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Abstract 

Lately, several stock index futures exchanges have experimented with an altered contract design 

in order to make the contract more attractive and to increase investor accessibility. In 1998, the 

Swedish futures exchange (OM) split the OMX-index futures contract with a factor 4:1, without 

altering any other aspect of the futures contract design. This isolated contract redesign enables a 

ceteris paribus analysis of the effects of a futures split. We investigate whether the futures split 

affects the futures market trading activity, as well as hedging effectiveness and basis risk of the 

futures contract. We use a bivariate GARCH framework to jointly model stock index returns and 

changes in the futures basis, and to obtain conditional measures of hedging efficiency and basis 

risk. We find significantly increased hedging efficiency and lower relative basis risk following 

the futures split. We also find evidence of an increased trading volume after the split, whereas the 

futures bid-ask spread appears to be unaffected by the split. Our results are consistent with the 

idea that the futures split has enhanced trading activity and hedging effectiveness of the futures 

contract, without raising the costs of transacting at the futures market. 

Key words: Index futures split, trading activity, hedging effectiveness, basis risk, bivariate 

GARCH 
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1. Introduction 

Stock index futures exchanges all over the world seldom alter contract specifications such as 

maturity cycles, methods of settlement, contract sizes, etc. The main reason is that an exchange 

would be reluctant to tamper with a successful contract design. In fact, Bollen et al. (2003) argue 

that when changes in contract design actually do occur, they are often a last-resort type of action 

to attract attention to an unsuccessful contract, where the trading demand is diminishing. 

However, some examples of contractual design alterations at major futures markets have recently 

occurred. For example, in 1997, the Chicago Mercantile Exchange reduced the contract size, and 

simultaneously doubled the minimum tick-size, of the S&P 500 futures contract. Moreover, 

recently, the Sydney Futures Exchange reduced the size of the Share Price Index (SPI) futures 

contract with a factor of four, as well as increased the minimum tick size correspondingly. The 

focus in this study is on the 1998 redesign of the Swedish options and futures exchange (OM), 

when the OMX index futures contract experienced a 4:1 split, keeping all other aspects of the 

futures contract design intact. 

The primary argument supporting a futures contract split is to increase investor accessibility.2 

Huang and Stoll (1998) argue that a smaller futures contract size would benefit small investors 

who for various reasons cannot trade in large contract sizes. Hence, Huang and Stoll (1998) 

predict an increasing trading volume, and a broader investor base, following a futures split. 

However, Bollen et al. (2003) note that a reduced futures contract size would lead to increased 

trading costs because commissions and fees normally are quoted on a per contract basis.3 

Likewise, futures market makers might be tempted not to reduce quoted futures bid-ask spreads 

in accordance with the split, resulting in increased trading costs for individual investors. 

Karagozoglu et al. (2003) recognize that the issue of an optimal contract size requires a careful 

consideration of the trade-off between trading activity and transactions costs. Moreover, Huang 

and Stoll (1998) propose that reducing the futures contract size would smooth its trading, and 

                                                 
2 When the OM announced the 4:1 split in the OMX index futures, they explicitly stated that the reason was to 
increase accessibility for investors (source: “OM Statement 5/98 regarding Swedish equity related products”). 
Likewise, the CME announced the split in S&P 500 futures contract, calling it an “effort to make the contract more 
easily accessible and liquid” (source: Securities Week, “Comment letters to CFTC raise questions about Merc’s 
plans to split S&P 500 contract”, v. 24, n. 35, 9/1/97). 
3 At the OM, fixed per-contract trading costs at the exchange were reduced with the split factor for both market 
makers and individual investors. 
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reduce the risk value of the contract, making it easier for investors to make small adjustments to 

their portfolios.4 

In this study, we investigate whether an index futures split affects the trading activity at the 

futures market and the hedging efficiency of the futures contract with respect to the underlying 

index stocks. Concerning hedging efficiency, if, following Huang and Stoll (1998), the futures 

split is successful in increasing trading volume and making trading at the futures market more 

smooth, the futures contract would be a relatively more efficient hedging tool after the split than 

before. We apply the classical portfolio hedging model according to Johnson (1960), Stein (1961) 

and Ederington (1979), with a constant optimal hedge ratio between the number of futures used 

to hedge a given position in the stock index, to evaluate hedging effectiveness of the futures 

contract before and after the split. Furthermore, we use the bivariate GARCH framework of Chen 

et al. (1999), and jointly model stock index returns and changes in the futures basis. In this 

model, the optimal hedge ratio is allowed to vary over time, conditional on the available set of 

information, and is a function of the conditional stock index return variance, the conditional 

variance of the futures basis, and the conditional correlation coefficient between stock index and 

futures basis innovations.5 The conditional variance of the futures basis in the bivariate GARCH 

model constitutes a measure of basis risk when employing the futures contract for hedging 

purposes. As such, the lower the basis risk, the better hedging tool the futures contract would be. 

Hence, we also explicitly investigate whether the futures split affects the basis risk, relative the 

overall market risk, as measured by conditional stock index variance. If, in accordance with 

Huang and Stoll (1998), the futures split results in smoother futures trading it would be less risky 

to hold futures, relative the index stocks, after the split. 

Our contributions to previous research are twofold. First, unlike e.g. the split in the S&P 500 

futures contract which was combined with an alteration in minimum futures tick size, the OMX-

index futures split was imposed without changing any other aspects of the futures contract 

design. This ceteris paribus change in futures contractual design enables us to focus on effects 

due to the split per se, without interference of other concurrent changes. This is in contrast to for 

example Bollen et al. (2003), Chen and Locke (2004), and Karagozoglu et al. (2003), where the 

                                                 
4 Huang and Stoll (1998) define risk value of a futures contract as the product of the contract value and its volatility.   
5 Several authors jointly model spot and futures returns in a time-varying hedging setting, including e.g. Baillie and 
Myers (1991), Kroner and Sultan (1991), Park and Switzer (1995), and Brooks et al. (2002). We choose to adopt a 
simplified version of the model according to Chen et al. (1999) because of the explicit treatment of changes in 
futures basis and basis risk, and the for our purpose tractable measure of hedging efficiency in the model. 
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authors investigate the combined effects of the S&P 500 futures split and minimum tick size 

change on futures bid-ask spreads, trading activity and futures market dynamics.6 Moreover, as 

the OM, unlike e.g. the CME, keeps a record of bid and ask quotes, we do not need to estimate 

the bid-ask spread to analyse the effects of the futures split on the spread.7 Second, whereas 

previous studies analyzing a split in a futures contract, including Huang and Stoll (1998), all 

agree on that the split is motivated by the increased investor accessibility, no previous authors 

investigate the importance of the split for futures hedging effectiveness and basis risk. The 

effective use of futures contracts for hedging purposes and the associated risks are clearly 

important issues for futures markets’ participants. 

