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Abstract

This paper proposes the use of analytical approximations to price an heterogeneous basket
option combining commodity prices, foreign currencies and zero-coupon bonds. We examine the
performance of three moment matching approximations: inverse gamma, Edgeworth expansion
around the lognormal and Johnson family distributions. Since there is no closed-form formula
for basket options, we carry out Monte Carlo simulations to generate the benchmark values.
We perform a simulation experiment on a whole set of options based on a random choice of
parameters. Our results show that the lognormal and Johnson distributions give the most
accurate results.
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1 Introduction

The use of derivative securities in risk management activities emerged in the early 1990s and has
evolved rapidly since. They now are the most important tool in �nancial risk management. Accord-
ing to the 1998 Wharton school survey of �nancial risk management by US non-�nancial �rms,1

over 50% of the responding �rms use derivatives products to hedge their exposure, 83% of them
use derivatives to hedge foreign-exchange risk, 76% to hedge interest-rate risk, and 56% to hedge
commodity-price risk. In the current economic situation, many non-�nancial institutions such as
gold-mining �rms, energy companies or airlines companies may face di¤erent �nancial risks simul-
taneously and hence look for the most e¢ cient way to hedge their portfolio.

For example, gold-mining �rms may be exposed to di¤erent types of risk: commodity risk, which
can include uncertainty about the price of their primary product, gold, as well as their by-products
such as silver and copper; since these �rms sell their products in other countries, they are exposed
to currency risk; and their interest rate risk exposure is primarily related to their �xed-rate and
variable-rate debt. Though all these markets are very active and very liquid so that a �rm could
hedge all its di¤erent risk exposures separately, it would be more interesting to adopt a portfolio
approach because it allows the �rm to account for the correlations between these di¤erent �nancial
markets and hedge simultaneously a great variety of di¤erent �nancial risks. To attain this goal,
basket options are an e¢ cient instrument to use.

Basket options are a type of exotic option whose payo¤ depends on the value of a basket of
assets. They o¤er the �exibility of being able to include virtually any kind and any number of
assets, and hence can suitably respond to the speci�c needs of a �rm in hedging its risk exposures.
A risk manager may have other incentives in using basket options: depending on the design of each
option, they are usually cheaper than a portfolio of standard options. In practice, basket options
are traded over-the-counter and are designed speci�cally to meet the needs of the buyer. For these
reasons, the liquidity premium required by the counterpart may annihilate some of the advantages
coming from the correlation structure of the basket.

The pricing of basket options is more challenging than that of standard options because there
is no explicit analytical solution for the density function of a weighted sum of correlated assets.
Several approaches are proposed in the literature to price basket options. They can be categorized
as follows:

1. Numerical methods: Monte Carlo simulations [Barraquand (1995), Pellizzari (2001)] and
Quasi-Monte Carlo [Dahl (2000) and Dahl and Benth (2001)], and multinomial trees [Ru-
binstein (1994), Wan(2002)],

2. Upper and lower bounds: Curran (1994), Vanmaele, Deelstra and Liinev (2004), Laurence
and Wang (2004) and Deelstra, Liinev and Vanmaele (2004),

3. Analytical approximations: Gentle (1993), Huynh (1994), Milevsky and Posner (1998a, 1998b,
1999), Posner and Milevsky (1999), Ju (2002), Datey, Gauthier and Simonato (2003) and
Brigo, Mercurio, Rapisarda and Scotti (2004).

1Financial management, Vol. 27, No. 4, winter 1998.
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However, all these papers are based on two main hypothesis. They assume constant interest rates
and homogeneous basket options; that is, all the assets underlying the basket are of the same nature
and thus hedge the same type of risk. Unfortunately, this homogeneity in basket assets does not
always match a �rm�s needs, and with a growing diversi�cation in investors�portfolios, heterogeneous
basket options become a very e¢ cient tool to hedge multiple risk exposures simultaneously.

This article proposes analytical approximations to price heterogeneous basket options, consist-
ing of commodities, foreign currencies and zero-coupon bonds, with stochastic interest rates, and
compares the accuracy and the performance of these approximations for di¤erent sets of paramet-
ers. Three distributions based on the moment matching technique will be used to approximate the
basket density function: inverse gamma distribution, Edgeworth expansion around the lognormal
distribution and Johnson distribution. It is found that the Edgeworth-lognormal and Johnson ap-
proximations perform better than the inverse gamma approximation. Our contributions are: (1)
to design an arbitrage-free framework in which the domestic and the foreign interest rates, the
exchange rate, the commodity price and the convenience yield are stochastic, (2) to compute the
moments of the heterogeneous basket under the T�forward measure, (3) to show that some of the
existing analytical approximations may be used in this very general setting and (4) quantify the
approximation errors.

The next section presents the pricing model under the forward measure. Section 3 derives the
inverse gamma, the Edgeworth-lognormal and the Johnson approximations. Section 4 compares
the performance of the three approximations. Section 5 computes the hedging ratios and Section 6
concludes.

2 Pricing of a European heterogeneous basket option

Let us consider a non-�nancial �rm looking for an alternative way to simultaneously hedge its
di¤erent �nancial risk exposures: commodity price risk, exchange rate risk and interest rate risk.
In the following, St denotes the time t value of the commodity, �t is its continuously-compounded
convenience yield at time t, Ct is the value at time t of one unit of the foreign currency expressed
in the domestic currency, P (t; T1) is the time t value of a zero-coupon bond paying one unit of the
domestic currency at time T1, P � (t; T2) is the time t value of a foreign zero-coupon bond paying
one unit of the foreign currency at time T2. We assume that the �rm�s �nancial assets dynamics
are given by the following stochastic di¤erential equations2 (SDE hereafter) under the historical

2 In this setting, the convenience yield and the commodity price share the same source of risk to ensure the market
completeness. For more details, see Dionne, Gauthier and Ouertani (2006).
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probability measure P :

dSt = St

h
(�s � �t) dt+ �sdW (1)

t

i
; (1a)

d�t = �(� � �t)dt+ ��dW (1)
t ; (1b)

dCt = Ct

h
�cdt+ �cdW

(2)
t

i
; (1c)

dP (t; T1) = P (t; T1)

��
rt � �t;T1

�

t;T1
�t;T1

� �t;T1
��

dt� �t;T1dW
(3)
t

�
; 0 � t � T1; (1d)

dP � (t; T2) = P � (t; T2)

" 
r�t � ��t;T2

 

�t;T2
��t;T2

� ��t;T2

!!
dt� ��t;T2dW

(4)
t

#
; 0 � t � T2 (1e)

The expressions for the bond prices are obtained from the domestic and the foreign instantaneous
forward rates:

df (t; T1) = 
t;T1 dt+ �t;T1 dW
(3)
t ; 0 � t � T1; (1f)

df� (t; T2) = 
�t;T2 dt+ �
�
t;T2 dW

(4)
t ; 0 � t � T2; (1g)

in which the volatility parameters �t;T1 and �
�
t;T2

are deterministic functions of time t and maturity.

