,x) ∈ R+×R (43)

for some deterministic functionH : R+ → Rand some adapted processξ .

In a proportional shift model all yield curves are thus obtained by− possibly stochastic−
proportional vertical shifts of the fixed yield curveH. Without loss of generality one can choose
H(0)=1 andξt =Rt .

It is straightforward to see that for a proportional shift model, the forward rates are given by

rt(x) = ξth(x), (44)

where, as before,h(x)= d
dx{H(x)x}, and we have the normalizationξt =Rt andh(0) = 1. The

invariant manifold for the forward rate curve is thus given by the subspace

M = R·h, (45)

so the tangent space is spanned by the vectorh, and we have

TM (r) = R·h, ∀r ∈ M .

Thus the invariance conditions from Proposition 4.3 read asfollows:

Fr +Hσ(r)− 1
2

σ ′(r)σ(r)−
∫

Z
δ (r,z)e−D(r,z)λ (r,dz) = ψ(r) ·h, (46)

σi(r) = ϕi(r) ·h, i = 1, . . .m, (47)

δ (r,z) = γz(r) ·h, ∀z∈ Z, (48)

for some scalar fieldsψ, ϕi, andγz.

Following the analysis in section 4 the functionh(x) must satisfy the condition

ξh′ +Hσ(r)−
∫

Z
δ (r,z)e−D(r,z)λ (r,dz) = ψ(r) ·h. (49)

where we have used the fact that, for anr∈M we haver =ξh for some scalarξ , so we have

Fr =
∂
∂x

(ξh) = ξh′.

Written out in detail, (47)-(48) simply says that

σi(r,x) = ϕi(r)h(x), i = 1, . . .m, (50)

δ (r,z,x) = γz(r)h(x), ∀z∈ Z. (51)

After substituting this into (49) we obtain, after trivial calculations

ξh′(x)+

(

m

∑
1

ϕ2
i (r)

)

h(x)V(x)−
∫

Z
γ(z, r)h(x)e−γ(r,z)V(x)λ (r,dz) = ψ(r)h(x), (52)
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where
V(x) =

∫ x

0
h(s)ds.

Integrating this inx over the interval[0,x], using the normalizationsh(0)=1 andξ =R= r(0),
and again assuming enough regularity to allow an application of the Fubini Theorem, gives us

R
(

V ′(x)−1
)

= −1
2

(

m

∑
i=1

ϕ2
i (r)

)

V2(x)+ψ(r)V(x)

−
∫

Z

{

1−e−γ(r,z)V(x)
}

λ (r,dz). (53)

As long asR>0 we can divide through and get

V ′(x)−1 = −1
2

(

∑m
1 ϕ2

i (r)
R

)

V2(x)+
ψ(r)

R
V(x)

−
∫

Z

{

1−e−γ(r,z)V(x)
} 1

R
λ (r,dz). (54)

We can now formulate the result for this section.

Theorem 5.1 For the model framework defined in section 5 the following is true:

1. There does indeed exist nontrivial arbitrage free proportional shift term structure models.

2. The following conditions are necessary for the existence of a proportional shift structure.

• The forward rate volatilities must be proportional to the shift function h, i.e. they
must have the form

σi(r,x) = ϕi(r)h(x), i = 1, . . .m, (55)

δ (r,z,x) = γ(r,z)h(x), ∀z∈ Z. (56)

• Furthermore, there must exist constants a andσ such that for all r

m

∑
i=1

ϕ2
i (r) = σ2r(0), (57)

ψ(r) = ar(0). (58)

• The integral
∫

Z

{

1−e−γ(r,z)V(x)
} 1

r(0)
λ (r,dz) (59)

must be independent of r.