Our results indicate a significantly increased futures hedging efficiency following the futures 

split. The results are robust against the model choice, whether we use the constant or time-

varying hedge ratio model to measure hedging efficiency, and are persistent after controlling for 

changes in the quoted futures bid-ask spread and futures trading volume. We also find a 

significantly lower relative basis risk after the futures split than before. These results are 

consistent with the idea that the futures split has enhanced hedging effectiveness of the futures 

contract. After the split, the futures contract appears to be a more efficient tool for hedging 

against movements in the underlying stock index, with a lower basis risk. The results have a 

straightforward policy implication. When the futures contract size becomes “too large” due to the 

underlying market rallies or long term growth, the futures exchange should consider a split in 

order to sustain hedging efficiency. 

We find no evidence that the futures split affects the relative futures bid-ask spread. However, the 

futures trading volume increase significantly as a result of the split in the futures contract. The 

results are persistent after controlling for futures volatility and interdependence between the bid-

ask spread and trading volume, and imply that the split has enhanced the liquidity and 

attractiveness of the futures contract in terms of investors. We find support for the Huang and 

Stoll (1998) prediction of a broader investor base following the futures split, and find at the same 

time no evidence in favour of the caveat issued by Bollen et al. (2003), that investor transaction 

costs measured by futures bid-ask spreads should increase. Hence, the results of our study are 

good news for investors in general and hedgers in particular, at the OMX-index futures market. 

                                                 
6 Indeed, Karagozoglu et al. (2003) note that a reduction in contract size and an increase in the minimum tick size 
might have offsetting effects on transactions costs and liquidity at the futures market. 
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The remainder of the study is organised as follows. Section 2 contains a description of the 

Swedish market for OMX-index futures. In this section we also discuss the regulatory changes 

made at the Swedish options exchange, and the implications these have for this study. Section 3 

presents the data and methodology of this study. Section 4 contains the results of the empirical 

analysis of futures hedging effectiveness, futures basis risk, futures bid-ask spread and trading 

volume. The study is ended in section 5 with some concluding remarks. 

2. The Swedish market for OMX-index futures contracts 

In September 1986 the Swedish exchange for futures, options and other derivatives (OM) 

introduced the OMX-index. It consists of a value-weighted combination of the 30 most actively 

traded stocks at the Stockholm Stock Exchange (StSE). The purpose of the introduction was to 

use the OMX-index as an underlying security for trading in standardised European options and 

futures contracts. Since the introduction, the market for OMX-derivatives has grown 

substantially. Presently, it is ranked among the ten largest index futures markets in the world. 

All listed derivative securities at OM are traded within a fully computerised system. The trading 

system consists of a limit order book managed by OM. All trading is conducted via members of 

the exchange. A member is either an ordinary dealer or a market maker. Thus, the trading 

environment constitutes a combination of an electronic matching system and a market making 

system. Market makers are likely to endorse liquidity of the market by posting bid-ask spreads on 

a continuous basis. Trading based only on a limit order book could exhibit problems with 

liquidity since the high degree of transparency may adversely affect the willingness of traders to 

place limit orders to the market. The trading system at the StSE is based on the same kind of limit 

order book as at OM. However, there are no market makers at the Swedish stock market. 

The OMX futures market consists of contracts with different maturities. At any time throughout a 

calendar year, trading is possible in at least three futures contracts, with up to one, two and three 

months left to expiration respectively. On the fourth Friday each month, when the exchange is 

open for trading, one set of contracts expires and a new one with time to expiration equal to three 

months is initiated. For instance, towards the end of September, the September contracts expire 

                                                                                                                                                              
7 Bollen et al. (2003), Chen and Locke (2004), and Karagozoglu et al. (2003) all use estimated rather than actual 
quoted bid-ask spreads in order to analyse the effects of the S&P 500 futures split on futures market liquidity. 
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and are replaced with the December contracts. At the same time, the October contracts (with a 

time left to expiration equal to one month) and the November contracts (with a time left to 

expiration equal to two months) are also listed. In addition to the basic maturity cycle, futures 

contracts with maturity up to two years exist. These long futures contracts expire in January and 

are included in the basic maturity cycle when they have less than three months left to expiration. 

All OMX-index futures are settled in cash at maturity.8 

On April 27, 1998, the OM decided to split the OMX-index with a factor 4:1. The split in the 

OMX-index reduced the futures contract size to a fourth of its previous value. Hence, a pre-split 

position of ten futures contracts would be converted into a corresponding post-split position of 40 

contracts. As is argued in Bollen et al. (2003), the primary argument for reducing the contract 

size in a derivatives market is to enhance investor accessibility. However, the authors also claim 

that a split in the index might increase trading costs. Further, they support their claim with 

evidence from the split in S&P 500 index suggesting that brokerage fees, per contract, for the 

index futures did not change after the split. Consequently, an investor trading the same nominal 

amount of futures after, as before the split, would have experienced transactions costs of a 

doubled size. At OM the trading costs per contract were reduced with the same factor as the split, 

both for market makers and end customers. Hence, the split in the OMX-index is not expected to 

lead to an increase in overall futures trading costs.9 

3. Data and methodology 

3.1 Data  

The study uses a data set, which consists of all futures contracts, with the OMX-index as 

underlying security, listed at OM. The sample contains daily closing data between October 24, 

1994, and June 29, 2001. The data are obtained from OM and includes information of closing 

futures bid and ask quotes, trading volume (the number of contracts as well as the transacted 

amount in SEK) and open interest for each contract. 