Consequently, �t;T1 =
R T1
t �t;sds, �

�
t;T2 =

R T2
t ��t;sds and rt = f (t; t) ; r�t = f� (t; t) are respectively

the continuously-compounded domestic and foreign risk-free spot interest rates. We do not specify
the drift terms 
t;T1 and 


�
t;T2

since they do not appear in the pricing formulae. The four-dimensional

Brownian motion
��

W
(1)
t ; W

(2)
t ; W

(3)
t ; W

(4)
t

�0
: t � 0

�
is constructed on a �ltered probability

space (
;F ; fFt : t � 0g ; P ) with the correlation structure:

CorrP
�
W
(i)
t ;W

(j)
t

�
= �i;j ; for each i; j = f1; 2; 3; 4g and t > 0:

We consider an European call option that gives the �rm the right to buy a basket consisting of the
commodity, the domestic zero-coupon bond and the foreign zero-coupon bond expressed in domestic
currency units, at a strike price KB. The payo¤ at maturity T is given by

XB = max [BT �KB; 0] ;

where the basket value at time t is Bt = w1St + w2P (t; T1) + w3CtP
�(t; T2), 0 � t � T � T1; T2,

w1; w2 and w3 correspond to the numbers of shares invested respectively in the commodity ST ,
the domestic zero-coupon bond P (T; T1) and the foreign zero-coupon bond expressed in domestic
currency units CTP �(T; T2).

Since the proposed market model is complete,3 Harrison and Pliska (1981) allows the pricing of
any contingent claim as the expectation of the discounted payo¤ under the risk-neutral measure Q.
Consequently, the price of the European call option at time t is given by:

V Bt = EQ
�
exp

�
�
Z T

t
rvdv

�
max (BT �KB; 0)

����Ft�
= P (t; T )EQT [max (BT �KB; 0)j Ft]

= P (t; T )

Z +1

�1
max (x�KB; 0) v (x) dx; (2)

3The derivation of the unique risk-neutral measure is available upon request.
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where v (x) is the true (unknown) density function of the basket value BT under the T�forward
measure QT . This forward measure has a Radon-Nikodym derivative with respect to Q denoted
dQT
dQ : The associated Q�martingale is given by:

�t = E
Q

�
dQT
dQ

����Ft� = exp
�
�
R T
t rvdv

�
P (t; T )

:

The SDEs satis�ed by the basket underlying assets under the T -forward measure QT is given in
Appendix A and its strong solution is, for any 0 � t � T ,

ST = St exp

�Z T

t

�
ru � �u �

�2s
2
� �s�1;3�u;T

�
du+ �s

Z T

t
dcW (1)

u

�
(3a)

�T = �te
��(T�t) +

�
�� � ��

�s
�s

�
1� e��(T�t)

�
� ���1;3

Z T

t
e��(T�u)�u;T du

+
��
�s

Z T

t
rue

��(T�u) du+ ��

Z T

t
e��(T�u) dcW (1)

u (3b)

CT = Ct exp

�Z T

t

�
ru � r�u �

�2c
2
� �c�2;3�u;T

�
du+ �c

Z T

t
dcW (2)

u

�
(3c)

P (T; T1) = P (t; T1) exp

�Z T

t

�
ru �

1

2
�2u;T1 + �u;T1�u;T

�
du�

Z T

t
�u;T1d

cW (3)
u

�
(3d)

P � (T; T2) = P � (t; T2) exp

 R T
t

�
r�u � 1

2

�
��u;T2

�2
+ �c�2;4�

�
u;T2 + �3;4�

�
u;T2�u;T

�
du

�
R T
t ��u;T2d

cW (4)
u

!
(3e)

where cW =
�cW (1); cW (2); cW (3); cW (4)

�0
is a QT�Brownian motions with CorrQT

�cW (i)
t ;cW (j)

t

�
=

�i;j .

The evaluation of the basket call option is complicated by the absence of a closed-form equation
for the density function v(x) in Equation (2). Among the di¤erent approaches proposed in the
basket options literature, we �nd some numerical techniques such as Monte Carlo, Quasi-Monte
Carlo and lattice-based methods, the upper and lower bound computations,4 and some analytical
approximations.

Lattice-based approaches are widely used for options on a single asset. They are, exponentially
complicated and computationally expensive for options on multiple assets. For example, our three-
asset basket option needs (n+ 1)3 terminal nodes on an n-step trinomial tree. On the other hand,
Monte Carlo and Quasi-Monte Carlo methods can be used for multi-assets options and are less
time-consuming than lattice-based approaches. The estimates can be as accurate as needed at a
computational cost however: to improve the accuracy of an n-path simulation by one half, one needs
to simulate 4n paths and thus needs 4 times more computing time.

A practitioner might be interested in slightly less accurate but very fast methods such as ana-
lytical approximations. These methods approximate the unknown basket density function with an
alternative and easy-to-compute distribution. In the next sections, we will extend three well-known

4The upper and lower bounds methods are not useful in our case since the market model proposed is complete and
thus a unique option price can be computed.
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analytical approximations to heterogeneous basket options: the inverse gamma distribution, the
Edgeworth expansion around the lognormal distribution and Johnson distribution.

3 Analytical approximations

In order to apply these moment matching-based approximations, we need to calculate the �rst four
moments of the weighted sum underlying the European option under the T�forward measure QT .

