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Abstract

Volatility movements are known to be negatively correlated with stock index returns.

Hence, investing in volatility appears to be attractive for investors seeking risk diversifica-

tion. The most common instruments for investing in pure volatility are variance swaps, which

now enjoy an active over-the-counter market. This paper investigates the risk-return tradeoff

of variance swaps on the Deutscher Aktienindex (DAX) and EuroStoxx50 index (ESX) over

the time period of 1995 to 2004. We synthetically derive variance swap rates from the smile

in option prices. Using quotes from two large investment banks over two months, we validate

that the synthetic values are close to OTC market prices. Our objective is to analyze the

relationship between index and variance swap returns, including extreme events like Sep-

tember 11, 2001. We find that the variance swap return pattern shows a pronounced kink

at zero index return. This not only highlights the importance of differentiating between up

and down markets but also sheds new light on the leverage effect. Due to the option-like

profile of returns it is crucial to account for the non-normality of returns in measuring the

performance of variance swap investments. Based on the empirical analysis, we finally draw

conclusions for investors. Our backtests result in significant short volatility positions in op-

timal portfolios during the sample period. Typically, the stock index weight is also negative,

since the diversification gain exceeds the loss in expected return.
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1 Introduction

In recent times, institutional and private investors have shown an increased interest in volatility

as an investment vehicle. At first sight, investing in volatility appears attractive since volatil-

ity movements are known to be negatively correlated with stock index returns. Thus, adding

volatility exposure to a portfolio of common stocks promises to improve risk diversification. In

addition, past experience indicates that negative correlation is particularly pronounced in stock

market downturns, offering protection against stock market losses when it is needed most.

If markets are efficient, the favorable characteristics of volatility are naturally reflected in higher

prices of volatility instruments. Therefore, from an investor’s point of view, the crucial question

is which price surplus is charged to get access to this protection against stock market crashes.

Researchers distinguish between different notions of volatility, such as local volatility, forward

volatility, realized volatility and implied volatility. Much research has been directed towards

modeling the dynamics of these different variables and towards understanding how they are

related. Theoretically, several kinds of volatility might qualify as trading objects in volatility

claims. In practice, however, volatility trading is actually concentrated on realized variance or

volatility.

A volatility trade is defined as a position which provides pure exposure to volatility alone without

being affected by directional movements of the underlying asset. Classic methods for trading

volatility, such as buying at-the-money (ATM) straddles, do not meet the demand of pure

volatility exposure. They require frequent rebalancing to keep the options portfolio delta-neutral,

which imposes high transaction costs.1 Therefore, a more convenient solution should provide

a payoff directly tied to measures of realized variance or realized volatility. The most common

claim of this type is a variance swap.2 At expiration, the buyer of this forward contract receives a

payoff equal to the difference between the annualized variance of log stock returns and the swap

rate fixed at the outset of the contract. The swap rate is chosen such that the contract has zero

present value. Thus, it can be interpreted as the risk neutral expectation of unconditional future

variance. Variance swaps on the most common stock indices now enjoy an active over-the-counter

market. This was made possible by theoretical work designing a robust replication strategy. It

consists of a continuously adjusted forward stock holding and a static options portfolio including

long positions in out-of-the-money (OTM) options for all strikes from zero to infinity.3 In a

perfect market, the replication is exact if options with arbitrary strikes are available and the

stock price process is continuous. If stock price jumps occur, a robust replication strategy

still exists, generating only small approximation errors in realistic settings.4 It is important

to note that these results are valid for arbitrary stochastic processes of volatility. Thus, using

this approach, there is no need to assume a specific model of stochastic volatility in order to

synthetically create a variance payoff. Certainly, this does not mean that the stochastic process

of volatility does not influence the fair value of variance swaps. Rather, its influence is captured

1 See Ederington/Guan (2002).
2 Demeterfi et al. (1999) give an overview over the properties of variance swaps.
3 See Neuberger (1994).
4 See Carr/Wu (2004).



1 Introduction 3

indirectly through the market prices of options. Given these prices, we do not need to know the

stochastic behavior of volatility in order to infer the variance swap rate.5 Jiang/Tian (2005)

show, that the model-free implied volatility is a more efficient forecast for future volatility of

the S&P500 index than the Black-Scholes implied volatility and realized past volatility.

Due to their payoff structure and the existence of a robust replication strategy, variance swaps

constitute an ideal instrument for investing in volatility and for studying the market pricing of

volatility risk. The fair value of the instrument, which is equal to the initial cost of the replication

portfolio, can be inferred from the range of (plain vanilla) option prices over all strikes. The mean

difference between the realized variance and the fair value of the variance swap rate quantifies

an estimate of the variance risk premium. This approach was developed and first applied by

Carr/Wu (2004). The authors synthesize variance swap rates for the most common US stock

indices and 35 individual US stocks. Carr and Wu report strongly negative variance risk premia.

Only a small part of the estimated premia can be explained by the negative correlation between

index returns and volatility movements. The magnitude of the negative premium appears to be

too large to be compatible with either the CAPM or the Fama/French (1993) three-factor-model.

A negative variance risk premium provides a possible explanation for the well-known finding of

Jackwerth/Rubinstein (1996) that ATM implied volatilities of index options are typically greater

than realized volatilities. Other studies, using a variety of methods, confirm the observation of a

strongly negative volatility risk premium at the US stock market.6 There is some evidence that

its magnitude depends on the level of implied volatility and the time to maturity7, the buying

pressure for index puts8 and the uncertainty of forward volatility9. The estimated premium

shows significant temporal dependencies.10 Apart from these observations, it is still an open

question which economic factors and settings cause selling variance to be perceived as risky

enough to charge a high premium. An alternative interpretation is that a high premium does

not have an economic meaning but reflects systematic overpricing of out-of-the money calls and

puts.

Since options over the whole range of possible strikes enter the replicating portfolio, variance

swaps provide a direct link between implied and realized volatilities. The variance swap rate

can be regarded as a representation of the implied volatility structure (“smile”). Thus, the

large body of literature on the shape and dynamics of implied volatility surfaces is relevant for

understanding the determinants of variance swap rates. An overview over the main findings of

this line of research can be found in Hafner (2004).

5 For a derivation of the fair delivery price for variance swaps assuming a specific stochastic volatility model see,

e.g., Howison et al. (2005).
6 See Chernov/Ghysels (2000), Coval/Shumway (2001), Pan (2002), Bakshi/Kapadia (2003), Eraker et al.

(2003), Driessen/Maenhout (2003), Doran/Ronn (2004b), Doran/Ronn (2004a), Bondarenko (2004), Moise

(2004), Santa-Clara/Yan (2004).
7 See Bliss/Panigirtzoglou (2004).
8 See Bollen/Whaley (2004).
9 See Carr/Wu (2004).
10 See Bollerslev et al. (2005) and Santa-Clara/Yan (2004).



2 Inferring Variance Swap Rates from the Smile in Option Prices 4

To the best of our knowledge, this is the first empirical study on synthetically constructed

variance swaps on European stock indices. We focus on the “Deutscher Aktienindex” (DAX)

and the European stock index EuroStoxx50 (ESX) as the indices with the most liquid options

and futures trading. Our database consists of tick data for DAX options (introduced at the

Eurex in 1994) over the time period 1995-2004 and for ESX options (introduced in 1999) over

the years from 2000 to 2004.

Apart from providing results for Europe which can be compared to the U.S. evidence, our study

contributes to the literature in the following ways: We carefully analyse the relationship of

variance swap returns with index returns, including extreme events like September 11, 2001.