                                                 
8 Note however that the OMX-index futures are not settled on a daily basis. Instead, the futures contracts resemble 
forward type of contracts as they are settled at maturity only. 
9 As a comparison, in conjunction with the S&P 500 futures split, the CME did not reduce exchange fees 
correspondingly. 
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The empirical analysis of futures bid-ask spread and trading volume is concentrated to the nearby 

futures contract, i.e. the futures contract series closest to maturity. Also, when we analyse daily 

stock index and futures price changes, we use mid-quote futures prices and the nearby contract, 

except during expiration weeks. Each Thursday before the expiration week, the current futures 

position is “rolled over” into the next contract. For instance, on Thursday the week prior to the 

January expiration week, the January futures contract held from Wednesday to Thursday close is 

sold at the prevailing mid-quote. Then, a new futures position is initiated using the February 

contract, at the Thursday’s mid-quote. This position is held until Friday’s close. Thereafter, the 

February contract is used until the next rollover. If the Friday before the expiration week is a 

holiday, the rollover is initiated at the close of the corresponding Wednesday. 

3.2 Futures hedging and dynamics of stock index returns and futures basis 

To investigate the hedging effectiveness of the index futures contract before and after the futures 

split, we use the dynamic framework according to Chen et al. (1999) to obtain a measure of the 

optimal futures hedge ratio. Chen et al. (1999) propose a bivariate GARCH model for the 

development of the stock index returns and the futures basis. Their main purpose is to investigate 

the Samuelson effect, which refers to increasing futures price volatility as the futures contract 

approaches the expiration date. Moreover, they apply their model to futures hedging, and present 

a measure of hedging effectiveness that takes stochastic volatility of both stock index returns and 

changes in the futures basis into account. We use the Glosten et al. (1993) asymmetric 

GARCH(1,1) for the joint dynamics, and the constant conditional correlation specification 

according to Bollerslev (1988). 

Using the notation in Chen et al. (1999), we let tS  and tF  denote the stock index and futures 

price on day t respectively.10 Furthermore, we define the concurrent futures basis as 

ttt SFB −= .11 We specify the stock index return dynamics according to the following process: 

                                                 
10 Note that tF  is the mid-quote futures price on day t, i.e. the average of the closing bid and ask quotes. 
11 We use the “raw” basis in the empirical analysis. As a robustness check, we also employ an adjusted basis, where 
we adjust the futures price with a cost-of-carry correction for the prevailing interest rate and dividend yield. As the 
subsequent results are similar whether we use the “raw” or adjusted basis, we choose to present the results from the 
current more simple specification. 
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where tS∆  denotes the change in the stock index price from day 1−t  to day t, 1−ℑttε  ~ )1,0(N  
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day t, )1,0(N  is the standard normal distribution, th  is the conditional stock index variance on 
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where tB∆  denotes the change in the futures basis from day 1−t  to day t, 1−ℑttξ  ~ )1,0(N  is a 

corresponding futures basis shock on day t, tm  is the time to maturity in years of the futures 

contract, tq  is the conditional futures basis variance on day  t, and tD  is a dummy variable equal 

to one if tξ  > 0 and zero otherwise. Following Bollerslev (1988), the conditional correlation 

coefficient between the two shocks is equal to a constant ρ: 

(5) ρξε =− ),(1 tttCov  

The bivariate system in equations (1) through (5) describes the dynamic joint development of 

stock index returns and the futures basis. Accordingly, we can obtain an expression for the 

conditional variance of futures returns as: 
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According to standard portfolio hedging results, see e.g. Johnson (1960), Stein (1961) and 

Ederington (1979), the optimal hedge ratio must equal the conditional covariance between futures 

and un-hedged stock index price changes, divided by the conditional variance of the futures price 

changes. In our framework, using the results from Chen et al. (1999) and the system of equations 

(1) through (5), the optimal hedge ratio can be written as: 

(7) =
∆+∆
∆∆+∆

=
∆
∆∆

=
−

−

−

−
)(

),(
)(

),(
1

1

1

1

ttt

tttt

tt

ttt
t SBVar

SSBCov
FVar

SFCovϕ =








 ∆
+

∆








 ∆∆
+

∆

−−
−

−−−
−

11
1

111
1 ,

t

t

t

t
t

t

t

t

t

t

t
t

S
S

S
BVar

S
S

S
S

S
BCov

 

 =








 ∆∆
+







 ∆
+







 ∆








 ∆
+







 ∆∆

−−
−

−
−

−
−

−
−

−−
−

11
1

1
1

1
1

1
1

11
1

,2

,

t

t

t

t
t

t

t
t

t

t
t

t

t
t

t

t

t

t
t

S
S

S
BCov

S
BVar

S
SVar

S
SVar

S
S

S
BCov

tttt

ttt
qhqh

hqh
ρ

ρ
2++
+

 

The optimal hedge ratio tϕ  in equation (7) is conditional on the available information, and 

depends on the conditional variance of stock index returns th , the conditional variance of the 

futures basis tq , and the conditional correlation coefficient ρ. Hence, in the GARCH framework, 

the optimal hedge ratio varies over time in accordance with the information flow. 
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A natural benchmark, building on the classical hedging literature, is to assume a constant hedge 

ratio at two different levels, before and after the futures split. This can be achieved within the 

following regression model, where we regress daily stock index returns on daily futures price 

changes, normalised by the stock index level: 
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where 1−ℑttη  ~ )1,0(N  is a return shock on day t, tg  is the conditional variance on day t, and 

tZ  is a dummy variable equal to one if tη  > 0 and zero otherwise. Each dummy variable tbP ,  and 

taP ,  equals one before and after the split respectively. The regression formulation in equations 

(8), through (11) allows for time-varying volatility according to the Glosten et al. (1993) 

framework, and for residual autocorrelation up to five lags. The regression coefficient bc ,1  

corresponds to the constant hedge ratio: 
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where Var(.) and Cov(.) represents an unconditional variance and covariance respectively during 

the period before the split. The ac ,1  coefficient in equation (8) has a similar interpretation after 

the split. In the constant hedge ratio regression model, the regression 2R  is a classical measure of 
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hedging effectiveness.12 In the regression framework, 2R  measures the proportion of the 

variance in the stock index returns that can be explained by the normalised futures price changes, 

or in a hedging situation, eliminated by hedging with futures. Hence, we can write the hedging 

effectiveness measure in the constant hedge ratio model, for the period before the split, as: 
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Likewise, we obtain a similar hedging effectiveness measure ax  using the ac ,1  coefficient and 

the observations after the split. It is also possible to compare the hedging effectiveness of the 

futures before and after the split by comparing 2R ’s or by testing the null hypothesis that bc ,1  

equals ac ,1  in equation (8). 

