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Abstract

We investigate the possibility of an arbitrage free model for the term struofure
terest rates where the yield curve only changes through a parallel\8leiftonsider HIM
type forward rate models driven by a multidimensional Wiener processlbasey a gen-
eral marked point process. Within this general framework we show thed tfoes indeed
exist a large variety of nontrivial parallel shift term structure modeld,\ae also describe
these in detail. We also show that there exists no nontrivial flat term steuctadel. The
same analysis is repeated for the similar case, where the yield curve onlyeshthrough
proportional shifts.

Key words: bond market, term structure of interest rates, flat term structures.



1 Introduction

The Macaulay or Redington duration measure for a fixed incoardqgtio, cf. the classical
papers [18] and [21], uses the yield of the portfolio itsalftlae discount rate in calculating the
weights. It is well known that this can only be a fully validkimeasure, comparable across
different bonds and portfolios in a meaningful manner, éti#rm structure is flat and undergoes
a parallel shift. Fisher and Weil showed in [13] that the agstion of a flat term structure could
be discarded while maintaining the assumption of a parsitiét if one calculated the duration
in accordance with weights derived from the actual termcstme instead of an assumed flat
term structure.

The issue of parallel shifts has been a recurrent one intérature. It was noted by Ingersoll,
Skelton and Weil in their seminal paper [16] from 1978 thatad férm structure and a non-
infinitesimal parallel shift are incompatible with the “ndodrage” requirement. This lack of

consistency with the “no arbitrage” requirement has bededcby other authors in different

model frameworks, see e.g. [8] and [19]. In [1], Armerin mate showed this in a rather

general framework where the short term rate of interest ws assumed to be a continuous
semimartingale.

Both before and after the publication of [16], numerous pa&tanzed models for term structure
shifts — often referred to as “shift functions> have been introduceld.The historical back-
ground is well described by Ingersoll et. al. in [16]. Theaiadysis put some “order in chaos”
by noting that for an already at that time voluminous litaraton term structure changes little
attention had been given to the question of compatibilitthwhe “no arbitrage” requirement.
They characterized the situation in the following way ([4). 630-31):

“Largely missing, however, are any equilibrium considerations in modelliagtibchas-
tic process governing the yield structure. .... Fisher and Weil and othesraudbsumed
additive shifts in the term structure that cannot occur in equilibrium in a ctitiveemar-
ket. .... Many of those who assumed other types of changes in the yieldalsovdid so
without considering whether such shifts can occur in equilibrium or dardodact.”

Ingersoll et. al. also analyzed the issue of infinitesimabjp@l shifts within the class of con-
tinuous time short rate models driven by a single Wiener ggsc They showed that for one
particular choice of model, later known as the continuonoetiversion of the Ho-Lee model,
it is possible to have such infinitesimal parallel shifts &term structure that is a second or-
der polynomial with negative leading coefficient. Withinstisame class of models they also
showed a patrticular arbitrage free model with Poisson inpat allowed for parallel shifts
through jumps. They referred to this possibility as “sirmgutases” ([16], p. 631 and p. 636,
footnote 6):

“Except for the singular cases discussed in the Appendix, the oceicémon-infinitesimal,
uniform changes in the yield curve implies arbitrage opportunities.”

“As the example below indicates, changes in the yield curve can consisinefant
noninfinitesimal shifts if they occur at any instant with vanishing small pribibabHow-
ever, in this case duration is not the proper risk measure. This issuerissadd in the
Appendix.”

A related issue concerns the classical textbook recipe ddigimg an interest rate sensitive
position: Use a hedge portfolio with (i) treame duratior{ii) the same investment outland

!Representative examples of such models are found in, &5, [R0] and [22].
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(i) a higher level of convexityThis is an apparent arbitrage opportunity, and often pgetd as
such, because no matter the direction of interest moventaatsedge portfolio will always do
better than the original portfolie and the more realized interest rate volatility, the beiars
puzzle has usually been explained away as an arbitrage topggrby pointing to the parallel
shift as an incorrect assumption. However, since paratiéissare possible the resolution of
the puzzle must be found elsewhere. In [10], Christensen anenSen used the parallel shift
model from [16] and resolved the hedging puzzle by meanseoptrtial differential equation
(PDE) for short rate models. In option theoretic terms,Ahalue is analogous to the duration
and the -value is analogous to the convexity. Since the PDE ties tieek3 together, the higher
level of convexity is paid for by a corresponding lower lewéthe 6-value in portfolios with
identical duration. Hence, the high convexity portfolidlMioose (gain) value relative to the
low convexity portfolio when interest rates show a low (hitgvel of realized volatility as time
passes.