3. If the model admits a proportional shift term structure ofthe form

rt(x) = Rth(x),

then V(x) =
∫ x

0 h(s)ds must satisfy an integro differential equation of the form

V ′(x)+
1
2

σ2V(x)2−aV(x)+
∫

Z

{

1−e−γ(z)V(x)
}

λ (dz) = 1, (60)

whereσ and a are arbitrary constants,γ(z) is a real valued function on Z, andλ (dz) is
a positive finite measure on Z.
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4. For every h≥ 0 given by (60) above and every non-negative value of the shortrate r(0),
there exists a corresponding proportional shift forward rate model, admitting the partic-
ular h as the shift function. The forward rate model is obtained by choosing functions
ϕ1(r), . . . ,ϕm(r), such that

m

∑
i=1

ϕ2
i (r) = σ2r(0) (61)

and the defining the jump intensity and the forward rate volatilities by the prescription

σi(r,x) = ϕi

√

r(0)h(x), i = 1, . . . ,m, (62)

δ (r,z,x) = γ(z)h(x), (63)

λ (r,dz) = λ (dz). (64)

Proof. The proof follows almost exactly the proof of Theorem 4.1.

We note that the differential equation (60) forV above has the form of a standard Riccati equa-
tion, apart from the integral term connected to the jump partof the forward rate process. In
general it is of course not possible to obtain an analytical solution of equation (60), but there
are some simple special cases which we now go on to discuss.

Firstly; for the purely Wiener driven case we have the following simple result:

Corollary 5.1 The only way to obtain a proportional shift term structure model for a purely
Wiener driven model is when the shift function is a solution toa Riccati equation. This forward
rate model is the CIR-model with mean reversion level 0; hence,it will eventually be absorbed
at 0 a.s.

Proof. If the jump term is not present, then equation (60) is a standard Riccati equation whose
solution is well known:

V(x) =
2(eµx−1)

(µ −a)(eµx−1)+2µ
(65)

µ =
√

a2 +2σ2 (66)

This is a special case of the CIR model with mean reversion level 0:

dRt = aRtdt+σ
√

RtdWt (67)

for whichRt − and, hence, the entire term structure− will be absorbed at zero at some point in
time a.s.

Secondly; let us consider the pure Poisson case with intensity λ . Then, settinga = σ = 0,
equation (60) takes the form

V ′(x)+
(

1−e−γV(x)
)

λ = 1. (68)
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Substitutingg(x) ≡ e−γV(x) we get, after trivial calculations, the following differential equation
for g(x):

g′(x) = −λγg(x)2 +(λ −1)γg(x), g(0) = 1. (69)

This is easily solved by separation of variables:

g(x) =















(1−λ )eγ(1−λ )x

1−λeγ(1−λ )x
, λ 6= 1,

1
1+ γx

, λ = 1.

(70)

From (70),h(x) is obtained by substitution:

h(x) = V ′(x) = (1−λ )+λg(x) =















(1−λ )

1−λeγ(1−λ )x
, λ 6= 1,

1
1+ γx

, λ = 1.

(71)

6 Conclusions

Term structure models with certain stylized types of shiftshave attracted much attention in the
literature on duration and risk measurement for bond portfolios. The issue of parallel shifts has
been a recurrent one and underlies such risk measures as the Macaulay duration and the Fisher-
Weil duration in widespread practical use. Similarly, proportional shifts have been introduced
in a number of earlier papers on duration.

As pointed out already by Ingersoll, Skelton and Weil in their seminal paper [16] from 1978,
little attention is paid in this literature to equilibrium considerations in the modelling of term
structure movements. A modelling practice, where suitablestochastic processes and “shift
functions” are chosen on an ad hoc basis to produce seeminglyreliable risk measures, is still
commonly used.

This paper re-examines the parallel and proportional typesof shifts in a fairly general contin-
uous time setup by applying the concepts of consistent forward curves and invariant manifolds
developed in [5]. We demonstrate that models with parallel and proportional shifts are indeed
very restricted when the dynamics is driven by a multi-dimensional Wiener process. For the
parallel case, only a specific version of the Ho-Lee model, where the term structure is a second-
order polynomial with negative leading coefficient, is possible. For the proportional case, only
a specific version of the CIR model is possible. This version isdegenerate in the sense that zero
is an absorbing boundary for the entire term structure, which is reached a.s. at some point in
time.

However, when the modelling framework is extended to include a marked point process a large
variety of possible term structure models that allows for these two types of stylized shifts arises.
This variety of possible term structure curves does not constitute “singular cases”, cf. the quo-
tation from [16] mentioned above, but analytical examples of such term structure models are
limited by the ability to calculate the integral term related to the marked point process.
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