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The Pricing of Finite Maturity Corporate Coupon Bonds with Rating-Based 

Covenants 

 

Abstract 

This paper models the price of finite maturity corporate coupon bonds with a rating-based 

covenant. Bhanot (2003) already addressed this issue, but the corresponding model embeds two 

features that in some way could be considered as significant limitations. In the first place, it does 

not take into consideration any kind of payment to the bondholders when the rating-based 

covenant is triggered. In the second place, and more importantly, Bhanot (2003) incorporates an 

inconsistency regarding the payment the bondholders are entitled to at maturity: the model 

considers this payment (when the firm has not previously entered in bankruptcy) to correspond 

always to the principal of the debt outstanding and this can only be true if the value of the 

debtor’s assets is greater than or equal to the principal, which obviously is not always the case. In 

this way Bhanot’s model overprices the bond. Following Bhanot and Mello (2005), we propose 

to overcome the former weekness considering two alternative procedures: i) an increase in the 

coupon rate or ii) a partial amortization of the principal. The latter limitation is addressed by 

explicitly modeling the possibility of a partial payment of the principal if at maturity the market 

value of the assets in place is not enough to allow for full repayment. The values of the equity, 

tax benefits, bankruptcy costs and the leveraged firm are also obtained.                        

 

JEL classification: G12, G33
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The Pricing of Finite Maturity Corporate Coupon Bonds with Rating-Based 

Covenants 

 

Abstract 

This paper models the price of finite maturity corporate coupon bonds with a rating-based 

covenant. Bhanot (2003) already addressed this issue, but the corresponding model embeds two 

features that in some way can be considered as significant limitations. In the first place, it does 

not take into consideration any kind of payment to the bondholders when the rating-based 

covenant is triggered. In the second place, and more important, Bhanot (2003) incorporates an 

inconsistency regarding the payment bondholders are entitled to at maturity: the model considers 

this payment (when the firm has not previously entered in bankruptcy) to correspond always to 

the principal outstanding and this can only be true if the value of the debtor’s assets is greater 

than or equal than the principal, which obviously is not always the case. In this way Bhanot’s 

model overprices the bond. Following Bhanot and Mello (2005), we propose to overcome the 

former weakness considering two alternative procedures: i) an increase in the coupon rate or ii) a 

partial amortization of the principal. The latter limitation is addressed explicitly modelling the 

possibility of a partial payment of the principal if at maturity the market value of the assets in 

place is not enough to allow for full repayment. The values of the equity, tax benefits, bankruptcy 

costs and the leveraged firm are also obtained.                        

 

1. Introduction 

 

Since Merton’s (1974) seminal paper which pioneered the so called structural approach to pricing 

corporate bonds, we have seen an increasing growth of the literature in this field.  

 

At an early stage, an important contribution was provided by Black and Cox (1976) who, in 

defining default as a trigger event that may happen at any moment of a bond’s life instead of 

occurring only at the maturity, relaxed one of the simplifying assumptions present in Merton’s 

model, and established a feature common to almost all structural models published thereafter. In 
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this type of modelling exercise, default is triggered when the value of the firm’s assets
1
 reaches 

some specified value, the barrier level. The way in which this barrier level is set, either 

endogenously or exogenously, has been a distinguishing factor between different models. One 

way is to consider that the barrier level is determined by the shareholders, in order to maximize 

the equity value (e.g. Black and Cox (1976), Leland (1994), Leland and Toft (1996), Goldstein, 

Ju and Leland (2001), Ericsson and Reneby (2003)). The alternative takes into consideration a 

barrier level set exogenously, reflecting the presence of some kind of covenant in the bond 

indenture (e.g Black and Cox (1976), Kim, Ramaswamy and Sundaresan (1993), Longstaff and 

Schwartz (1995), Briys and  de Varenne (1997), Ericsson and Reneby (1998), Schobel (1999), 

Hsu, Saá-Requejo and Santa-Clara (2003), Hui, Lo and Tsang (2003), Taurén (1999), Collin-

Dufresne and Goldstein (2001), Ju and Ou-Yang (2004), Huang et al. (2003)). 

 

Besides different extensions concerning the interest rate process, recovery values, debt structure, 

bond characteristics, definition of barriers and dynamic capital structure, to name a few,  the 

research in this field has also focused on aspects related to the asset substitution problem (Mello 

and Parsons (1992), Leland (1998), Ericsson (2000), Bhanot and Mello (2005)), the equity/bond 

holders strategic behavior (Anderson and Sundaresan (1996), Anderson, Sundaresan and Tychon 

(1996), Mella-Barral and Peraudin (1997), Mella-Barral (1999), Fan and Sundaresan (2000)), and 

bankruptcy codes (François Morrelec (2004), Moraux (2002), Galai, Raviv and Wiener (2003) 

and Yu (2003)).      

 

The structural model proposed here aims to price corporate bonds whose indenture incorporates a 

rating trigger based covenant, which links the pay-offs to bondholders with the credit rating of 

the firm. As put by Bhanot and Mello (2005): “a “rating trigger clause” in a corporate bond 

indenture requires a firm to prepay its debt or to change the coupon rate on its debt if the firm’s 

credit rating reaches a specified level.”      