In the time-varying hedge ratio model according to Chen et al. (1999), where the optimal hedge 

ratio is expressed in equation (7), we can obtain a measure of hedging effectiveness by 

considering a time-varying, conditional, version of equation (13) as: 
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In equation (14), tx  constitutes a hedging effectiveness measure, which is conditional on the 

available information set.13 Moreover, tx  depends on the conditional variance of stock index 

returns th , the conditional variance of the futures basis tq , and the conditional correlation 

coefficient ρ. It is also possible to interpret tq  as a measure of conditional futures basis risk. As 

such, the less basis risk, i.e. the closer tq  is to zero, the more effective futures hedge can be 

                                                 
12 See e.g. Ederington (1979). 
13 See Lien (2005) for a similar expression of hedging efficiency in a stochastic volatility framework. 
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achieved, and the closer tx  is to one in equation (14). In general, the closer tx  is to one, the 

higher is the percentage risk reduction when the optimal hedge ratio is employed. 

3.3 Effects of split on hedging effectiveness, basis risk, futures bid-ask spread and trading volume 

In order to investigate whether the futures split has affected the hedging effectiveness of the 

futures contract, we formulate the following regression model, with tx  as the dependent variable: 

(15) txttttat umVOLUMESPREADPx ,432,10 +++++= δδδδδ  

where tSPREAD  is the relative bid-ask spread, i.e. absolute closing bid-ask spread divided by the 

midpoint of the bid and ask quote, of the nearby futures contract on day t, tVOLUME  is the 

natural log of the number of traded nearby futures contracts on day t, tm  is the annualised time to 

maturity of the nearby futures contract, and txu ,  is a residual term. As a result of the split, for the 

same amount of notional trading, the number of futures contracts traded would increase by a 

factor of four. Hence, we normalise the trading volume after the split to pre-split levels by 

dividing the post-split volume with four.  

The inclusion of the dummy variable taP ,  in equation (15), as in equation (8), enables us to test 

the null hypothesis that hedging effectiveness, as measured by tx , is unaffected by the split, 

controlling for futures bid-ask spread, trading volume, and maturity. We use time to maturity of 

the futures contract as a control variable in the regression according to equation (15), because 

Chen et al. (1999) find evidence that this variable is important for futures hedging effectiveness. 

Furthermore, Chen and Locke (2004) find that a futures split affects the futures bid-ask spread 

and trading volume. Hence, we control for these two variables as well. 

We use a similar regression framework as in equation (15) to analyse the futures basis risk before 

and after the split. We are not interested in the change in futures basis risk per se, rather in 

whether the basis risk in relation to stock index volatility has changed as a result of the index 

split. Therefore, we define ty  as the square root of the ratio between tq  and th , and regress ty  

on the same explanatory variables as in equation (15) according to: 
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(16) tyttttat umVOLUMESPREADPy ,432,10 +++++= φφφφφ  

where tyu ,  is a residual term. The test of the null hypothesis that the relative futures basis risk is 

unaffected by the futures split boils down to test whether the coefficient 1φ  is equal to zero. 

In addition, we investigate the impact of the split on the futures bid-ask spread and trading 

volume. Following the analysis in Chen and Locke (2004), and Bollen et al. (2003), we formulate 

the following time series model for the futures bid-ask spread: 

(17) tsttttat uVOLUMEmFUTVOLPSPREAD ,432,10 +++++= λλλλλ  

where tFUTVOL  is the square root of the conditional variance of the futures returns according to 

equation (6), and tsu ,  is a residual term. Likewise, we model the futures trading volume using the 

following regression: 

(18) tvttttat uSPREADmFUTVOLPVOLUME ,432,10 +++++= ωωωωω  

where tvu ,  is a residual term. Again, we are able to test the impact of the futures split on the bid-

ask spread, in equation (17), and trading volume, in equation (18), by testing for significance of 

the corresponding coefficient associated with the dummy variable taP , . Wang et al. (1997) argue 

that futures trading volume and bid-ask spreads are jointly determined. Therefore, we treat the 

dependent variables tSPREAD  and tVOLUME  as endogenous in a simultaneous structural model 

consisting of the two equations (17) and (18).  

4. Empirical results 

Table 1 presents estimation results from the bivariate GARCH model for stock index returns and 

changes in the futures basis. There is strong evidence of conditional heteroskedasticity in both the 

stock index and the futures basis variance equations. The conditional stock index variance 

exhibits a high level of persistence (as measured by the sum 8823.0321 =++ ααα  for positive 
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shocks, and 9888.021 =+αα  for negative shocks). At lag one, the impact of a positive shock 

corresponds to 0612.032 =+αα , whereas the impact of a negative shock is 1677.02 =α . The 

3α -coefficient is significantly negative at the one percent level, which suggests a leverage effect 

in the stock index returns. After the initial impact, a stock index return shock diminishes at a rate 

of kk 8211.01 =α  for lags 1>k .  

In the conditional futures basis variance equation the parameters are quite similar in magnitude 

compared to those in the stock index return variance equation. The futures basis variance exhibits 

a high level of persistence, 8798.0321 =++ βββ  for positive shocks and 9435.021 =+αα  for 

negative shocks. Moreover, a positive basis shock has an initial impact of 0602.032 =+ ββ  and 

a negative shock affects the conditional futures basis variance with a significantly higher impact 

equal to 1239.03 =β . Also, a futures basis shock diminishes at the rate kk 8196.01 =β  at lags 

longer than 1=k . In the futures basis mean equation, the 0b -coefficient is significantly positive, 

implying that changes in futures basis are larger for longer maturities. Furthermore, the 1b -

coefficient is significantly negative with an estimated value similar to the one obtained in Chen et 

al. (1999). 

The correlation coefficient between the two conditional shocks is significantly positive at an 

approximate estimated value of 0.10. In order to make sure that the constant correlation 

specification is sufficient, we perform the LM test for a constant correlation according to Tse 

(2000). This results in a test statistic equal to 1.302 (with a p-value = 0.2539). The test statistic is 

approximately chi-square distributed under the null hypothesis of constant correlation. Hence, we 

cannot reject the null, and are content with the constant correlation specification. 

