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A Three-Moment Intertemporal Capital Asset Pricing Model:  

Theory and Evidence 

 

ABSTRACT 

In this paper, the aggregate consumption function is characterized as a 

nonlinear function of the market and hedge factors to derive a three-

moment intertemporal capital asset pricing model that prices coskewness 

and embeds the classical ICAPM and three-moment CAPM as special cases. 

The model is applied to examine the time-series behavior of the market, 

bond, size, value, and momentum premia as well as the cross-section of size 

and book-to-market sorted portfolio returns. We find strong evidence that 

the model performs better in explaining the variation of returns than the 

ICAPM and three-moment CAPM.  
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1. Introduction 

Due to its practical and intuitive nature, the Capital Asset Pricing Model (CAPM) of Sharpe 

(1964) and Lintner (1965) has aroused the interest of both practitioners and academics. 

However, the model continues to attract substantial debate, mainly because the empirical 

literature has documented numerous violations of its predictions. For instance, several studies 

have demonstrated that firm characteristics such as size and book-to-market ratio do explain 

expected returns (Banz, 1981; Rosenberg et al., 1985) while market beta alone appears to be 

irrelevant (Fama and French, 1992). 

Given the need for an adequate asset-pricing model in financial economics, the 

shortcomings of the CAPM have prompted new research on alternative ways to price 

securities. This literature generally comprises two broad strands. The first strand–which 

targets the CAPM’s implication that market covariance suffices to explain the expected 

returns–investigates whether linear multifactor models explain the risk-return relationship 

better than the CAPM does (see, among others, Chen et al., 1986; Fama and French, 1993, 

1996; Turtle et al., 1994; He et al., 1996; Jagannathan and Wang, 1996; Scruggs, 1998). 

Building on Merton’s (1973) Intertemporal CAPM (ICAPM) or Ross’s (1986) Asset Pricing 

Theory (APT), these studies generally find that non-market factors are priced. The second 

strand of the literature extends the mean-variance framework of the CAPM to take into 

account higher-order moments of returns in the pricing of securities. For instance, Harvey and 

Siddique (2000a) derive a conditional version of the Three-Moment CAPM (TM-CAPM) of 

Kraus and Litzenberger (1976) to find that the next conditional moment after the variance, 

conditional skewness, explains expected returns in the United States.1 

Although these studies have made their cases that the risk-return relationship is 

potentially multivariate or nonlinear, to the best of our knowledge, no formal asset-pricing 

model exists in the literature that integrates both extensions of the CAPM. For instance, no 

study has evaluated the potential nonlinear relation between asset returns and hedge factors. 
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Most extant research that investigates the potential effect of the higher moments of returns 

(see, e.g., Harvey and Siddique (2000a) and the numerous references therein), albeit 

conditional, are static because they overlook the intertemporal dimension of the risk-return 

relationship. According to Dumas and Solnik (1995, p.474), “a conditional static asset-pricing 

model is internally inconsistent.” The authors point out that if a model is conditional, then it 

should also be intertemporal since investors anticipate shifts in investment opportunities and 

hedge them over their lifetime.  

In Section 2 of this paper, we attempt to fill this gap in the literature by deriving a 

nonlinear-multifactor model that expands the consumption function of a representative 

investor to allow additional coskewness terms to enter the pricing process, resulting in the 

Three-Moment ICAPM (TM-ICAPM). According to the TM-ICAPM, returns are not 

influenced solely by their conditional covariance with the market and hedge factors, but also 

by their conditional coskewness with the market and hedge factors. The derived model is 

theoretically sound, and embeds the CAPM, TM-CAPM, and ICAPM as special cases.   

In Section 3, the data and methodology used to test the TM-ICAPM are described. In 

particular, we provide both unconditional and conditional descriptive statistics on the behavior 

of the first three moments of the market, bond, size, value, and momentum premia observed in 

the United States, with the specific aim of showing that conditional skewness is a rather 

nontrivial and dynamic phenomenon. Next, we outline the conditional methodology used for 

testing the models. We build on the instrumental variables approach of Campbell (1987) and 

Harvey (1989) to model the dynamic nature of the conditional comoments (covariance and 

coskewness). The method involves extracting the first moment of returns from a vector of 

instruments, and then using the resulting forecasting errors to compute the comoments and to 

test the asset-pricing models. 

In Section 4, the simplest variant of the TM-ICAPM, which particularizes the long-term 

government bond excess return as the single hedge term, is used to investigate whether both 

covariance and coskewness help explain the time-series and cross-section of U.S. returns from 
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July 1963 through December 2004. The model is an extension of the two-factor ICAPM 

estimated by Turtle et al. (1994) and Scruggs (1998) to the pricing of coskewness risk and 

holds the classical two- and three-moment CAPMs as special cases.  

We find that market covariance and coskewness risks are reliably priced in all 

specifications. Moreover, the long-term government bond excess return, taken as a hedge term, 

significantly and nonlinearly influences the time-series and cross-section of the portfolio 

returns. This is important because many of the proposed extensions to the CAPM are given as 

first-order approximations without duly investigating the role of possible nonlinearities. More 

importantly, all tests consistently show coskewness risk to be more significant than covariance 

risk in explaining the variation of returns. Overall, the TM-ICAPM is remarkably successful in 

capturing the variation of returns of various securities, and performs much better than the 

ICAPM and TM-CAPM. 

In Section 5, we conclude that a multivariate and nonlinear risk-return relationship exists 

in the United States and recommend the use of a nonlinear intertemporal model to price 

securities. 

There are at least three main contributions in this study. The first is to extend Merton’s 

(1973) ICAPM to the pricing of coskewness risk. Since under Merton’s framework–with the 

assumptions of continuous trading and the Markov structure of the stochastic processes–the 

higher moments become redundant, we directly expand the intertemporal marginal rate of 

substitution (IMRS) as a nonlinear function of the market and hedge factors, using the indirect 

relationship between these state variables and the level of aggregate consumption. The second 

contribution is to clarify the conditions under which Kimball’s (1990) measure of absolute 

prudence determines the reward-to-conditional coskewness risk. Prior research finds that the 

price of coskewness risk will be negative as long as the absolute prudence is positive in the 

following three particular cases: (a) when a two-period economy is assumed (Harvey and 

Siddique, 2000a); (b) when investment opportunities are constant (Dittmar, 2002); or (c) when 

the marginal propensity to consume is independent of wealth (Errunza and Sy, 2005). We 
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show that the price of coskewness risk cannot be signed in general. The third contribution, 

using a new empirical specification that does not need to stipulate the coskewness dynamics, is 

to document that the TM-ICAPM performs better than the nested linear (CAPM and 

ICAPM) and nonlinear (TM-CAPM) models in explaining returns. 

