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Abstract

We analyze the result of allowing risk averse traders to split their
orders among markets when market makers are assumed to be risk
averse.

We prove that linear symmetric equilibria exist in that setting. We
find that market makers’ aggregate expected utility of profit may in-
crease with the number of market markers despite the fact that the
aggregate liquidity always increases with it. This implies that the
cost of trading for the traders may increase with the number of mar-
ket makers. The larger the market makers’ risk aversion, the bigger
that cost is. We also find that when the number of market makers
tends to infinity, their aggregate expected utility of profit tends to
zero. We offer a potential answer to the ongoing debate concerning
the dealers’ competitiveness. Indeed, risk aversion reduces competi-
tion between market makers as it acts as a commitment for market
makers to set higher prices. This commitment is higher the higher
the risk aversion.

JEL Classification: G14, D82
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1 Introduction

A large body of papers analyze the formation and properties of price and liq-
uidity in financial markets.1 In order to study both, three assumptions are
commonly made. First, market makers behave competitively. Second, traders
cannot split their orders among market makers.2 Third, market makers are risk
neutral. As a result of the first and second assumptions, risk neutral market
makers set a price equal to the expected value of the asset given market maker’s
information and aggregate order flow. This implies that market makers earn
zero expected profit. Both the second and the third assumptions are more sim-
plifying assumptions than realistic ones. Indeed, traders have now a wide range
of possibilities to trade a given asset. In addition, Lyons (1995) proves that,
in FX markets, dealers closely control their inventory position showing the fact
they are risk averse. It is likely to be also true for equity and bond markets.

In the present model we remove the three aforementioned assumptions. This
enables us to combine the assumptions of imperfect competition and risk aver-
sion from the side of both the market makers and the traders. We then analyze
the effects of these assumptions on prices, liquidity and the level of expected
profit market makers achieve in a situation where traders split their orders
among market makers.

In the recent years, the number of markets where traders have the possibility
to trade a given asset has increased, due to the emergence of “New Markets” as
well as the introduction of “Crossing Network” within existing dealer markets.
Parallelly, after the recent crashes, market participants’ attitude toward risk
has changed, this has implied an increase in both market participants’ risk
aversion as well as market volatility. As a consequence, some natural questions
arise: How is the cost of trading affected by the level of the market makers’
risk aversion?3 How is that same cost influenced by the number of market
makers with whom the traders can exchange? How is the overall liquidity of
an asset affected by both the number of market makers and their risk aversion?
How is the degree of competition between market makers influenced by the
number of traders competing for the exchange of an asset? How is the trading
behavior of risk averse traders affected by the possibility to trade the same
asset on different markets or with multiple dealers? These questions need to be
answered in order to shed some light on the facts observed in financial markets
such as, wider bid-ask spreads (high transaction costs), for instance.

We propose to answer these questions in a setting close to Kyle (1985). The
price schedule of a market maker is contingent on the aggregate order flow for
that particular market maker only and not contingent on the order flow received

1Liquidity is defined as the volume necessary to move the price by one unit. See Kyle
(1985).

2See Kyle (1984), Kyle (1985), Subrahmanyam (1991), Foster and Viswanathan (1994) and
Vives (1995) among others.

3Lyons (2001) raises the fact that too few models study the situation where market makers
are risk averse.
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by the other market makers. Each market maker determines the price maxi-
mizing her expected utility taking as given the price set by her competitors and
taking into account its impact on the market orders submitted by the traders.4

Prior to knowing the price schedule, traders receive (i) different signals concern-
ing the fundamental value of the asset and (ii) different endowments of the risky
asset. When deciding the size of their orders for each market maker, traders
know the different market makers’ price schedule. Each trader determines the
size of each order submitted to the different markets by maximizing his con-
ditional expected utility taking into account the impact of his orders on the
price for each market and taking as given the quantity submitted by the other
traders. We find a counterintuitive result that increasing the number of market
makers, N , with whom traders exchange, can adversely affect the traders’ over-
all cost of trading and this despite the fact that the aggregate liquidity increases
with N .5 Indeed, the market makers’ aggregate expected utility of profit may
increase with the number of market makers which implies an increase of the
investors’ trading costs. This is only true if the market makers’ risk aversion,
ρm, is positive. The interpretation of these results is as follows and depends
on the size of the market N (number of market makers) and the level of the
market makers’ risk aversion ρm. Firstly, increasing N has the following effects:
(i) it increases the aggregate risk tolerance of the market makers and increases
risk sharing, (ii) it reduces the individual liquidity in each market, and finally
(iii) it reduces the volume handled by market makers. The first and the sec-
ond effect clearly increase aggregate expected utility of profit. However, the
reduction in volume has two opposite effects on aggregate expected utility of
profit. Secondly, increasing ρm has the following implications: (i) it decreases
the aggregate risk tolerance of the market makers, (ii) it reduces the individ-
ual liquidity in each market, and finally (iii) it reduces the volume received by
market makers. Effect (i) decreases aggregate expected utility of profit whereas
effect (ii) increases it. The reduction in volume has again two opposite effects.
In fact we show that when ρm > 0, the positive effects (those which increase
the aggregate expected utility of profit) dominate for a small number of market
makers while the negative effect dominates for a large number of market makers.
As a result risk aversion can magnify the transaction costs paid by investors.
To the best of our knowledge this is the first time this result has been found, as
our model looks at the most general situation where both traders and market
makers are strategic and risk averse. This finding has important implications
for the regulation of financial markets. Our result could be regarded as an
answer to the ongoing debate about the implications of market fragmentation
on traders’ welfare. We find that increasing market fragmentation seen as in-
creasing the number of market makers can damage the traders’ welfare. Having
more market makers or markets is not always desirable from the point of view

4In our context as the price is linear function with the aggregate order flow it is equivalent
to find the level of liquidity maximizing her expected utility.

5Since the game is a zero sum game, that cost is defined as minus the market makers’
aggregate expected utility of profit.
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of investors’ trading costs.
Other results include that, for a finite number of market makers, the level of
aggregate liquidity is below its competitive level implying that market makers
earn positive expected profits.6 The explanation of that result is as follows:
by increasing her price, a market maker reduces the volume received without
modifying the proportion of the trader’s market order due to hedging needs.7

However, the increase in price may still compensate for the effect of the decrease
in volume on the market maker’s expected utility of profit. In fact, despite a
higher price, the trader is willing to exchange on that market, as by splitting
his order he reduces its overall impact on the price. This implies that all market
makers have an incentive, due to their risk aversion, to set less competitive price
schedules. Nevertheless, when the number of market makers tend to infinity,
both the market makers’ expected utility of profit and the aggregate liquidity
tend to their competitive level.