Although the Bhanot and Mello (2005) framework does take into consideration this kind of 

bond
2
, and considers two types of rating trigger covenants (partial amortization of the debt’s 

                                                 
1
 Or other state variable related to the firm such as cash-flow or debt ratio.  

2
 The primary focus of Bhanot and Mello (2005) is the asset substitution problem. Specifically, the authors analyze 

the effects of such covenants on the asset substitution problem.     
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principal
3
 or an accrued coupon rate), their model only applies to perpetual debt. By contrast, the 

present paper proposes a framework capable of dealing with finite maturity bonds.  

 

The finite maturity case was addressed by Bhanot (2003), whose model assumes the existence of 

two possible credit events
4
: namely, a downgrade in the credit rating of the firm and bankruptcy, 

which implies the liquidation of the firm. These two events were modeled through the 

specification of two barriers levels, VB1 and VB2 respectively (with VB1 > VB2), established 

exogenously. However, there are two limitations in Bhanot (2003) that we will try to overcome in 

the current paper. In the first place, albeit the purpose of Bhanot (2003) is to price bonds with 

rating based covenants, the model does not explicitly assume any kind of change in bondholder 

pay-offs, when the covenant is triggered. In other words, when the value of the firm’s assets 

reaches the first barrier (VB1), the rating change only affects some parameter values associated 

with the diffusion process governing the value dynamics of the firm’s assets
5
. Additionally, even 

if the previous remark is not taken into consideration, the price formula developed by Bhanot 

(2003) assumes that the payment to bondholders at maturity (admitting that, in the mean time, the 

firm has not entered in bankruptcy and so has not been liquidated, which is equivalent to 

admiting that the second barrier VB2 as not been reached) always corresponds the bond principal. 

This final cash-flow only makes sense in a scenario where the value of the firm’s assets is enough 

to cover it. Otherwise, if the value of these assets is insufficient to cover the face value of the 

bond, at most the bondholders will only receive the value of the assets, since the equity holders 

will not be willing to pay the difference. In this sense, we may say that Bhanot (2003) overvalues 

the bondholders expected cash-flows, resulting in an overpricing of the bond. 

 

Using the same base structure of Bhanot’s model, which defines both credit events (rating change 

and bankruptcy) through the barrier levels, VB1 and VB2, we propose to obtain a bond pricing 

formula that takes into account those two remarks. Besides obtaining the bond value before the 

rating change takes place, we also derive value expressions at the moment of the rating change 

                                                 
3
 To be exact, Bhanot and Mello (2005) assume that debt holders receive a fraction of the initial market value of debt 

when the rating of the firm changes. This amount corresponds to a fraction of the principal, since the analysis is 

restricted to debt sold at par. 
4
 These are also assumed in Bhanot and Mello (2005). 

5
 “Recall that we have assumed a change in credit rating causes two characteristics to change: the volatility of firm 

assets, and the outflow to shareholders (and an increased interest expense)”, Bhanot (2003), page 62. 
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and immediately after that. The same is done for equity, bankruptcy costs, tax benefits and 

leveraged firm value.      

 

As a final note, concerning the partial prepayment of the bond’s principal rating trigger, Bhanot 

and Mello (2005) analyzed this case taking into account two different financing sources – either 

by cash infusion or by selling assets. The same will be done here, but instead of considering them 

separately, they will be jointly modelled, which will allow the simultaneous use of both sources.  

 

The model developed in the current paper fills the gap between Bhanot (2003) and Bhanot and 

Mello (2005).  

 

The paper is organized as follows: section 2 establishes the valuation framework, in section 3 the 

bond pricing formulas are derived, in section 4 the value of equity, bankruptcy costs, tax benefits 

and the leveraged firm are obtained, in section 5 a comparative analysis between our model and 

Bhanot’s model results is performed, in section 6 we compare the two types of rating trigger 

covenant and, finally, section 7 concludes the paper.    

 

2. The Valuation Framework 

 

It is assumed that the value of the firm’s assets, Vt, is described by the following continuous 

diffusion process, under the risk neutral probability: 

 

  dVt/Vt = (r - αi)dt + σidWt 

 

Where r is the (constant) risk free interest rate, αi is the cash payout rate, σi the (constant) assets 

return volatility and dWt an increment of a standard Brownian motion. As in Bhanot (2003), we 

allow the parameters of the diffusion process to alter after a rating change so the subscript i takes 

the value 1 (before) or 2 (after)
6
. Notice that this change, once occurred is assumed to be 

irreversible and permanent.  

 

                                                 
6
 Specifically, Bhanot (2003) assumes that α2 > α1 and σ2 > σ1. 
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The debt of the firm is characterized by a single coupon bond with principal F, coupon rate c and 

finite maturity T. Thus, the bondholders receive a continuous payment flow cFdt at least until the 

rating change. 

We consider the existence of two credit events, namely a firm’s rating downgrade and the 

occurrence of bankruptcy. Each of these will be modeled through an exogenous specification of 

two thresholds, which is two barrier levels, designated by VB1 and VB2 respectively. In addition, 

we also assume that the bankruptcy event is always preceded by the rating downgrade so: VB1 > 

VB2.       

 

The rating change will occur when the value of the assets intersects for the first time the first 

trigger level (VB1). As a result, we define the time of the rating change as: 

 

τ1 = inf{t ≥ 0: Vt ≤ VB1} 

 

Once VB1 is reached, two possible outcomes may result, depending on the formulation of the 

rating-based covenant of the bond, namely: 

1. An increase in the coupon rate keeping the principal at the initial level. In this case, 

the continuous coupon flow to bondholders changes to: ∆cFdt, with ∆> 1 (∆c, 

corresponds to the new coupon rate).  