Using the estimated parameters in Table 1, we obtain the conditional futures hedge ratio and 

conditional hedging effectiveness measure according to equation (7) and (14) respectively. Figure 

1 displays these time series over the entire sample period, together with the estimated coefficients 

bc ,1  and ac ,1  from equation (8), which corresponds to the constant hedge ratio before and after 

the futures split respectively. Evidently, the conditional hedge ratio fluctuates dramatically over 

the sample period, and appears to be lower more often than above the corresponding constant 

hedge ratio. Moreover, by a casual glance at Figure 1, the futures hedging effectiveness appears 
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to be higher after the split than before. We also calculate the square root of the ratio between the 

conditional basis variance and the conditional stock index variance, in order to use as a measure 

of relative basis risk of the futures contract. Figure 2 displays the basis risk measure over the 

entire sample period. The two solid horizontal lines represent the average basis risk measure 

before and after the split respectively. On average, the basis risk appears to be lower after the 

split compared to before. This observation goes well in line with an increased futures hedging 

effectiveness following the futures split. 

In Table 2, we present the results from the constant hedge ratio model according to equations (8) 

through (11). The main hypothesis associated with this model to test is whether the hedge ratio is 

the same before and after the split, or in terms of the regression coefficients, whether bc ,1  is 

equal to ac ,1 . According to the results in Table 2 it is possible to reject this hypothesis at the one 

percent significance level. In fact, after the split, the hedge ratio is significantly larger than 

before. Note that before the split, the constant hedge ratio estimate equals 0.95, whereas after the 

split, the corresponding estimate is just above 0.97. Noteworthy is also that the constant hedge 

ratio is significantly lower than one, both before and after the split. At any reasonable 

significance level, we can reject each individual null hypothesis that bc ,1  and ac ,1  is equal to one 

respectively. Hence, according to constant hedge ratio model, it is optimal to hedge a 100 percent 

index stock position with only a 95 percent futures position before the split, and an approximate 

97 percent futures position after the split. We also calculate the futures hedging efficiency 

measure, before and after the split respectively, according to equation (13), as 9512.0=bx  and 

9711.0=ax . Given these estimates, and the results from the constant hedge ratio model, we find 

evidence of a corresponding significant improvement in futures hedging effectiveness following 

the split. 

Table 3 contains some summary statistics for the variables used throughout the empirical 

analysis. Together with sample mean, median, and standard deviation for each variable, before as 

well as after the split, Table 3 also encloses results from a unit root test for stationarity of each 

variable. We use an augmented Dickey-Fuller test (see Fuller, 1996) to test each individual null 

hypothesis that the time series has a unit root. Using the p-values according to MacKinnon 

(1996), it is possible to reject each null hypothesis of a unit root at the one percent significance 

level. Hence, all variables used in the empirical analysis can be considered stationary. 
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From Table 3, the mean (median) of the hedging efficiency measure tx  equals 0.95 (0.95) before 

the split and 0.96 (0.97) after the split, whereas the corresponding mean (median) of the hedge 

ratio tϕ  equals 0.93 (0.93) before and 0.94 (0.95) after the split. Moreover, the standard 

deviation of each variable appears to be lower after the split than before. In Table 4, we present 

the results from a t-test and a Wilcoxon rank sum test of the hypothesis of equal variable mean 

and median respectively during both sub-samples, before and after the split. For both tx  and tϕ , 

we can reject each null hypothesis of equality. Hence, on average, we observe a significant 

increase in the conditional hedging efficiency and the conditional hedge ratio following the 

futures split, which is consistent with the results from the constant hedge ratio model, presented 

in Table 2. 

In Table 3 and 4, we also observe a significant decrease in the mean (median) of the relative 

conditional basis volatility ty  from 0.24 (0.23) before the split to 0.19 (0.18) after the split. 

Although we observe a significant increase in mean (median) conditional basis volatility per se 

from 0.25 (0.24) percent before the split to 0.32 (0.29) percent after the split, our measure of the 

relative basis risk is significantly lower in the post-split sub-sample, as we observe a concurrent 

significant increase in mean (median) stock index volatility from the pre-split level 1.12 (1.03) 

percent to the post-split level 1.77 (1.69) percent. According to the definition of conditional 

futures hedging efficiency in equation (14), we concur that the significant decrease in relative 

basis risk is compatible with the significant increase in hedging efficiency of the futures contract 

following the split. 

The relative futures bid-ask spread shows an increase from a mean (median) level of 0.11 (0.09) 

percent before the split to a corresponding post-split level of 0.15 (0.11) percent. Moreover, the 

mean (median) natural log of futures trading volume shows a concurrent increase from 8.38 

(8.39) to 8.71 (8.72). These figures correspond to an increase in average trading volume from 

approximately 4,360 to 6,060 futures contracts per day, where the trading volume figures are 

normalised to pre-split levels. According to the test-statistics in Table 4, both the average relative 

spread increase and the average trading volume increase is significant at any reasonable 

significance level. Finally, using the results in Table 3 and 4, we find evidence of significantly 

increased average conditional futures volatility from the pre-split to the post-split sub-sample, 

which is consistent with the corresponding increase in conditional stock index volatility. 
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Table 5 contains the results from the regression models with the conditional hedging efficiency 

and conditional basis risk measures as dependent variables, according to equation (15) and (16) 

respectively. The regression framework can be considered as a multivariable extension of the t-

test and Wilcoxon rank sum test in Table 4, that allows for a pre- and post-split comparison of 

hedging efficiency and basis risk, taking changes in futures bid-ask spread and trading volume, as 

well as autocorrelation, into account. Each regression model is individually estimated with non-

linear least squares, adding residual autocorrelation terms in a stepwise fashion.14 The regression 

results confirm the results from Table 4. In the hedging efficiency equation, the coefficient for 

the post-split dummy variable is significantly positive at the one percent level. Moreover, in the 

basis risk regression equation, the corresponding dummy variable coefficient is significantly 

negative, also at the one percent level. At the same time, in each regression equation, none of the 

control variables futures bid-ask spread, futures trading volume or futures maturity, have 

coefficients that are significantly different from zero, whereas each regression residuals show a 

high degree of autocorrelation. The regression results are consistent with that the futures split 

leads to an improved hedging efficiency, and a reduced relative basis risk, of the futures contract. 

Table 6 reports the results from the simultaneous structural model for the futures relative bid-ask 

spread and trading volume according to equation (17) and (18). We estimate both equations using 

a non-linear version of the two-stage least squares technique. In each equation, we add 

autoregressive residual terms in a stepwise analysis to take residual autocorrelation into account. 