Our work is linked to research focusing on dealers’ competition. There is
a strong evidence that dealers behave strategically and earns monopoly rents.
Christie and Schultz (1994) and Christie et al. (1994) show that market mak-
ers on the NASDAQ may exhibit a non-competitive behavior. This is also
confirmed by latest studies such as Weston (2000) and Simaan, Weaver and
Whitcomb (2003). Lamoureux and Schnitzlein (2004) find, in an experimen-
tal study, similar results. They compare the size of the bid-ask spread and of
the dealers’ profit for two scenario: (i) three competing dealers in a single asset
(i.e. direct competition) and (ii) three assets with a monopolistic dealer in each
(indirect competition). They find that bid-ask spreads are wider and that per-
trade dealer profits are larger for the first scenario.8 Theoretical papers have
looked at the effect of the competition among market makers on their expected
profits and their price schedule.9 Glosten (1994) and Biais, Martimort and Ro-
chet (2000) study competition in limit orders. In Biais, Martimort and Rochet
(2000) when the number of market makers is finite, market makers earn positive
expected profits. They also show that as the number of market makers tends to
infinity, market makers earn zero expected profits and the price schedule con-
verges to the competitive one obtained in Glosten (1994). Biais et al. (1998)
and Viswanathan and Wang (2002) consider risk averse market makers. The
former compares the cost of trading across markets organized differently, i.e.
floors, dealer markets and limit orders. The latter looks at dealership markets,
limit order markets and a hybrid market mixing the two preceding structures.
They do not provide an analysis of the model we study here. In addition, they

6The competitive level is computed in a situation where traders cannot split their orders
and market makers face competition.

7Due the traders’ CARA utility framework, an increase in price only alters the size of the
market order without changing the proportion of hedging motives within the order.

8An important difference between the two scenarios lies in the fact that in the three asset
case, liquidity traders as well as having the possibility to time their trade have the choice of
which asset to trade. This is the main driving force for their result.

9Less recent papers [Admati and Pfleiderer (1988) and Glosten (1989)] focus on the extreme
case where the market maker or specialist has a monopolistic position over a particular asset.

5



look at the case where a unique liquidity trader is present in the market. Vogler
(1997) and Lyons (1997) look at risk averse market makers, however, their main
focus is on an inter-dealer markets. Finally, Bernhardt and Hughson (1997) are
closer to our analysis. They study the competition between market makers for
the duopoly case. Their setting is similar to Kyle (1985) with market makers
setting price schedules as a function of the aggregate order flow before traders
submit their orders. They show that in equilibrium market makers cannot earn
zero expected profits. For the duopoly case, the existence and the form of the
equilibrium is shown. However, for the oligopolistic case they show that an
equilibrium cannot be such that market makers earn zero expected profit but
do not prove its existence. We depart from their analysis on two important
points. First, we consider the case of risk averse market makers. Second, het-
erogeneously informed traders also possessing heterogenous endowments of the
risky asset compete between each other.

The contribution of our paper is twofold. Firstly, on a purely theoretical
basis, we generalize Bernhardt et al. (1997) and Biais, Martimort and Rochet
(2000) to the cases where there are N > 2 risk averse market makers and more
than 1 trader. To the best of our knowledge, the dealers’ risk aversion has not
been incorporated in any analysis for the type of model we are dealing with, i.e.
models with asymmetry of information with splitting orders, an exception being
Subrahmanyam (1991) and Spiegel and Subrahmanyam (1992) for the case
where traders cannot split their orders. Secondly, we offer a potential answer
to the ongoing debate concerning the dealers’ competitiveness. Indeed, risk
aversion reduces competition between market makers as it acts as a commitment
for market makers to set higher prices. This commitment is higher the higher
the risk aversion.

An outline of the paper is as follows. In Section 2, we present the general
model allowing traders to split their orders. In Section 3, we solve the model for
the linear symmetric equilibrium. We look at the properties of the liquidity and
the market makers’ aggregate expected profit in section 4. Section 5 presents
our conclusions and summarizes our results. Finally all proofs and some of the
graphs are gathered in the Appendix.

2 The model

Consider a market where a risky asset and a riskless asset are traded among
K traders and N market makers. For convenience, the riskless asset has its
interest rate normalized to zero. The liquidation value of the risky asset, ev, is
normally distributed with mean 0 and variance σ2v (precision τv =

1
σ2v
).

All agents, i.e. traders and market makers, are risk averse and have prefer-
ences described by a CARA utility function of the following form

U (Wk) = − exp (−ρWk) , for each trader k,

U (Wn) = − exp (−ρmWn) , for each market maker n,
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where ρ and ρm represent the parameter of risk aversion and Wk and Wn rep-
resent the final wealth.

All traders, before trading, receive heterogenous signals about the future
value of the risky asset and heterogenous endowments of both the risky and
the riskless assets. Each trader k’s signal, sk, is a realization of a normally
distributed random variable s̃k = ṽ + ε̃k where ε̃k is normally distributed with
mean 0 and variance σ2ε (precision τε). Trader k’s endowment of the risky as-
set, wk, is a realization of a normally distributed random variable, w̃k with zero
mean and variance σ2w. If wk is positive (negative), the trader holds a long
(short) position in the risky asset. Trader k’s endowment of the riskless asset
is denoted by ck. The traders exchange for two reasons: hedging motives and
informational reasons. Indeed, on the one hand, they trade for pure risk-sharing
reasons as they receive an endowment shock to the risky asset. On the other
hand, as they receive private information they will exploit their informational
advantage by trading on that private information, they are then informed spec-
ulators. In the present model, we do not require noise traders as part of the
orders submitted to the market makers are due to risk sharing motives.

All random variables ev, ε̃k, w̃j for k = 1, ...,K and j = 1, ...,K are indepen-
dent.

The timing unfolds as follows:

1. Each trader k = 1, ...,K, simultaneously observes his private signal sk as
well as his endowments, wk and ck for the risky and the riskless asset,
respectively;

2. Each market maker n = 1, ...,N , simultaneously, posts a price schedule
depending, solely, on her own order flow. The price schedule is not con-
tingent on the order flow received by the other market makers as it is not
observed;

3. Given the market makers’ price schedules, each trader, simultaneously,
determines how much to trade with each market maker;

4. Each market maker observes her own aggregate order flow and then clears
it at the price previously posted;

5. The value of the asset is revealed and payoffs are realized.

It is assumed that traders submit market orders.