Our main object of study in this paper is an arbitrage freedboarket in a very general contin-
uous time setting, cf. [6]. We investigate if, when, and hoig possible to model an arbitrage
free term structure of interest rates where the yield cuareanly change by a parallel shift.
We characterize the conditions under which such paraliéisstan occur using the approach
of invariant manifolds and consistent forward curves dgpedl in [5]. We show that the 2nd
order polynomial example remains the only possibility inlsa general environment, when the
dynamics is driven by a multi-dimensional Wiener processtti@ other hand; when jumps are
allowed, infinitely many examples that allow for paralleifhcan be constructed, one of them
being the Poisson-driven example from [16]. Finally, as dalittonal example we also charac-
terize the possibilities under proportional shifts as ioadly introduced by Bierwag, Kaufman
and Toevs in a multiple of publications, see e.g. [3] and [4].

The paper is organized as follows. In section 2 we introdueenotation used for the bond
market. In section 3 we outline the general model for the dyins of forward rates used in the
paper. In section 4 the issue of parallel shifts and theirgaiibility with the general model

used is analyzed. In section 5 we repeat the analysis forabe af proportional shifts. Finally,
section 6 summarizes the conclusion of the paper.

2 The Bond Market

We denote the price at timeof a pure discount bond maturing at tiiex by p(t,x). Note that
we are using the Musiela parameterization, cf. [9], wheadtenotes timéo maturity, rather than
the standard parametrization whergypically denotes timef maturity. We define the various
interest rates in the usual way.

Definition 2.1

e Theyield y;(x) is defined by

L =e oy =P,

e The instantaneou®rward rate att+ X, contracted at t, is defined by

(x) = _dln;))((t,x).



e Theforward rate curve at time t, i.e. the mappingx— r¢(X), is denoted by;r

e Theshort rate R is defined by
R =r¢ (0)

e Themoney market accountprocess is defined by

Bt = ef(t) des.

We now go on to formally define the concept of a parallel shifitrt structure, as well as that of
a flat term structure.

Definition 2.2

e A parallel shift term structure model is a term structure model where a.s.
vi(X) =& +H(x), V(t,x)€R.xR (1)
for some deterministic function HR;, — R and some adapted process

e Aflat term structure model is a term structure model where
vi(X) =&, V(t,x)eR.xR (2)

In a parallel shift term structure model all yield curvestines obtained by possibly stochastic
— parallel vertical shifts of the fixed yield curvd. In a flat yield curve model, all yield
curves are flat, i.e. constant functions of the time to mgtwii and only change by parallel
vertical shifts. Without loss of generality, we can normalso thaH (0) =0, and thus have the
identificationé; = R..

Obviously, a deterministic term structure model, wheresthert rateR; is a deterministic con-
stant, i.eyt(X) =R, is indeed a trivial case. Our goal is to investigate the atteristics of
nontrivial parallel shift models. In order to carry out timgestigation we need a formal frame-
work to work in, and we now go on to present this.

3 The Model

We consider a financial market model living on a stochastgishdiltered probability space)
(Q,#,F,Q) whereF={.%;},-,. The basis is assumed to carryrardimensional Wiener pro-
cessV as well as a marked point procgs&dt,dz), on a measurable Lusin mark spdZe %),

with compensatowr (dt,dz). (See below for a more intuitive interpretation). We assuha
v([0,t] x Z) < o P-a.s. for all finitet, i.e. u is a multivariate point process in the terminology

of [17]. For simplicity we also assume that the compensatadmits a predictable intensity
measure, i.ev(dt,dz) = A;(dz)dt. The bond market is assumed to be arbitrage free in the sense
that the measur® is assumed to be an equivalent martingale measure.