The variance swap return pattern shows a pronounced kink at zero index return. This not only

highlights the importance of differentiating between up and down markets but also sheds new

light on the leverage effect. Due to the option-like profile of returns it is crucial to account for the

non-normality of returns, which we do by adjusting betas. We also draw conclusions for investors

and focus on the structure of optimal portfolios, given historical parameter estimates. A further

extension (but of minor importance) is our use of transaction data instead of settlement prices to

estimate the volatility smile. The latter are often unreliable for OTM options, and it is usually

impossible to achieve a perfect matching to the stock index level. Using tick data allows us to

account for specific features of the indices (dividend and tax effects) which are important in

Europe. Additionally, using quotes for variance swaps from two major investment banks over

the last two months of 2004, we are able to validate that our synthetically computed variance

swap prices were close to OTC market prices in this period.

The paper is organized as follows: In Section 2, we derive estimates of variance swap prices from

the implied volatility structure of index options. We also decompose these prices to illustrate

the influence of different smile characteristics. In Section 3, we analyze the distribution of

variance swap returns and test, whether the sample mean returns are compatible with standard

equilibrium models. Section 4 deals with the implications of our findings for investors. We

determine “optimal” portfolio weights of variance swaps in a mean-variance framework and

under power utility. The paper concludes with a brief summary.

2 Inferring Variance Swap Rates from the Smile in Option Prices

2.1 Valuation Formula

Given a stock price process S sampled on N equidistant points in time 0 = t0 < t1 < t2 < . . . <

tN = T, where ∆t denotes the length of the sampling interval, a variance swap is a forward

contract on the realized variance of stock returns. Its payoff at expiry is:

VARST =
(
υ̂2T (N)−KVARS

)
· N , (1)

where υ̂2T (N) is the realized variance (quoted in annual terms) over the life of the contract [0, T ],

KVARS is the delivery price for variance and N is the notional amount of the swap in euros

per annualized volatility point squared. At expiry, the holder of a variance swap receives N
euros for every point by which the realized stock variance υ̂2T (N) exceeds the delivery price for
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variance KVARS . The procedure for computing the realized variance has to be specified in the

contract. In a typical contract, the stock price is sampled each trading day at the official close,

i.e. ∆t = 1/252, and the mean of daily stock returns is assumed to be zero. Formally, υ̂2T (N) is

usually defined as:

υ̂2T (N) =
1

∆t (N − 1)
N∑

i=1

(Rti)
2 , (2)

where Rti = ln(Sti)− ln(Sti−1) for i = 1, . . . ,N.11

Suppose the stock price process S = {St : t ∈ [0, T ]} is a pure diffusion with drift process µ =

{µt : t ∈ [0, T ]} and volatility process υ = {υt : t ∈ [0, T ]}:12

dSt = Stµtdt+ StυtdWt, ∀t ∈ [0, T ] , (3)

where W = {Wt : t ∈ [0, T ]} is a one-dimensional standard Brownian motion. Volatility may be

constant, deterministic or stochastic. For a given price history, the realized continuously sampled

variance wT over the interval [0, T ] is defined by:

wT =
1

T

∫ T

0
υ2tdt, (4)

where the integral
∫ T
0 υ

2
tdt is known as the (realized) total variance over the interval [0, T ]. The

continuously sampled variance wT is a good approximation to the realized (discretely sampled)

variance υ̂2T (N) of daily returns used in the contract specifications of most variance swaps, i.e.

wT ≈ υ̂2T (N).13

In principle, valuing a variance swap is no different from valuing any other contingent claim.

According to the risk-neutral valuation formula, the arbitrage free value of a variance swap

at time t ∈ [0, T ] is the discounted expected value of the future payoff under the risk-neutral

measure Q. Since the fair value of variance is the delivery price KVARS that makes the swap

value zero today (VARS0 = 0), it follows that:
14

KVARS = EQ [wT |Ft] =
1

T
EQ

[∫ T

0
υ2tdt

]
. (5)

Generally, given a deterministic or stochastic volatility process, the expectation on the right-hand

side of equation (5) can either be computed analytically or it must be numerically approximated.

Alternatively, the valuation can be based on a model-independent trading strategy that exactly

replicates variance.15 In fact, it can be shown that if the stock price process is a diffusion and

11 Sometimes the maximum likelihood estimator of variance 1
∆tN

∑N

i=1 (Rti)
2 is used instead of the sample

variance 1
∆t(N−1)

∑N

i=1 (Rti)
2
. The difference is, however, usually very small.

12 The drift process µ and the volatility process υ are required to be progressively measurable.
13 Exact equality is given in the limit: lim

N→∞
υ̂2T (N) = wT .

14 Note that EQ [X|F0] = EQ [X].
15 See Carr/Madan (1997) and Demeterfi et al. (1999).
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interest rates are constant, then the fair value of variance is given by the value of an infinite

strip of European options:

KVARS =
2

T
erT

(∫ F0(T )

0

1

K2
P0(K,T )dK +

∫ ∞

F0(T )

1

K2
C0(K,T )dK

)
, (6)

where C0(K,T ) and P0(K,T ), respectively, denote the current market price of a call and a put

option of strike K and maturity T , and F0(T ) = S0e
rT is the stock’s T -maturity forward price.

Defining σ0(K,T ) as the Black-Scholes implied volatility at time t = 0 of an option with strike

K and maturity T , we can express the fair swap delivery price as:

KVARS =
2

T
erT

∫ F0(T )

0

1

K2
PBS (K,T, σ0(K,T ))dK (7)

+
2

T
erT

∫ ∞

F0(T )

1

K2
CBS(K,T, σ0(K,T ))dK,

where the suffix BS indicates that prices come from the Black-Scholes model.

2.2 Data

Our database comes from the joint German and Swiss options and futures exchange, Eurex.16

It contains all reported transactions of options and futures

• on the German stock index DAX from January 1995 to December 2004 (option “ODAX”,

future “FDAX”), and

• on the European stock index Dow Jones Euro Stoxx 50 (ESX) from January 2000 to

December 2004 (option “OESX”, future “FESX”).

The options are European style. At any point in time during the sample period, at least

eight option maturities were available. However, trading is heavily concentrated on the nearby

maturities. The contract values amount to 5 euros (ODAX) and 10 euros (OESX), respectively.

Trading hours changed several time during our sample period, but both products were traded

at least from 9:30 a.m. to 4:00 p.m.

The ODAX and OESX options have been more heavily traded than any other index option in

Europe. The average number of trades per day of all DAX options went up from about 2’000 in

1995 to 3’000 in 2004, with a peak of 3’700 trades in the year 2000. The average size of ODAX

trades varied between a minimum of 33 contracts in 2000 and a maximum of 54 contracts in

2004. This contrasts with the significantly higher mean trade size of about 115 (in 2000) to 240

(in 2004) OESX contracts. The number of trades in OESX options strongly increased from an

average of 260 trades per day in 2000 to over 1’000 trades per day in 2004. Since 2003, the total

number of traded OESX contracts has exceeded the number of ODAX contracts (63.8 million

versus 40.5 million in 2004).

16 We are very grateful to the Eurex for providing the data.
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To calculate the implied volatility for each transaction, it is crucial to accurately match the

corresponding underlying index level. We derive the stock index price St,n on day t at minute

n from the current price Ft,n of the futures contract most actively traded on that day. The

maturity of this contract, which is typically the nearest available, is denoted by TF . The value

Ft,n(TF ) corresponds to the average transaction price observed in the TF -futures contract in

minute n on day t. To obtain the corresponding index level, we solve the theoretical futures

pricing model

Ft,n(TF ) = St,ne
r(TF−t)

for St,n. This procedure ensures that the time stamps of options and underlying prices diverge

by not more than one minute.