3 Characterization of the equilibrium

As in Kyle (1985), the model is solved for linear symmetric equilibria.
We assume that the market order submitted by trader k to market maker

n, is linear in both the signal and the endowment of the risky asset, i.e.,
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xnk = ansk − bnwk, ∀n = 1, ..., N and ∀k = 1, ...,K. (1)

The price schedule set by market maker n is linear in the anticipated aggre-
gate order flow, yn, in her own market,

pn = λnyn, ∀n = 1, ..., N with yn =
KP
k=1

xnk. (2)

Definition (Equilibrium) (λ1, ...,λN ) ∈ <N and (X∗1 , ...,X∗K) ∈ L
N(1+K)
2

with X∗k = (X
∗
1k, ...,X

∗
nk, ...,X

∗
Nk) is an equilibrium if, given the market orders

submitted by the other traders and the liquidity set by each market maker, the
market orders submitted by trader k, X∗k , to the different market makers are
such that

X∗k ∈ arg max
xnk∈<

E [Wk| sk, wk]− ρ
2var [Wk| sk, wk]

with Wk = wkṽ +
NP
n=1

xnkṽ −
NP
n=1

pnxnk + ck.

and given every market orders submitted to market maker n and the liquidity

set by the other market makers, the liquidity set by market maker n, λn, is such
that

λn ∈ argmaxE [(pn (y∗n)− ṽ) y∗n]− ρm
2 var [(pn (y

∗
n)− ṽ) y∗n] , with y∗n =

KX
k=1

x∗nk.

Each trader determines the size of each order, x∗nk, submitted to the different
markets by maximizing his conditional expected utility taking into account the
impact of his orders on the price for each market and taking as given the
quantity submitted by the other traders. Each market maker determines the
level of liquidity maximizing her expected utility taking as given the liquidity
set by her competitors and taking into account its impact on the market orders
submitted by the traders.

Given the linearity assumption of the price schedule, computing the price
level maximizing the market maker’s expected profit is equivalent to computing
the liquidity parameter, λ, maximizing the expected profit. This is used in
order to write the above definition. The price being linear in the aggregate
order flow is a function of y∗n, the aggregate order flow arising from the traders’
maximization program.

The model is solved by backward induction.
We dedicate the next proposition to the resolution of the trader’s maximiza-

tion program.
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Proposition 1 There exists a unique solution to the trader’s maximization
program. The quantity submitted to market n, with n = 1, ..., N , is the positive
root of the following third degree equation

an =

(1−λnan(K−1))τε
NQ
i=1
i6=n

λi

ρ
NP
j=1

NQ
i=1
i6=j

λi

µ
(1−λnan(K−1))2+(K−1)λ2na2n

µ
σ2ε+σ

2
w

³
ρ
τε

´2¶
(τε+τv)

¶
+2(τε+τv)

NQ
i=1

λi

,

with an = τε
ρ bn.

The quantity submitted to any other market, j 6= n, is such that λnan = λjaj.

Proof: See Appendix.

The trader splits his market order across the different markets in such a
way that the marginal cost of trading across markets is equalized. Suppose
that a particular market is less liquid than the other markets. The trader still
submits an order to that market, as by splitting the order the trader reduces
the overall impact of his order on the price. However, because the price impact
of the order in that particular market is higher, the trader will reduce the size
of the order in such a way that the marginal cost of trading is the same across
markets.

We now give the expression of the market makers’ expected profit.

Lemma 1 Given the linearity of both the market orders and the price schedule,
given by (1) and (2) respectively, the expected utility of profit for market maker
n is given by

Πn = Kanσ
2
v (λnanK − 1) + λnK

¡
a2nσ

2
ε + b

2
nσ

2
w

¢
− ρm
2

h
2σ4vK

2a2n (λnanK − 1)2
(3)

+K
¡
a2nσ

2
ε + b

2
nσ

2
w

¢ ³
σ2v (2λnanK − 1)2 + 2Kλ2n

¡
a2nσ

2
ε + b

2
nσ

2
w

¢´i
.

Proof. See Appendix.

The term multiplied by ρm is the reduction in the market maker’s expected
utility of profit due to her risk aversion. Two elements contribute to that
reduction: payoff uncertainty and size uncertainty. Firstly, any given size of the
order flow implies a departure from her optimal inventory position implying a
direct cost of providing liquidity to the market and therefore a decrease in her
expected profit. Secondly, the timing of the game has also an impact on her
expected profit. Indeed when she decides her level of liquidity, the aggregate
order flow she will have to clear is unknown to her. As she is risk averse
this increase in uncertainty adversely affects her expected utility of profit and
therefore increases the premium required to provide liquidity to the market.

The next proposition states the existence of the equilibrium.

Proposition 2 If ρτ−1w > τε
¡
1 + τ−1v τε

¢
, a unique linear symmetric equi-

librium exists.
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The price set by each market maker n = 1, ..., N is

pn = λ (N) yn, ∀n = 1, ...,N,

each trader i = 1, ...,K submits to the different market makers a market
order of the following form

x (si, wi) = a (N)
¡
si − ρτ−1ε wi

¢
,

where a (N) and λn (N) are defined in the Appendix.

Proof. See Appendix.

The model studied here is very general. A drawback of such a general
model is that closed form solutions cannot be found. However, the proposition
is proved using numerical procedures.

The sufficient condition for the existence of the equilibrium can be inter-
preted as follows. It states that the hedging motives must outweigh the in-
formational motives for the existence of a linear equilibrium price schedule.
Indeed the hedging motives must be large enough to induce, with a linear price
schedule, a non-negative expected profit for the market makers.10

The trader’s risk aversion as well as the precision of the private information
affect both the size of the market order and its composition. Intuitively and
keeping constant the size of the market order, an increase in the trader’s risk
aversion has a direct effect of increasing the proportion of the market order
due to hedging motives whereas an increase of the precision τε increases the
proportion of the market order due to private information. All other parameters
affect the size of the order, without changing its composition.

We look at some of the important properties of both the liquidity and the
expected profit of the market makers.

4 Properties of the Equilibrium

4.1 Liquidity

We look at some of the properties of both the individual liquidity, or market
depth, i.e. the liquidity set by each market maker, and aggregate liquidity
defined as being the sum of all liquidities. In our case, aggregate liquidity is
NP
n=1

1
λn
.

Proposition 3 (Liquidity) Individual liquidity decreases with the number
of market makers (N) whereas aggregate liquidity increases with N .

Proof. See Appendix.

10That condition is similar to the one obtained in Glosten (1989). Spiegel and Subrah-
manyam (1992) also obtain a sufficient condition for the existence of a linear equilibrium.
Their condition is a function of the number of hedgers. However, in our case, the condition is
not as the traders are hedgers and informed speculators at the same time.
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The proposition is proved using numerical procedures.
Individual liquidity is decreasing with the number of competing market

makers. This result is also present in BH. However, the intuition is different. As
stated in Proposition 1, the trader splits his order across markets in such a way
that the marginal trading cost is equalized across markets. As a consequence,
the trader submits a smaller quantity to markets with lower liquidity. By
setting a higher price, the market maker does not modify the ratio of hedging
to informed trading received. Indeed the trader reduces the size of his order
without altering its composition.11 Hence, by increasing her price, a market
maker reduces the volume received, however, the increase in price may still
compensate for the decrease in volume implying higher expected payoff. This
implies that all market makers have an incentive to set less competitive price
schedules. This increase in prices can be understood as an increase in the
bid-ask spread set by each market maker.