Remark 3.1 The intuitive interpretation of the point procgsss that we are modeling “events”
which are occuring at discrete points in time, and a very ceteexample could be the model-
ing of earth quakes or stock market crashes. As opposed taastendard counting process
setting, these discrete events are not all of the same tyystedd, every event is identified by
its “mark” z €Z, where the reader with very little loss of generality may khifi Z as R. In
the earth quake example, a natural mark would be the strerfgtiecearthquake on the Richter
scale, and in this case the mark space Z would be the positdime R, .

For term structure shifts, examples of the mark space coailthé positive real line; or it could
be interpreted as multiples of 5 basis points due to the eébtank’s discretionary changes of
an “official short rate”, cf. [2]. The informal interpretatn of the point process is thatyu is an
integer valued (random) measure such tpatas a unit point mass at the poifttz) € Ry xZ,

if at time t there is an event of the type z. The interpretatbthe intensity measurg is

— loosely speaking- that A;(dz) is the expected number of events with marks in a “small
set” dz, per unit time, conditional on the information #;_. Thus the compensated point
processii(dt,dz) = u(dt,dz) — A;(d2)dt is “detrended” and possesses a natural martingale
property. Note that the existence of an intensity rules owutating discrete events occuring at
deterministic points in time, i.e. events like "Alan Grgersis making a speech November 23
at 12:15pm, at which point in time the term structure may cleagigcretely”. In more precise
technical terms, an event cannot occur at an accessiblestggime.

We model the bond market by modeling the forward rate dynsanmdhe form of a Heath-
Jarrow-Morton type model (see [14]) including jumps, asdlieped in [6]. To this end we
need a proper space of forward rate curves to work in, and figmwe borrow the following
definition, which is needed for technical reasons, but wharhbe overlooked at a first reading.
See also [12] for an extension of this functional analytfcaiework.

Definition 3.1 (The Space of Forward Rate Curves)Consider a fixed real numbgr> 0. The
spaces7y is defined as the space of all infinitely differentiable fiorcs

r-R. - R
satisfying the norm conditiojfr||,, < . Here the norm is defined as

d"r

) 0 2
Ir|12 = 22“/0 (W(X)> e Vdx.
n=0

We now go on to define the forward rate dynamics, and to thisvemdhave to specify the
volatility structures for the Wiener as well as for the jummpgess. The particular value gf
chosen in the definition of the spagf is irrelevant for the arguments to follow, so we simply
drop this subscript from the notation.

e We consider a given Wiener volatility structuseof the form
o:# xR, —R"

In other words, each componamtof the volatility vectoro(r,x) = [01(r, X), . .., Om(r, X)]
is a real valued functional of the infinite dimensionalariable, and a function of the real
variablex. An alternative, and more profitable, way of viewing a comgttiw; is to see it
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as a mapping where a poine .77 (i.e. a forward rate curve) is mapped to the real valued
function gi(r,-). We will in fact assume that this real valued function is a rhenof.#,
which means that we can view each compor®ras avector field g; : 77 — 57 on the
spaces”.

e We consider a given jump volatility structudeof the form
0: ' xZxRL —R 3)

Thus d(r,z x) is a functional of the infinite dimensionatvariable, and a function of
the Z-valued variable and of the real variablg. As for the Wiener volatility, we will
instead consided from a more geometric point of view. Thus, for eaxh Z, we will
view d(+,z,-) as a mapping where the point .77 is mapped to the real valued function
o(r,z-). We denote this mapping by and we assume that this real valued function is
a member of7Z, which means that for every fixetwe can viewd; as a vector field on
HC,1.e.isamap,: . — H.

We need some regularity assumptions, and the main ones &oloas. See [5] for technical
detalils.

Assumption 3.1 We assume the following:

e Foreachi=1,...,m the volatility vector fields; : 77 — 57 is smooth.
e For each zc Z the vector field, is smooth o7

e The intensity measure has the foMidz) = A (rt,dz) where, for each fixed € /¢, the
intensity measura (r, -) is a deterministic nonnegative measure on Z.

The assumptions above will ensure that the forward rategssycis an infinite dimensional
Markov process, and we can now go on to specify the forwaeddahamics.

Assumption 3.2 (Forward rate dynamics)
We assume that the forward rates have dynamics of the follcwmg

dr(x) :a(rt,x)dt+0(rt,x)dV\(+/26(rt,z,x)u(dt,dz). 4)

Remark 3.2 The interpretation of the point process integral above sfibilowing: If at time
t we have the forward rate curve, rand there is an event of type z, then the forward rate with
maturity X will have a jump of sizé&(r¢, z x).