The DAX is a performance index in which dividends are reinvested. However, as Hafner/Wallmeier

(2001) point out, the DAX-calculation does not accurately consider corporate and personal taxes

on dividends. Therefore, the dividends assumed to be reinvested might be different from the

dividends the stockholders actually receive. This discrepancy can be interpreted as a (positive

or negative) “extra” dividend not accounted for in the index. If we neglect this tax effect, the

implied volatilities of calls and puts with the same strike diverge, falsely indicating violations of

put-call parity. To avoid this problem, we increase or diminish all stock prices St,n on trading

day t for options with maturity TO by an amount At,TO such that ATM puts and calls have the

same implied volatility. Thus, the adjusted underlying price used to calculate implied volatilities

is defined by:

Št,n = Ft,n(TF )e
−r(TF−t) +At,TO ,

where At,TO is a put-call parity consistent correction amount. This adjustment is separately done

for each combination of option (ODAX or OESX), trading day and maturity.

We calculate risk-free interest rates from money market rates for 1, 3, 6, and 12 months. All

interest rates are converted to continuously compounded rates and expressed in the daycount

convention Actual/Actual. For an arbitrary time period τ , the τ -period risk-free interest rate r

is obtained by linear interpolation between the available rates enclosing τ .

2.3 Estimating ODAX and OESX Volatility Smiles

For each trading day and each time to maturity available on that day, we estimate a smooth

curve of implied volatilities across strike prices. Let K denote the strike price of an option with

time to maturity T − t. Each trade is assigned a moneyness according to:

M(t, n, S, T,K) =
ln
(

K

Št,ner(T−t)

)

√
T − t .

Suppressing the arguments of moneyness, we chose the cubic regression function:

σ = β0 + β1M + β2M
2 + β3D ·M3 + ε, (8)

where σ is the implied volatility, βi, i = 0, 1, 2, 3 are regression coefficients, ε is a random error,

and D is a dummy variable defined as:

D =

{
0 , M ≤ 0
1 , M > 0

.
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Figure 1: Scatterplot of implied volatility across moneyness for all trades of DAX options with

a time to maturity of 42 days on December 10, 2004. The line shows the estimated regression

function with constant extension outside the range of moneyness observations.

The dummy variable accounts for an asymmetry of the pattern of implied volatilities around

the (forward) ATM strike (M = 0). Typically, the “smile” is better characterized by a “sneer”,

with the negative relation between implied volatility and moneyness extending clearly beyond

M = 0 (see, as an example, Figure 1). Only when the call (put) is deep out-of-the-money

(in-the-money) the implied volatility function forms a minimum and eventually rises slightly.

A quadratic or cubic regression without differentiating between M ≤ 0 and M > 0 does not

capture this increase. The regression function (8) is twice differentiable, which ensures that the

corresponding risk-neutral density is continuous.

The implied volatility of deep in-the-money calls and puts is very sensitive to minor non-

synchroneity of options and futures prices. Thus, the variance of the regression error term is

supposed to increase as options go deeper in-the-money. To account for this heteroskedasticity

of the disturbances we apply a weighted least squares estimation assuming that the disturbance

variance is proportional to the positive ratio of the option’s delta and vega.17 This ratio indi-

cates how an increase in the index level by one (marginal) point affects the implied volatility of

an option, given the option’s market price.

In view of the large number of intraday transactions it is clear that some extreme deviations

occur representing “off-market” implied volatilities. They can, for example, be the result of a

faulty and unintentional input by a market participant. In this case, the trade can be annulled

if certain conditions are fulfilled. To exclude such unusual events we discard all observations

corresponding to large errors of more than four standard deviations of the regression residuals

17 The delta and vega are computed using the implied volatility of the corresponding option. The delta of puts

is multiplied by −1 to obtain a positive ratio.
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where the standard deviation is computed as the square root of the weighted average squared

residuals. We then repeat the estimation on the basis of the reduced sample until no further

observations are discarded (trimmed regression). We examined the impact of this exclusion of

outliers and found it to be negligible in all but very few cases.

The smile estimation according to equation (8) is based on all trades of one day in options

with the same time to maturity. In order to obtain an estimate of the smile for a given,

pre-specified time to maturity of τ calendar days, we linearly interpolate between the implied

variances σ2t (M,T1) and σ
2
t (M,T2) of the two neighbouring maturities which are available (see,

e.g., Wilmott (1998), p. 290). Formally:

σ2t (M,T = t+ τ days) =
T2 − T
T2 − T1

σ2t (M,T1) +
T − T1
T2 − T1

σ2t (M,T2) (9)

where

T : assumed (fictitious) expiration date τ calendar days in the future;

T1 : latest available expiration date before T or equal to T ;

T2 : earliest available expiration date after T .

In this study, we choose τ = 45 calendar days, because ODAX and OESX option series with

lifetimes between 30 and 60 days are the most liquid contracts. This ensures an accurate

estimation of the smile.

Average estimates of the smile regression coefficients are given in Table 1. The average is taken

over the trading days of one year, where each trading day is represented by the option with a

lifetime nearest to 45 calendar days. The yearly average of the ATM implied volatility β0 varies

between 12% and 35%. The other coefficients have the expected signs: β̄1 is always negative,

whereas β̄
2
and β̄

3
are typically positive. The mean number of observations (N̄) available for

estimating the smile is markedly higher for ODAX compared to OESX. With the exception of

1995, the mean R2-coefficient is always larger than 95%.

ODAX OESX

β̄0 β̄1 β̄2 β̄3 N̄ R̄2adj β̄0 β̄1 β̄2 β̄3 N̄ R̄2adj
1995 0.144 -0.092 0.101 0.578 508 0.921

1996 0.123 -0.158 0.075 1.964 503 0.967

1997 0.233 -0.147 0.017 0.911 622 0.955

1998 0.305 -0.190 -0.005 0.456 674 0.978

1999 0.257 -0.184 0.011 0.615 862 0.985

2000 0.234 -0.114 0.051 0.258 837 0.970 0.242 -0.137 0.067 0.813 65 0.962

2001 0.249 -0.136 0.059 0.313 806 0.965 0.258 -0.142 0.063 0.377 141 0.960

2002 0.346 -0.149 0.046 0.188 755 0.973 0.337 -0.162 0.048 0.344 177 0.969

2003 0.318 -0.148 0.041 0.292 719 0.978 0.291 -0.163 0.051 0.492 254 0.971

2004 0.187 -0.155 0.081 0.760 734 0.982 0.171 -0.180 0.081 1.547 236 0.982

Table 1: Yearly averages of estimated smile regression coefficients. Each trading day is repre-

sented by the option with the time to maturity nearest to 45 days.

We assume the smile function of equation (8) to be valid in a moneyness-range between the

lowest and highest moneyness of all observations considered in the last step of the trimmed
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regression, i.e. excluding outliers according to the 4-sigma rule. Outside this range, we assume

implied volatilities to be constant on the volatility level of the relevant moneyness boundary

(see Figure 1). This corresponds to a conservative estimate of the fair values of options far in

or out-of-the-money. Other extrapolation techniques would provide higher variance swap rates

and (even) lower variance returns.