We adopt the following notations:

�0n (h) =

Z +1

�1
xnh (x) dx (4a)

�n (h) =

Z +1

�1

�
x� �01 (h)

�n
h (x) dx; (4b)

�0n (h) and �n (h) represent respectively the n
th non-centered and centered moments of the density

function h 2 fv; ag ; where h = v corresponds to the exact density of the basket value under the
forward measure while h = a corresponds to the approximate density. The �rst four cumulants of
distribution h, that is, the mean, the variance, the skewness and the kurtosis are de�ned as:

�1 (h) = �01 (h) (5a)

�2 (h) = �2 (h) (5b)

�3 (h) = �3 (h) (5c)

�4 (h) = �4 (h)� 3�2 (h) : (5d)

Lemma 1 For any positive integer n, the nth non-centered moment of the true distribution of the
weighted sum BT ; under the T -forward measure QT , is

�0n (v) = EQT [BnT ] = E
QT [(w1ST + w2P (T; T1) + w3CTP

�(T; T2))
n]

=

nX
k=0

kX
j=0

n!

j! (k � j)! (n� k)!w
j
1w

(k�j)
2 w

(n�k)
3 EQT

h
SjT (P (T; T1))

(k�j)Cn�kT (P �(T; T2))
n�k
i
:

Note that the log normal distribution of ST , P (T; T1), CT , and P �(T; T2) under the forward measure
allows the computation of the last expectation of Lemma 1 from following identity:

E [exp (�+ �Z)] = exp

�
�+

�2

2

�
where Z � N (0; 1) :

Details are given in Appendix B.

3.1 Inverse gamma approximation

In this section, we use the inverse gamma distribution to approximate the sum of correlated lognor-
mal variables. This approximation was �rst used by Milevsky and Posner (1998a, 1998b) to price
Asian and basket options. In fact, a �nite sum of correlated lognormal variables converges asymp-
totically to an inverse gamma variable. Under an inverse gamma distribution for the underlying
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basket, an European basket call option has a closed-form solution that looks like a Black and Scholes
(1973) (B&S hereafter) formula:

V Bgamma = P (t; T )

�
�01 (v)G

�
1

KB

������ 1; ���KBG

�
1

KB

�����; ��� ; (6)

where G (� j �; �) is the cumulative function of a gamma distribution with parameters (�; �). These
parameters are determined by matching the �rst two moments of the exact and the approximate
distributions to obtain:

� =
�021 (v)� 2�02 (v)
�021 (v)� �02 (v)

and � =
�02 (v)� �021 (v)
�01 (v)�

0
2 (v)

: (7)

Mathematical details of the pricing formula are provided in Appendix C.

3.2 Edgeworth expansion around the lognormal distribution

We now present an analytical approximation based on a generalized Edgeworth expansion around
the lognormal distribution. This approach, introduced by Jarrow and Rudd (1982) in option pricing,
substitutes an unknown density function v (�) with a Taylor-like expansion around an easy-to-use
density function denoted a (�). Notice, however, that Edgeworth expansions usually lead to a
function which is not a true density function. Barton and Denis (1952) derive some conditions on
the third and fourth moments of the unknown distribution to guarantee that the approximation
obtained with a truncated Edgeworth expansion is positive and unimodal. Moreover, Ju (2002)
points out that the Edgeworth expansion may diverge for some parameter values, which consequently
can give incorrect prices for high volatility and long maturity options. However, in this paper we
do not have this problem in the application of the Edgeworth expansion.

Following Huynh (1994) who uses this approach for basket options, we will use an Edgeworth
expansion of order 4 and we will match the �rst and second moments of the exact and the lognormal
distributions. Under this approximation, an European basket call option can be obtained as a sort of
Black and Scholes price adjusted for the excess skewness and the excess kurtosis from the lognormal
density:

V Blognormal = P (t; T )

�
V � �3 (v)� �3 (a)

3!

da (KB)

dx
+
�4 (v)� �4 (a)

4!

d2a (KB)

dx2

�
; (8a)

where

V = �01 (v)N (d1)�KBN (d2) ; (8b)

d1 = d2 + �; (8c)

d2 =
�� ln (KB)

�
; (8d)

� = ln
��
�01 (v)

�2�� 1
2
ln
��
�01 (v)

�2
+ �2 (v)

�
; (8e)

� =

r
ln
�
1 + �2 (v) (�

0
1 (v))

�2
�
; (8f)

a (�) is the density function of a log-normal distribution (see Equation (19) in Appendix D), and
N (�) represents the cumulative function of the standard normal distribution. The third and fourth
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moments of the lognormal distribution needed for the Edgeworth expansion depend only on the
�rst and second moments of the exact distribution and are given by:

�03 (a) =

�
�02 (v)

�01 (v)

�3
and �04 (a) =

�02 (v)
6

�01 (v)
8 : (8g)

Details about the Edgeworth approximation formula are given in Appendix D.

3.3 Johnson approximation

Johnson (1949) proposes a family of density functions, obtained via a transformation of a standard
normal variable, that can be used to approximate unknown distributions. Let Z be a standard
normal variable and X be a random variable with an unknown density function, Johnson (1949)
suggests the following transformations between Z and X:

Z = 
 + � 

�
X � "
�

�
; (9a)

X = "+ � �1
�
Z � 

�

�
; (9b)

where 
 and � are the shape parameters of the Johnson distribution, � is the scale parameter, " is
the threshold parameter, and  (�) is one of the following Johnson functions:

 L(x) = ln (x) ; (Lognormal system)

 U (x) = ln
�
x+

p
x2 + 1

�
; (Unbounded system)

 B (x) = ln

�
x

1� x

�
. (Bounded system)

The choice of the system and �tting parameters provides a great �exibility in adjusting the curve
to match the �rst four moments of the unknown distribution. We use the lognormal ( L) and
the unbounded ( U ) systems that are common in the literature. We apply the Hill, Hill and
Holder (1976) algorithm, based on the true skewness and kurtosis of the basket distribution, to
determine which of the Johnson systems ( L or  U ) should be used in the approximation. Unlike
approximations obtained with a truncated Edgeworth expansion, approximations based on Johnson
(1949) systems correspond to true density functions with a perfect match of the �rst four moments.