Figure 1 compares our findings with the ones of Bernhardt and Hughson
(1997) ( BH on the graph). 12 For an initial low number of market makers, the
decrease in individual liquidity is sharper for risk neutral than for risk averse.
In addition, as the risk aversion increases, the impact of increasing the number
of market makers decreases. In the Appendix, we show a corresponding graph
with 100 traders.

In d iv id u al  L iq u id i ty  (2  trad ers)

0

0 .05

0 .1

0 .15

0 .2

0 .25

0 .3

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

N u m b er  o f  M a rk e t  M ak ers

B H
ρm  =  1
ρm  =  2
ρm  =  3
ρm  =  4

Figure 1 : Individual Liquidity with 2 traders and τv = 1, τw = 3, τε = 2, ρ  =  7. 

The following simulations (Figures 2 and 3) show the levels of aggregate

11This property is implied by the CARA setting used here. In a different setting, increasing
the price (due to a high level of risk aversion of the market makers, for instance) may induce
traders to reduce the hedging to information trading ratio implying a closure of the market.
In the present setting, this does not happen.
12They assume that the market makers are strategic and risk neutral and trade with N risk

neutral informed traders and some traders facing hedging needs.
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liquidity for risk neutral as well as for risk averse market makers. They compare
our results with those of Bernhardt and Hughson (1997), BH in the graph,
Subrahmanyam (1991), S in the graph, and finally with those of Kyle (1985),
KYLE in the graph. Case S is computed given a market maker’s risk aversion
of 4. In Kyle (1985) market makers are risk neutral. For the latter two papers,
perfect competition between market makers is assumed and traders cannot split
orders. The decrease in individual liquidity is shown below and is true for risk
neutral market makers as well as for risk averse.

F igure 2 : A ggregate L iqu id ity w ith  2 traders and  τv =  1 , τw =  3 , τε =  2 , ρ  =  7 . 

Aggregate Liquidity (2 traders)
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Number of Market Makers

KYLE
S (ρm=4)
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ρm=1
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ρm=3
ρm=4
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Figure 3: Aggregate Liquidity with 25 traders and τv = 1, τw = 3, τε = 2, ρ = 7. 

Aggregate Liquidity (25 traders)

0
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ρm=2
ρm=3
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In order to compute the competitive level of liquidity when the market
makers are risk averse, referred to as S (ρm = 4) in the graphs above, we assume
that market makers earn the autarky level of utility. Competition between
market makers and the inability of traders to split their order among market
makers, lead the market makers to be indifferent between making the market
or not making it (autarky level). For convenience, we normalize the autarky
level of utility to zero.

From the figures obtained, aggregate liquidity increases with the number
of market makers and converges to the competitive level.13 The effective price
schedule faced by the traders decreases due to more competition. It is also
the case, that the aggregate liquidity decreases with the market makers’ risk
aversion. This comparative static is very intuitive. Indeed, as the market
maker’s risk aversion increases, the cost of handling a given size of the order flow
increases. The market maker then requires more compensation which decreases
liquidity. However, as can be seen, increasing the market makers’ risk aversion
reduces the positive impact of competition on the aggregate liquidity level.
This can be understood as follows. Risk aversion acts as a commitment device
for market makers to set high prices. As their risk aversion increases, their
commitment is even stronger reducing the positive impact of competition.

Our model displays some properties consistent with BMR and BH regarding
aggregate liquidity and volume traded. They both increase with the number of
market makers. It should be pointed out that in BMR the measure of liquidity
is the Bid-Ask spread, they show that it decreases with n.

13This result can be proved analytically for the case of one trader splitting his orders among
N risk neutral market makers.
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4.2 Aggregate Expected Utility of Profit

We now look at the properties concerning the market makers’ aggregate ex-
pected utility of profit.

Proposition 4 (Aggregate Expected Utility of Profit) In equilibrium,
the market makers’ aggregate expected utility of profit is not monotonic with ρm,
and N . For ρm > 0, it is inversely U-shaped with N . For small (large) N , the
market makers’ aggregate expected utility of profit increases (decreases) with ρm.

Proof. See Appendix.

The proposition is proved using numerical procedures.
Figures 4-6 show the relationship between the aggregate expected utility of

profit and N , the number of market makers, ρm, and the number of traders
present in the auction.

2=mρ

1=mρ

( )0B H =mρ

3=mρ

4=mρ

5 1 0 1 5 2 0

0 .0 0 5

0 .0 1

0 .0 1 5

0 .0 2

0 .0 2 5

N

F igure 4 : M arket m akers’ aggrega te  expected  u tility  o f p ro fit  w ith  one trader and  τv =  1 , τw =  
3 , τε =  2 and  ρ =  7 .
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F igure 5 : M arket m akers’ aggregate  expected  u tility  of profit w ith  2 traders and  τv =  1 , τw =  3 , τε = 
2 , ρ  =  7 . 

Aggregate Expected Utility of Profit (2 traders)
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F igure 6 : M arket m akers’ aggregate  expected  u tility  o f p ro fit w ith 25 traders and τv =  1 , τw =  3 , τε =  2 , 
ρ  =  7 . 
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The market makers’ aggregate expected utility of profit always decreases
with the number of market makers when their risk aversion is 0 and tends
to zero when the number of market makers is infinite.14 However, whenever
the market makers are strictly risk averse (ρm > 0), their aggregate expected
utility of profit may increase as a result of increasing their number. The range
for which this is true also increases with the market makers’ risk aversion.
For large values of the market makers’ risk aversion (ρm = 4), their aggregate

14This result is the same as Bernhardt and Hughson (1997).
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expected utility of profit is higher with 30 market makers than with 1 if at
least 10 traders exchange the asset (See figure 8 in Appendix). It can also
be seen that the market maker’s aggregate expected utility of profit might be
non-monotonic with ρm (inversely U-shaped) for intermediate values of N the
number of market makers. For extreme values, it appears to be monotonic:
decreasing with ρm for small values of N whereas increasing with ρm for large
values of N .

In order to understand these results we have to understand all the basic
effects on the market makers’ aggregate expected utility of profit of varying
N and ρm. Firstly, increasing N has the following effects: (i) it increases the
aggregate risk tolerance of the market makers and increases risk sharing, (ii)
it reduces the individual liquidity in each market, and finally (iii) it reduces
the volume handled by market makers. The first and the second effect clearly
increase aggregate expected utility of profit. However, the reduction in volume
has two opposite effects on aggregate expected utility of profit. Indeed, the
reduction in volume has an obvious effect of reducing them but at the same time
it reduces the uncertainty faced by market makers increasing them. Secondly,
increasing ρm has the following implications: (i) it decreases the aggregate risk
tolerance of the market makers, (ii) it reduces the individual liquidity in each
market, and finally (iii) it reduces the volume received by market makers. Effect
(i) decreases aggregate expected utility of profit whereas effect (ii) increases
it. The reduction in volume has again two opposite effects described earlier.
Obviously, the magnitude of all these effects is also influenced by the number
of traders present in the auction.