Since we are interested in statements about the real world, the “quality” of the synthetically

derived prices is crucial for the further analysis. Actual variance swap prices may deviate from

the synthetic prices for a number of plausible reasons such as liquidity premia and transaction

costs.18 We had access to OTC quotes from two large investment banks for the last two months

in 2004 to partially validate our model prices. With the exception of two trading days for

one bank, our estimates are always inside the bid-ask-spread (typically 1 volatility point). This

supports the premise that synthetic prices are “close enough” to actual prices for our conclusions

to be reliable.

2.4 Variance Swap Rates

D��������	� A��
����

Figure 2 displays daily swap rates for variance swaps on the DAX index (black line) and ESX

index (gray line) with a time to maturity of 45 calendar days over the sample period January

1995 to November 2004 (DAX) and January 2000 to November 2004 (ESX). Table 2 presents

some additional information on the distribution of these series.

Both series exhibit a strong mean-reverting behaviour with relatively well-defined lower and

upper bounds. As can be seen from the graph, variance swap rates are exceptionally high in

situations of crisis. For example, the swap rate of a 45 calendar days variance swap on the DAX

initiated during the Russian crisis in 1998 amounted to 0.4232 (or 65.06% in volatility space)

compared with a mean swap rate of 0.0770 (or 27.75%). Although the maximum DAX variance

swap rate drops in the period from 1995 to 1999, swap rates were generally higher in the period

from 2000 to 2004. Actually, the mean swap rate in the second period is roughly 55% higher

than the mean swap rate in the first period. The high standard deviations of both series indicate

substantial fluctuations over time. The estimated skewness and kurtosis suggest a highly non-

normal distribution of DAX and ESX variance swap rates. Since the distributions are skewed

to the right, we observe volatility shocks more often to the upside than to the downside.

Comparing DAX and ESX swap rates, the DAX swap rate generally exceeds the ESX swap rate.

On average, the difference amounts to roughly 1 volatility point. The lower ESX swap rates

may be explained by better diversification of the ESX index.

18 See Branger/Schlag (2004), who analyze hedging of variance contracts under model risk, parameter uncertainty

and trading frictions.
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Figure 2: DAX and ESX variance swap rates over the time period January 1995 through

November 2004.
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Figure 3 shows the spread of the swap rate KVARS over the forward ATM implied variance

σ2t (K=Ft(T ), T ) for DAX and ESX variance swaps. To control for level effects, we normalize

the spread by dividing through the ATM implied variance.19 As theory suggests, this relative

spread is always positive. It ranges from about zero to roughly 100%. As is apparent from the

figure, the relative spread fluctuates substantially. This results from a changing smile pattern

over time. When the smile becomes more pronounced, the spread increases, and vice versa.

Spread variations appear to have increased over time. When comparing the evolution of the

variance swap rates in Figure 2 to the evolution of the spreads in Figure 3, we find little or no

relationship. In fact, the correlation is 0.069 in the case of the DAX and -0.085 in the case of

the ESX.

In a further analysis, we decompose the difference between the variance swap rate and the

ATM implied variance (called absolute spread), into three components: a slope, a curvature,

and an asymmetry component. The slope component is defined as the difference between the

variance swap rate computed on the basis of the linear smile function σt(M,τ) = β0 + β1M

and the variance swap rate computed on the basis of the flat smile function σt(M,τ) = β0 (i.e.

the forward ATM implied volatility). The difference between the two swap rates can hence be

attributed to the linear smile term β1M . The curvature component β2M
2 and the asymmetry

component β3DM
3 are defined analogously. Figure 4 shows the average values of the three

19 Note that the forward ATM implied variance equals the fair price of a variance swap for a flat smile.
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Period Mean Minimum Maximum Std.dev. Skewness Kurtosis

95-04 0.0770 0.0115 0.4232 0.0643 1.84 6.34

(0.2775) (0.1076) (0.6506)

DAX 95-99 0.0605 0.0115 0.4232 0.0535 2.18 9.37

(0.2450) (0.1076) (0.6506)

00-04 0.0941 0.0241 0.3746 0.0696 1.61 4.80

(0.3067) (0.1553) (0.6121)

ESX 00-04 0.0887 0.0205 0.4187 0.0658 1.78 5.81

(0.2978) (0.1435) (0.6471)

Table 2: Summary statistics for daily swap rates of DAX and ESX variance swaps with a time

to maturity of 45 calendar days. Summary statistics in volatility space are given in parentheses.
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components. Clearly, the slope component dominates. Almost 60% to 70% of the average

absolute spread can be traced back to this component. An additional 20 to 30% of the average

spread may be attributed to the curvature component. The remainder of roughly 10% of the

average spread goes back to the asymmetry component.
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Figure 4: Decomposition of the average absolute spread of the variance swap rate over the

ATM implied variance in a slope, a curvature, and an asymmetry component.
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3 Empirical Evidence on Variance Swap Returns

3.1 Distribution of Variance Swap Returns

In this section, we investigate the distributional properties of variance swap returns. Using

daily data over the period 1995-2004 (DAX) and 2000-2004 (ESX), respectively, we compute on

each trading day t ∈ {1, ..., Ni} , i ∈ {DAX,ESX} ,NDAX = 2472, NESX = 1209, the following

return measures for DAX and ESX variance swaps with a fixed time to maturity of 45 calendar

days (i.e. T = t+ 45 calendar days):

• Payoff VARST : the euro amount of money the holder of a long position in a variance

swap with notional amount N =100 EUR receives at expiry T :

VARST =
(
υ̂2T (N)−KVARS

)
· 100 EUR. (10)

• Discrete return RVARS : the simple net return of a long position in a variance swap contract:

RVARS =
υ̂2T (N)

e−rTKVARS
− 1. (11)

This definition is motivated by the fact that if an investor creates the fixed part of the

variance swap payoff by purchasing at the contract’s outset t = 0 the proper replicating

portfolio, the initial cost is e−rTKVARS , and the terminal payoff at expiry T is the realized

variance over the contract’s lifetime υ̂2T (N).
20

• Log return rVARS : the continuously compounded return of a long position in a variance

swap contract:

rVARS = ln (1 +RVARS) = ln

(
υ̂2T (N)

e−rTKVARS

)
= ln

(
υ̂2T (N)

)
− ln

(
e−rTKVARS

)
(12)

By subtracting the (continuously compounded) risk-free rate from the discrete or log variance

swap return, we obtain the variance or log variance risk premium.21

Table 3 presents summary statistics on the distribution of DAX and ESX variance swap returns.

The mean returns are negative in all time periods. This holds for payoffs, discrete returns as well

as for log returns. To test their statistical significance, we construct robust t-statistics, using

the serial-dependence adjusted Newey/West (1987) estimator for the standard deviation with a

lag of 33.22 The large t-statistics suggest that the mean returns are significantly different from

zero.23 The implication of this is that variance swap levels over-estimate subsequently realized

20 Such a return is sometimes called “unleveraged”, because the economic exposure underlying the swap contract

is fully collateralized by the purchase of risk-free money market instruments. This terminology is, e.g., standard

in the field of commodity futures indices.
21 See, e.g., Carr/Wu (2004) and Bondarenko (2004). Note that Carr/Wu (2004), p. 28 label the variance swap

payoff VARST as the variance risk premia.
22 Our choice of a fixed time to maturity of 45 calendar days corresponds to approximately 33 trading days.
23 There is only one mean return (DAX, period 2000-2004) that is not statistically significant at the 5% level.
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DAX ESX