Starting with the results for the bid-ask spread equation; we cannot reject the hypothesis that the 

split has no effect on the relative bid-ask spread as the coefficient for the post-split dummy 

variable is not significantly different from zero. As a result, we find no evidence that the futures 

split affects the relative futures bid-ask spread, after controlling for futures trading volume, 

futures volatility, maturity, and autocorrelation in the futures spread residuals. This result 

contradicts Bollen et al. (2003) as well as Chen and Locke (2004) who find evidence of an 

increased spread after the futures contractual redesign. However, both these studies analyse 

effects following the redesign of the S&P 500 futures contract, which included a split as well as a 

change in minimum tick size. Therefore, it might be difficult to isolate the effect of the split on 

the futures bid-ask spread, as the split coincides with other contractual changes. This is not a 

problem in this study, wherefore we are able to perform a relatively more “clean” analysis of the 

                                                 
14 We also estimate the regressions by non-linear two stage least squares, treating the bid-ask spread and trading 
volume as endogenous variables. As the results are similar, we only present the ones from the single equation 
individual estimations. 
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futures split. Moreover, unlike the above cited studies, we analyse actual quoted bid-ask spreads 

rather than estimated spreads. 

We also find a significantly positive relationship between futures volatility and relative bid-ask 

spread, at any reasonable significance level, and between maturity and the relative spread on the 

five percent level. These results are reasonable and consistent with previous studies (see e.g. 

Wang et al., 1997). Moreover, the futures bid-ask spread is not dependent on the concurrent 

trading volume of the futures contract. In the spread equation, the coefficient for (the instrument 

for) trading volume is not significantly different from zero.15 

Turning to the results for the trading volume equation, we note a significantly positive coefficient 

for the post-split dummy variable at the five percent level. As a result, even after controlling for 

the futures bid-ask spread, volatility, maturity, and residual autocorrelation, we find evidence that 

the split has lead to an increase in trading volume. Moreover, futures trading volume is 

significantly positively related to futures volatility at the one percent level, significantly 

negatively related to maturity at the five percent level, and significantly positively related to the 

instrument for the concurrent futures bid-ask spread only at the ten percent level. These results 

are consistent with previous research (see e.g. Wang et al., 1997), except for the not highly 

significant, but surprising result of a positive relationship between bid-ask spread and trading 

volume. 

5. Concluding remarks 

This study investigates the effects of a futures split on futures market trading activity and the 

future’s hedging efficiency and basis risk. In 1998, the Swedish exchange for options and futures 

(OM) split the OMX-index futures contract with a factor 4:1, where one old pre-split contract 

was transformed into four new post-split contracts. In a concurrent news-bulletin, the exchange 

stated that the intention with the split was to increase investor accessibility to the futures contract. 

Since the introduction of the OMX-index futures contract in the mid-eighties, the underlying 

index has soared from the initial level 500 to around 3,000 at the time of the split. The split 

                                                 
15 In fact, we obtain similar results if we perform a single-equation non-linear least squares estimation of the spread 
equation, without the volume variable. Nevertheless, we retain the two-stage least squares equation system results 
because of completeness, and the fact that we find some evidence of a significant reverse relationship between 
trading volume and bid-ask spread (see the following reported results from Table 6). 
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implies a restart of the index at around a level of 750. In terms of hedging the underlying index 

stocks with futures, the higher pre-split index level does not allow as high a degree of precision 

in executing hedging strategies as the lower post-split level. Moreover, after the split, the smaller 

contract size is likely to make the futures contract more accessible to smaller investors. One 

potential drawback of the split is the risk of increased trading costs, as brokerage commissions 

and exchange fees are quoted on a per-contract basis. However, at the OM, the per-contract 

exchange fees were reduced in accordance with the split, both for market makers and individual 

investors. Market makers might also be tempted not to fully reduce futures bid-ask spreads in 

accordance with the reduction in contracts size that comes with the split. 

To evaluate the hedging efficiency of the futures contract before and after the split, we use a 

bivariate GARCH framework to jointly model stock index returns and changes in the futures 

basis. In this model, the optimal hedge ratio is allowed to vary over time, conditional on the 

available set of information, and is a function of the conditional stock index return variance, the 

conditional variance of the futures basis, and the conditional correlation coefficient between 

stock index and futures basis innovations. In addition, we obtain a time-varying measure of 

hedging effectiveness from the bivariate GARCH model, and we use the conditional variance of 

the futures basis as a measure of basis risk when employing the futures contract for hedging 

purposes. As such, the lower the basis risk, the better hedging tool the futures contract would be. 

Hence, we also explicitly investigate whether the futures split affects the basis risk, relative the 

overall market risk, as measured by conditional stock index variance. Apart from the bivariate 

time-varying GARCH setting, we also use a classical constant hedge ratio model to measure 

futures hedging efficiency as a benchmark in the analysis. 

In a time series regression analysis with the conditional, time-varying, measures of hedging 

effectiveness and basis risk as dependent variables, we include a dummy explanatory variable to 

test whether the futures split has any effect. Our results show significantly increased futures 

hedging efficiency following the futures split. The results are robust against the model choice, 

whether we use the constant or time-varying hedge ratio model to measure hedging efficiency, 

and are persistent after controlling for changes in the quoted futures bid-ask spread and futures 

trading volume in the regression analysis. Moreover, we find a significantly lower relative basis 

risk after the futures split than before. The findings are consistent with the idea that the futures 

split has enhanced hedging effectiveness of the futures contract, and have a natural policy 

implication. When the futures contract size becomes “too large” due to the underlying market 
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rallies or long term growth, the futures exchange should consider a split in order to sustain 

hedging efficiency. 

In addition, we investigate the impact of the split on the futures bid-ask spread and trading 

volume. In a regression model, where the futures bid-ask spread and trading volume are 

endogenous dependent variables, we investigate the significance of the split-dummy variable 

coefficient, while controlling for volatility in futures returns. The results show no evidence that 

the futures split significantly affects the relative futures bid-ask spread. However, we find strong 

evidence that futures trading volume increase significantly as a result of the split in the futures 

contract. The combined consequence of these two results is that the split has enhanced the 

attractiveness of the futures contract in terms of investors. We find support for the idea of a 

broader investor base following the futures split, and find at the same time no evidence in favour 

of the caveat that investor transaction costs measured by futures bid-ask spreads should increase. 