When ρm = 0, the negative effect of raising N dominates the positive ones,
and the expected profit is diminishing with N . When ρm > 0, the positive
effects dominate for a small number of market makers while the negative effect
dominates for a large number of market makers.

The same effects can explain the behavior of the aggregate expected utility
of profit with respect to the market makers’ risk aversion.

This result has important implications for the traders’ cost of trading. In-
deed, in our model, this aggregate expected utility of profit provides a indirect
measure of the overall and true cost of trading for the investors as a group. The
following corollary states a result concerning that cost.

Corollary 1 When ρm > 0, the overall traders’ cost of trading may be
increasing with the number of market makers.

Increasing the number of market makers adversely affects the cost of trading.
Looking at figure 6, we can see that there is a range of values of N for which
the overall cost of trading increases with N . When ρm = 1, a trader’s overall
cost is lower with one market maker than with up to 15 market makers. This
range increases with ρm. For instance when ρm = 4, the trader’s cost is lower
with 1 market maker than with 30. Paradoxically, from the point of view of
the traders it may not be desirable to increase the number of market makers
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providing liquidity in the market. This is true only if the market makers are
risk averse.

The above result implies that the widely used measure of traders’ welfare,
i.e. market depth or liquidity, is an inappropriate measure. Indeed, the traders’
cost of trading increases with the number of market makers despite the fact that
aggregate liquidity increases.

In BMR, the mark-ups above the competitive or efficient price schedule are
shown to decrease with the number of market markers. As market makers are
risk neutral this results in a decrease of their expected profit when their number
increases. Their result is identical to BH.

5 Conclusion

This paper looks at the case where traders can split their orders among different
market makers. Our model combines the assumptions of imperfect competition
and risk aversion from the perspective of both market makers and traders.
This study is conducted for a financial market organized as a batch auction.
Each market maker commits to a level of liquidity and to a price form, in
our case the price is a linear function of the order flow. At that price, each
market maker clears the market, i.e., takes a position that balances supply and
demand. The risk averse traders receive both heterogenous private information
of the liquidation value of the traded risky asset and heterogenous endowment
of the same asset. As a consequence, the traders trade for informational as well
as hedging motives.

The main findings of the paper are the following. We prove the existence of a
linear symmetric equilibrium. We obtain that aggregate liquidity increases with
the number of market makers. For a finite number of market makers, they earn
positive expected utility of profit. However, it is shown that, aggregate expected
utility of profit may increase with the number of market makers whenever they
are risk averse. This implies that the investors’ cost of trading may increase with
the number of market makers. As a result the traders’ welfare may be adversely
affected by increasing the number of market makers when these market makers
are risk averse. A direct implication of that finding is that market liquidity
or market depth is an inappropriate measure of investors’ trading costs. As in
various other papers, it is also shown that market makers’ aggregate expected
profit tends to zero whenever the number of market makers is infinite.

Empirical papers such as Christie and Schultz (1994), Christie et al. (1994),
Weston (2000) and Simaan et al. (2003) find that market makers on the NAS-
DAQ exhibit a non-competitive behavior. Our paper brings a new perspective
to this non-competitive behavior. We find that their non-competitive behavior
is exacerbated by their risk aversion. The more risk averse the market mak-
ers, the more market makers it takes for the aggregate liquidity to converge
to its competitive level. In other words, risk aversion decreases the benefits of
competition on the level of aggregate liquidity.
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Our results could be regarded as an answer to the ongoing debate about the
implications of market fragmentation on traders’ welfare. We find that increas-
ing market fragmentation, seen as increasing the number of market makers,
can damage traders’ welfare. Having more market makers or markets is not
desirable from the point of view of investors’ trading costs.
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7 Appendix

7.1 Proofs

Proof of Proposition 1:

Given the different prices set by each market maker n = 1, ..., N , pn = λnyn,
each investor, k = 1, ...,K, submits a quantity xnk = ansk − bnwk to each
market. That quantity maximizes the expected profit for trader k taking into
account its effect on the price,

max
x1k...,xNk

E
h
W̃
¯̄̄
Φk

i
− ρ

2
var

h
W̃
¯̄̄
Φk

i
with W̃ = wṽ +

NX
n=1

xnkṽ −
NX
n=1

pnxnk + ck.

This leads to

max
x1k...,xNk

wkE [ ṽ|Φk]+
NX
n=1

xnkE [ ṽ|Φk]−
NX
n=1

pnxnk+c−
ρ

2

Ã
wk +

NX
n=1

xnk

!2
var [ ṽ|Φk] .

19



Differentiating the above expression with respect to xnk, we get ∀n = 1, ...N
∂

∂xnk
= E [ ṽ|Φk] (1− λnan (K − 1))− 2λnxnk

−ρ (K − 1)

⎡⎣σ2ελnan NX
j=1

λjajxjk + σ2wλnbn

NX
j=1

λjbjxjk

⎤⎦ (4)

−ρ (1− λnan (K − 1))

⎛⎝wk + NX
j=1

xjk (1− λjaj (K − 1))

⎞⎠ var [ ṽ|Φk] = 0.
The entire system of first order conditions is given by

DN

⎛⎜⎜⎜⎝
x1k
x2k
...
xNk

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1− λ1a1 (K − 1)
1− λ2a2 (K − 1)

...
1− λNaN (K − 1)

⎞⎟⎟⎟⎠ (E [v|Φk]− ρwkvar [v|Φk])
(5)

with

DN =

⎛⎜⎜⎜⎝
C1 D12 · · · D1N
D12 C2 · · · D2N
...

...
. . .

...
D1N D2N · · · CN

⎞⎟⎟⎟⎠ ,
Dij = ρ ((1− λiai (K − 1)) (1− λjaj (K − 1)) var [v|Φk])

+ρ(K − 1)
¡
λiaiλjajσ

2
ε + λibiλjbjσ

2
w

¢
,

Ci = 2λi +Dii.

We first prove that the above system admits a unique solution as a maximum
using a sequence of steps.

In step 1, we prove a useful property of the above system, i.e. trader k
chooses his quantity such that the marginal cost of trading is equal across
markets. In step 2, we prove that DN can be inverted, i.e. its determinant is
different from zero. In step 3, we prove the existence and unicity of a positive
solution. In step 4, we show that the solution is indeed a maximum.