95-04 95-99 00-04 00-04

Mean -1.291 -0.988 -1.597 -1.894

t-statistic Mean -3.348 -2.220 -2.547 -3.210

Median -1.324 -0.691 -2.053 -2.133

Minimum -27.716 -27.716 -17.576 -23.899

VARST Maximum 20.016 15.246 20.016 18.266

Std. dev. 4.342 3.521 5.019 4.771

Skewness 0.979 -0.392 1.503 0.788

Kurtosis 8.502 10.022 7.048 6.662

Mean -0.125 -0.114 -0.136 -0.193

t-statistic Mean -2.468 -1.988 -1.626 -2.754

Median -0.277 -0.228 -0.321 -0.342

Minimum -0.792 -0.792 -0.787 -0.809

RVARS Maximum 3.886 1.966 3.886 2.653

Std. dev. 0.548 0.451 0.632 0.520

Skewness 2.689 1.435 3.037 2.282

Kurtosis 13.246 5.308 13.921 8.793

Mean -0.271 -0.235 -0.307 -0.360

t-statistic Mean -5.877 -3.927 -4.412 -5.270

Median -0.324 -0.259 -0.387 -0.419

rVARS Minimum -1.569 -1.569 -1.547 -1.658

Maximum 1.586 1.087 1.586 1.295

Std. dev. 0.498 0.472 0.521 0.510

Skewness 0.560 0.176 0.890 0.676

Kurtosis 3.690 2.781 1.475 3.545

Table 3: Summary Statistics for payoffs, discrete returns and log returns of variance swaps

on the DAX and ESX index with a time to maturity 45 calendar days. Robust t-statistics are

calculated using the Newey-West estimator for the standard deviation with a lag of 33.

variance. It is well-known that ATM implied volatility tends to be higher than subsequent

realized volatility.24 Due to the option’s smile, variance swap levels are even higher than the

ATM variance (see Figure 3), and so this increases the spread further. As the table shows,

it has been more profitable to initiate a short position in DAX variance swaps in the second

period from 2000 to 2004 than in the first period from 1995 to 1999. In the second period,

however, it would have been even more advantageous to shorten ESX variance swaps. The

mean discrete return for 45-days ESX variance swaps in the period from 2000 to 2004 is minus

19.3%, while it is only minus 13.6% for DAX variance swaps. The above results show that on

average, investors are willing to accept a heavily negative risk premium for being long in realized

variance. Equivalently, investors who are sellers of variance and are providing insurance to the

market, require a significantly positive risk premium.

24 See, e.g., Jackwerth/Rubinstein (1996).
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Figure 5: Discrete variance swap returns over over time.

The fact that selling variance swaps is profitable on average, does not mean that all sales of

DAX or ESX variance have been profitable. In fact, the high standard deviations indicate

considerable variation in the variance swap returns over time. As Figure 5 illustrates, there

have been a number of high realized variance periods that were not anticipated in variance swap

levels (most obviously the months in the forefront of major crises: July/August 1998, February

2001, August/September 2001, and June 2002). Selling variance swaps during these periods

caused substantial losses. Comparing Figure 5 with Figure 2 and Figure 3, it appears that

selling variance swaps has been more profitable in higher variance environments and periods

with steeper smiles.

The payoff and discrete return distributions of DAX and ESX variance swaps are clearly non-

normal - they show positive skewness and excess kurtosis. The log transformation of discrete

returns to continuously compounded returns, however, reduces the skewness estimate for DAX

(ESX) variance swap returns in the period from 1995-2004 (2000-2004) from 2.689 (2.282) to

0.560 (0.676) and the kurtosis estimate from 13.246 (8.793) to 3.690 (3.545). The log return

distributions appear to be close to normal distributions, though standard tests (Jarque-Bera

test, Kolmogorov-Smirnov goodness-of-fit test, etc.) reject normality. Figure 6 illustrates these

results. It shows the empirical density functions for the log returns of DAX and ESX variance

swaps along with normal distributions having the same means and the same variances as those

estimated from the samples. Comparing the distributions of DAX and ESX log variance swap

returns, they are in most cases close to each other (see Figure 7). In some cases, however, they

strongly deviate. For example, during the period July 30th to September 10th 2001 the log

return of DAX variance swaps is significantly higher than the log return of ESX variance swaps

(points marked as crosses in the graph).
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3.2 Relationship with Index Returns

As first discussed by Black (1976), the volatility of stock index returns tends to increase when

stock prices drop. This negative correlation between past stock returns and future volatility

is often referred to as “asymmetric volatility”.25 Early studies hypothesized that the higher

volatility might be explained by the increase in debt-to-equity ratios induced by a stock market

downturn.26 However, this “leverage effect” explanation turned out to be incompatible with

empirical observations. Analyzing the individual stocks in the S&P100 index and the index

itself, Figlewski/Wang (2000) conclude that changes in leverage cannot account for the observed

magnitude of the volatility-return correlation. There is considerable evidence that the impact of

negative stock returns on volatility is much stronger than the response of volatility to positive

returns.27 Thus, the observed relationship might be better characterized as a “down market

effect”.28

The stylized fact that negative returns tend to be followed by high return fluctuations does not

necessarily mean that the effect is return-driven. The causality could also run in the opposite

direction from volatility to returns. If volatility is associated with systematic risk, an anticipated

increase in volatility will immediately lower the fundamental stock price. According to this

“volatility feedback” hypothesis, the stock price decline is caused by a reassessment of future

volatility.

Under both of these explanations, we expect to find a negative correlation between the relative

profit or loss from a long position in a variance swap and the contemporaneous stock return.

If, for example, a decline in stock prices shortly after initiation of the variance swap leads to

a higher subsequent volatility, this negative stock return is good news for the variance swap

holder. The magnitude of the negative correlation depends on the temporal structure of the

volatility-return relationship.

Figures 8 and 9 are scatterplots of variance swap returns versus index returns, conditioned on

falling or rising stock markets (left and right graphs, respectively). In each scatterplot, the solid

straight line represents a linear OLS regression of the form

rVARS,t = a+ brS,t + ǫt,

where a, b are regression coefficients, rVARS,t is the log-return of a long position in a variance

swap starting at time t with a time to maturity of 45 calender days, rS,t is the concurrent stock

index return, and ǫt is a random error with zero expected value. A new variance swap is bought

each day, so that t corresponds to the trading days in the sample period.

The regression equation is separately estimated for all observations where t ∈ {t | rS,t < 0}
(“down markets”) and for t ∈ {t | rS,t ≥ 0} (“up markets”). The estimated regression coefficients

and t-statistics based on Newey/West (1987) adjusted standard errors are given in Table 4. In

25 See, e.g., Wu (2001) with futher citations.
26 See Black (1976) and Christie (1982).
27 See, e.g., Haugen et al. (1991) and Bekaert/Wu (2000).
28 See Figlewski/Wang (2000).
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Figure 8: Scatterplot of log return variance swap versus log return DAX over all intervals of 45

days in the sample period from 1995 to 2004. Left (right): observations with negative (positive)

DAX returns.

down markets, we find a significantly negative estimate of b for DAX as well as ESX variance

swaps, ranging from −4.2 to about −5.0. The index return explains 30 to 38% of the variation of

swap returns. In up markets, the estimated regression line is almost flat. In agreement with the

descriptive return statistics in Section 3, all estimates of a are significantly negative. Thus, the

holder of a DAX or ESX variance swap on average incurred a constant relative loss when stock

returns were zero or positive. This loss can be interpreted as a premium he has to pay in order

to receive rising gains in case of a stock price decline, especially a crash. The crash-intervals

provide the highest returns to the variance swap holder. Yet, these returns are well captured by

the linear regression line. Adding a quadratic regression term yields insignificant estimates for

the slope coefficient of the squared index return. In this sense, the crash returns do not appear

extraordinary.