Since we are modeling directly under a martingale measueejow need some sort of “drift
condition” relatinga to o andd. In [6] the standard HIM drift condition was extended to the
case of a driving point process, and in the Musiela paraizeten we easily (see [5]) obtain
the following basic result.



Proposition 3.1 (The Drift Condition) Under the assumption that the measure Q is a martin-
gale measure for the bond market, the following relation kold

a(r,x) = ;—Xr(x) + G(r,x)/

0

X

o(r,s)ds— / 3(r,z,x)e P29 (r,d2), (5)
z

where X
D(r,z,x) = / o(r,z s)ds (6)
0

We thus have the following infinite dimensional SDE for theafard rates.
Proposition 3.2 (The Forward Rate Equation) Under the assumption that the measure Q is

a martingale measure for the bond market, the forward rateadyins are given by the following
equation

dr, = {Frt +Ho(rn) —/5(rt,z)e‘D(”*Z)/\(rt,dz)}dt (7)
z
+o(r)dW+ [ 3(n.2)u(dt.da) ®)
Here D is defined as above, the operakois defined by
_9
-~ ox’

and the operatoH is defined by

Ho(r,x) = a(r,x) /Oxa(r, s)ds

4 Parallel Shifts

We now go on to investigate the possibility of parallel s)iind we start by noting that parallel
shifts in the yield curve of the form

yt(X) = & +H(x), 9)
corresponds to parallel shifts of the forward rate curvenefform
re(x) = & + h(x), (20)
where g
h(x) = &{H(x) X} =H(X) +H'(X)x. (11)

We note in passing that the earlier normalisatitf®) = O impliesh(0) = 0. In vector space
notation, this means that
r=4¢&-e+h, (12)

where the functiore € 77 is defined by
ex)=1 WXxeR;.

We note that equation (12) says that the forward rate cunesved as a point in?’) always
stays on the straight line i”, which passes through the polmand has directioe. We thus
have the following result.



Proposition 4.1 The model admits parallel shifts if and only if the the lineaanifold .7
defined by
A =h+R-e (13)

is invariant under the action of the forward rate equation.

In the language of [5] this means that the model admits pstifts if and only if the forward
rate equation isonsistentvith the manifold.#. We can thus use the results from [5] concern-
ing consistency, but this requires us to write the forwatée eguation on Stratonovich form.
This is easily done, and we recall the following result frdsh [

Proposition 4.2 (The Forward Rate Equation: Stratonovich Fom)
The forward rate dynamics of (3.2) can equivalently be writenStratonovich form as are
given by the following equation

dr = {Frt+H0<rt) -39 ot - [ 6<rt,z>e—D<“~fz>A(mdz)}dt
+o(r) odW + /Z 5(r,2)u(dt, d2), (14)

whereo denotes the Stratonovich integral aod(r) denotes the Fréchet derivative afw.r.t.
the variable r.

We can now cite Proposition 6.2 from [5], which is the mainutesve will use concerning
consistency.

Proposition 4.3 The manifold# is invariant under the forward rate equation if and only if, at
very point of.#, the drift and volatility vector fields of the Stratonovidn#ard rate equation
all belong to the tangent space o¥. In other words; we have invariance if and only if the
following collection of vector fields all belong to the tangspace of 7.

Fr+Hao(r) - /6 (r,2)e P2 A(r,d2), (15)
ai(r), i:l,... , (16)
o(r), VzelZ. (17)

We will now apply this result to our particular case, whe# is given by (13) above, but in
order to proceed we have to identify the tangent sgagér) of .# at each point € .#. This
turns out to be very easy: sinc#’ is a linear manifold, the tangent space is spanned by the
vectore, so we have

Tysr)=R-e Vre.Z.

Thus; the invariance conditions from Proposition 4.3, ggaplo our case, read as follows.