2. A partial refund of the principal, keeping the coupon rate at the initial level. This will 

lead to a reduction in interest payments: c∆Fdt, with ∆< 1, ((1-∆) is the fraction of the 

nominal debt value that is redeemed).           

 

In both cases, the new coupon payments will occur until the bond matures or until the firm goes 

bankrupt, which will happen when the value of the assets reaches the second (constant) barrier 

VB2 , (VB2 < F). Thus, the bankruptcy time is defined as: 

 

   τ2 = inf{t ≥ τ1: Vt ≤ VB2} 

  

At τ2, the firm is liquidated, and the bondholders receive the value of the firm’s assets net of 

bankruptcy costs: ρ1
2

Vτ  =  ρ1VB2, (0< ρ1 ≤1). Consequently, we assume that bankruptcy costs are 
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a constant fraction (1-ρ1) of the value of the assets. Notice that this implies the verification of the 

absolute priority rule in bankruptcy, since VB2 < F) and that, in case of bankruptcy, the 

shareholders get nothing.  

 

Thus, we have:  

For t < τ1, the assets value diffusion process (under the risk-neutral probability measure) is given 

by: dVt/Vt = (r - α1)dt + σ1dWt and the coupon flow: cFdt.  

For t ≥ τ1, the assets value diffusion process changes to: dVt/Vt = (r - α2)dt + σ2dWt, and the 

coupon flow to ∆cFdt. 

 

To value the bond, Bhanot (2003) takes into account the payments to the bondholders in three 

distinct situations: 

1. The value of the assets remains above VB1 until the maturity of the bond (τ1 > T); 

2. The value of the assets crosses VB1 but remains above VB2 until the maturity of the 

bond (τ2 > T); 

3. The value of the assets reaches VB2 before the maturity of the bond (τ2 < T). 

 

The distinguishing feature of our model relative to Bhanot’s (besides the formulation of the 

coupon payments after VB1 has been reached) derives from the fact that it takes into account a 

possible default at the maturity of the bond. This is absent in Bhanot (2003), which only 

considers the possibility of bankruptcy when VB2 is crossed.  

Consider the following numerical example: VB1 = 100 and VB2 = 50, F = 100 (values taken from 

Bhanot (2003)). In Bhanot’s formulation, if the value of the firm’s assets never crosses the 

bankruptcy barrier, the bondholders’ pay-off at maturity is always the principal of the bond. In 

the example 100, which is possible only if the value of the firm’s assets at maturity, VT, is 

enough to cover the corresponding payment (VT > 100). If not, the firm defaults, since it is 

impossible to honour the payment. The situation where Bhanot’s framework is valid corresponds 

to the restricted case where VB2 ≥ F. 

 

A general formulation would lead to distinguishing five situations: 

1. The value of the assets remains above VB1 until the maturity of the bond (τ1 > T); 



 9 

1.1. and the value of the assets at maturity is greater than or equal to the principal (VT ≥ F); 

1.2. or the value of the assets is insufficient to repay the principal (VT < F) 

2. The value of the assets crosses VB1 but remains above VB2 until the maturity of the bond 

(τ2 > T): 

2.1. and the value of the assets at maturity is greater than or equal to the principal (VT ≥ F); 

2.2. or the value of the assets is insufficient to repay the principal (VT < F) 

3. The value of the assets reaches VB2 before the maturity of the bond (τ2 ≤ T). 

 

Notice that, the scenario 1.2 is only possible if the face value of the bond, F, is greater than VB1. 

Considering VB1 > F, figure 1 shows four sample paths, I, II, III and IV for the assets values 

associated with the four possible scenarios, 1, 2.1, 2.2 and 3 respectively.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It will be assumed that, in the event of default at maturity (τ1>T, VT <F and τ2>T, VT <F), the 

pay-off to bondholders will be a fraction of the market value of the assets: ρ2VT, and (0< ρ2 <1).   

 

 

 

 ττττ1 ττττ2 

VB1 

VB2 

   F 

0   T 

V0 

 V I 

II 

IV 
III 

(ττττ1 > T) 

  (ττττ2>T, VT≥F) 

  (ττττ2>T, VT <F) 

Figure 1 -  Four sample path for the assets values associated to the four possible scenario, considering 

VB1>F. Assets value remains above VB1 until the maturity of the bond - I; assets value crosses VB1 but 

remains above VB2, and at maturity the value of assets is sufficient (insufficient) to repay the bond face 

value - II (III) and finally the assets value reaches VB2 before the maturity of the bond – IV.   
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3. The Bond Value 

 

3.1 Rating-based covenant: increase in the coupon rate 

   

In the first place we will consider the case of an increase in the coupon rate, when the asset value 

hits VB1. Remember that the new coupon, after the rating trigger, is given by ∆cFdt, with ∆>1. 

The value, at time t, of the bond will be given by the expected value, under the risk neutral 

probability (QB), of all payments discounted at the risk free rate:    
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Where 1A is the indicator function, which assumes the value of one if the event A is true and zero 

otherwise.   