In all, as Figures 8 and 9 show, the return profile in the sample period resembles the payout

structure of an ATM long put. In the next section, we will analyze whether the magnitude of

the “option premium“ is compatible with standard equilibrium pricing models.
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Figure 9: Scatterplot of log return variance swap versus log return ESX over all intervals of 45

days in the sample period from 2000 to 2004. Left (right): observations with negative (positive)

ESX returns.

rS< 0 rS≥ 0
a b R2 a b R2

ODAX 95-04
−0.3842
(−6.13)

−4.20
(−6.60) 0.3217

−0.4254
(−6.77)

−0.02
(−0.02) 0.0000

ODAX 95-99
−0.2724
(−2.38)

−4.58
(−6.31) 0.3806

−0.3032
(−3.34)

−0.73
(−0.58) 0.0057

ODAX 00-04
−0.4659
(−6.76)

−4.29
(−5.41) 0.3361

−0.6084
(−9.51)

0.95

(1.39)
0.0140

OESX 00-04
−0.5250
(−6.56)

−4.98
(−5.25) 0.3027

−0.6325
(−9.47)

0.78

(0.98)
0.0066

Table 4: Regression of variance swap returns on index returns in up- and down-markets. The

return interval is 45 days.
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3.3 Equilibrium Analysis

We apply three partial equilibrium models of expected asset returns in order to evaluate the

appropriateness of the negative variance risk premia. The first model is the single period CAPM

which concludes that the systematic risk of any asset should be equal to its marginal contribution

to the overall portfolio risk.29 Deviations from the security market line can be measured by

Jensen’s alpha

αi = E(R
e
i )− E(ReM)βi,

where Rei denotes the excess return of asset i, ReM is the excess return of a market proxy, and βi
is the covariance between Ri and RM , divided by the variance of RM . We obtain an estimate

α̂i of the outperformance of asset i by running the regression:30

Rei,t = αi + βiR
e
M,t + ǫi,t.

The CAPM rests on the assumption that either asset returns follow a multivariate normal

distribution or that investors have mean-variance preferences. It is common knowledge that

none of these assumptions is satisfactory, since discrete stock returns are bounded at −100%
and the first two moments do not fully capture the relevant characteristics of return distributions.

Since investors typically prefer positively skewed returns, CAPM-based performance measures

are particularly suspect if a portfolio includes options or other assets with highly skewed return

distributions.

Based on earlier research by Rubinstein (1976), Breeden/Litzenberger (1978), Brennan (1979)

and He/Leland (1993), Leland (1999) presents a modification of the CAPM which does not

require symmetrical distributions of asset returns. It is suitable for analyzing the performance

of portfolios including options, which is important here due to the option-like return profile of

variance swaps. The model assumes frictionless financial markets, continuous trading and iid

returns of the market portfolio at each moment in time. These assumptions imply that market

portfolio returns - but not asset returns - are log-normal, and the representative investor can be

characterized by a power utility function. Equilibrium expected returns must then satisfy

E(Rei ) = E(R
e
M)βL,i,

where

βL,i =
cov

[
Ri,−(1 +RM)−θ

]

cov [RM ,−(1 +RM)−θ]
. (13)

The parameter θ measures the risk aversion of the representative investor. It is equal to the

market price of risk defined as

θ =
ln [E(1 +RM)]− ln(1 +Rf )

var [ln(1 +RM)]
.

Analogous to Jensen’s alpha, the modified performance measure is given by

αL,i = E(R
e
i )− E(ReM)βL,i.

29 See Sharpe (1964), Lintner (1965), and Mossin (1966).
30 See Jensen (1968).
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We first obtain an estimate of βL,i from the return observations in the sample period (see

equation 13). In the second step, we run a regression of Rei,t − β̂L,iReM,t on a vector of ones

according to

Rei,t − β̂L,iReM,t = α̂L,i + ǫi,t.
This yields an estimate of the modified alpha α̂L,i.

Our third model is the continuous-time version of the CAPM developed by Merton (1973). It

assumes that all asset returns are lognormally distributed.31 In addition, either the investment

opportunity set must be constant32, or preferences must be restricted such that the investors are

not interested in hedging against changes in the opportunity set. The latter condition is fulfilled

if all investors have logarithmic utility.33 Under these and further technical assumptions34, the

CAPM holds for continuously compounded rates of return:

E(ri) = rf + [E(rM)− rf ]βc,i,

where beta is defined as

βc,i =
cov [ri, rM ]

var [rM ]
.

The risk-return tradeoff in this continuous-time version of the CAPM is the same as in the

standard CAPM except that continuously compounded returns have replaced rates of return

over discrete intervals of time. Thus, the estimation of the corresponding performance measure

- the continuous-time equivalent of Jensen’s alpha - is straightforward.

We apply the three models to measure the performance of the DAX variance swap and the

variance swap on the European stock index ESX. As proxies for the market portfolio, we consider

the index underlying the variance swap (Table 5) and the MSCI World Index (Table 6). The

latter is a free float-adjusted market capitalization index that is designed to measure performance

of global developed equity markets. It includes reinvested dividends.

The t-statistics given in parentheses in Tables 5 and 6 are based on robust standard errors

according to Newey/West (1987) with a lag of 33. In the modified CAPM, the risk aversion

coefficient θ is rather arbitrarily set to 2, but the results are insensitive to this choice.35 The

results for the DAX variance swap are shown for the full period (DAX 95-04) as well as for two

subperiods of equal length.

A comparison of Tables 5 and 6 shows almost identical results for the two market proxies. The

only difference worth mentioning is that the R2-coefficients are typically lower when using the

MSCI World Index.

31 As a consequence, market returns are not lognormal. This is an important difference between the continuous-

time CAPM by Merton (1973) and the modified CAPM proposed by Leland (1999).
32 This assumption is questionable since it produces internal inconsistencies in the continuous-time CAPM as

put forward by Rosenberg/Ohlson (1976).
33 Logarithmic utility corresponds to a market price of risk θ equal to one.
34 See Ingersoll (1987), Chapter 13.
35 We computed the results for values between 1 and 10 to check robustness.
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In all cases, beta is significantly negative on the 1% level. Its absolute value is highest in the

Leland model and lowest in the standard CAPM. However, the beta adjustment does not fully

explain the on average negative variance swap returns, as is apparent from the uniformly negative

alphas in all three models. All alphas are significantly different from zero with the exception of α̂

and α̂L in the first subperiod. Whereas the standard CAPM and the Leland-modification provide

similar alpha estimates, the underperformance of variance swaps appears larger in magnitude

when measured against the continuous-time CAPM. The t-statistics (absolute value) for α̂c are

always highest among the three models. In sum, the return premia of DAX and ESX variance

swaps realized in the sample period cannot be fully explained by the negative correlation to the

market within standard equilibrium models.

Single period CAPM Leland-modification Continuous-time CAPM

α̂ β̂ R2 α̂L β̂L α̂c β̂c R2

DAX 95-04
−0.1055
(−2.32)

−3.19
(−4.29) 0.253

−0.1016
(−2.39) −3.69 −0.2658

(−6.75)
−2.69
(−5.85) 0.229

DAX 95-99
−0.0352
(−0.64)

−3.04
(−3.79) 0.258

−0.0240
(−0.51) −3.45 −0.1713

(−3.33)
−2.83
(−4.52) 0.206

DAX 00-04
−0.1859
(−3.11)

−3.63
(−3.44) 0.283

−0.1934
(−2.87) −4.24 −0.3632

(−6.80)
−3.01
(−5.05) 0.306

ESX 00-04
−0.2465
(−4.98)

−3.74
(−3.85) 0.299

−0.2528
(−4.58) −4.22 −0.4219

(−7.83)
−3.51
(−5.02) 0.289

Table 5: Equilibrium analysis of variance swap returns. Underlying index serves as market

proxy.