This study adds to a rapidly growing strand of the financial economics literature that is 

aimed at improving the performance of the CAPM. On methodological grounds, the closest 

study to this work is perhaps that of Harvey and Siddique (2000b). The authors use a 

maximum likelihood framework to estimate simultaneously the conditional moments of the 

U.S. and world market portfolios and their equilibrium prices. However, Harvey and Siddique 

focus on skewness rather than coskewness, and assume a particular functional form for this 

moment, while we use conditional coskewness risk without having to make a priori 

assumptions about its dynamic. Using a bivariate EGARCH specification, Scruggs (1998) 

investigates the significance of the assumption of constant investment opportunity set on the 

market risk premium, and shows that the puzzling negative market risk-return relationship 

documented in the literature is due to the omission of the hedge term. This study goes beyond 

the covariance risk to include the coskewness dimension, which has also been proven to explain 

some of the negative episodes of expected market risk premia (Harvey and Siddique, 2000b; 

Guedhami and Sy, 2005). 

2. The model 

The first order condition describing the investor’s optimal consumption and investment 

decisions (Hansen and Jagannathan, 1991) offers a framework that unifies the standard asset-

pricing models: 

1 1[(1 ) ] 1t pt tE R m+ ++ = ,       (1) 

where tE  is the conditional expectations operator conditioning on time t  information, 1ptR +  is 

the return on portfolio p  at time 1t + , and 1 1( )/ ( )t t tm u c u c+ +′ ′=  represents the investor’s 
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IMRS. Eq. (1) conceptualizes the idea that, in equilibrium, the marginal cost of postponing 

consumption at time t  to buy an extra unit of portfolio p , ( )tu c′ , must equate with the 

expected marginal utility of selling the holdings and consuming the proceeds at 1t + , 

1 1[(1 ) ( )]t pt tE R u c+ +′+ . 

Expanding Eq. (1) and assuming the existence of a conditionally riskless asset (with 

return 1ftR + ), the expected portfolio excess return can be written as: 

1 1 1 1[ ] (1 [ ]) [ , ]t pt t ft t pt tE r E R Cov r m+ + + += − + ,     (2) 

where 1 1 1pt pt ftr R R+ + += −  is the portfolio excess return at 1t +  and tCov  stands for the 

conditional covariance operator. It follows from Eq. (2) that systematic risk ensues from the 

covariation with the IMRS. A risk premium is required if the portfolio is negatively correlated 

with the IMRS, because the portfolio is then expected to earn less than average when it is 

needed the most. 

It is apparent that Eq. (2) embraces various asset-pricing models, which differ by the 

proxies they use for the IMRS. Assuming the existence of a representative agent (Lucas, 1978; 

Breeden, 1979) allows us to express the IMRS as a function of aggregate consumption, 1tC + . 

The point of the CAPM and most of the existing asset-pricing models is to avoid the use of 

consumption data, and to use wealth or the rate of return on wealth instead. This substitution 

of wealth for consumption can be achieved by assuming: (a) a static setting and allow Eq. (1) 

to hold conditionally, so that consumption and wealth will be equivalent (Dittmar, 2002); (b) a 

two-period economy, so that consumption equals wealth in the second period (Harvey and 

Siddique, 2000); or (c) a log utility function, so that consumption will be proportional to 

wealth (Cochrane, 2001). 

Rather than restricting the setting or particularizing the utility function, we use an 

alternative and more direct approach that consists of modeling the aggregate consumption as a 
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function of state variables. As an illustration of this new approach, it can be shown that the 

conditional CAPM can be obtained by assuming that the classical Keynesian consumption 

function holds; i.e., 1 0 1 1t t m t mtC Wφ φ+ += + , where 0tφ  is the autonomous consumption and 1tφ  is 

the marginal propensity to consume out of wealth.2 To see this, use this consumption function 

and expand the IMRS as Taylor series around 1mt mtW W+ = , and obtain: 

1 1 11 ( ) ( )/ ( )t mt mt m t t tm W W u C u Cφ+ + ′′ ′= + − . Using the definition of the return on aggregate wealth, 

the IMRS simplifies to 1 1 11t m t mtm a r+ += − , where 1 1 ( )/ ( )m t m t mt t ta W u C u Cφ ′′ ′= −  measures the 

investor’s relative risk aversion. The CAPM is obtained by substituting the IMRS in Eq. (2). 

According to Merton (1973), when the investment opportunity set is dynamic, the 

investor’s optimal choice of consumption and investment will be a function of the state 

variables that help predict shifts in investment opportunities. Merton’s ICAPM can be derived 

if we assume that the aggregate consumption is linear in both the aggregate wealth portfolio 

( 1mtW + ) and K  (hedge) portfolios ( 1ktW + ) that are most closely correlated with the state 

variables. However, since the true consumption function is unobservable, the hypothesis of a 

linear functional form relation can be restrictive (see, for example, Carroll and Kimball, 1996). 

Therefore, as an alternative to a linear specification, we assume that the consumption function 

is nonlinear in the state variables. That is to say 1 1( )t tC C+ += W , where 

1 1 1 1 1( , , ..., )t mt t KtW W W+ + + +≡W . Using the more general consumption function and expanding the 

IMRS as second-order series around tW  gives:3 

2 2
1 0 1 1 1 1 1 2 1 2 1 1 1 1

1 1 1

2
K K K K

t t m t mt k t kt m t mt k t kt mkt mt jkt jt kt
k k k j k

m a a r a r a r a r a r a r r+ + + + + + + + +
= = = >

⎛ ⎞
= − − − − − +⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑ ,     (3) 

with the following economic values for the parameters: 
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0 1 2 1

1

1

2 21
2 2

2 21
2 2

1
2

1 ( )
( ) ( )/ ( )
( ) ( )/ ( )

{ ( ) ( ) ( ) ( )}( ) / ( )

{ ( ) ( ) ( ) ( )}( ) / ( )
{ ( ) (

t t

m t m t mt t t

k t k t kt t t

m t mm t t m t t mt t

k t kk t t k t t kt t

mkt mk t

a
a C W u C u C
a C W u C u C

a C u C C u C W u C

a C u C C u C W u C
a C u

ϕ+ += +
′′ ′= −
′′ ′= −

′′ ′′′ ′= − +

′′ ′′′ ′= − +

′′= −

W
W
W

W W

W W

W
1
2

) ( ) ( ) ( )} / ( )
{ ( ) ( ) ( ) ( ) ( )} / ( )

t m t k t t mt kt t

jkt jk t t j t k t t jt kt t

C C C u C W W u C
a C u C C C u C W W u C

′′′ ′+

′′ ′′′ ′= − +

W W

W W W

 ,   (4) 

where 1mtr +  and 1ktr +  are respectively the returns on the market and the k th hedge portfolios at 

1t + , 2ϕ  denotes the second-order Lagrange remainder of the expansion, subscripts of C  

denote partial derivatives with respect to the aggregate wealth and the hedge portfolios. 