Step 1:

Lemma 2 ∀ (n, j) ∈ [1, N ]× [1, N ] and n 6= j, we have that λnan = λjaj and
λnbn = λjbj.

Proof. Using the expressions of the market orders as well as E [v|Φk] = τεsk
τε+τv

and var [v|Φk] = 1
τε+τv

, the above system (5) can be rewritten as⎛⎜⎜⎜⎝
C1 · · · D1N
...

. . .
...

D1N−1 · · · DN−1N
D1N · · · CN

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

a1sk − b1wk
...
...

aNsk − bNwk

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
1− λ1a1 (K − 1)

...

...
1− λNaN (K − 1)

⎞⎟⎟⎟⎟⎠
³
τεsk−ρwk
τε+τv

´
.

(6)
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Looking at the jth line of the above system and identifying the multiplicative
parameters for sk and wk respectively, we get

NX
i=1

aiDij + 2λjaj = (1− λjaj (K − 1))
τε

τε + τv
,

NX
i=1

biDij + 2λjbj = (1− λjaj (K − 1))
ρ

τε + τv
.

Factorizing all terms with λjaj and λjbj for both equations we have

λjajt (ai) + λjbjz (ai) = A, (7)

λjajt (bi) + λjbjz (bi) = A
0,

with

t (qi) = 2− ρ(K−1)
τε+τv

NX
i=1

qi (1− λiai (K − 1)) + ρ (K − 1)σ2ε
NX
i=1

λiaiqi +
τε(K−1)
τε+τv

,

z (qi) = ρ (K − 1)σ2w
NX
i=1

λibiqi,

A = τε
τε+τv

− ρ
τε+τv

NX
i=1

ai (1− λiai (K − 1)) ,

A0 = ρ
τε+τv

− ρ
τε+τv

NX
i=1

bi (1− λiai (K − 1)) .

Solving the system (7) for λjaj and λjbj , we get

λjbj =
A0

z(bi)
− λjaj

t(bi)
z(bi)

,

λjaj

³
t (ai)− t (bi) z(ai)z(bi)

´
= A−A0 z(ai)z(bi)

. (8)

In order to prove that λjaj is indeed equal to a constant, we still have
to prove that its multiplicative term is different from zero. We prove it by
contradiction.

Suppose that ∃ (j, n) ∈ [1, N ] × [1, N ] with j 6= n such that λjaj 6= λnan.
Equation (8) is also true for n = 1, ..., N . We then get ∀ (j, n) ∈ [1, N ]× [1, N ]
with n 6= j

λjajG = F,

λnanG = F.
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with G =
³
t (ai)− t (bi) z(ai)z(bi)

´
and F = A − A0 z(ai)z(bi)

. This implies that G = 0

leading to F = 0. We now prove that there is a contradiction. We can rewrite
G as

G = (K − 1)F + ρ (K − 1)σ2ε
NX
i=1

λia
2
i + 2−

z(ai)
z(bi)+2

Ã
ρ (K − 1)σ2ε

NX
i=1

λiaibi

!
.

If G = 0, this would imply that

−F = ρ (K − 1)σ2ε
NX
i=1

λia
2
i + 2−

z(ai)
z(bi)+2

Ã
ρ (K − 1)σ2ε

NX
i=1

λiaibi

!
= 0.

Factorizing the term 1
z(bi)+2

, we can rewrite the above expression as

4+2ρ (K − 1)σ2ε
NX
i=1

λia
2
i+2z (bi)+ρ (K − 1)σ2ε

Ã
z (bi)

Ã
NX
i=1

λia
2
i

!
− z (ai)

Ã
NX
i=1

λiaibi

!!
.

We now look at the sign of the last term z (bi)

µ
NP
i=1

λia
2
i

¶
−z (ai)

µ
NP
i=1

λiaibi

¶
.

Using the definition of z (.), this can be expressed as

ρ (K − 1)σ2w

⎛⎝Ã NX
i=1

λib
2
i

!⎛⎝Ã NX
i=1

λia
2
i

!
−
Ã

NX
i=1

λiaibi

!2⎞⎠⎞⎠ .
Using some algebra, we can write the above expression as follows

ρ (K − 1)σ2w

⎛⎝⎛⎝ NX
i=1

λ2i b
2
i a
2
i +

NX
j=1

X
i6=j

λib
2
iλja

2
j −

NX
i=1

λ2i b
2
i a
2
i −

NX
j=1

X
i 6=j

λibiaiλjbjaj

⎞⎠⎞⎠ ,
which is equal to

ρ (K − 1)σ2w

⎛⎝ NX
j=1

X
i6=j

λibiλjaj (biaj − aibj)

⎞⎠ .
The expression between brackets can be split into two terms: the terms such
that i < j and the terms such that i > j. Again using some basic algebra

we can show that
NP
j=1

P
i>j

λibiλjaj (biaj − aibj) =
NP
i=1

P
j>i

λibiλjaj (biaj − aibj).

Using the latter and proceeding of a change of variable whereby j0 = i and
i0 = j, we obtain

ρ (K − 1)σ2w

⎛⎝ NX
j=1

X
i<j

λibiλjaj (biaj − aibj) +
NX
j0=1

X
i0<j

λj0bj0λi0ai0
¡
bj0ai0 − aj0bi0

¢⎞⎠ ,
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which after some computations can be written as

ρ (K − 1)σ2w

⎛⎝ NX
j=1

X
i<j

λiλj (biaj − bjai)2
⎞⎠ .

As −F is a sum of positive terms, F is different from zero. That leads to
a contradiction. As a conclusion we have that ∀ (n, j) ∈ [1,N ] × [1,N ] and
n 6= j, λnan = λjaj . Moreover this also implies that ∀ (n, j) ∈ [1, N ] × [1, N ]
and n 6= j, λnbn = λjbj .

Step 2: We now prove that DN can be inverted.
Given step 1, DN can be written as follows

DN =

⎛⎜⎜⎜⎝
2λ1 +D D · · · D
D 2λ2 +D · · · D
...

...
. . .

...
D D · · · 2λN +D

⎞⎟⎟⎟⎠
with Dij = D.

Lemma 3 detDN = 2
N−1D

⎛⎜⎝ NP
i=1

NQ
j 6=i
j=1

λj

⎞⎟⎠+ 2N NQ
j=1

λj.

Proof. The proof is done by iteration.
For N = 1 and N = 2, the determinants are given by

detD1 = D + 2λ1,

detD2 = 2D (λ1 + λ2) + 4λ1λ2.

It is straightforward to show that both determinants verify the form set in the
lemma.

We now show that the form is also true for N , assuming that it is true for
N − 2 and N − 1. We rewrite DN as

DN =

⎛⎜⎜⎜⎝
2λ1 +D D · · · 0
D 2λ2 +D · · · 0
...