Single period CAPM Leland-modification Continuous time CAPM

α̂ β̂ R2 α̂L β̂L α̂c β̂c R2

DAX 95-04
−0.1180
(−2.54)

−3.29
(−4.25) 0.183

−0.1166
(−2.60) −3.68 −0.2728

(−6.64)
−2.93
(−5.75) 0.177

DAX 95-99
−0.0340
(−0.58)

−3.26
(−4.03) 0.229

−0.0264
(−0.55) −3.56 −0.1619

(−2.97)
−3.32
(−5.31) 0.207

DAX 00-04
−0.2192
(−3.54)

−4.12
(−3.43) 0.203

−0.2282
(−3.14) −4.60 −0.3880

(−6.54)
−3.51
(−4.71) 0.230

ESX 00-04
−0.2641
(−5.05)

−3.56
(−3.48) 0.225

−0.2721
(−4.59) −3.98 −0.4369

(−7.45)
−3.36
(−4.53) 0.222

Table 6: Equilibrium analysis of variance swap returns. MSCI world index serves as market

proxy.
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4 Implications for Investors

4.1 Mean-Variance Efficient Portfolios

Assuming that the underperformance of variance swaps in the sample period does not reflect

rationally priced risk factors other than beta, how many variance swap contracts should investors

sell to profit from the apparent mispricing? To tackle this question, we first compare mean-

variance efficient portfolios with and without considering variance swaps and secondly analyze

optimal portfolios under power utility.

So far, we have defined variance swap returns as the quotient of realized variance and the

present value of the delivery price KVARS . We thereby assume that the swap buyer makes an

up-front payment of e−rTKVARS in order to receive a payment of 1 euro times realized variance

at delivery. In reality, though, except for the margin requirements, it costs nothing to enter

into the variance swap contract. Since there is no initial investment, we can neither characterize

the profit or loss in relative terms nor determine the weight of variance swaps in the investor’s

portfolio. To overcome this problem, we implicitly “deleveraged” the contract by introducing

an up-front payment in the form of a risk-free investment. The proceeds of the risk-free asset

enhance the net payoff at expiry. An investment of e−rTKVARS seems to be the natural choice

since this amount corresponds to the present value of a net payoff equal to the realized variance.

However, this still implies a high degree of leverage compared to stocks, as can be seen from

higher return fluctuations. Therefore, as an alternative, we assume a risk-free investment of

f · e−rTKVARS , where the factor f is chosen such that the volatility of variance swap returns

is equal to the index return volatility in our sample period. This makes it easier to interpret

the portfolio weights of variance swaps and to compare them with the weights of stocks. It is

evident, that the set of mean variance efficient portfolios will be the same for any choice of f

as long as the risk-free asset is part of the asset universe. We refer to the first return definition

(f = 1) as HL (High Leverage) and to the second definition (same volatility as stock index) as

LL (Low Leverage).

Figure 10 illustrates the mean-variance analysis for the LL-case using estimates from our sample

period. The asset universe consists of the DAX index (weight xS), the DAX variance swap

(xVARS) and the risk-free asset (xrf ). The sample average and the sample standard deviation

of DAX returns over all intervals of 45 days in the period from 1995 to 2004 were 0.76% and

8.66%, respectively. Over the same set of intervals, an LL-mean return of −2.05% was observed

for DAX variance swaps. Line (1) is the efficient frontier without considering variance swaps

(xS+xrf = 1), whereas line (2) represents all combinations of DAX and variance swaps without

the risk-free asset (xVARS + xS = 1). If we allow all three assets to enter into the portfolio,

we obtain the new efficient line (5). All portfolios on this line are characterized by the same

ratio xVARS/xS but different weights of the risk-free asset. Pre-specifying the weight xrf and

maximizing the Sharpe ratio, we obtain one point on the efficient line (5). For instance, line

(4) with tangency portfolio T1 represents all portfolios with xrf = 1.1, line (3) with tangency

portfolio T2 represents all portfolios with xrf = 2. As we move on the efficient line towards

combinations of higher risk and return, the short sales of the risky part of the portfolio increase,

meaning that the sum xVARS+xS becomes more negative. To the same extent, the weight of the
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Figure 10: Mean variance analysis of DAX and variance swap investments. The expected

returns and variances are estimated from the sample of return observations in all intervals of 45

days in the period from 1995 to 2004.

risk-free asset increases. This increase results in a riskier portfolio since the risk-free investment

is financed by short selling risky assets. In the HL-case of our return definition, we obtain the

same efficient line (5). The efficient portfolios are merely characterized by a different ratio of

variance swap and stock index weights.

Table 7 summarizes characteristics of mean-variance efficient portfolios. The first part of the

table (“Base case”) is based on sample estimates of mean returns, standard deviations and the

correlation coefficient. In order to examine the sensitivity of the results to errors in the estimated

variance risk premium, we then increase (“Case 2”) or decrease (“Case 3”) the mean return of

variance swaps by twice the Newey-West standard error of the mean estimate. Leaving all other

input parameters as they are, we obtain the results shown in the second and third part of Table

7. SR0 denotes the Sharpe ratio without variance swaps, and SR is the Sharpe ratio of efficient

portfolios including variance swaps.

The weight of variance swaps is always negative with the one exception of the first subperiod

with raised DAX swap returns (Case 2). Typically, the stock index also enters into the efficient

portfolios with a negative weight. This short-selling fits to the short position in variance swaps,

because in this way, investors make use of the negative return correlation to achieve better diver-

sification. In Case 2, however, short-selling the index is only suitable in the second subperiod.

The Sharpe ratio SR for DAX amounts to 0.37 in both subperiods, but only 0.24 in the full

sample. This is due to the different portfolio structures in the two subperiods. We need a long

index position in the first period and a short position in the second to reach the higher Sharpe
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Case 1: Base case

SR0 SR xVARS xS xrf
LL :
xVARS
xS

HL :
xVARS
xS

DAX 95-04 0.0876 0.2394 < 0 < 0 > 1 6.1140 0.9655

DAX 95-99 0.3632 0.3743 < 0 > 0 < 1 −0.3394 −0.0566
DAX 00-04 −0.1336 0.3728 < 0 < 0 > 1 1.1667 0.1709

ESX 00-04 −0.1740 0.5924 < 0 < 0 > 1 1.2438 0.1816

Case 2: Higher return of variance swap (+2 STD)

SR0 SR xVARS xS xrf
LL :
xVARS
xS

HL :
xVARS
xS

DAX 95-04 0.0876 0.0885 < 0 > 0 < 1 −0.1888 −0.0298
DAX 95-99 0.3632 0.4143 > 0 > 0 < 1 0.4814 0.0803

DAX 00-04 −0.1336 0.1399 < 0 < 0 > 1 0.3055 0.0448

ESX 00-04 −0.1740 0.3059 < 0 < 0 > 1 0.8882 0.1297

Case 3: Lower return of variance swap (-2 STD)

SR0 SR xVARS xS xrf
LL :
xVARS
xS

HL :
xVARS
xS

DAX 95-04 0.0876 0.4413 < 0 < 0 > 1 3.0466 0.4811

DAX 95-99 0.3632 0.5260 < 0 > 0 < 1 −3.1768 −0.5301
DAX 00-04 −0.1336 0.6683 < 0 < 0 > 1 1.4188 0.2079

ESX 00-04 −0.1740 0.8980 < 0 < 0 > 1 1.4043 0.2050

Table 7: Characteristics of mean-variance efficient portfolios.
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ratio of 0.37. If we only compose one portfolio for the full sample, this will be suboptimal in

both subperiods.