  

The first line of the second member represents the discounted expected value of the coupon flow 

until the first barrier (VB1) is reached and the payment at maturity if the assets value remains 

above VB1 prior to the maturity date. The second line refers to the coupon flow after the rating 

change and the payment at maturity when the asset value crosses the first trigger level (VB1) but 

remains above the second barrier (VB2) prior to the maturity date. Finally the last line refers to the 

recovery value that accrues to bondholders when bankruptcy is triggered prior to the maturity 

date. 

 

Notice that the sum of the two expected values inside the cotter in the second and third line 

represents the value of the bond at τ1, that is to say at the time of the rating change: 
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1
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Thus, given the continuity of the assets value process, ( )BiVV
i

=τ , we can rewrite expression (1) 

as:     
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Whose value is given by (derivation in the appendix A.1): 
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Where: 

( )
t
FTQ 1X ≤τ  - stands for the probability, under measure X, of having a rating change until the 

maturity of the bond (period T-t); 
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( )
1

Fτ≤τ TQ 2X  - the probability, under measure X, of firm entering into bankruptcy, from the 

moment of the rating change until the maturity of the bond (period T - τ1); 
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“i” identifies the sate of the firm (i =1 before the rating change, i = 2 after the rating change). And  

N[.] –cumulative standard normal density function 
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After a rating change, for t > τ1, the bond value reduces to
7
:  
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3.2 Rating-based covenant: repayment of a fraction of the principal. 

 

Consider now a case where the rating trigger covenant, instead of generating an increase in 

coupon rate, leads to a partial repayment. Let (1- ∆) be the fraction of the principal that is repaid 

(∆<1). This implies that, at the rating change date (τ1), the bondholders receive an additional 

cash-flow given by: (1-∆)F, being ∆F the new face value of the bond which will generate a new 

coupon flow of ∆cFdt. As in Bhanot and Mello (2005), we will consider two sources of financing 

for this repayment: either through new equity or through the sale of assets. But instead of treating 

them separately (as done by those authors), we will integrate both approaches, giving rise to a 

more general framework where the refund can be funded by a combination of the two sources. 

Specifically, if we define θ as the fraction of the payment made through the sale of assets, (0 ≤ θ 

≤ 1), the repayment of (1-∆)F will be funded by (1- θ)(1-∆)F generated through a new equity 

issue and θ(1-∆)F generated through the sale of assets. 

 

The different source of funding influences the bond value only through the probability of 

reaching the liquidation level (VB2), when the value of the assets reaches the rating trigger level 

(VB1). Specifically, at τ1, when the rating of the firm is changed, if the sale of assets is used to 

                                                 
7
 We will use the notation B2(.) as the t value bond after the rating downgrade to differentiates from B(.) which is the 

t value bond before the rating downgrade.   
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finance the refund (for θ > 0), the assets value jumps immediately from VB1 to VB1 - θ(1-∆)F (see 

figure 2), raising the probability of liquidation and reducing in this manner the value of the bond. 

So, the greater the θ, the lower the bond value will be. Notice also that, if the value of the assets 

after the jump is equal or lower than VB2 ([VB1 - θ(1-∆)F] ≤ VB2), than, the firm is immediately 

liquidated (τ1 = τ2)
8
.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The bond value expressions for this case, are similar to the previous one, with the exception of 

the definition of ( )∆ττ ,F,c,T,,VB 11
 where it considers now the partial redemption (1-∆)F, the 

new face value ∆F, and the fact that at τ1 the assets value is given by [VB1 - θ(1-∆)F] instead of 

VB1,  thus expression (2) is replaced by: 

 B(
1

Vτ , τ1, T, c, F, ∆, θ) =   

( ) ( ) ( )( ) ( )

 

 1Ve1V1Feds1cFe F1E T1

r

FV,TT2FV,T

Tr

T

s

srQ

22

12

T2T2

1

1

2

1B
























ρ+ρ+∆+∆+∆− τ<ττ

τ−τ−

∆<>τ∆≥>τ

τ−−

τ

τ<

τ−−

∫ 1

F

 Whose value is: 

                                                 
8
  This scenario will not be taken into account in the derivation of the bond value formula since we will assume that 

VB1 - θ(1-∆)F) > VB2. 

 ττττ1  

VB1 

VB2 

   F 

0   T 

V0 

 V 

(1-∆)F 

θ(1-∆)F 

 ∆∆∆∆F 

Figure 2 -  Sample paths of the assets value considering different sources of funding. 

Black line - fully financed by new equity  (θ = 0); Gray line – when the selling of assets is 

used (θ > 0).   
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( )θ∆ττ ,,F,c,T,,VB 11
 = 

( ) ( )[ ]{ } ( ) ( ) TQ
V

F1V

r

cF
V TQ1e1

r

cF
F1 2

*

m

2B

1B
2B12

*

B

)T(r
2
2

B
2

m
2

1

11

FF τ

σ

µ−µ

τ

τ−−
≤τ







 ∆−θ−







 ∆
−ρ+≤τ−−

∆
+∆−

   

( ) ( )[ ] ( )
11

FF τ

τ−α−

τ

τ−− ∆<>τ∆−θ−ρ+∆≥>τ∆+ FV,TQeF1VFV,TQFe T2

*

V

)T(

1B2T2

*

B

)T(r 121          (6) 

Where ( )
1

Fτ≤τ TQ 2

*

X   is interpreted as the probability under measure QX that the assets value 

reaches VB2 from [VB1 - θ(1-∆)F] by the maturity and is defined as ( )
1

Fτ≤τ TQ 2X  replacing VB1 

by ( ( )F1V 1B ∆−θ− ). The same is true for  ( )
1

Fτ∆≥>τ FV,TQ T2

*

X  in relation to 

( )
1

Fτ≥>τ FV,TQ T2X  where additionally F is replaced by ∆F.  