Substituting Eq. (3) into Eq. (2) produces the TM-ICAPM which states that, in 

equilibrium, the expected portfolio excess return is a function of the conditional covariance 

with the market and hedge factors, the conditional coskewness with the market and hedge 

factors, and the conditional covariance with the various cross-terms: 

1 0 1 1 1 1 1 1
1

2 2
2 1 1 2 1 1

1

1 1 1 1 1 1
1 1

[ ] [ , ] [ , ]

[ , ] [ , ]

[ , ] [ , ]

K

t pt p t m t t pt mt k t t pt kt
k

K

m t t pt mt k t t pt kt
k

K K K

mkt t pt mt kt jkt t pt jt kt
k k j k

E r Cov r r Cov r r

Cov r r Cov r r

Cov r r r Cov r r r

λ λ λ

λ λ

λ λ

+ + + + +
=

+ + + +
=

+ + + + + +
= = >

= + +

+ +

+ +

∑

∑

∑ ∑∑

,      (5) 

where 0 1 1 0 1(1 [ ]) [ , ]p t t ft t pt tE R Cov r aλ + + += +  is the model’s intercept, which represents the 

aggregated effect of the terms of order higher than skewness in the approximation.4 The 

parameters 1 1 1(1 [ ])m t t ft m tE R aλ += +  and 1 1 1(1 [ ])k t t ft k tE R aλ += +  are, respectively, the equilibrium 

prices of market and hedge covariance, 2 1 2(1 [ ])m t t ft m tE R aλ += +  and 2 1 2(1 [ ])k t t ft k tE R aλ += +  are 

the prices of market and hedge coskewness, and 12(1 [ ])mkt t ft mktE R aλ += +  and 
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12(1 [ ])jkt t ft jktE R aλ += +  are the prices associated with the various interactions between the 

market and/or the hedge factors. 

Since 11 [ ]t ftE R ++  is always positive, it follows that the signs of these rewards-to-risk will 

depend on the shapes of the investor’s marginal utility and marginal propensity to consume 

functions. Given that mC  and kC  are marginal propensities to consume, the parameters 1m ta  

and 1k ta  can be interpreted as relative risk aversion measures. If the principle of nonsatiety 

with respect to consumption holds ( 0u′ > ) and the investor is risk averse ( 0u′′ < ), then mC  

and kC  will suffice to determine the signs of 1m tλ  and 1k tλ , respectively. Since the aggregate 

wealth is a risky portfolio, it follows that 0mC >  so that 1m tλ  is positive; i.e., the risk-averse 

investor will require a premium to bear market covariance risk. In contrast, 1k tλ  will be 

negative when investing on the hedge portfolio kW  smoothes the level of consumption; i.e., 

when 0kC < . 

The higher-order parameters are more interesting to analyze. Notice that their expressions 

in Eq. (4) contain the third-order derivative of the investor utility function ( u′′′ ). According to 

Pratt (1964), a good utility function must exhibit a decreasing absolute risk aversion, which is 

sufficient to restrict this third-order derivative to be positive (Arditti, 1967).5 In the particular 

case of a two-period economy, the investor consumes everything at the end ( = 1mC  and 

= 0mmC ) so that 2m tλ  will be negative as long as the absolute prudence of the risk-averse 

investor is positive, consistent with Harvey and Siddique (2000a).6 The same relationship also 

holds when it is instead assumed that investment opportunities are constant (Dittmar, 2002) 

or that the marginal propensity to consume mC  is independent of wealth (Errunza and Sy, 

2005). Another interesting particular case is observed under Keynes’s (1936) absolute income 

hypothesis; i.e., when the investor consumes a smaller proportion of the aggregate wealth as it 

increases. In such a case, we have < 0mmC  so that 2m tλ  will be negative when the investor’s 

level of absolute prudence is positive. 
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Still, in general, the signs of the various higher-order parameters are not solely determined 

by the level of the investor’s absolute prudence, since they also depend on the marginal 

propensities to consume. From Eq. (4), we easily verify that 2m tλ  will be negative if and only if 

the absolute prudence is higher than the ratio of the partial derivative of the marginal 

propensity to consume with respect to mW  to its squared value, 2/ /( )mm mu u C C′′′ ′′− > . 

Therefore, 2m tλ  can be positive even when the investor’s coefficient of absolute prudence is 

positive; viz., when 2/( ) / 0mm mC C u u′′′ ′′> − > . The signs of λ 2k s are similarly determined by the 

locus of 2/( )kk kC C  relative to the coefficient of absolute prudence. 

From Eq. (5), it is clear that the TM-ICAPM embeds most of the existing asset-pricing 

models. For example, the ICAPM is the particular case obtained when coskewness risk is not 

priced. In contrast to the ICAPM, the TM-ICAPM implies that the expected return on a risky 

asset will differ from the riskless rate even when it has zero covariance with the market and 

hedge factors. The CAPM makes a further restriction that covariation with any hedge term 

does not matter. In addition, the TM-ICAPM extends the TM-CAPM of Harvey and Siddique 

(2000b) to the pricing of intertemporal risk; i.e., the TM-ICAPM collapses to the TM-CAPM 

when a constant investment opportunity set is assumed. 

3. Data and methodology 

3.1. Data and summary statistics 

This study considers U.S. monthly data that run from July 1963 to December 2004 (498 

observations). The beginning of the sample is set to coincide with the beginning of the period 

examined by Fama and French (1992, 1993). Two types of variables are used: portfolios and 

instruments. Five instruments, motivated by prior research (Fama and Schwert, 1977; Keim 

and Stambaugh, 1986; Fama and French, 1988, 1989), are used to predict returns. These 

include: (a) a constant; (b) TB3M: the three-month Treasury bill yield; (c) DIV: the dividend 

yield of the S&P composite common stock; (d) DEFAULT: the spread between Moody’s Baa 
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and Aaa yields; and (e) TERM: the spread between the ten-year Treasury bond and the three-

month Treasury bill yields. 

Two sets of portfolios are used. The first set comprises five premia: (a) the market 

premium, which is the value-weight return on all NYSE, AMEX, and NASDAQ stocks minus 

the one-month Treasury bill rate; (b) the long-term government bond excess return, which is 

the return on the 30-year government bond minus the one-month Treasury bill rate; (c) the 

size premium (small minus big, SMB); (d) the value premium (high minus low, HML); and (e) 

the momentum premium (up minus down, UMD). These premia will be used in the time-series 

analysis. The second set of portfolios comprises the 25 Fama-French size and book-to-market 

sorted portfolios, which will be used to investigate the cross-sectional performance of the TM-

ICAPM.7  

Table 1 provides summary descriptive statistics on the five portfolios for 1963:7-2004:12. 

All the variables are expressed as continuously compounded monthly returns. Panel A shows 

the unconditional moments. We find that the market, value, and momentum premia are 

significant while the unconditional means of the size and bond premia are statistically 

indistinguishable from zero at the 5% level. The most interesting results are observed on the 

third and fourth moments, which are generally significant. Indeed, the unconditional skewness 

is statistically significant at the 1% level for all of the series except the value premium while 

the unconditional kurtosis is significant for all of the premia, to the extent that the null of 

normality of these series is always rejected at the conventional levels of statistical significance. 

TABLE 1 ABOUT HERE 

Several authors have documented that excess returns on stocks (Ferson and Harvey, 1991, 

1993) and bonds (Campbell, 1987; Ilmanen, 1995) are partially predictable from available 

information. In light of this evidence, non-exploitation of the predictability could bias the tests. 