Following Posner and Milevsky (1999), we substitute the unknown distribution of the underlying
basket with the lognormal and the unbounded Johnson functions where the system parameters are
calculated by matching the four moments. Under a Johnson density function, a European basket
call option can be priced as:

V BJohnson = P (t; T )

Z +1

KB

(x�KB) (x) dx

= P (t; T )

�Z +1

0
x (x) dx�KB

Z +1

0
 (x) dx�

Z KB

0
(x�KB) (x) dx

�
= P (t; T )

�
�01 (v)�KB +

Z KB

0

�Z x

0
 (y) dy

�
dx

�
�= P (t; T )

�
�01 (v)�KB +

Z KB

�1

�Z x

0
 (y) dy

�
dx

�
: (11)
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The third line in the equation is obtained using an integration by parts. Milevsky and Posner
(1999) show that the last double integral, involving a Johnson density function, can be computed
as follows:

1. Lognormal system  L : X = "+ � exp
�
Z�

�

�
Z KB

�1

�Z x

0
 (y) dy

�
dx = (KB � ")N

�

 + � ln

�
KB � "

�

��
�� exp

�
1� 2
�
2�2

�
N

�

 + � ln

�
KB � "

�

�
� 1
�

�
: (12)

2. Unbounded system  U : X = "+ � sinh
�
Z�

�

�
Z KB

�1

�Z x

0
 (y) dy

�
dx = (KB � ")N (q) +

�

2
exp

�
1

2�2

�
exp

�

�

�
N

�
q +

1

�

�
��
2
exp

�
1

2�2

�
exp

�
�

�

�
N

�
q � 1

�

�
; (13)

where q = 
 + � sinh�1
�
KB�"
�

�
:5

4 Performance analysis of approximations

In this section, we analyze the performance of the three approximations presented previously. We
will use prices obtained by Monte Carlo simulations as benchmarks since there is no closed-form
solution for basket options. Following Barraquand (1995), we will apply a variance reduction tech-
nique based on the matching of the �rst and second moments. This will ensure that sample mean
and variance are equal to the their theoretical counterparts. The Monte Carlo basket option price
combined with the variance reduction technique is given by:

V
B
0 =

1

N

NX
i=1

P (0; T )max
�
B�i;T �KB; 0

�
where B�i;T =

�
Bi;T �B

�p
�2 (v)bS�1 + �01 (v) ;

Bi;T is the time T basket value obtained with sample path i; and B = 1
m

Pm
i=1Bi;T and bS =q

1
m

Pm
i=1B

2
i;T �B

2
are respectively the sample basket mean and standard deviation and m is the

number of simulated paths.
Our performance study will be conducted with two analyses. In the �rst sensitivity analysis,

we will compare the basket option price obtained with the analytical approximations to the Monte
Carlo price obtained with 1,000,000 paths repeated for di¤erent maturities, di¤erent moneynesses
and di¤erent levels for the basket volatility. The second sensitivity analysis is a more detailed
analysis based on works done by Broadie and Detemple (1996). It computes the option prices over
a wide range of parameters chosen randomly from a realistic set of values in order to generalise our

5Notice that sinh (x) = exp(x)�exp(�x)
2

and thus sinh�1 (x) = ln
�
x+

p
x2 + 1

�
=  U (x):
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previous results independently of the model�s parameters. For each combination, we compare the
prices obtained with the approximations and Monte Carlo simulations.

Table 1 presents the set of parameters used in the �rst analysis. These values are based on
estimations using real data on gold prices, CAD/USD exchange rate and Canadian and American
3-month zero-coupon bonds. Although we have positive and negative correlations in the set of
parameters, the volatility of the basket will increase when individual assets volatilities increase.

Table 1: Parameters used in the �rst sensitivity analysis

Domestic risk-free rate, f (0; t) = f for any t 0.06
Foreign risk-free rate, f� (0; t) = f� for any t 0.05
Commodity drift, �s 0.15
Exchange rate drift, �c 0.04
Commodity volatility, �s 0.15
Exchange rate volatility, �c 0.06
Domestic instantaneous forward rate volatility, �t;T1 = � for any t and T1 0.01
Foreign instantaneous forward rate volatility, ��t;T2 = �� for any t and T2 0.01

Convenience yield volatility, �� 0.3
Convenience yield mean reversion parameter, � 0.1
Convenience yield long-run mean, � 0.15
Commodity and exchange rate correlation, �1;2 0.1
Commodity and domestic instantaneous forward rate correlation, �1;3 -0.2
Commodity and foreign instantaneous forward rate correlation, �1;4 -0.25
Exchange rate and domestic instantaneous forward rate correlation, �2;3 0.05
Exchange rate and foreign instantaneous forward rate correlation, �2;4 0.1
Foreign and domestic instantaneous forward rates correlation, �3;4 0.85
Basket weights (commodity, domestic and foreign zero-coupon bonds) 0.5; 0.25; 0.25
Initial prices S0; C0 and �0 are respectively $330; $/CAD 0.65; 0.2

Table 2 presents sensitivity analysis of the basket option price with respect to moneyness, which
corresponds to the ratio of the exercise price over the initial value of the basket KB

B0
; and option

maturity. The results show that Edgeworth-lognormal and Johnson approximations are much more
accurate, with relative errors between 10�6 and 10�3, than the inverse gamma approximation with
a relative error between 10�4 and 10�1.6

6This result is consistent with Milevsky and Posner (1998a) who showed that the convergence result for the inverse
gamma works well when the risk-neutral drift of the underlying di¤usion is negative or when the correlation matrix
decays quickly.
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Table 2: Sensitivity analysis w.r.t. the moneyness and option maturity

Moneyness Monte Standard Inverse Gamma Lognormal Johnson
Carlo Deviation Approximation Approximation Approximation

Price Relative Price Relative Price Relative
error error error

0.75-year maturity
0.85 14.6677 9.16e-03 14.6496* 1.23e-03 14.6678 4.60e-06 14.6676 5.06e-06
0.95 3.1876 5.33e-03 3.1890 4.50e-04 3.1879 7.94e-05 3.1879 8.57e-05
1 0.9173 2.84e-03 0.9400* 2.47e-02 0.9175 2.87e-04 0.9177 4.75e-04
1.05 0.1842 1.21e-03 0.2008* 9.02e-02 0.1843 7.06e-04 0.1844 1.36e-03
1.15 0.0026 1.28e-04 0.0039* 4.69e-01 0.0026 4.91e-03 0.0027 7.76e-03
1-year maturity
0.85 15.1267 1.12e-02 15.0876* 2.59e-03 15.1266 1.02e-05 15.1263 3.07e-05
0.95 4.3557 7.08e-03 4.3517 9.09e-04 4.3557 1.80e-05 4.3557 1.65e-05
1 1.7612 4.54e-03 1.7915* 1.72e-02 1.7616 2.26e-04 1.7619 3.67e-04
1.05 0.5828 2.54e-03 0.6180* 6.06e-02 0.5830 3.82e-04 0.5833 8.51e-04
1.15 0.0359 5.79e-04 0.0460* 2.81e-01 0.0360 1.97e-03 0.0361 3.89e-03
1.5-year maturity
0.85 22.8033 2.19e-02 22.6061* 8.65e-03 22.8037 1.70e-05 22.8022 4.84e-05
0.95 12.597 1.77e-02 12.465* 1.05e-02 12.5976 4.47e-05 12.5967 2.19e-05
1 8.8786 1.52e-02 8.8241* 6.14e-03 8.8792 6.63e-05 8.8790 4.15e-05
1.05 6.0473 1.28e-02 6.0704 3.81e-03 6.0470 5.47e-05 6.0474 6.31e-06
1.15 2.5478 8.33e-03 2.6693* 4.77e-02 2.5475 1.11e-04 2.5485 2.91e-04
3-year maturity
0.85 110.1708 1.35e-01 106.8891* 2.98e-02 110.182 1.02e-04 110.1632 6.92e-05
0.95 99.7516 1.33e-01 95.7420* 4.02e-02 99.7590 7.41e-05 99.7385 1.32e-04
1 94.8429 1.31e-01 90.5429* 4.53e-02 94.8574 1.53e-04 94.8363 6.91e-05
1.05 90.1511 1.30e-01 85.5986* 5.05e-02 90.1621 1.22e-04 90.1408 1.14e-04
1.15 81.3707 1.26e-01 76.4686* 6.02e-02 81.3813 1.30e-04 81.3601 1.30e-04