Notice that the previous expression assumes that the firm is not liquidated at the rating change  -

that is: (VB1 - θ(1-∆)F) > VB2  and additionally  that ∆F > VB2.  

 

After the rating change, for t > τ1, the bond value is given by expression (5’), after adjusting for 

the new face value, thus the second line turns to:  

( ) ( )tT2V

)tT(

t2tT2B

)tT(r FV,TQeVFV,TQFe 2
FF ∆<>τρ+∆≥>τ∆

−α−−−  

 

It is worthwhile pointing out that both previous models work on the premise that the relationship 

between the value of the firm’s assets and liabilities is the single driver of its credit stance. This is 

equivalent to assuming that any exceptional situation of instantaneous insolvency, potentially 

leading to the inability of the firm to honour a coupon payment, would be solved with a 

temporary inflow of funds, provided by the shareholders. 

  

4. The Leveraged Firm Value 

 

In the previous section we derived the valuation formulae for debt. In this section, we obtain the 

valuation formulae for equity, tax benefits and bankruptcy costs.  

 

 



 16 

4.1 Equity value 

The equity value at t < τ1, will be given by the expected present value of all cash flows arising 

from the different future scenarios the firm is facing. Applying the same reasoning used in the 

valuation of debt claims, we may use the following expression (similar to expression (3) for the 

debt):  

E(Vt, t, T, c, F, ∆) = BQE ( )( ) ( ) ( ) ( ) 







−+ι−−α∫ ≥>τ

−−

τ<

−−

T

t

FV,TT

tTr

s

tsr

s1 T11
1FVeds1e1cFV

t
F   +  

+ BQE
( ) ( )[ ]

t
F∆ττ<τ

−τ−
,F,c,T,,VE1e 1T

tr

11

1   (7) 

 

Where E(Vt, t, T, c, F, ∆) and ( )∆ττ ,F,c,T,,VE 11
 denotes the equity value at t (t < τ1) and τ1 

respectively. So, conditioning in the firm not suffering a rating downgrade until maturity of the 

debt (first line), the value of equity takes into account the stream of dividends (defined as the 

cash payout (α1Vs) minus the coupon payments adjusted for the tax benefit of debt (cF(1- ι)), 

where ι is the corporate tax rate) and the residual value of the firm at maturity after the repayment 

of the principal of the debt. Notice that if τ1 > T and VT < F, the shareholders receive nothing 

since we are assuming the verification of the absolute priority rule. Otherwise, if the value of the 

assets reaches the first barrier before the bond matures (second line), the value of the equity at τ1 

is ( )∆ττ ,F,c,T,,VE 11
, which in turn is defined as follows: 

 

- For the accrued coupon rate rating trigger covenant (∆>1):        

( )∆ττ ,F,c,T,,VE 11
 = ( )( ) ( )












ι−∆−α τ

τ

τ<

τ−−

∫ 1

F

T

s

sr

s2

Q

1

2

1B ds1e1FcVE  

    + ( ) ( )[ ]
1

Fτ≥>τ

τ−−− FV,T

Tr

T

Q

T2

1B 1eFVE     (8) 

 

- For the partial repayment of the principal rating trigger covenant (∆<1): 

( )∆ττ ,F,c,T,,VE 11
 = ( )( ) ( )












ι−∆−α τ

τ

τ<

τ−−

∫ 1

F

T

s

sr

s2

Q

1

2

1B ds1e1FcVE  

    + ( ) ( )[ ]
1

Fτ∆≥>τ

τ−−∆− FV,T

Tr

T

Q

T2

1B 1eFVE  – 

–  ( )( )F11 ∆−θ−      (8’) 
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So, at τ1, the value of equity is given by the expected present value of: 

- The stream of dividends from τ1 to T or τ2 whichever comes first (first line of the 

expressions). These are defined by the new cash payout (α2Vs) deducted from the new coupon 

payment adjusted for the fiscal benefit (c∆F(1-ι)). Remember that for the accrued coupon rate 

rating trigger case, ∆ > 1, where (∆-1) is the relative increase in the coupon rate and for 

expression (8’), ∆ < 1, where (1 - ∆) corresponds to the fraction of the principal that is redeemed. 

- The residual value of the firm at maturity, if the firm hasn’t been liquidated in the 

meantime; which is defined by VT - F, (expression (8)) since the debt principal remains 

unchanged, and by VT - ∆F, in the second case (expression (8’) since a fraction (1- ∆) of the 

principal has been paid at the moment of the rating change. 

- For the second type of rating trigger covenant, we still have to take into account the 

fraction of the principal amortized through a new cash infusion from shareholders (last line in 

expression (8’)). 