The optimal ratio of xVARS and xS strongly differs along time period and underlying index.

In Cases 1 and 3, the variance swap weight typically exceeds the stock index weight. It is

interesting to note that the short position in variance swaps is not necessarily extended when

assuming more strongly negative variance swap returns. For instance, over the full period of

DAX returns, efficient portfolios are characterized by a ratio xVARS/xS of 6.1, compared to 3.0

in Case 2. Thus, variance swaps are less aggressively sold compared to the underlying index,

although the absolute variance risk premium has been raised. The reason for this counter-

intuitive observation is that the risk reduction resulting from less divergent weights xVARS and

xS is larger than the loss in expected return.

4.2 Backtesting Under Power Utility

Table 8 shows optimal portfolio weights for an investor who maximizes his expected utility based

on the power utility function with risk aversion parameter α. As in the previous section, we

differentiate between three cases. In the base case, the bivariate distribution of excess returns

of variance swaps and the underlying stock index is set equal to the observed distribution in

the sample period. The columns “+2 STD” result from shifting all variance swap returns by

twice the Newey-West adjusted standard error of the volatility risk premium. In the case “-2

STD”, the adjustment goes in the opposite direction, so that the negative risk premium gets

even larger. The table is based on variance swaps that are levered such that their sample return

volatility equals the volatility of the stock index return (LL-definition of previous section). The

portfolio weights are restricted to lower and upper bounds of −3.0 and 3.0, respectively.

The results can be summarized as follows: In the base case, the weights xVARS are all negative.

The size of the short position goes down with a higher degree of risk aversion. The variance

swap weight is always lowest in the case “-2 STD” and highest in the case “+2 STD”. In the

second subperiod, the investor also takes a short position in stocks, but its weight is smaller

than xVARS . Since the optimal portfolio typically contains short positions in the index and in

variance swaps, the risk-free asset often has a heavy weight. The period from 1995 to 1999

provides substantially different results. The weights of the short position in variance swaps are

rather small, and the risky part of the portfolio is strongly concentrated on long index holdings.

This is certainly due to high stock returns during that period of “irrational exuberance”.

Overall, the results are similar to the preceding mean variance analysis.
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DAX 1995 - 2004

Base case +2 STD -2 STD

α xVARS xS xrf xVARS xS xrf xVARS xS xrf
1 -1.56 -0.31 2.87 -0.10 0.89 0.21 -1.73 -0.27 3.00

1.5 -1.22 -0.25 2.47 -0.08 0.60 0.48 -1.58 -0.42 3.00

2 -0.98 -0.20 2.18 -0.06 0.45 0.61 -1.44 -0.56 3.00

5 -0.44 -0.09 1.53 -0.03 0.18 0.85 -0.73 -0.33 2.06

10 -0.22 -0.04 1.26 -0.01 0.09 0.92 -0.39 -0.17 1.56

DAX 1995 - 1999

Base case +2 STD -2 STD

α xVARS xS xrf xVARS xS xrf xVARS xS xrf
1 -0.21 2.87 -1.66 0.80 3.20 -3.00 -2.65 0.65 3.00

1.5 -0.23 2.17 -0.94 1.13 2.87 -3.00 -2.33 0.41 2.92

2 -0.21 1.71 -0.50 1.34 2.66 -3.00 -1.88 0.37 2.51

5 -0.12 0.73 0.39 0.73 1.30 -1.03 -0.84 0.19 1.65

10 -0.06 0.37 0.69 0.37 0.66 -0.03 -0.43 0.10 1.33

DAX 2000 - 2004

Base case +2 STD -2 STD

α xVARS xS xrf xVARS xS xrf xVARS xS xrf
1 -1.19 -0.81 3.00 -0.40 -1.60 3.00 -1.64 -0.36 3.00

1.5 -1.10 -0.90 3.00 -0.30 -1.10 2.40 -1.43 -0.57 3.00

2 -1.05 -0.95 3.00 -0.23 -0.83 2.06 -1.30 -0.70 3.00

5 -0.67 -0.69 2.36 -0.10 -0.34 1.44 -1.01 -0.98 2.99

10 -0.34 -0.34 1.68 -0.05 -0.17 1.22 -0.53 -0.50 2.03

ESX 2000 - 2004

Base case +2 STD -2 STD

α xVARS xS xrf xVARS xS xrf xVARS xS xrf
1 -1.64 -0.36 3.00 -0.81 -1.19 3.00 -2.18 0.18 3.00

1.5 -1.42 -0.58 3.00 -0.87 -1.13 3.00 -1.85 -0.15 3.00

2 -1.31 -0.69 3.00 -0.89 -1.11 3.00 -1.64 -0.36 3.00

5 -1.08 -0.92 3.00 -0.73 -0.85 2.58 -1.20 -0.80 3.00

10 -0.70 -0.65 2.35 -0.37 -0.43 1.80 -0.99 -0.88 2.87

Table 8: Optimal portfolio weights under power utility.
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5 Conclusion

The idea of treating volatility as a separate asset class is attractive because of the highly negative

correlation of volatility to stock market indices. In fact, several major investment banks and

investment consultants have been advocating for some time to integrate long volatility positions

in the form of variance swaps or forward-starting straddles into equity portfolios.36 However,

using daily series of variance swap prices, our results do not support this recommendation. In

line with previous research for the U.S., we find a strongly negative volatility risk premium -

defined as the difference between the log realized variance and the log variance swap rate - at the

German and European stock market. Its magnitude is not compatible with standard equilibrium

pricing models. Thus, selling realized volatility turns out to be a more profitable strategy. The

performance characteristics for passive variance swap selling strategies compare favorably with

many other asset classes. This may also explain the popularity of such strategies among hedge

funds.37 Our backtests reveal that the short volatility position received a significant weight in

the optimal portfolios during the sample period.

The persistence of the negative premium over a period of several years indicates that it is driven

by persistent economic factors. One important feature of variance swaps is the protection against

stock market crashes. Our analysis shows that the profile of log swap returns against log index

returns resembles the payoff of a long put position. This is due to a strong negative correlation in

down markets and an almost zero correlation in up markets. It is still an open question, why the

premium for buying this put protection is so high. This issue is closely related to the question

why the smile in option prices is so steep. Although we did not directly aim at this puzzle, we

show which characteristics of the smile are most important for the magnitude of variance swap

rates. On average, about 60-70% of the absolute spread of the variance swap rate over the ATM

implied variance can be attributed to the slope of the smile, another 10-20% to its curvature.

The remainder is due to the asymmetry of the smile.

Our research design makes use of a comprehensive high-quality data set of tick-by-tick option

prices. This approach offers promising extensions for further research. For instance, it can be

used to determine the importance of the extrapolation of the smile function to OTM options,

to test different hedging strategies, to investigate the impact of trading costs and to analyze the

term structure of variance swap rates.

36 See, e.g., Bowler et al. (2003).
37 Bondarenko (2004) shows that the variance risk factor accounts for a considerable portion of hedge fund

historical returns.
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