The Monte Carlo benchmarks are based on 106 trajectories using moment matching as a variance
reduction technique. The estimated standard deviations of the Monte Carlo prices are reported.
The parameters used for the simulation are provided in Table 1. The maturity dates of the
domestic and foreign bonds are respectively T1 = T + 90=360 and T2= T + 120=360: Relative

errors are computed as e =
���V B (a)� V B��� =V B; where V B (a) and V B are the option prices

obtained respectively with the analytical approximation and the Monte Carlo simulation. The
prices marked with a star (*) are signi�cantly di¤erent from their Monte Carlo benchmark at a
level of 5%.
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Table 3 presents sensitivity analysis of the basket option price with respect to the basket volatility
and option maturity, for in the money options, KB

B0
= 0:95. The average level volatility corresponds

to the values in Table 1, while high and low levels correspond respectively to an increase and a
decrease of 50% in the volatility values given in Table 1.

Table 3: Sensitivity analysis with respect to the basket volatility and option maturity

Basket Monte Standard Inverse Gamma Lognormal Johnson
Volatility Carlo Deviation Approximation Approximation Approximation

Price Relative Price Relative Price Relative
error error error

0.75-year maturity
Low 1.6122 2.63e-03 1.6132 5.76e-04 1.6124 7.90e-05 1.6124 8.36e-05
Average 3.1880 5.33e-03 3.1890 3.32e-04 3.1879 3.93e-05 3.1879 3.29e-05
High 4.5412 7.93e-03 4.5419 1.54e-04 4.5411 6.36e-06 4.5412 3.16e-06
1-year maturity
Low 2.3602 3.59e-03 2.3594 3.62e-04 2.3602 1.59e-05 2.3602 1.72e-05
Average 4.3556 7.08e-03 4.3517 8.93e-04 4.3557 3.44e-05 4.3557 3.29e-05
High 6.0694 1.05e-02 6.0578 1.92e-03 6.0697 4.43e-05 6.0697 4.25e-05
1.5-year maturity
Low 8.2211 9.43e-03 8.1845* 4.45e-03 8.2214 3.72e-05 8.2211 4.92e-06
Average 12.5963 1.77e-02 12.4650* 1.04e-02 12.5976 9.87e-05 12.5967 3.20e-05
High 16.9935 2.66e-02 16.6624* 1.95e-02 16.9940 2.67e-05 16.9921 8.69e-05
3-year maturity
Low 70.0721 5.75e-02 69.5164* 7.93e-03 70.0736 2.17e-05 70.0701 2.73e-05
Average 99.7475 1.33e-01 95.7420* 4.02e-02 99.7590 1.16e-04 99.7385 9.03e-05
High 149.5893 2.71e-01 138.7165* 7.27e-02 141.3625* 5.50e-02 149.5287 4.05e-04

The Monte Carlo benchmarks are based on 106 trajectories using moment matching as a variance
reduction technique. The estimated standard deviations of the Monte Carlo prices are reported.
The parameters used for the simulation are provided in Table 1. The maturity dates of the
domestic and foreign bonds are respectively T1 = T + 90=360 and T2= T + 120=360 and the

moneyness is KB=B0= 0:95 Relative errors are computed as e =
���V B (a)� V B��� =V B; where

V B (a) and V
B
are the option prices obtained respectively with the analytical approximation

and the Monte Carlo simulation. The prices marked with a star (*) are signi�cantly di¤erent
from their Monte Carlo benchmark at a level of 5%.

The �ndings are similar to those in Table 2. The relative errors presented in Table 3 are very
low with a magnitude between 10�6 and 10�2. For low volatility levels, Edgeworth-lognormal and
Johnson approximate prices and Monte Carlo prices are very close. As for the inverse gamma
approximation, our results show that it is much less accurate with relative errors between 10�4 and
10�2.

Notice that the accuracy of the three approximations decreases for longer maturities and higher
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volatilities, which supports the �ndings in Ju (2002).7 Moreover, for all approximations, option
prices increase with maturity and volatility.

The previous analysis is only local. Our �ndings depend on the set of parameters used and
may change if we modify them. To con�rm our conclusions, a more carefully designed numerical
study where the parameters are randomly chosen is conducted. Following Broadie and Detemple
(1996), the signi�cant model parameters are chosen randomly from continuous or discrete uniform
distributions. These uniform distributions are based on the estimation of the model parameters
using real data. The correlation between the commodity and the exchange rate is expected to be
positive, so we assume that �12 2 [0:01; 0:55] : Based on Schwartz (1997), the convenience yield
long-run mean is positive for gold and the mean reversion parameter is small and less than 1; we
assume thus that � 2 [0:05; 0:5] and � 2 [0:05; 0:8]. All paramater distributions used in the pricing
are presented in Table 4.