 

The final expressions for equity value, for t < τ1 are (derivation in the appendix A.2): 

E(Vt, t, T, c, F, ∆) =  

( ) ( )[ ]
t
FFV,TQe1V T1V

tT

t
1 <>τ−

−α−
 

( ) ( )−≤τ














 ι−
−−

σ

µ−µ

t
FTQ

V

V

r

1cF
V 1m

1B

t
1B

2
1

B
1

m
1

   

( ) ( ) ( )[ ]{ }
t
FTQ1e1

r

1cF
1B

tTr ≤τ−−
ι−

− −−  
( ) ( )

t
FFV,TQFe T1B

tTr ≥>τ− −−
 + 

( ) ( ) 1

T

t

1Bt1B11B

)t(r
dV,V,g ,F,c,T,,VEe 1 ττ∆τ+ ∫

−τ−
        (9) 

 

As for the debt value, if VB1 > F, substitute ( )
t
FFV,TQ T1X ≥>τ  by ( )

t
FTQ 1X >τ  and 

( )
t
FFV,TQ T1X <>τ  by 0. 

             

In expression (9), ( )∆τ ,F,c,T,,VE 11B  is defined as (derivation in the appendix A.2): 

 

( )∆τ ,F,c,T,,VE 11B  =  
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for the accrued coupon rate rating trigger covenant case, and for the partial repayment of the 

principal rating trigger covenant: 
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1
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*
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Where the probabilities QX(.) and )(Q*

X ⋅  are defined as above in section 3. Recall that expression 

(10’) is only valid for VB1 - θ (1-∆)F > VB2. 

 

After the rating change, for t > τ1, the value of equity is obtained through expressions (10) and 

(10’) after replacing τ1 for t, VB1 and (VB1 - θ (1-∆)F) for Vt in (10) and (10’) respectively. The 

last term in the fourth line of (10’) also disappears and in (10’) )(Q*

X ⋅  are substituted by QX(.).  

 

It is worth noting that, for high face value bonds (face values higher than the barrier level: F > 

VB1) with a partial refund rating trigger covenant, when an equity issue is used to fund the partial 

repayment (θ < 1), the expression (10’) may turn negative from a certain value of τ1 onwards. 

This reflects the fact that, from the equity holders point of view, in this kind of situation, an 

additional cash infusion might have a negative expected net present value, consequently, in this 

case, the shareholders’ rational decision making process will lead them to shun the corresponding 

payment. If that happens, the equity value must be zero and the firm will enter into bankruptcy. 
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For example, assume the following parameters value
9
: V0 = 150, VB1 = 100, VB2 = 50, α1 = 0,07, 

α2 = 0,10, σ1 = 0,30, σ2 = 0,45, ι = 0,35. Considering a bond with F = 130, c = 13%, a time to 

maturity of 10 years and a partial refund of 20% (∆ = 0,8) partially financed by equity (θ = 0,5), 

the firm immediately enters into bankruptcy if the barrier is hit after 8 years (if τ1 ≥ 8). This level 

of τ1 (8 years, in the example) will tend to be lower the lower θ and ∆ and the higher F and c. 

Thus, for face values greater than VB1, in the integral of expression (9), ( )∆ττ ,F,c,T,,VE 11
 must 

be replaced by max[ ( )∆ττ ,F,c,T,,VE 11
;0]

10,11
. 

 

4.2 Tax benefits and bankruptcy cost values 

  

The final expressions for the value of tax benefits (TB) and bankruptcy costs, at t < τ1 are as 

follows (derivation in the appendix A.3): 

 

( )ι∆,,F,c,T,t,VTB t  =  ( ) ( )[ ] ( ) +

















≤τ







−≤τ−−

ι σ

µ−µ

−−

tt
FF TQ

V

V
TQ1e1

r

cF
1m

1B

t
1B

tTr
2
1

B
1

m
1

 

    

( ) ( ) 1

T

t

1Bt1B1

)t(r
dV,V,g ,,F,c,T,,VTBe

1

1 ττι∆τ+ ∫ τ

−τ−
 (11) 

Where: 
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 = 
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For the first case (∆>1), and for the second (∆<1): 

 

                                                 
9
 From Bhanot (2003)  

10
 If this adjustment is not taken into account, although expression (9) with (10’) will undervalue the equity, the 

difference will be insignificant for high values of V0 and time to maturity. For the example of the text, the difference 

in value is less than 0,3%.       
11

 Note further that, in this situation we also have to adjust the bond pricing formula; thus, if we assume that in the 

event of bankruptcy at τ1 (when shareholders are not willing to realize the cash infusion), the same recovery rate to 

bond holders as in τ2, expression (6) is replaced by ρ1VB1, which is the pay-off to bond holders conditioned on 

bankruptcy at τ1 (that is conditioned on max[ ( )∆ττ ,F,c,T,,VE 11
;0] = 0) .       
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Turning to the bankruptcy costs: 

( )∆,F,c,T,t,VBC t  = ( ) ( )tT1V
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Where, for the accrued coupon rate case (∆>1): 
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and for the partial amortization of principal (∆<1) : 

( )ι∆ττ ,,F,c,T,,VBC 11
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Once again, if VB1 > F, substitute ( )
t
FFV,TQ T1X <>τ  by 0, and in (12’) and (14’), it is assumed 

that VB1 - θ (1-∆)F > VB2.  

 

After the rating change, for t > τ1, the values of tax benefits and bankruptcy costs are obtained 

through expressions (12) and (14) after replacing τ1 for t and VB1 for Vt in the accrued coupon 

rate case. Similarly, for the partial amortization of principal, the corresponding values are 

obtained using expressions (12’) and (14’) after substituting τ1 and (VB1 - θ (1-∆)F) by t and Vt 

respectively and )(Q*

X ⋅  by QX(.)
12

.  