Clearly, the results of our study are good news for investors in general and hedgers in particular 

at the OMX-index futures market. 
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Table 1: Results from the bivariate GARCH model for stock index returns and futures basis 

Coefficient Estimate t-value p-value 

0a  1.02e-3 3.913 0.0001 

0α  3.74e-6 3.229 0.0012 

1α  0.8211 44.50 0.0000 

2α  0.1677 5.922 0.0000 

3α  -0.1065 -3.280 0.0010 

0b  9.48e-3 2.874 0.0041 

1b  -0.3475 -6.312 0.0000 

0β  3.19e-7 1.998 0.0459 

1β  0.8196 18.57 0.0000 

2β  0.1239 3.262 0.0011 

3β  -0.0637 -2.409 0.0160 

ρ  0.1012 3.668 0.0002 

Log Likelihood 12,377.4   

 
Table 1 contains estimation results from the bivariate GARCH model of stock index returns and futures basis 

changes. The coefficients are estimated using data from the sample period October 24, 1994, through June 29, 2001, 

with the quasi-maximum likelihood technique, according to Bollerslev and Wooldridge (1992). The model equations 

are: 
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where tS∆  denotes the stock index price change from time 1−t  to time t, tB∆  denotes the corresponding change in 

the futures basis, 1−ℑttε  ~ )1,0(N  is a stock index return shock at time t, 1−ℑttξ  ~ )1,0(N  is a corresponding 

futures basis shock, tℑ  denotes the information set available at time t, )1,0(N  is the standard normal distribution, 

th  is the conditional stock index variance at time t, tq  is the conditional futures basis variance at time t, tQ  ( tD ) is 

a dummy variable equal to one if tε  > 0 ( tξ  > 0) and zero otherwise, tm  is the time to maturity in years of the 

futures contract, and ρ is the conditional correlation coefficient between the two shocks tε  and tξ . 
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Table 2: Results from the univariate GARCH regression model for stock index returns 

Coefficient Estimate t-value p-value 

bc ,0  8.73e-5 2.151 0.0315 

ac ,0  1.18e-5 0.253 0.8000 

bc ,1  0.9499 167.3 0.0000 

ac ,1  0.9731 237.8 0.0000 

0γ  2.81e-7 4.390 0.0000 

1γ  0.9229 77.33 0.0000 

2γ  0.0626 4.680 0.0000 

3γ  -0.0373 -2.094 0.0363 

1θ  -0.5069 -20.92 0.0000 

2θ  -0.2989 -10.93 0.0000 

3θ  -0.1909 -6.453 0.0000 

4θ  -0.1457 -4.718 0.0000 

5θ  -0.0239 -0.895 0.3705 

Log Likelihood 7,459.3 2R  = 0.9651 

Hypothesis tests 

Null Hypothesis Estimate 2χ -value p-value 

bc ,1  = ac ,1  -0.0232 10.89 0.0010 

bc ,1  = 1 -0.0501 77.85 0.0000 

ac ,1  = 1 -0.0269 43.27 0.0000 

 
Table 2 contains estimation results from the univariate GARCH regression model of stock index returns. The 

coefficients are estimated using data from the sample period October 24, 1994, through June 29, 2001, with the 

quasi-maximum likelihood technique, according to Bollerslev and Wooldridge (1992). The model equations are: 
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where tS∆  denotes the stock index price change from time 1−t  to time t, 1−ℑttη  ~ )1,0(N  is a return shock at 

time t, tℑ  denotes the information set available at time t, )1,0(N  is the standard normal distribution, tg  is the 

conditional variance at time t, tZ  is a dummy variable equal to one if tη  < 0 and zero otherwise, and each dummy 

variable tbP ,  and taP ,  equals one before and after the split respectively. 



Table 3: Summary statistics 

Panel A: Before the split 

Statistics tt SS /∆  tt SF /∆  tt SB /∆  th  tq  ty  tFUTVOL  tSPREAD tVOLUME tm  tx  tϕ  

Mean 0.0011 0.0011 -0.0002 0.0112 0.0025 0.2353 0.0108 0.0011 8.3794 0.0572 0.9480 0.9262 

Median 0.0012 0.0007 -0.0001 0.0103 0.0024 0.2270 0.0100 0.0009 8.3870 0.0575 0.9535 0.9321 

Standard dev. 0.0111 0.0116 0.0026 0.0035 0.0005 0.0648 0.0032 0.0007 0.4621 0.0247 0.0278 0.0327 

Unit root test 0.0000 0.0000 0.0000 0.0015 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 

Panel B: After the split 

Statistics tt SS /∆  tt SF /∆  tt SB /∆  th  tq  ty  tFUTVOL  tSPREAD tVOLUME tm  tx  tϕ  

Mean 0.0004 0.0004 -8.79e-5 0.0177 0.0032 0.1932 0.0185 0.0015 8.7087 0.0574 0.9631 0.9448 

Median 0.0006 0.0014 -4.66e-5 0.0169 0.0029 0.1811 0.0177 0.0011 8.7168 0.0575 0.9696 0.9522 

Standard dev. 0.0189 0.0196 0.0038 0.0061 0.0009 0.0629 0.0052 0.0013 0.5572 0.0250 0.0230 0.0282 

Unit root test 0.0000 0.0000 0.0000 0.0022 0.0003 0.0001 0.0000 0.0074 0.0000 0.0000 0.0001 0.0001 

 
Table 3 contains summary statistics for stock index returns ( tt SS /∆ ) futures returns ( tt SF /∆ ), normalised basis changes ( tt SB /∆ ), conditional stock index volatility 

( th ), conditional basis volatility ( tq ), relative conditional basis volatility ( ttt hqy /= ), conditional futures volatility ( tFUTVOL ), relative futures bid-ask spread 

( tSPREAD ), natural logarithm of futures trading volume ( tVOLUME ), futures contract maturity ( tm ), conditional hedging efficiency ( tx ), and conditional futures hedge 

ratio ( tϕ ). In Panel A, data are from the period between October 24, 1994, and April 27, 1998, whereas in Panel B, data are from between April 28, 1998, and June 29, 2001. 