Table 4: Parameters distributions

Domestic risk free rate, f (0; t) = f for any t U(0.02; 0.08)
Foreign risk free rate, f� (0; t) = f� for any t U(0.02, 0.08)
Commodity drift, �s U(0.05, 0.35)
Exchange rate drift, �c 0.04
Commodity volatility, �s U(0.1, 0.35)
Exchange rate volatility, �c U(0.02, 0.15)
Domestic instantaneous forward rate volatility, �t;T1 = � for any t and T1 U(0.001, 0.06)
Foreign instantaneous forward rate volatility, ��t;T2 = �� for any t and T2 U(0.001, 0.06)

Convenience yield volatility, �� U(0.1, 0.4)
Convenience yield mean reversion parameter, � U(0.05, 0.8)
Convenience yield long-run mean, � U(0.05, 0.5)
Commodity and exchange rate correlation, �1;2 U(0.01, 0.55)
Commodity and domestic instantaneous forward rate correlation, �1;3 U(�0.5, 0.25)
Commodity and foreign instantaneous forward rate correlation, �1;4 U(�0.5, 0.25)
Exchange rate and domestic instantaneous forward rate correlation, �2;3 U(�0.35, 0.35)
Exchange rate and foreign instantaneous forward rate correlation, �2;4 U(�0.35, 0.35)
Foreign and domestic instantaneous forward rates correlation, �3;4 U(0.15, 0.9)
Option maturity (in years) U{0.083; 0.25; 0.5; 0.75; 1; 1.5; 2; 3}
Moneyness U{0.8; 0.9; 0.95; 1; 1.05; 1.1; 1.2}
Basket weights (commodity domestic and foreign zero-coupon bonds), U

�
1
3
1
3
1
3 ;
1
2
1
4
1
4 ;
1
4
1
2
1
4 ;
1
4
1
4
1
2

	
Initial prices S0; C0 and �0 are respectively $330; $/CAD 0.65; 0.2

We compare the three previous analytical approximations and Monte Carlo simulation combined
with the moment matching technique for 5000 random sets of parameters. Only 4740 sets of
parameters provided positive de�nite correlation matrices. We also removed all basket options

7Ju (2002) proposes an analytical approximation to price Asian and basket options based on a Taylor expansion of
the ratio of the characteristic function of the average of lognormal variables to that of the approximating lognormal
random variable around zero volatility.
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prices with a value lower than 5 cents. We obtained 4347 sets of parameters. First, we examine
the accuracy of each approximation by calculating its root mean square error (RMSE). Second, we
calculate the maximum relative error (MRE) for each approximation to examine the worst case
scenario. More precisely, we de�ne,

RMSE =

vuut 1

n

nX
i=1

 
V Bi (a)� V

B
i

V
B
i

!2

MRE = max
i

���V Bi (a)� V Bi ���
V
B
i

;

where n is the number of di¤erent sets of paramaters, that is, Monte Carlo prices are obtained with
1; 000; 000 paths combined with the moment matching technique.

Table 5: RMSE and MRE for the three approximations

Inverse Gamma Lognormal Johnson
Approximation Approximation Approximation

RMSE 9.68% 0.52% 0.56%
MRE 79.47% 13.16% 14.00%

The results in Table 5 con�rm those obtained with the �rst sensitivity analysis (Tables 2 and
3) and show that the Edgeworth-lognormal and Johnson approximations are much more accurate
than the inverse gamma approximation. It is also found that, for the Edgeworth-lognormal and
Johnson approximations, a very small proportion of options, 0:23% and 0:35% respectively, have
relative errors above 5% while for the inverse gamma approximation, a larger proportion, 27:74%,
of options have a relative error above 5%.

A more detailed look at the results shows that out-of-the-money and high volatility options have
the largest relative errors, which con�rms our �ndings in the �rst sensitivity analysis. However,
since the out-of-the-money options have small prices, the augmentation of the relative errors in
these cases may be attributed to the small denominators. Figures 1, 2 and 3 present respectively
the histograms of the relative errors of the inverse gamma, the Edgeworth-lognormal and Johnson
approximations. Table 6 shows a summary of descriptive statistics of the relative errors.
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Figure 1: Histogram of relative errors of the inverse gamma approximation
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Figure 2: Histogram of relative errors of the Edgeworth approximation
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Figure 3: Histogram of relative errors of Johnson approximation
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Table 6: Descriptive statistics of relative errors

Inverse Gamma Lognormal Johnson
Approximation Approximation Approximation

Maximum 0.7947 0.1316 0.1400
Minimum 0 0 0
Mean 0.0493 0.0015 0.0014
Median 0.0136 0.0002 0.0001
Standard Deviation 0.0833 0.0050 0.0054
Nb of observations 4347 4347 4347

The histograms show that for the Edgeworth-lognormal and Johnson approximations, 99% of
parameters sets (4300 out of 4347) have relative errors less than 2%: This demonstrates that these
approximations are very accurate and that they give prices very close to Monte Carlo benchmarks.
The inverse gamma approximation has 92% (4000 out of 4347) cases where the relative errors are less
than 20%. We reach the same results by using larger and more general intervals for the parameters
distributions.

To conclude this section regarding the pricing of heteregeneous basket options, we show that
Edgeworth expansion around the lognormal distribution at order 4 and the Johnson distribution
are equally accurate and very acceptable for practitionners. However, we suggest the use of the
Edgeworth-lognormal distribution for two reasons: �rst, it is slightly more accurate, and second,
the algorithm to calibrate Johnson distributions may not converge in a few cases, which can lead
to mispriced options.

5 Hedging ratios

The analytical approximations allow for deriving the option price in a functional form which can
also provide analytical expressions for the sensitivities with respect to the underlying parameters,
such as deltas, vegas and theta, known as the hedging ratios or the Greeks. However, due to the
complexity of the moments involved in our analytical approximations, deriving the hedging ratios
analytically is beyond the scope of this article. Instead, we can compute them numerically as follows:

RatioBApp =
V
B(")
App � V BApp

"
; (14)

where " > 0 is a small number, V B(")App and V BApp are respectively the approximate "-disturbed and
non-disturbed option prices. As an application, we compute numerically the delta with respect to
the commodity price for di¤erent values of ". We base our calculations on the parameters in Table
1. We consider an in-the-money call basket option

�
KB
B0
= 0:95

�
with a 9-month maturity. The

deltas are presented in Table 7.
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Table 7: Basket option Delta w.r.t. the commodity price

Commodity Inverse Gamma Lognormal Johnson
Price Approximation Approximation Approximation

Price Delta* Price Delta* Price Delta*
$330 3.1890 3.1879 3.1879
$330.33 3.1922 0.0097 3.1910 0.0094 3.1911 0.0097
$331.65 3.2049 0.0096 3.2037 0.0096 3.2038 0.0096
$333.30 3.2208 0.0096 3.2196 0.0096 3.2196 0.0096
$334.95 3.2367 0.0096 3.2355 0.0096 3.2355 0.0096

* Delta corresponds to the sensitivity with respect to the commodity price and is given by
Equation (14). V BApp, presented in the �rst row of the table, is the analytical basket option price
obtained for a commodity price of $330:

Table 7 shows that, for the three approximations, the delta is very stable over di¤erent values of
". Indeed, an increase of $1 in the commodity price leads to an increase of approximately $0:01 in
the option price. The positiveness of delta is expected but its value depends on the set of parameters
used. Following the same procedure, one can compute the other sensitivities with respect to other
parameters of interest.