... 2λN−1 +D −2λN−1
0 0 −2λN−1 2λN−1 + λN

⎞⎟⎟⎟⎠
where the last column of DN was replaced by the last column minus the N−1th
column. The same change was performed for the last row.

The determinant by developing from the last line and then from the last
column gives

detDN = 2 (λN + λN−1) detDN−1 − 4λ2N−1 detDN−2.
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Using the form of detDN−1 and detDN−2, and reorganizing the resulting
expression we get

detDN = 2N−1D

⎛⎜⎜⎝N−1X
i=1

N−1Y
j 6=i
j=1

λj (λN−1 + λN)−
N−2X
i=1

N−2Y
j 6=i
j=1

λjλ
2
N−1

⎞⎟⎟⎠
+2N

⎛⎝N−1Y
j=1

λj (λN−1 + λN )−
N−2Y
j=1

λjλ
2
N−1

⎞⎠ .
After some algebra on both the first and the second term in brackets re-

spectively, we can rewrite them as follows

N−1X
i=1

N−1Y
j 6=i
j=1

λj (λN−1 + λN)−
N−2X
i=1

N−2Y
j 6=i
j=1

λjλ
2
N−1 =

NX
i=1

NY
j 6=i
j=1

λj ,

N−1Y
j=1

λj (λN−1 + λN )−
N−2Y
j=1

λjλ
2
N−1 =

NY
j=1

λj .

Using the latter expressions, the determinant of DN is equal to

detDN = 2
N−1D

NX
i=1

NY
j 6=i
j=1

λj + 2
N

NY
j=1

λj ,

which is the form we were looking for. Moreover the determinant is strictly
positive as the λ’s are positive. We can then conclude that the matrix can be
inverted.

Step 3: Existence and Unicity.
Given step 1 and step 2, it is straightforward to show that an =

τε
ρ bn for

n = 1, ..., N .
Moreover given step 1, step 2 and the above, the first order condition (4)

can be written as
xnk =

Ak
2λn
,

with

Ak = E [ ṽ|Φk] (1− λnan (K − 1))− ρ (K − 1)

⎡⎣σ2ελnan NX
j=1

λjajxjk + σ2wλnbn

NX
j=1

λjbjxjk

⎤⎦
−ρ (1− λnan (K − 1))

⎛⎝wk + NX
j=1

xjk (1− λjaj (K − 1))

⎞⎠ var [ ṽ|Φk] .
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Given step 1, Ak is independent of n and is therefore a constant. In the expres-
sion defining Ak, we replace all xik ∀i = 1, ..., N by Ak

2λi
and all bn by an

ρ
τε
and

put in factor the term Ak and simplify

Ak

⎧⎨⎩1 + ρ (1− λnan (K − 1)) var [ ṽ|Φk]

⎛⎝ NX
j=1

(1−λjaj(K−1))
2λj

⎞⎠ (9)

+ρ (K − 1)λnan
NX
j=1

ajλj
2λj

µ
σ2ε + σ2w

³
ρ
τε

´2¶⎫⎬⎭ = (1− λnan (K − 1)) (E [ ṽ|Φk]− ρvar [ ṽ|Φk]wk) .

The term multiplied by Ak, henceforth calledH, can be simplified as follows.

We multiply that term by
NQ
i=1

λi as the following simplification can be done

NY
i=1

λi

NX
j=1

ajλj
2λj

= anλn
2

NY
i=1

λi

NX
j=1

1

λj
= anλn

2

NX
j=1

NQ
i=1

λi

λj
= anλn

2

NX
j=1

NY
i=1
i6=j

λi.

The first equality sign is due to step 1, the rest is just some basic algebra. The

same can be done for the term
NQ
i=1

λi
NP
j=1

(1−λjaj(K−1))
2λj

, we then get that it is

equal to (1−λnan(K−1))
2

NP
j=1

NQ
i=1
i6=j

λi. Using the above, we can rewrite
NQ
i=1

λiH as

NX
j=1

NY
i=1
i6=j

λi

µ
ρ

2(τε+τv)
(1− λnan (K − 1))2 + ρ(K−1)

2 λ2na
2
n

µ
σ2ε + σ2w

³
ρ
τε

´2¶¶
+
NY
i=1

λi.

It is straightforward to see that H is positive.
Using all the simplifications, equation (9) leads to

2λnxnk =
(1−λnan(K−1))(τεsk−ρwk)

NQ
i=1

λi

(τε+τv)
NQ
i=1

λiH

,

Given the expression of xnk, by identification we have

an =

(1−λnan(K−1))τε
NQ
i=1
i6=n

λi

ρ
NP
j=1

NQ
i=1
i6=j

λi

µ
(1−λnan(K−1))2+(K−1)λ2na2n

µ
σ2ε+σ

2
w

³
ρ
τε

´2¶
(τε+τv)

¶
+2(τε+τv)

NQ
i=1

λi

.

This expression can be written as a third degree polynomial of the following
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form

a3nt+ a
2
n

⎛⎜⎝−2ρλn (K − 1) NP
j=1

NQ
i=1
i6=j

λi

⎞⎟⎠+ an
⎛⎜⎝ρ

NP
j=1

NQ
i=1
i6=j

λi + 2 (τε + τv)
NQ
i=1

λi

⎞⎟⎠− τε
NQ
i=1
i6=n

λi = 0,

with t = ρ (K − 1)λ2n

Ã
K − 1 +

Ã
σ2ε + σ2w

µ
ρ

τε

¶2!
(τε + τv)

!
NP
j=1

NQ
i=1
i6=j

λi.

The last term being negative and t being positive, the third degree equa-
tion admits at least one positive solution. The existence of a solution is then
guaranteed.

The proof of the unicity follows Subrahmanyam (1991). Let us define the
following functions

f (an) = an, g (an) =
g1(an)
g2(an)

,

with g1 (an) = (1− λnan (K − 1)) τε
NQ
i=1
i6=n

λi,

g2 (an) = ρ
NP
j=1

NQ
i=1
i6=j

λi

µ
(1− λnan (K − 1))2 + (K − 1)λ2na2n

µ
σ2ε + σ2w

³
ρ
τε

´2¶
(τε + τv)

¶

+2 (τε + τv)
NQ
i=1

λi.

Let us point out that g2 (an) is positive when an > 0. We show the unicity
of the solution by proving that the derivative of g (.) is strictly smaller than 1
(derivative of f (.)) at points such that f (an) = g (an). After some algebra, we
have that

∂g(an)
∂an

= h(an)
g2(an)

,

with

h (an) = 2ρλn

⎛⎜⎝ NP
j=1

NQ
i=1
i6=j

λi

⎞⎟⎠ (K − 1)Ã−λna2n
Ã
K − 1 +

Ã
σ2ε + σ2w

µ
ρ

τε

¶2!
(τε + τv)

!
+ an

!