Fr+Ho(r)— 5 /5 r,2)e PUAA(r,d2) = @(r) e (18)
ai(r)=¢i(r)-e i= (19)
(r)=VY.(r)-e Vze 27 (20)



for some scalar fieldg, ¢;, andy;, where we will use either the notatigg(r) or the notation
y(r,z), depending on the context. We note that siaceconstant as a function &f this means,
in more pedestrian terms, that the objects on the left hatesf the equations above do not
depend upox. Furthermore, since eaeh maps.7Z into the subspac€ 4, this also holds for
the Fréchet derivative’(r). Thus (18) can be replaced by the condition

N +Ha(r) - / 5(r, 26 2T (r,d2) = w(r) -e, 21)
Z
where we have used the fact that, foran # we haver =h+¢&efor some scalaé, so we have

Fr= 4 (h+&e)=h.

ox
Written out in detail, (19)-(20) simply says that

O-i<r7x):¢i(r)a izlv"'ma (22)
o(r,z,x) =y(r,z), VzeZ, (23)

After substituting this into (21) we obtain, after trivialculations

' (X) + (icpiz(r)) x—/zy(n z)e‘V(r’Z)X)\(r,dz) = y(r). (24)

Integrating this irnx over the interval0, x|, assuming enough regularity to allow an application
of the Fubini Theorem, and recalling tH&0) = 0, we obtain

_ 1/ & 2 2 —y(r,z)x
h(x) =~ (i;qbi (r))x +ox [ {1-e A (a2, (25)
We can now finally formulate and prove our main result.

Theorem 4.1 For the general model framework defined in section 3 the fofigus true:

1. There does indeed exist nontrivial arbitrage free paladhift term structure models.

2. The following conditions are necessary for the existefiegparallel shift term structure
model

e The Wiener forward rate volatilities must be independenhefrhaturity variable x,
i.e. they must have the form

O-i(ra)():(l)i(r)a izla"'ma (26)

and furthermore, the squared sum
2 < 2
B?= ¢2(r) 27)
2"

must be constant as a function of r.
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e The jump volatilityd must be independent of the maturity variable x, i.e. it mast b
of the form
o(r,z,X) = y(r,2). (28)

e The integral
/ {1-e@xdA(rdz (29)
z
must be constant as a function of r.
3. If a forward rate model admits a parallel shift term struetwf the form
re(x) = R+ h(x), (30)

then h must have the form
h(x) = g2 oxs / {1— e*V(Z)X})\ (d2), (31)
2 z

where B, C are constantg(z) is a real valued function on Z, amd(dz) is a positive finite
measure on Z.

4. The conditions above are also sufficient. More precidelyevery h given by (31) above,
there exists a corresponding parallel shift forward rate mlpcadmitting the particu-
lar h as the shift function. The forward rate model is obtairtgdchoosing constants
®1,...,¢m, such that

m
B> =Y ¢7, (32)
2"
and then defining the jump intensity and the forward rate Vidias by the prescription
a(rX)=¢i, i=1...,m (33)
3(r,zx) = y(2), (34)
A(r,dz) = A(d2). (35)

Proof. The items 1, 3 and 4 in the statement of the Theorem above eae fcom the earlier
arguments. It remains only to prove the necessary conditidbhese however, follows imme-
diately from equation (25), plus the observation that siheeright hand side does not depend
uponr, and since the functions x?, and{e~; c € R} are linearly independent, the coeffi-
cients in front ofx andx? must be independent of Thus the integral term in (29) must also be
independent of. g

For the purely Wiener driven case we have the following dargl which is an extension of
the corresponding result in [16] and [10], where the studyiaripwas restricted to short rate
models with constant coefficients and a single driving Wigmecess.

Corollary 4.1 The only way to obtain a parallel shift term structure modeld@urely Wiener
driven model is when the shift function is a quadratic functath negative leading term, and
the forward rate model is the Ho-Lee model.
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Proof. For a purely Wiener driven model we have, from (31),

h(x) = —%BZXZ+CX, (36)
with o
B® = _quiZ(r)- (37)

This proves that the only possible shape of the shift funasajuadratic. Furthermore, we can
define a scalar Wiener procaakby

W= 5 > BN, (39

and write the forward rate dynamics as
dri(x) = {Fr¢(x) + B?x} dt + B4 = Cdt-+ BdW. (39)

Thus we have a forward rate model with constant volatilitigick we recognize as the Ho-Lee
short rate model, written in forward rate form.

In addition to the result above we also have an easy coratlamgerning the non-existence of
flat term structure models.