We follow Harvey and Siddique (2000b) and test whether the instruments help to explain the 

12



 

 

conditional mean, variance, and skewness of the portfolios using the following system of three 

equations:  

1 1 1

2 2
1 2 2

3 3
1 3 3

[ ]

[ ]

[ ]

t pt t p p pt

t pt t p p pt

t pt t p p pt

E r Z r

E r Z r

E r Z r

γ ρ

γ ρ

γ ρ

+

+

+

⎛ ⎞= +
⎜ ⎟

= +⎜ ⎟
⎜ ⎟⎜ ⎟= +⎝ ⎠

 ,     (6) 

where pr  denotes the returns on the market, bond, size, value, or momentum premium, Z  

represents the instruments, and the γ ’s and ρ ’s stand for the parameters used to predict the 

moments of returns. Panel B of Table 1 investigates the dynamic nature of the first three 

moments of returns. For all the premia, the null hypothesis that the mean, variance, and 

skewness are constant over time is rejected at the 1% level. This result justifies our use of the 

conditional method to conduct the empirical tests. 

3.2. Methodology 

Hitherto, the empirical literature has adopted three approaches to model conditional 

covariance and/or test asset-pricing models. The first approach (Harvey, 1989, 1991) consists 

in modeling the first moment of returns, and then using the forecasting errors to construct the 

covariances and test the model’s prediction using the Generalized Method of Moments (GMM) 

of Hansen (1982). The main advantage of this approach is that it allows the retrieving of 

various components of risk premia, but the downside is that it becomes unsustainable when 

the model’s dimension broadens (given the proliferation of orthogonality conditions). 

The second approach (Dumas and Solnik, 1995; Dittmar, 2002) consists in parameterizing 

solely the IMRS and then solving the resulting system using GMM. This has the advantage of 

limiting the number of parameters to estimate, and hence can easily accommodate larger 

models. One important drawback of this approach, however, is that it does not allow gauging 

of the various components of risk premia. Finally, the third approach (De Santis and Gerard, 

1998) consists of modeling the covariances using ARCH-like specifications and then estimating 
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the resulting system using Maximum Likelihood. The main advantage of this approach is its 

robustness. However, as argued by Harvey (1989, p.290), the main disadvantage of this 

approach is the a priori assumption made on the functional form of covariance. 

In this paper, given our particular interest to gauge the various sources of systematic risk, 

we build on the instrumental approach derived by Harvey (1989, 1991). We begin by modeling 

the first moment of returns and then use the forecasting errors to construct the conditional 

covariance and coskewness terms without assuming a particular functional form. Doing so, 

though, dramatically increases the number of parameters, which ultimately renders the GMM 

unusable. As discussed below, we solve this problem by using Aitken’s (1935) Generalized 

Least Squares (GLS). The price we pay in terms of efficiency for precluding GMM, however, is 

small compared to the gains in terms of robustness of the estimates, in addition to being able 

to assess the relative importance of the systematic sources of returns. 

To derive the econometric system, we follow Harvey (1989) and begin by modeling the 

first moments of returns using the following linear filters: 

δ κ+ += − +1 1 ( )pt pt t p p ptx r Z r ,      (7) 

where the x ’s are zero-conditional mean forecasting errors on the various premia, and the δ ’s 

and κ ’s are parameters used by investors to derive the expected returns. With the forecasting 

errors defined in Eq. (7), the second and third comoment terms in the TM-ICAPM follow 

naturally: 

1 1 1 1

1 1 1 1

2 2
1 1 1 1

2 2
1 1 1 1

1 1 1 1 1 1

1 1

[ , ]  [ ]

[ , ]  [ ]

[ , ]  [ ]

[ , ]  [ ]

[ , ]  [ ]

[ ,

t pt mt t pt mt

t pt kt t pt kt

t pt mt t pt mt

t pt kt t pt kt

t pt mt kt t pt mt kt

t pt jt

Cov r r E x r
Cov r r E x r

Cov r r E x r

Cov r r E x r
Cov r r r E x r r
Cov r r

+ + + +

+ + + +

+ + + +

+ + + +

+ + + + + +

+ +

=

=

=

=

=

1 1 1 1]  [ ]kt t pt jt ktr E x r r+ + + +=

.     (8) 
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Substituting Eq. (8) into Eq. (5) and using the linear property of the expectation operator 

yields the following expression for the prediction errors of the TM-ICAPM: 

1 1 1 1 1 1
1

2 2
1 1 0 2 1 1 2 1 1

1

1 1 1 1 1 1
1 1

K

m t pt mt k t pt kt
k
K

pt pt p t m t pt mt k t pt kt
k

K K K

mkt pt mt kt jkt pt jt kt
k k j k

x r x r

e r x r x r

x r r x r r

λ λ

λ λ λ

λ λ

+ + + +
=

+ + + + + +
=

+ + + + + +
= = >

⎛ ⎞
+⎜ ⎟

⎜ ⎟
⎜ ⎟

= − − + +⎜ ⎟
⎜ ⎟
⎜ ⎟
+ +⎜ ⎟⎜ ⎟
⎝ ⎠

∑

∑

∑ ∑∑

 ,   (9) 

where 1[ ] 0t ptE e + = . 

Merton (1973, p.789) suggests that interest rates can capture changes in investment 

opportunities. Following Turtle et al. (1994) and Scruggs (1998), we use the excess return on 

the long-term government bond as a single hedge factor (k b≡ ). Note that in Eq. (9) we have 

not specified the functional form of the prices of risk. Several authors have found that the 

change in reward-to-risk has a greater impact on returns than the change in risk (Ferson and 

Harvey, 1991). Consequently, we assume that the prices of risk vary linearly with the 

instruments: 0 0p t t pZλ = l , 1 1m t t mZλ = l , 1 1b t t bZλ = l , 2 2m t t mZλ = l , 2 2b t t bZλ = l , and mbt t mbZλ = l ; 

where the l ’s are weighting vectors. 

Given the prominence of the size, value, and momentum effects in explaining the cross-

section of returns, the current litmus test for any candidate asset-pricing model is its ability to 

explain these premia.8 Therefore, we apply the TM-ICAPM and its various special cases to not 

only explain the market and bond excess returns but, more challenging, to shed some light on 

the size, value, and momentum premia.9  The following system, which stacks together the 

forecasting errors (Eq. (7)) and the model’s prediction errors (Eq. (9)) on the five premia, is 

used to estimate the various parameters of the models:  
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(10)

Because the error terms should be unpredictable from available information, ε + =1[ ] 0t ptE , 

the GMM is the natural way to estimate Eq. (10). The GMM estimates are obtained by 

setting the expected crossproducts of the error terms with the instruments as close to zero as 

possible. However, in the GMM system, the parameterization of the first moment of returns 

dramatically increases the number of orthogonality conditions, because we need at least as 

many instruments as the maximum number of parameters in any equation. Consequently, Eq. 

(10) yields highly volatile pricing errors when it is estimated with the GMM.  