                                                 
12

 It is worth noting that if the face value is greater than the barrier level, an adjustment, similar to the one stated in 

the footnote 10 for the bond value, would have to be made  in expressions (11) and (13).   
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4.3 Leveraged firm value 

 

The value of the leveraged firm, defined as v(.) is now obtained either by the sum of bond and 

equity values or by the sum of the values of firm assets and tax benefits less the value of 

bankruptcy costs: 

  ( ) =⋅v  ( )⋅B  + ( )⋅E     or     ( ) =⋅v  V + ( )⋅TB  ( )⋅− BC  

 

Notice that for the partial repayment of principal rating trigger covenant case, the value of some 

variables will jump with the change of the firm´s rating (when the barrier level VB1 is reached - at 

τ1). Specifically: i) the bond value, irrespective of the funding source used to realize the partial 

redemption of the principal, declines immediately after τ1, by an amount equal to the value 

amortized; ii) the equity value, when the payment to bondholders is fully funded through a cash 

infusion, rises by the same amount, immediately after τ1. In contrast, when the sale of assets is 

used, the equity value remains unchanged immediately after τ1; iii) the leveraged firm value, 

immediately after τ1 remains the same with the issue of equity, and drops with the sale of assets, 

by the same amount of the asset sale which is (1-∆)F. The simultaneous use of both sources of 

funding will, naturally, lead to intermediate jump observed for equity and firm value.         

 

5.  Comparison with Bhanot’s Model   

 

As previously noted, the main shortcoming of Bhanot’s model is the absence of default at 

maturity or, putting it differently, the implicit assumption that, at maturity, bondholders always 

receive the full amount of the principal. Such an assumption leads to an overprice of the bond. 

Following we compare Bhanot’s (2003) results with ours, using the same parameter values to 

highlight the differences, namely: V0 = 150; VB1 = 100; VB2 = 50; α1 = 0,07; α2 = 0,10; σ1 = 0,30; 

σ2 = 0,45; r = 0,075; ρ1 = 0,5
13

; ι = 0,35; F = 100. For the coupon rate we will assume c = 0,09. 

                                                 
13

 Although on the legend of exhibit 2 in Bhanot (2003), page 61, it is written that the bankruptcy costs represent 

50%, leading to a recovery fraction of 50% (ρ1 = 0,5), the graph assumes that ρ1 = 1 (no bankruptcy costs). That 

same value (ρ1 = 1) is assumed thereafter on the other exhibits in Bhanot. By default, in the current section, it will be 

assumed that ρ1 = 0,5. Even so, in order to allow a comparison with Bhanot (2003), some numerical results were 

calculated assuming ρ1 = 1.     
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Since Bhanot’s model does not explicitly assume any kind of change in bondholders pay-offs, 

either at or after the rating change of the firm, and to isolate only the maturity default effect, we 

shall assume that in our model ∆ = 1. 

 

We start by defining the excess price (EP) of Bhanot’s model in relation to ours as: 

EP = (BB/B -1)100 

Where, BB and B stand for the price of the bond in Bhanot’s model and in our model, 

respectively.  

 

Figure 3, shows the excess price as a function of time to maturity. Figure 3a, considers different 

values for the recovery fraction of the asset values at maturity. As we can see, even in the case 

where there is no default cost at maturity (ρ2 = 1, the bondholders receive VT if VT < F), the price 

difference can reach 3%. As expected, a decrease in the recovery fraction lowers the “true” price 

of the bond and so the excess price rises. Figure 3b, highlights the effects of the asset value on 

price differences (considering ρ2 = 0,9) . The lower the value of the assets, the greater the 

probability of the firm entering in default at maturity, resulting in higher excess prices.   
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ρ2 

ρ2  

EP EP 

T-t T-t 

3a 3b 

(V = 150) (ρ2 = 0,9)  

Figure 3 -  Excess price as a function of time to maturity, with: VB1 = 100; VB2 = 50; α1 = 0,07; α2 

= 0,10; σ1 = 0,30; σ2 = 0,45; r = 0,075; ρ1 = 0,5; F = 100 and c =0,09. Figure 3b – considers three 

different values for ρ2 with V = 150, and figure 3b considers three different values for V with 

ρ2=0,9.   



 23 

In fact, as figure 4 illustrates, overpricing rises substantially when the value of the firm’s assets 

reaches VB1  (figure 4a), and then approaches the liquidation level, VB2 (figure 4b).  

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Remember that since we are assuming that ∆=1, the price difference is only attributable to a 

possible default at maturity which presumes that the face value of the bond is greater than the 

second barrier level (F > VB2). Otherwise, if VB2 is greater than F, then the value of the assets at 

maturity (in conditioning of never having reached VB2 in the meantime) will always be sufficient 

to repay the principal and, in that case, default at maturity will never happen. So, given a 

recovery fraction at maturity (ρ2), the smaller the gap between F and VB2, the smaller the excess 

in price will be. If VB2 ≥ F, our model (assuming ∆ =1) converges to Bhanot’s model. These 

remarks are illustrated in figure 5. In figure 5a, three different values for VB2 are considered (with 

ρ2 = 0,9 and F = 100), and in figure 5b, three different face values of debt are also taken into 

consideration (keeping the coupon rate at 9%, ρ2 = 0,9 and VB2 = 50). In both figures, it is 

assumed that t = τ1, that is, the value of the assets equals VB1.   