Corollary 4.2 The only way to obtain a flat term structure model is by having&hinistic
constant short rate.

Proof. A flat term structure implies that the functidiix) =H (x)+H’(x)x is a constant. From
(25) it then follows thatp1,...,¢m andy(z) all have to be zero, i.e. we have a zero volatility
model.n

Parallel shift models are thus very restricted indeed whiempg are excluded. On the other
hand, parallel shift models with jumps are in no way “singekases”. An abundance of models
can be constructed in our general framework using compooissén processes, Cox processes
and other jJump processes now commonly applied in finance rthcpkar simple example is the
model presented in [16] with only one driving Poisson prgagih constant intensity and a
constanty-function. In this case, we have from (31) (wBh=C = 0):

h(x) =A (1—-e %), (40)

from the relatiorh(x) = H(x) + H’(x)x we may integrate, and use the normalisatit{®) = 0
to obtain

Y (X) = R+ A <1— 1_;VX) . (41)

Note thath above is not the only possible shift function for this moadishift functions of the
form
h(x) =Cx+A (1—e™¥) (42)

for an arbitrary choice of are in fact supported by the model.
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5 Proportional shifts

The proportional shift model has been another model fretpeeferred to in the duration
literature (see [3] and [4]). Adoroportional shift term structure model is a term structure
model where a.s.

yvi(X) = &H(x), V(t,x) € R xR (43)
for some deterministic functioH : R, — Rand some adapted process

In a proportional shift model all yield curves are thus ofal by — possibly stochastie-
proportional vertical shifts of the fixed yield curte Without loss of generality one can choose
H(0)=1andé =R

It is straightforward to see that for a proportional shiftaey the forward rates are given by

re(x) = &h(x), (44)

where, as beford)(x) = %{H(x)x}, and we have the normalizatidp=R; andh(0) = 1. The
invariant manifold for the forward rate curve is thus giventhe subspace

M =R-h, (45)
so the tangent space is spanned by the végtand we have
T4sr)=R-h, Vre.#.

Thus the invariance conditions from Proposition 4.3 reafbbmws:

Fr+Ho(r) — —0 O'(I’ /6 r,2)e P2 (r,d2) = @(r)-h, (46)
gi(r)=¢i(r)-h, i=1,.. (47)
6( ) ) — VZ(r) h? Vze Z7 (48)

for some scalar fieldg, ¢;, andys,.
Following the analysis in section 4 the functibfx) must satisfy the condition

EN +Hao(r) /5 (r,2e DA (r,d2) = (r)-h. (49)
where we have used the fact that, forran.#Z we haver = &h for some scalaé, so we have
J /
= 3% (&h) =¢&h.
Written out in detail, (47)-(48) simply says that

ai(rx) =¢i(Nh(x), i=1..m (50)
o(r,z,x) = y,(r)h(x), VvzeZ. (51)

After substituting this into (49) we obtain, after triviadlculations
£n'(x) (Z o2(r > VX~ [ Mznnxe M VOA(rLdg = pnh(), (52
z
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where «
V(X) = /O h(s)ds

Integrating this irx over the interval0, x|, using the normalizations(0) =1 andé =R=r(0),
and again assuming enough regularity to allow an applicaifadhe Fubini Theorem, gives us

R@m@_g:-g(iwwﬁv%w+wmvm
_/Z{1_e—V(f:Z)V(X)}A(r,dz). (53)
As long asR> 0 we can divide through and get
Vi -1= -3 (FED )y 80

1
_ _e YV | =
/Z{l e }R/\(r,dz). (54)

We can now formulate the result for this section.

Theorem 5.1 For the model framework defined in section 5 the following is:tru

1. There does indeed exist nontrivial arbitrage free praoral shift term structure models.
2. The following conditions are necessary for the existefiegpooportional shift structure.