One way to solve this problem is to restrict the GMM objective function to minimize 

solely the squared pricing errors. This is equivalent to estimating an Ordinary Least Squares 

(OLS).10 Because of the potential correlations between the errors of the different equations, we 

further improve the efficiency of the estimation by making GLS corrections. Specifically, we 
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estimate the parameters by minimizing the following quadratic form: 

ε ε−− −
+ +=
′= Ω∑ 11 1

1 10
ˆ[ ] [ ]T

GLS pt ptt
J T , where the cross-equation covariance matrix Ω  is estimated 

with Zellner’s (1962) SUR effects from the first stage OLS residuals.11 

4. Empirical Illustration 

While Harvey and Siddique (2000a) generalize the conditional CAPM to the three-moment 

framework, we consider intertemporal risk and theoretically extend the ICAPM to the pricing 

of coskewness risk. We estimate the simplest form of the TM-ICAPM by assuming that 

changes in investment opportunities are proxied by a single state variable: the long-term 

government bond. 

4.1. Goodness-of-Fit 

Table 2 investigates the goodness-of-fit of the TM-ICAPM as well as the validity of the 

restrictions implied by the nested asset-pricing models (CAPM, ICAPM, and TM-CAPM). In 

particular, we report for each premium equation the Root Mean Squared Errors (RMSE) and 

the adjusted pseudo-R2. 

Ghysels (1998) suggests the use of the RMSE to compare models. A virtual look at the 

RMSEs for the market, size, value, and momentum premia in Panel B of Table 2 confirms the 

economic significance of conditional coskewness. Among all the asset-pricing models 

investigated, the TM-ICAPM yields the lowest pricing errors for all the premia. The 

superiority of the TM-ICAPM over the CAPM, ICAPM, and TM-CAPM is even more striking 

when we look at the adjusted R2s. For all premium equations, the TM-ICAPM explains more 

than 42% of the time-series variation (the adjusted R2s range from 42.97% for the value 

premium to 62.11% for the market premium). This result is remarkable given that the linear 

models (CAPM and ICAPM) explain less than 7% of the premia variances. Further, the 

relative success of the TM-ICAPM in capturing the time series of Fama-French’s portfolios 

confirms the recent conclusions reached by Liew and Vassalou (2000) and Petkova (2005) that 

these portfolios are related to risk. 
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It is interesting to note that the TM-CAPM performs better than the ICAPM. This 

evidence suggests that it is more important to ease the two-moment restriction of the CAPM 

than to account for intertemporal risk. However, the TM-CAPM is still outclassed by the TM-

ICAPM (at the 1% level), confirming the intertemporal nature of the risk-return relationship. 

Overall, because of the importance of coskewness risk, the CAPM, ICAPM, and TM-CAPM–

all of which overlook, to an extent, the coskewness with the market or the hedge factors–are 

rejected at the 1% level relative to the TM-ICAPM (see Panel A of Table 2). 

TABLE 2 ABOUT HERE 

4.2. Prices of Risk 

Table 3 reports the GLS estimates of the prices of risk in Eq. (10). The average price of 

conditional market covariance is positive and significant at the 1% level ( 1t mZ l = 1.30, t = 

26.23). The price of market covariance varies with the instruments (p-value = 0.00). As can be 

observed from Figure 1, the fitted price of market covariance is time varying and positive in 

nearly 92% of cases. This result is consistent with the theory, which predicts a positive price of 

conditional market covariance. 12  

Extant studies suggest that the CAPM may be misspecified due to the omission of hedge 

terms that describe the investment opportunity set. Our results confirm this hypothesis since 

the long-term government bond covariance is significantly priced at the 1% level ( 1t bZ l = -1.50, 

t = -32.56). The price of bond covariance–albeit unpredictable from the instruments at the 

5% level–is negative most of the time (see Figure 2). 

As can be seen from Figures 3 and 4, the prices of market and bond coskewness risks are 

time varying and, most of the time, positive. This result supports the findings of Harvey and 

Siddique (2000b) that the price of skewness is primarily positive (in 72.80% and 87.18% of 

cases) using two different specifications. The positive nature of prices of coskewness implies 

that constraining this reward-to-risk to be always negative could be restrictive. As alluded to 
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above, information on the shape of the investor’s utility function–in particular, absolute 

prudence–alone is insufficient to determine the sigh of the price of coskewness risk. In other 

words, the price of coskewness risk depends also on the behavior of the marginal propensity to 

consume and cannot, in general, be signed. We find that both the market and bond coskewness 

risks are significantly priced at the 1% level, implying that a nonlinear risk-return relationship 

exists in the United States. 

TABLE 3 AND FIGURES 1 TO 4 ABOUT HERE 

4.3. Variance Decomposition 

The empirical approach used in this study has the important advantage of allowing us to 

assess the sources of systematic variation of the market, bond, size, value, and momentum 

premia. Using Eq. (10), we decompose each of the five premia into an intercept ( 0t pZ l ), a 

cross-term ( 1 1 1t mb pt mt btZ x r r+ + +l ), and four pure systematic effects: market covariance 

( 1 1 1t m pt mtZ x r+ +l ), bond covariance ( 1 1 1t b pt btZ x r+ +l ), market coskewness ( 2
2 1 1t m pt mtZ x r+ +l ), and bond 

coskewness ( 2
2 1 1t b pt btZ x r+ +l ). 

Table 4 shows descriptive statistics on the components of expected risk premium. The first 

reported statistic is the Mean Absolute Deviation (MAD), which tells us how much each 

component deviates from zero (Rouwenhorst, 1999). For the market premium, we find that the 

component due market coskewness is the most significant in terms of risk management, with a 

MAD of about 0.91% per month. Market coskewness also has the most significant MAD of all 

premia but the bond premium, for which bond coskewness is the most important source of risk. 

The importance of coskewness is further confirmed when we consider the ratio of the 

variance of each component to the combined sum of the components variances (%VAR).13 

Market coskewness accounts for about 69.21% of the combined variances of the market 

premium, followed by the cross (16.30%) and bond coskewness (6.34%) terms. Similar results 
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are observed for the size, value, and momentum premia. For the bond premium, market 

coskewness continues to be important, albeit dominated by bond coskewness. 

In contrast, conditional covariance has little explanatory power on the systematic 

variation of the market, size, value, and momentum premia. Indeed, neither covariation with 

the market nor with bond factor is able to explain more than 7% of the combined variances. 

TABLE 4 ABOUT HERE 

4.4. Cross-Sectional Test 

The results presented so far are based on the estimation of a system that considers a set of five 

portfolios to be explained, namely the market, bond, size, value, and momentum premia. This 

section evaluates the performance of the TM-ICAPM using a larger cross-section of assets: the 

25 Fama-French portfolios. These portfolios are formed from the intersection of five size 

portfolios and five book-to-market portfolios. Using these portfolios, we obtain the following 

pooled time-series cross-sectional system of equations: 

1

1 1 1
1 0 1 1 1 1 1 1

2 2
2 1 1 2 1 1 1 1 1

( ) (

)

pt t p

pt pt pt
pt t t m pt mt t b pt bt

t m pt mt t b pt bt t mb pt mt bt

r Z

x e r Z Z x r Z x r

Z x r Z x r Z x r r

δ

ε
+

+ + +
+ + + + +

+ + + + + + +

′⎛ ⎞′⎡ ⎤−⎜ ⎟⎣ ⎦
⎜ ⎟= = ′− − + +⎜ ⎟⎡ ⎤
⎜ ⎟⎢ ⎥⎜ ⎟+ +⎢ ⎥⎣ ⎦⎝ ⎠

l l l

l l l

,   (11) 

were the time-varying intercept and prices of risk are the same for all portfolios.  