6 Conclusion

Firms can use basket options to hedge their exposure to di¤erent risks, such as commodity risk,
interest rate risk and exchange rate risk. However, pricing this kind of options is not an easy
task since no closed-form solution can be derived for the basket density function. Consequently,
a standard pricing formula such as Black and Scholes cannot be derived. The main contribution
of this article is the comparison of the performance of three analytical approximations to price
a heteregeneous basket option, consisting of a commodity, a domestic and a foreign zero-coupon
bonds, when interest rates are stochastic. The three approximations used are the inverse gamma
proposed in Milevsky and Posner (1998a, 1998b), the Edgeworth expansion around the lognormal
distribution as well as Johnson distribution developped in Posner and Milevsky (1999).

In order to assess and compare the accuracy of the approximations, we use two analyses. The
�rst one is a local sensitivity analysis where the parameters of the model are �xed arbitrarily. Our
�ndings show that both the Edgeworth-lognormal and Jonhson approximations are very accurate
while the inverse gamma approximation is much less accurate.

These results are con�rmed with the second analysis where 5000 sets of parameters are chosen
randomly from di¤erent uniform distributions. It is also found that the pricing relative errors,
computed with Monte Carlo benchmark prices, are small and of an acceptable magnitude for prac-
titionners. The accuracy of all approximations deteriorates for out-of-the-money as well as for high
volatility options.

This article considers only plain vanilla basket options. However, extending the approach fol-
lowed here to more exotic basket options is a promising area for future research.
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Appendices

A Derivation of the forward measure

In this appendix, we will derive the model under the T�forward measure. Let Ai be the ith row of the

matrix A; where A = [aij ]i;j=f1;2;3;4g is the Cholesky decomposition of the correlation matrix of the four-

dimensional P�Brownian motions W =
�
W (1);W (2);W (3);W (4)

�0
; and eB corresponds to the vector of

independent Brownian motions under Q. The SDEs satis�ed by all underlying assets under Q can be written

as:8

dSt = St

h
(rt � �t) dt+ �sA1deBti (15a)

d�t = (�� � ��
�s
(�s � rt)� ��t)dt+ ��A1deBt (15b)

dCt = Ct

h
(rt � r�t ) dt+ �cA2deBti (15c)

dP (t; T1) = P (t; T1)
h
rtdt� �t;T1A3deBti (15d)

dP �(t; T2) = P � (t; T2)
h�
r�t + �

�
t;T2�c�2;4

�
dt� ��t;T2 A4deBti (15e)

The risk-neutral measure Q corresponds to a numeraire equal to the domestic bank account exp
�R T

t
rudu

�
;

while the T�forward measure QT corresponds to a numeraire equal to the domestic zero-coupon bond with
maturity date T , P (t; T ). Using Girsanov theorem, we have that:

dbBt = deBt + �t;TA0
3dt;

where bB are independent Brownian motions under QT . The correlation structure is the same under Q and

QT ; and the previous SDEs can be rewritten as:

dSt = St

h�
rt � �t � �13�s�t;T

�
dt+ �sdcW (1)

t

i
(16a)

d�t = (�� � ��
�s
(�s � rt)� ��t � �13���t;T )dt+ ��dcW (1)

t (16b)

dCt = Ct

h�
rt � r�t � �23�c�t;T

�
dt+ �cdcW (2)

t

i
(16c)

dP (t; T1) = P (t; T1)
h�
rt + �t;T1�t;T

�
dt� �t;T1dcW (3)

t

i
(16d)

dP �(t; T2) = P � (t; T2)
h�
r�t + �

�
t;T2�c�2;4 + �3;4�t;T�

�
t;T2

�
dt� ��t;T2 dcW (4)

t

i
(16e)

where cW =
�cW (1); cW (2); cW (3); cW (4)

�0
= AbB: The strong solution exists and is given by the system of

equations (3).

B Derivation of moments

This appendix gives the detailed calculation of the �rst four moments of the basket value at maturity T

under the T�forward measure QT . Using the strong solution of the model under the forward-measure QT ,
8The details of the computation are available from the authors upon request.
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one can write

ST = S0 exp

 
�S (T ) +

4X
i=1

Z T

0

 S;i (t) dcW (i)
t

!

P (T; T1) = exp

 
�P (T ) +

4X
i=1

Z T

0

 P;i (t) dcW (i)
t

!

CTP
�(T; T2) = C0 exp

 
�CP� (T ) +

4X
i=1

Z T

0

 CP�;i (t) dcW (i)
t

!
;

where

�S (T ) =

266664
R T
0

�
1� ��

�s�

�
1� e��(T�u)

��
f (0; u) du� �0 1�

�
1� e��T

�
�
�
� � ��

�s
�s
� +

�2s
2

�
T +

�
� � ��

�s
�s
�

�
1
�

�
1� e��T

�
� 1
2

R T
0
�2u;T du+

��
�s�

R T
0

�
1� e��(T�u)

� �R u
0
�v;u

�
�v;T � �v;u

�
dv
�
du

+�1;3
R T
0
�u;T

�
��
�

�
1� e��(T�u)

�
� �s

�
du

377775 ;

�P (T ) = �
Z T1

T

f (0; u) du� 1
2

Z T

0

�
�u;T1 � �u;T

�2
du;

�CP� (T ) =

Z T

0

f (0; u) du�
Z T2

0

f� (0; u) du� 1
2

Z T

0

�
�2u;T +

�
��u;T2

�2�
du� �2c

2
T

��c�2;3
Z T

0

�u;T du+ �c�2;4

Z T

0

��u;T2du+ �3;4

Z T

0

��u;T2�u;T du;

 S;1 (t) = �s �
��
�

�
1� e��(T�t)

�
;