e The forward rate volatilities must be proportional to thefsfunction h, i.e. they
must have the form

o(r,z, x) ( )h(x), Vze Z (56)
e Furthermore, there must exist constants a angduch that for all r
m
o7 (r) = a%r(0), (57)
2,4
Y(r)=ar(0). (58)
e The integral
1
_aYrzgvix Ll _~
/Z{l e }r(o>)\(r,dz) (59)

must be independent of r.
3. If the model admits a proportional shift term structurelo form
re(x) = Reh(x),

then V(x) = [{'h(s)ds must satisfy an integro differential equation of the form

V/(x) + %GZV(X)Z —aVv(x)+ /Z {1 — e Y@VK } A(d2) =1, (60)

whereo and a are arbitrary constantsy(z) is a real valued function on Z, anki(dz) is
a positive finite measure on Z.
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4. For every h> 0 given by (60) above and every non-negative value of the shiart(0),
there exists a corresponding proportional shift forwardeahodel, admitting the partic-
ular h as the shift function. The forward rate model is obtditey choosing functions

¢1(r),...,dm(r), such that

m
97(r) = 0°r(0) (61)
2"
and the defining the jump intensity and the forward rate viil@s by the prescription
(r,z,x) = y(2)h(x), (63)
A(r,d2) = A(d2). (64)

Proof. The proof follows almost exactly the proof of Theorem 41.

We note that the differential equation (60) #rabove has the form of a standard Riccati equa-
tion, apart from the integral term connected to the jump pé&the forward rate process. In
general it is of course not possible to obtain an analytioalt®n of equation (60), but there
are some simple special cases which we now go on to discuss.

Firstly; for the purely Wiener driven case we have the follayvsimple result:

Corollary 5.1 The only way to obtain a proportional shift term structure rabfibr a purely
Wiener driven model is when the shift function is a solutioa Riccati equation. This forward
rate model is the CIR-model with mean reversion level O; heheall eventually be absorbed
atOa.s.

Proof. If the jump term is not present, then equation (60) is a stahBRé&cati equation whose
solution is well known:

2(eMx — 1)
(M —a)(e’*—1)+2u

U=+ a2+ 202 (66)
This is a special case of the CIR model with mean reversion Geve
dR = aRdt+ ov/RdW (67)

for which R, — and, hence, the entire term structurevill be absorbed at zero at some point in
time a.s.1

V(x) = (65)

Secondly; let us consider the pure Poisson case with inyeAsi Then, settinga= o = 0,
equation (60) takes the form

V/(X) + (1— e*W(X)> A=1. (68)
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Substitutingg(x) = e WX we get, after trivial calculations, the following differgal equation
for g(x):

g(x) = -Ayg(x)?+ (A - 1yg(x), g(0) =1. (69)
This is easily solved by separation of variables:
—))eY(d-A)x
(1-A)e AL
1—Aerl-2A)x
9(x) = L (70)
—— A=1
14 yx
From (70),h(x) is obtained by substitution:
(1-2)
1—aeaix AL
h() =V/(x) = (1=A)+Ag) =~ (71)
—— A=1
1+ yx

6 Conclusions

Term structure models with certain stylized types of stifige attracted much attention in the
literature on duration and risk measurement for bond pliwgoThe issue of parallel shifts has
been a recurrent one and underlies such risk measures asittaiMy duration and the Fisher-
Weil duration in widespread practical use. Similarly, ppdpnal shifts have been introduced
in a number of earlier papers on duration.

As pointed out already by Ingersoll, Skelton and Weil in tlegiminal paper [16] from 1978,

little attention is paid in this literature to equilibriunorsiderations in the modelling of term
structure movements. A modelling practice, where suitabbdehastic processes and “shift
functions” are chosen on an ad hoc basis to produce seenmglgple risk measures, is still

commonly used.

This paper re-examines the parallel and proportional tgbesifts in a fairly general contin-
uous time setup by applying the concepts of consistent fawarves and invariant manifolds
developed in [5]. We demonstrate that models with parahel proportional shifts are indeed
very restricted when the dynamics is driven by a multi-disienal Wiener process. For the
parallel case, only a specific version of the Ho-Lee modeg&relthe term structure is a second-
order polynomial with negative leading coefficient, is pbkes For the proportional case, only
a specific version of the CIR model is possible. This versialegenerate in the sense that zero
is an absorbing boundary for the entire term structure, lwilsaeached a.s. at some point in
time.

However, when the modelling framework is extended to inelagmarked point process a large
variety of possible term structure models that allows festhtwo types of stylized shifts arises.
This variety of possible term structure curves does nottttoitss “singular cases”, cf. the quo-
tation from [16] mentioned above, but analytical examplesuzh term structure models are
limited by the ability to calculate the integral term reldte the marked point process.
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