Table 5 shows the results from the GLS estimation of Eq. (11). None of the previous 

results on the prices of risk is materially changed by the use of the 25 portfolios. In particular, 

conditional coskewness continues to be significantly priced, and the most important source of 

risk. Moreover, consistent with our previous evidence, all the nested models (CAPM, ICAPM, 

and TM-CAPM) are reliably rejected relative to the TM-ICAPM.14 Furthermore, the 

explanatory power of the TM-ICAPM remains high with a 52.12% average adjusted R2s across 

the 25 portfolios. In comparison, the average adjusted-R2 across the 25 portfolios is about 
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5.24% for the CAPM, 6.08% for the ICAPM, and 35.63% for the TM-CAPM. Overall, this 

evidence supports that the TM-ICAPM is capable of explaining the cross-section of stock 

returns, and performs no worse, but better than the ICAPM or the TM-CAPM. 

TABLE 5 ABOUT HERE 

5. Conclusion 

A Three-Moment ICAPM (TM-ICAPM) has been derived from the expansion of the 

intertemporal marginal rate of substitution of a representative investor as a nonlinear function 

of the market and hedge factors. The derived model is theoretically sound, and implies that 

returns are not influenced solely by their conditional covariance with the market and hedge 

factors, but also by their conditional coskewness with the market and hedge factors. It is 

shown that the equilibrium risk-return relationship, as predicted by the classic ICAPM, holds 

only under the very special case in which coskewness risk is not priced. When coskewness risk 

is priced, expected returns on risky assets may differ from the riskless rate even when they are 

constructed to have zero covariance with the market and the hedge factors. The TM-ICAPM is 

used to investigate the time-series of the market, bond, size, value, and momentum premia as 

well as the cross-section of the Fama-French portfolio returns. We find that the TM-ICAPM is 

remarkably successful in capturing the variation of returns, and performs much better than the 

ICAPM and two- and three-moment CAPM. In particular, the results show that conditional 

covariance is priced, but taken alone, this component of risk premia is unable to describe 

expected returns because conditional coskewness risk is also priced, and appears to be the most 

significant source of risk. Overall, our research implies that the existing linear asset-pricing 

models are misspecified and suggest the use of a nonlinear intertemporal model to price 

securities. 
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6. Appendix: Derivation of the TM-ICAPM 

This section details the derivation of Eq. (3). The starting point is the assumption that the 

IMRS is nonlinearly influenced by the aggregate wealth and hedge portfolios. In other words, 

1 1( )t tC g+ += W  and [ ]1 1 1( ) ( )t t tm h C h g+ + += = W , where (.) (.)/ ( )th u u C′ ′=  and (.)g  are two 

functions that are assumed to be (at least two times) differentiable in the domains that contain 

the points ( )tgW  and tW , respectively. Applying Lagrange-Cauchy’s theorem to expand the 

IMRS around 1t t+ =W W  gives: 
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From the definition of the returns on the aggregate wealth and hedge portfolios, we have 

+ +− =1 1mt mt mt mtW W W r  and + +− =1 1kt kt kt ktW W W r . Substituting the latter identities into (A1) and 

applying the chain rule yields: 
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Since we always have: ( ) 1th C = ; 
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which is Eq. (3). QED■ 
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Notes 

1. See also the studies by Rubinstein (1973), Friend and Westerfield (1980), Sears and Wei 

(1985), Lim (1989), Chapman (1997), Fang and Lai (1997), Harvey and Siddique (2000b), 

Dittmar (2002), and Errunza and Sy (2005). Ghysels (1998) provides evidence that 

nonlinear models work better empirically than linear factor models. Furthermore, Bansal 

and Viswanathan (1993) emphasize the fact that the linear factor-pricing model does not 

hold if security payoffs are nonlinearly related to the factors. The presence of limited 

liability (Black, 1976), bubbles (Blanchard and Watson, 1982), volatility feedback effects 

(Pindyck, 1984), agency problems (Brennan, 1993), overreactions to news (Veronesi, 1999), 

transaction costs (Cao, Coval, and Hirshleifer, 2002), or short-sale restrictions (Hong and 

Stein, 2003) is also consistent with nonlinear payoffs and therefore incompatible with a 

linear risk-return relationship. 

2. Because both parameters are allowed to vary over time, this consumption function embeds 

as particular cases most of the neo-classical models (see the appendix in Thomas (1989) for 

a detailed description of the consumption functions used in the literature). 

3. The detailed proof of this derivation is in the Appendix. See Harvey and Siddique (2000a) 

for the discussion of the rationale behind the choice of a second-order approximation. 

4. The fact that the intercept is not necessarily trivial in theory could explain why extant 

studies (e.g., Harvey, 1989, p.302; Scruggs, 1998, p.589) have empirically documented that 

non-inclusion of the intercept in tests can produce misleading estimates. 

5. Note, however, that nonlinearity does not exclusively result from the behavior of the 

marginal utility of consumption. Indeed, if the marginal propensity to consume is function 

of mW  or kW , the risk-return relationship will be nonlinear even if 0u′′′ = . 

6. The absolute prudence, measured by /u u′′′ ′′− , aims to appraise the investor’s precautionary 

saving motives (Kimball, 1990). 
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7. The market, Treasury bill, and long-term government bond data are from the Center for 

Research in Security Prices (CRSP). The data on SMB, HML, and UMD factors as well as 

the 25 size and book-to-market portfolios are obtained from Professor Ken French’s 

website. DIV is taken from DRI Basic Economics while data for TB3M, DEFAULT, and 

TERM originate from the Federal Reserve Statistical Release (H15).  

8. The size effect is the propensity of small firms to outperform large firms (Banz, 1981), the 

value effect is the tendency of value stocks (stocks with a high book-to-market ratio) to 

outperform growth stocks (Rosenberg et al., 1985), while the momentum effect is the 

tendency of winners (stocks that performed well in the past) to outperform losers over the 

medium term (Jegadeesh and Titman, 1993). 

9. We present in Section 4.4 additional evidence based on a larger cross-section of returns. 

10. Note, however, that in all our systems the forecasting and prediction errors are orthogonal 

to the instruments by construction. This follows from the modeling of the intercepts of the 

prediction equations. 

11. The GLS estimation can be seen as a tradeoff between the robustness of the OLS and the 

efficiency of the GMM; see Cochrane (2001, Sections 10.2 and 11.5) for a discussion of this 

issue. See also Pindyck and Rubinfeld (1981, p.331-333) for a detailed discussion of SUR 

effects, and Green (2000, p.615-616) for the efficiency gain accruing to GLS relative to 

OLS. 

12. In comparison, the prices of market covariance (not reported) estimated from the CAPM 

and the ICAPM are positive in 41.57% and 65.66% of the cases, respectively. 

13. This decomposition of variance ignores the covariances of the components to focus on the 

pure effects. 