 S;3 (t) = �t;T �
��
�s�

Z T

t

�
1� e��(T�v)

�
�t;v dv;

 P;3 (t) = �t;T � �t;T1 ;

 CP�;2 (t) = �c;

 CP�;3 (t) = �t;T ;

 CP�;4 (t) = ���t;T2 ;

 S;2 (t) =  S;4 (t) =  P;1 (t) =  P;2 (t) =  P;4 (t) =  CP�;1 (t) = 0;

Therefore,

�0n =
nX
k=0

kX
j=0

n!

j! (k � j)! (n� k)!w
j
1w

(k�j)
2 w

(n�k)
3 EQT

h
SjT (P (T; T1))

k�j
Cn�kT (P � (T; T2))

n�k
i

with

EQT

h
SjT (P (T; T1))

k�j
Cn�kT (P � (T; T2))

n�k
i

= Sj0C
n�k
0 (P � (0; T2))

n�k
EQT

"
exp

 
� (T ) +

4X
i=1

Z T

0

 i (t) dcW (i)
t

!#

= Sj0C
n�k
0 (P � (0; T2))

n�k
exp

 
� (T ) +

1

2

4X
i=1

4X
`=1

�i;`

Z T

0

 i (t) ` (t) dt

!
where

� (T ) = j�S (T ) + (k � j)�P (T ) + (n� k)�P� (T )

 i (t) = j S:i (t) + (k � j) P:i (t) + (n� k) P�:i (t) , i 2 f1; 2; 3; 4g :
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Table 8 presents the theoretical �rst four moments, calculated as explained previously, and those obtained

by Monte Carlo simulation. This ensures that our theoretical formulas give the exact moments.

Table 8: Comparison of theoretical and simulated moments

Order Theoretical Moments Simulated Moments
1 157.21 157.20
2 24807 24807
3 3.9293e+6 3.9292e+6
4 6.2472e+8 6.2470e+8

Mean 157.21 157.20
Variance 93.13 93.13

C Inverse gamma approximation

This appendix shows how we obtain the pricing formula using the inverse gamma approximation. The density

function of a gamma random variable X of parameters (�; �) ; X s G (�; �) ; is given by:

g (x j�; � ) =
x��1 exp

�
� x
�

�
��� (�)

; x � 0

where � > 0; � > 0 and � (�) is the Gamma function.

Proposition 1 Let X be a gamma random variable with parameters (�; �) : Then, the random variable

Y = 1
X ; follows an inverse gamma distribution, Y s GR (�; �) ; and its density function is given by:

gR (y j�; � ) =
1

y2
g

�
1

y
j�; �

�
=

exp
�
� 1
y�

�
y�+1��� (�)

; y > 0; �; � > 0: (17)

Proposition 2 The non-centered moments of the random variable Y s GR (�; �) are given by:

�0n (gR) =
1

�n (�� 1) (�� 2) ::: (�� n) ; n = 1; 2; 3; ::: (18)

We price the basket option by approximating the sum of lognormal variables by an inverse gamma

distribution. We match the two �rst moments

�01 (v) = �01 (gR) =
1

� (�� 1) and �
0
2 (v) = �02 (gR) =

1

�2 (�� 1) (�� 2)
;

to get the two parameters of the inverse gamma density given at line (7). Using the inverse gamma density,

21



the option price P (t; T )
R +1
�1 max (x�KB ; 0) v (x) dx is approximated by:

V Bgamma = P (t; T )

Z +1

KB

(x�KB) gR (xj�; �) dx

= P (t; T )

Z +1

KB

(x�KB)x
�2g

�
1

x

�����; �� dx
= P (t; T )

Z 1
KB

0

�
1

y
�KB

�
g (yj�; �) dy

�
from the change of variable y =

1

x

�
= P (t; T )

 
1

� (�� 1)

Z 1
KB

0

g (yj�� 1; �) dy �KB

Z 1
KB

0

g (yj�; �) dy
!

since
1

y
g (yj�; �) = 1

� (�� 1)g (yj�� 1; �)

= P (t; T )

�
1

� (�� 1)

�
G

�
1

KB

������ 1; ����KB

�
G

�
1

KB

�����; ����
leading to Equation (6). �

D Edgeworth-lognormal expansion

This appendix shows how we obtain the pricing formula using an Edgeworth expansion around the lognormal

distribution. Matching the �rst two moments, the lognormal density used is given by

a (x) =
1p
2�

1

�

1

x
exp

 
�1
2

�
lnx� �

�

�2!
(19)

where � and � are de�ned at lines (8e) and (8f) respectively. Following Jarrow and Rudd (1982), the unkown

basket density function can be approximated by:

v (x) = a (x) +
�2 (v)� �2 (a)

2!

d2a (x)

dx2
� �3 (v)� �3 (a)

3!

d3a (K)

dx3

+
(�4 (v)� �4 (a)) + 3 (�2 (v)� �2 (a))2

4!

d4a (x)

dx4
+ � (x) ; (20)

where � (x) is an error term and �i (h) ; i = f1; 2; 3; 4g are the �rst four cumulants of the density function
h = fv; ag de�ned by the system of Equations (5). Jarrow and Rudd (1982) state that, in general, there

is no bound on the error term resulting from an Edgeworth expansion. Consequently, the error does not

necessarily decrease with the expansion�s order. Given that the two �rst moments are the same for the true

density and for the approximated density, Equation (20) becomes

v (x) = a (x)� �3 (v)� �3 (a)
3!

d3a (K)

dx3
+
�4 (v)� �4 (a)

4!

d4a (x)

dx4
+ � (x) : (21)

The basket option price P (t; T )
R +1
�1 max (x�KB ; 0) v (x) dx can thus be approximated by:

V Blognormal = P (t; T )

Z +1

KB

(x�KB)

�
a (x)� �3 (v)� �3 (a)

3!

d3a (x)

dx3
+
�4 (v)� �4 (a)

4!

d4a (x)

dx4

�
dx:

Using the fact that Z +1

KB

(x�KB)
dja

dxj
(x) dx =

dj�2a

dxj�2B

(KB) for j � 2;
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we obtain

V Blognormal = P (t; T )

�Z +1

KB

(x�KB) a (x) dx�
�3 (v)� �3 (a)

3!

da

dx
(KB) +

�4 (v)� �4 (a)
4!

d2a

dx2
(KB)

�
: (22)

Notice that the �rst integral in Equation (22) is very similar to a Black and Scholes price.
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