The augmented Dickey-Fuller test (Fuller, 1996) is used to test the null hypothesis that each time series has a unit root. For each series, a MacKinnon (1996) one-sided p-

value under each null hypothesis is reported. 
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Table 4: Independent t-test and Wilcoxon rank sum test before and after the split 

Statistics th  tq  ty  tFUTVOL  tSPREAD tVOLUME tx  tϕ  

t-test 27.24 
(0.0000) 

20.45 
(0.0000) 

13.48 
(0.0000) 

36.67 
(0.0000) 

8.259 
(0.0000) 

13.20 
(0.0000) 

11.99 
(0.0000) 

12.41 
(0.0000) 

Wilcoxon rank sum test 25.13 
(0.0000) 

19.58 
(0.0000) 

14.38 
(0.0000) 

30.48 
(0.0000) 

5.602 
(0.0000) 

12.27 
(0.0000) 

14.38 
(0.0000) 

14.38 
(0.0000) 

Direction of change increase increase decrease increase increase increase increase increase 

 

Table 4 contains a t-test for equality of means before and after the split, and a Wilcoxon rank sum test for equality between the corresponding medians (p-value in 

parenthesis), for the variables conditional stock index volatility ( th ), conditional basis volatility ( tq ), relative conditional basis volatility ( ttt hqy /= ), conditional 

futures volatility ( tFUTVOL ), relative futures bid-ask spread ( tSPREAD ), natural logarithm of futures trading volume ( tVOLUME ), conditional hedging efficiency ( tx ), and 

conditional futures hedge ratio ( tϕ ). The Wilcoxon p-values are based on the asymptotic normal approximation outlined in Sheskin (1997). 

 



Table 5: Results from the regression models for hedging efficiency and basis risk 

Hedging efficiency equation ( tx ) Basis risk equation ( ty ) 

Coefficient Estimate t-value p-value Coefficient Estimate t-value p-value 

0δ  0.9486 178.0 0.0000 0φ  0.2339 16.25 0.0000 

1δ  0.0127 3.292 0.0010 1φ  -0.0370 -2.710 0.0068 

2δ  0.2162 1.254 0.2100 2φ  -0.5667 -1.183 0.2368 

3δ  0.0003 0.496 0.6199 3φ  -0.0003 -0.220 0.8257 

4δ  0.0084 0.495 0.6202 4φ  -0.0201 -0.486 0.6270 

1,xθ  0.8612 16.52 0.0000 1,yθ  0.8580 19.57 0.0000 

2,xθ  -0.1210 -2.238 0.0254 2,yθ  -0.0916 -2.035 0.0420 

3,xθ  0.0980 1.764 0.0780 3,yθ  0.1045 2.217 0.0268 

2R  = 0.7717    2R  = 0.8111    

 
Table 5 contains estimation results from the regression models of hedging efficiency ( tx ) and basis risk ( ty ). The 

coefficients are estimated with non-linear least squares, where the standard errors are corrected for heteroskedasticity 

and autocorrelation in the residuals (10 lags) according to White (1980), and Newey and West (1987). Data are from 

the sample period October 24, 1994, through June 29, 2001. The model equations are: 

txttttat umVOLUMESPREADPx ,432,10 +++++= δδδδδ , ∑
=

−−=
3

1
,,,,

i
itxixtxtx ueu θ  

tyttttat umVOLUMESPREADPy ,432,10 +++++= φφφφφ , ∑
=

−−=
3

1
,,,,

i
ityiytyty ueu θ  

where tx  is a conditional hedging efficiency measure on day t, ty  is a the conditional basis risk measure on day t, 

the dummy variable taP ,  equals one after the split, tSPREAD  is the relative futures bid-ask spread, i.e. absolute 

closing bid-ask spread divided by the midpoint of the bid and ask quote, of the nearby futures contract on day t, 

tVOLUME  is the natural log of the number of traded nearby futures contracts on day t, tm  is the annualised time to 

maturity of the nearby futures contract, and txu ,  ( tyu , ) is a residual term in the hedging efficiency (basis risk) 

equation. 
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Table 6: Results from the regression models for futures bid-ask spread and trading volume 

Bid-ask spread equation ( tSPREAD ) Trading volume equation ( tVOLUME ) 

Coefficient Estimate t-value p-value Coefficient Estimate t-value p-value 

0λ  -0.0008 -0.260 0.7947 0ω  8.2269 90.08 0.0000 

1λ  -2.34e-5 -0.227 0.8206 1ω  0.1516 2.192 0.0285 

2λ  0.0516 4.534 0.0000 2ω  17.901 2.756 0.0059 

3λ  0.0025 2.522 0.0118 3ω  -1.5067 -2.272 0.0232 

4λ  0.0001 0.978 0.3283 4ω  54.804 1.791 0.0734 

1,sθ  0.0654 2.188 0.0288 1,vθ  0.4000 15.40 0.0000 

2,sθ  0.1075 4.255 0.0000 2,vθ  0.0792 3.322 0.0009 

5,sθ  0.1593 4.075 0.0000 5,vθ  0.1023 4.153 0.0000 

2R  = 0.1431    2R  = 0.3220    

 
Table 5 contains estimation results from the simultaneous two-equation structural model of futures bid-ask spread 

( tSPREAD ) and trading volume ( tVOLUME ). The coefficients are estimated with non-linear two-stage least 

squares, where the standard errors are corrected for heteroskedasticity and autocorrelation in the residuals (10 lags) 

according to White (1980), and Newey and West (1987). Data are from the sample period October 24, 1994, through 

June 29, 2001. The model equations are: 

tsttttat uVOLUMEmFUTVOLPSPREAD ,432,10 +++++= λλλλλ , ∑
=

−−=
5

1
,,,,

i
itsiststs ueu θ  

tvttttat uSPREADmFUTVOLPVOLUME ,432,10 +++++= ωωωωω , ∑
=

−−=
5

1
,,,,

i
itvivtvtv ueu θ  

The two endogenous variables are the relative futures bid-ask spread tSPREAD , i.e. absolute closing bid-ask spread 

divided by the midpoint of the bid and ask quote, of the nearby futures contract on day t, and the natural log of the 

number of traded nearby futures contracts tVOLUME  on day t. The exogenous variables are taP , , which is a dummy 

variable that equals one after the split, the conditional futures volatility tFUTVOL , and the annualised time to 

maturity of the nearby futures contract tm . tsu ,  ( tvu , ) is a residual term in the spread (volume) equation. The 

exogenous variables, together with lagged endogenous and exogenous variables are used as instruments.  
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Figure 1: Conditional futures hedge ratio and hedging efficiency 
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Figure 2: Conditional relative basis volatility 
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