14. For the sake of brevity these test results as well as the goodness-of-fit results are not 

reported, but are available from the authors upon request. 
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TABLE 1 

Descriptive Statistics, 1963:7—2004:12 

 A. Unconditional moments  Variable 
Mean Std Dev Skewness Exc. Kurtosis Minimum Maximum Bera-Jarque 

rm 0.470* 4.452 -0.500** 2.033** -23.090 16.050 106.511** 
rb 0.144 2.816 0.396** 2.283** -9.289 13.959 121.218** 
rSMB 0.245 3.258 0.479** 5.211** -16.690 21.490 582.498** 
rHML 0.442** 2.955 0.102 2.348** -12.030 13.750 115.213** 
rUMD 0.842** 4.073 -0.638** 5.335** -25.000 18.380 624.486** 

 B. Conditional moments 

 Mean  Variance  Skewness  All moments  

 χ2 p-value χ2 p-value χ2 p-value χ2 p-value 

rm 20.58** 0.0010 14.32* 0.0137 15.83** 0.0073 55.56** <.0001 
rb 9.05 0.1070 69.13** <.0001 12.84* 0.0250 98.8** <.0001 
rSMB 21.25** 0.0007 218.75** <.0001 175.73** <.0001 680.99** <.0001 
rHML 17.12** 0.0043 84.89** <.0001 7.08 0.2144 102.85** <.0001 
rUMD 1.90 0.8634 75.62** <.0001 2.51 0.7754 89.34** <.0001 

This table reports summary descriptive statistics for the market, bond, size, value, and momentum premia. The market premium ( mr ) is the value-weight 

return on all NYSE, AMEX, and NASDAQ stocks in excess of the one-month Treasury bill return; the bond premium ( br ) is the return on the long-term 

government bond of 30-year maturity in excess of the one-month Treasury bill return; and the size, value, and momentum premia are the returns on the 

SMB ( SMBr ), HML ( HMLr ), and UMD ( UMDr ) portfolios. The statistics presented in Panel A include the first four unconditional moments of the portfolios, 

as well as Bera-Jarque’s χ2 statistic for the test of normality. In Panel B, the results from the Wald tests for time-variation in conditional mean, variance, 
or/and skewness of the various portfolios are presented. The tests are based on the GLS estimation of the following system of three equations: 

( )1[ ]n n
t pt t pn pn ptE r Z rγ ρ+ = +  for n = 1, 2 , 3,      (6) 

where pr  is mr , br , SMBr , HMLr , or UMDr  and Z  are the five instruments, which include: a constant, TB3M: the lagged three-month Treasury bill yields, 

DIV: the lagged dividend yield of the world market index, DEFAULT: the spread between Moody’s Baa and Aaa yields, and TERM: the spread between 

the ten-year Treasury bonds and the three-month Treasury bill yields. The figures reported are the χ2 statistics along with the associated robust p-value 
[in brackets]. Two and one asterisks denote statistical significance at the 1% and 5% levels, respectively. The mean, standard deviation, minimum, and 
maximum are reported in percent per month. The sample covers 498 monthly observations (from July 1963 to December 2004). 
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TABLE 2 

Goodness-of-Fit of the Three-Moment ICAPM and the Nested Models, 1963:2-2004:12 

A. Test of the restrictions implied by the nested models on the TM-ICAPM 

Null hypothesis  χ2 df p-value 

CAPM ( 0 1 2 2: b m b mbH = = = = 0l l l l ) 2177.1** 20 <.0001 

ICAPM ( 0 2 2: m b mbH = = = 0l l l ) 1962.8** 15 <.0001 

TM-CAPM ( 0 1 2: b b mbH = = = 0l l l ) 714.1** 15 <.0001 

Model B. Goodness-of-fit 

 rm rb rSMB rHML rUMD 

 Root mean squared errors (RMSE) 

CAPM 4.36 2.81 3.21 2.93 4.08 

ICAPM 4.31 2.78 3.18 2.90 4.03 

TM-CAPM 3.20 2.52 2.76 2.46 3.36 

TM-ICAPM 2.74 1.74 2.40 2.23 2.98 

 Adjusted pseudo-R2² 

CAPM 4.29 0.80 2.62 1.42 -0.11 

ICAPM 6.10 2.80 4.82 3.70 2.22 

TM-CAPM 48.25 19.65 28.39 30.94 32.06 

TM-ICAPM 62.11 61.76 45.59 42.97 46.53 

Panel A tests the restrictions implied by various nested models on the TM-ICAPM using a Wald test (the χ2 

statistic along with the degrees of freedom and the robust p-value are reported). We test whether the prices 

associated with (a) bond covariance and all coskewness risks are jointly zero (CAPM); (b) all coskewness 

risks are jointly zero (ICAPM); and (c) bond covariance and coskewness risks are jointly zero (TM-CAPM). 

Panel B compares the TM-ICAPM with the nested special cases. For each premium equation, the root mean 

squared errors (RMSE) and the adjusted pseudo-R2²obtained from each model are reported. All estimates are 

obtained from the estimation of Eq. (10). The RMSEs are reported in percent per month while the R2s are in 

percent. Two asterisks denote statistical significance at the 1%. The sample runs from July 1963 to December 

2004. 

33



 

 

TABLE 3 

GLS Estimation of the Three-Moment ICAPM, 1963:7-2004:12 

Estimates  Descriptive statistics Price of risk  
Intercept TB3M DIV DEFAULT TERM Mean (%) %Negative χ2 

 A. Intercepts of the premium equations 

-0.004 -0.001** 0.001** 0.002** -0.000 0.002** 38.76 39.49** Market 0t mZ l  
(-0.768) (-4.875) (4.371) (2.781) (-1.221) (5.513)  [<.0001] 

-0.007* 0.000* -0.000 -0.000 0.001** 0.002** 29.92 17.24** Bond 0t bZ l  
(-2.071) (2.563) (-0.708) (-1.016) (3.870) (11.778)  [0.0017] 

-0.003 -0.001** 0.001** 0.001** -0.001 0.002** 38.55 36.08** Size 0t sZ l  
(-0.690) (-4.877) (4.460) (2.724) (-1.772) (5.748)  [<.0001] 

0.003 0.000** -0.001** -0.001* 0.001** 0.006** 9.84 20.64** Value 0t hZ l  
(0.721) (4.387) (-3.173) (-2.043) (2.872) (27.652)  [0.0004] 

0.010* 0.000 -0.000 -0.001 0.000 0.010** 0.00 1.60 Momentum 0t uZ l  
(1.981) (0.802) (-0.036) (-1.220) (0.629) (128.645)  [0.8088] 

 Prices of risk 

2.523** 0.076** -0.104** -0.328** 0.075 1.296** 8.03 29.32** Market covariance 1t mZ l  
(3.035) (3.342) (-4.047) (-2.772) (1.466) (26.234)  [<.0001] 

-0.469 -0.064 -0.021 0.459* -0.142* -1.504** 92.17 6.44 Bond covariance 1t bZ l  
(-0.339) (-1.612) (-0.314) (2.392) (-1.970) (-32.558)  [0.1685] 

121.927** -1.006** -0.715* 2.337* -2.175** 58.318** 0.00 105.97** Market coskewness 2t mZ l  
(12.918) (-6.968) (-2.558) (1.985) (-7.438) (72.310)  [<.0001] 