+(K − 1)
NQ
i=1

λi.

The 2nd degree polynomial h reaches its maximum at an =
1

2λn

µ
K−1+

µ
σ2ε+σ

2
w

³
ρ
τε

´2¶
(τε+τv)

¶
at this point the value of the function is

ρ(K−1)
NP
j=1

NQ
i=1
i6=j

λi

2

µ
K−1+

µ
σ2ε+σ

2
w

³
ρ
τε

´2¶
(τε+τv)

¶ − (K − 1) NQ
i=1

λi <
ρ

2

NP
j=1

NQ
i=1
i6=j

λi.
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As g2 (an) > ρ
NP
j=1

NQ
i=1
i6=j

λi, we get that ∀an ∈ <+, g0 (an) < 1. The unicity of a

positive solution is then proved.

Step 4: In order to prove that the solution is a maximum we prove that
−Dn is negative semidefinite. That matrix is given by

DN =

⎛⎜⎜⎜⎝
−2λ1 −D −D · · · −D
−D −2λ2 −D · · · −D
...

...
. . .

...
−D −D · · · −2λN −D

⎞⎟⎟⎟⎠ .
It can be seen that det (−DN ) = (−1)N detDN . From the Lemma proved in
step 2, we know that detDN > 0, which implies for unevenN that det (−DN) <
0, whereas for even N det (−DN) > 0. This proves that the matrix −DN is
negative semidefinite which in turn proves that the solution is a maximum.

Proof of Lemma 1:
In the price schedule (2) replace xnk by its expression given in (1) and after

some rearranging, the price schedule can be written as

pn = λnyn = λnanKṽ + λnan
KP
k=1

ε̃k − λnbn
KP
k=1

w̃k.

Replace the above expression into the market maker’s expected utility, we
get

Πn = E

∙µ
ṽ (λnanK − 1) + λnan

KP
k=1

ε̃k − λnbn
KP
k=1

w̃k

¶µ
anKṽ + an

KP
k=1

ε̃k − bn
KP
k=1

w̃k

¶¸
−ρm

2 var

∙µ
ṽ (λnanK − 1) + λnan

KP
k=1

ε̃k − λnbn
KP
k=1

w̃k

¶µ
anKṽ + an

KP
k=1

ε̃k − bn
KP
k=1

w̃k

¶¸
.

Developing and using the fact that all random variables are independent and
have zero mean leads to

Πn = Kan (λnanK − 1)σ2v + λnK
¡
a2nσ

2
ε + b

2
nσ

2
w

¢
− ρm
2

h
(Kan (λnanK − 1))2 var

£
ṽ2
¤

+λ2nb
4
nvar

"µ
KP
k=1

w̃k

¶2#
+ (2λnanK − 1)2

µ
a2nvar

∙
ṽ
KP
k=1

ε̃k

¸
+ b2nvar

∙
ṽ
KP
k=1

w̃k

¸¶
(10)

+4 (λnanbn)
2 var

∙µ
KP
k=1

ε̃k

¶µ
KP
k=1

w̃k

¶¸
+ λ2na

4
nvar

"µ
KP
k=1

ε̃k

¶2##
.

We need to compute all individual variances, using some basic statistics tech-
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niques, we have

var
£
ṽ2
¤
= E

£
ṽ4
¤
−E2

£
ṽ2
¤
= 2σ4v ,

var

∙
ṽ
KP
k=1

ε̃k

¸
=

KP
k=1

var [ṽε̃k] = Kσ2vσ
2
ε ,

var

∙
ṽ
KP
k=1

w̃k

¸
=

KP
k=1

var [ṽw̃k] = Kσ2vσ
2
w,

var

∙µ
KP
k=1

ε̃k

¶µ
KP
k=1

w̃k

¶¸
=

KP
k=1

KP
k=1

var [ε̃kw̃k] = K
2σ2εσ

2
w,

var

"µ
KP
k=1

ε̃k

¶2#
=

KP
k=1

var
£
ε̃2k
¤
+

KP
k=1

KP
j 6=k

var [ε̃kε̃j ] = 2K
2σ4ε ,

var

"µ
KP
k=1

w̃k

¶2#
=

KP
k=1

var
£
w̃2k
¤
+

KP
k=1

KP
j 6=k

var [w̃kw̃j ] = 2K
2σ4w.

Replace all the individual variances into the expression of the expected utility
of profit (10) and do some rearranging, that leads to the desired result.¥

Proof of Proposition 2: Due to the complexity of the case, the market
makers’ maximization program is solved using numerical procedures. In order
to perform it, we use the form given in the previous lemma for the market
maker’s expected utility of profit where we replace an by the solution obtained
when solving the third degree equation of proposition 1. As a consequence,
market maker n’s expected utility of profit is a function of all the liquidities set
by the n − 1 other competitors. We use numerical procedures to find market
maker n best reply to the conjectured level of liquidity set by her competitors.
As all market makers are identical, we look for a symmetric equilibrium where
we assume that all her competitors set an identical level of liquidity 1

λ . Given
that, we find a fixed point, i.e. a level of liquidity equal to the level of her
competitors that maximizes her level of expected utility of profit. The solution
is then called λ (N). However, for the solution to exist the following condition
is required ρτ−1w > τε

¡
1 + τ−1v τε

¢
. That condition is easily checked for the case

where we have risk neutral market makers or when only one trader is present.
This condition arises for the more complex case.

Once we have found the level of liquidities, we retrieve the values of a (N)
and b (N).¥

Proof of Proposition 3: The proof is done by numerical applications. We
reproduce the process by which we find the expression of the liquidity parameter
from proposition 2 for the different values of N , ρm and K.¥

Proof of Proposition 4: The proof is done by numerical applications.
Once the liquidity value is found from proposition 3 , we then compute the
value of both a (N) and b (N). Once all the values are computed, we plug them
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into the expression the market maker’s expected utility of profit given by (10).
The aggregate expected utility of profit is then computed as the sum of all
individual market maker’s expected utility of profit. We reproduce the above
process for the different values of N , ρm and K.¥

7.2 Figures

7.2.1 Liquidity
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Figure 7: Individual Liquidity with 100 traders and τv = 1, τw = 3, τε = 2, ρ = 7. 

7.2.2 Aggregated Expected Utility of Profit

29



Figure 8 : M arket m akers’ aggregate expected utility of profit w ith 10 traders and τv = 1, τw = 3, τε = 2, 
ρ  = 7. 
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Figure 9 : M arket m akers’ aggregate expected  utility  of profit w ith 50 traders and τv =  1 , τw = 3, τε = 2 , 
ρ  =  7 . 
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Figure 10: Market makers’ aggregate expected utility of profit with 100 traders and τv = 1, τw = 3, τε = 
2, ρ = 7. 
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