224.798** -2.470** 0.876 2.718 -1.043 145.652** 0.20 107.11** Bond coskewness 2t bZ l  
(8.312) (-3.916) (0.522) (0.744) (-1.197) (85.717)  [<.0001] 

-7.255 5.188** -9.964** 0.862 4.624** 7.118* 43.17 95.83** The cross-term t mbZ l  
(-0.296) (8.229) (-8.045) (0.255) (3.969) (2.322)  [<.0001] 

34



 

 

 

The hypothesis that conditional covariance and/or coskewness explain the market, bond, size, value, and momentum premia in the United States is tested 

by estimating the following system: 
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(10) 

where mr , br , SMBr , HMLr , and UMDr  are respectively the market, bond, size, value, and momentum premia, and Z  are our five instruments. All the 

variables are defined in Table 1. The system is estimated with GLS. For each price of risk, the figures reported are the points estimates of the coefficient 

associated with each instrument and the mean value of the equilibrium price of risk with the robust t-statistics (in parentheses), the percentage of negative 

values, and the χ2 statistic associated with the Wald test of the time variation in the price of risk with the robust p-value [in brackets]. Two and one 

asterisks denote statistical significance at the 1% and 5% levels, respectively. The sample runs from July 1963 to December 2004. 
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TABLE 4 

Decomposition of Systematic Risk Premia, 1963:2-2004:12 

Components of 
risk premium 

 rm rb rSMB rHML rUMD 

  A. Mean absolute deviation (MAD) 

Intercept 0pZl  0.716 0.332 0.332 0.332 0.332 

Market covariance 1m p mZ x rl  0.297 0.123 0.152 0.158 0.197 

Bond covariance 1b p bZ x rl  0.125 0.118 0.073 0.069 0.088 

Market coskewness 2
2m p mZ x rl  0.913 0.294 0.388 0.400 0.525 

Bond coskewness 2
2b p bZ x rl  0.405 0.445 0.235 0.199 0.278 

Cross-term mb p m bZ x r rl  0.340 0.180 0.151 0.153 0.179 

  B. Proportion of the variance (%VAR) 

Intercept 0pZl  4.147 4.288 14.427 7.547 0.705 

Market covariance 1m p mZ x rl  3.590 2.278 4.889 5.385 6.302 

Bond covariance 1b p bZ x rl  0.421 2.540 0.690 0.630 0.758 

Market coskewness 2
2m p mZ x rl  69.209 25.604 57.586 66.510 70.149 

Bond coskewness 2
2b p bZ x rl  6.337 53.961 9.999 6.876 10.350 

Cross-term mb p m bZ x r rl
 16.296 11.328 12.409 13.051 11.736 

This table uses Eq. (10) to decompose the expected market, bond, size, value, and momentum premia into an 

intercept ( 0t pZ l ), a cross-term ( 1 1 1t mb pt mt btZ x r r+ + +l ), and four pure systematic effects: market covariance 

( 1 1 1t m pt mtZ x r+ +l ), bond covariance ( 1 1 1t b pt btZ x r+ +l ), market coskewness ( 2
2 1 1t m pt mtZ x r+ +l ), and bond 

coskewness ( 2
2 1 1t b pt btZ x r+ +l ). For each component of risk premia, we report the mean absolute deviation 

(MAD) and the variance relative to the sum of the variances (%VAR). The MADs are reported in percent 

per month while the %VARs are in percent. The maximums are in boldface. The sample runs from July 1963 

to December 2004. 
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TABLE 5 

Cross-sectional Estimation of the Three-Moment ICAPM Portfolio, 1963:7-2004:12 

Estimates  Descriptive statistics Price of risk  
Intercept TB3M DIV DEFAULT TERM Mean (%) %Negative χ2 

0.005 -0.000** 0.000 0.001** -0.000 0.006** 10.64 56.03** Intercept l0tZ  
(1.173) (-3.424) (1.645) (2.998) (-0.519) (24.421)  [<.0001] 

2.840** 0.022* -0.034** -0.239** 0.012 1.191** 7.03 69.12** Market covariance 1t mZ l  
(8.689) (2.353) (-3.197) (-5.088) (0.594) (35.655)  [<.0001] 

-1.170* 0.023 -0.145** 0.413** 0.004 -0.780** 72.29 61.27** Bond covariance 1t bZ l  
(-2.273) (1.592) (-5.858) (5.855) (0.130) (-13.703)  [<.0001] 

107.438** -1.068** 0.055 0.753 -1.883** 51.456** 0.00 342.69** Market coskewness 2t mZ l  
(25.899) (-14.483) (0.405) (1.449) (-13.007) (70.486)  [<.0001] 

217.026** -2.462** 0.678 2.156 -1.299** 126.846** 0.60 458.25** Bond coskewness 2t bZ l  
(17.915) (-8.784) (0.967) (1.394) (-3.035) (73.738)  [<.0001] 

-2.688 5.102** -11.387** 5.284** 3.407** -5.023 51.41 567.36** The cross-term t mbZ l  
(-0.240) (18.352) (-21.481) (3.436) (6.128) (-1.478)  [<.0001] 

 

The hypothesis that conditional covariance and/or coskewness explain the 25 Fama-French portfolios (ranked by size and book-to-market) is tested by 

estimating the following system: 

1
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(11)

Where pr , mr , and br  are respectively the portfolio excess return, and the market and bond premia, and Z  are our five instruments. The system is 

estimated with GLS. For each price of risk, the figures reported are the points estimates of the coefficient associated with each instrument and the mean 

value of the equilibrium price of risk with the robust t-statistics (in parentheses), the percentage of negative values, and the χ2 statistic associated with the 

Wald test of the time variation in the price of risk with the robust p-value [in brackets]. Two and one asterisks denote statistical significance at the 1% 

and 5% levels, respectively. The sample runs from July 1963 to December 2004. 
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Figure 1. Time variation of the prices of market covariance, 1963:7—2004:12. This graph plots the time series 

of the estimated prices of market covariance, which is specified as a linear function of the lagged instruments. 

The estimates are obtained from Eq. (10). NBER recession dates are plotted in the shadowed area. The 

sample covers 498 monthly observations (from July 1963 to December 2004). 
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Figure 2. Time variation of the prices of bond covariance, 1963:7—2004:12. This graph plots the time series of 

the estimated prices of bond covariance, which is specified as a linear function of the lagged instruments. The 

estimates are obtained from Eq. (10). NBER recession dates are plotted in the shadowed area. The sample 

covers 498 monthly observations (from July 1963 to December 2004). 
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Figure 3. Time variation of the prices of market coskewness, 1963:7—2004:12. This graph plots the time series 

of the estimated prices of market coskewness, which is specified as a linear function of the lagged 

instruments. The estimates are obtained from Eq. (10). NBER recession dates are plotted in the shadowed 

area. The sample covers 498 monthly observations (from July 1963 to December 2004). 
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Figure 4. Time variation of the prices of bond coskewness, 1963:7—2004:12. This graph plots the time series of 

the estimated prices of bond coskewness, which is specified as a linear function of the lagged instruments. 

The estimates are obtained from Eq. (10). NBER recession dates are plotted in the shadowed area. The 

sample covers 498 monthly observations (from July 1963 to December 2004). 
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