 

 

         

ρ2 

ρ2 

ρ2  

EP EP 

 

T - τ1  T - t  

(V = VB1 =100) (ρ2 = 0,9) 

4a  4b 

ρ2 

ρ2 

ρ2 

Figure 2 

Figure 4 -  Excess price as a function of time to maturity, with: VB1 = 100; VB2 = 50; α1 = 0,07; α2 

= 0,10; σ1 = 0,30; σ2 = 0,45; r = 0,075; ρ1 = 0,5; F = 100 and c =0,09. Figure 4a –  considers three 

different values for ρ2 with V = 100 (at τ1) , and figure 4b considers three different values for V 

(approaching the liquidation threshold) with ρ2=0,9.   
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Fixing the time to maturity, we can have an infinite number of combinations of coupon rates and 

face values to which a single value for the bond issue corresponds. If we consider only bonds 

issued at par (face value equal to emission value), we are able to compare, for the different 

models, the par coupon rate cpar (known as par yield), defined as follows: 

   cpar:  B(Vt, t, T, cpar, F, .) = F  (15) 

 

Since Bhanot´s model overprices the bond, for a given value of the issue, ceteris paribus, it is 

expected that the par coupon rate inherent in Bhanot’s model will be lower than that in ours. 

Figure 6 shows exactly these results. It graphs the par coupon rate (in percentage), as a function 

of the face value of the bond (equal to the emission value) considering a 5-year (figure 6a) and a 

10-year (figure 6b) time period to maturity. In each of these figures, two different values are 

considered for the recovery fraction upon liquidation of the firm (ρ1 = 0,5 and 1). Relating to our 

model, we still continue to assume that ∆ = 1, so after the rating change of the firm, the coupon 

and principal of the bond do not undergo any changes, and we also consider ρ2 = 1 (no 

bankruptcy costs when default occurs at maturity).  

 

 

ρ2 

ρ2 

ρ2  

 

T - τ1  T - τ1  

(V = VB1 =100; ρ2 = 0,9; F = 100 ) (V = VB1 =100; ρ2 = 0,9; VB2 =50) 

5a  5b 

VB2 

VB2 

VB2 

EP EP 

 

Figure 5 -  Excess price as a function of time to maturity, with: V=VB1 = 100; α1 = 0,07; α2 = 0,10; 

σ1 = 0,30; σ2 = 0,45; r = 0,075; ρ1 = 0,5; ρ2 = 0,9 and c =0,09. Figure 5a –  considers three different 

values for VB2 with F = 100, and figure 5b considers three different values for F and VB2=50.   
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As we can see, the greater the principal (meaning a greater gap between F and VB2 and 

consequently a greater excess price), the greater the difference will be between par coupon rates 

derived from our model and those calculated on the basis of Bhanot´s model. Furthermore, this 

difference tends to shrink with time to maturity, since our model (with ∆ = 1) only differs from 

Bhanot’s model in respect to cash-flow at maturity: the greater the maturity the lower the relative 

importance of the cash-flow (specifically, the expected present value) will be, in terms of price.  

   

If, instead of varying the face value, we vary the time to maturity (T – t) in (15) for a given face 

value for the bond, we obtain the par yield curve. Bhanot (2003) calculates the par yields for six 

maturities (second column of exhibit 6, page 63 in Bhanot (2003)) assuming F = 100 and ρ1 = 1. 

We conduct a similar analysis, using the same parameter values, in comparing our model with 

Bhanot’s model, but instead of relying on the par yield curves, we analyze the resulting credit 

spreads. Notice that the analysis is similar since the framework relies on a constant risk-free 

interest rate with a flat risk-free yield curve. 

 

 In figure 7a below we graph the credit spread curves (in basis points) resulting from Bhanot’s 

model and our model. The hump-shape is present in both models, although more pronounced in 

 

6a 6b 

(ρ1 = 0,5) 
(ρ1 = 0,5; ρ2 = 1 ) 

(ρ1 = 1) 

(ρ1 = ρ2 = 1 ) 

(T- t = 5) (T- t = 10) 

(ρ1 = 0,5) 
(ρ1 = 0,5; ρ2 = 1 ) 

(ρ1 = 1) 

(ρ1 = ρ2 = 1 ) 

ρ1 = 0,5 

ρ1 = 1 

ρ1 = 0,5 

ρ1 = 1 

 

Figure 6 – Comparison of par coupon rates (in percentage), as a function of  face value, in Bhanot´s model and in 

our model with: V=150; VB1 = 100; VB2 = 50; α1 = 0,07; α2 = 0,10; σ1 = 0,30; σ2 = 0,45; r = 0,075, ρ2 = 1, for 

different values of ρ1 (0,5 and 1) considering a five year time lapse to bond maturity (figure 6a ) and a ten-year time 

to bond maturity (figure 6b ).   
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our model. As we can see, and as expected, even considering the absence of bankruptcy costs, in 

the case of default at maturity (ρ2 = 1 in our model), the differences are expressive especially in 

short maturities. To highlight these differences we have plotted them in a separate graph (figure 

7b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

It is worth pointing out that these credit spread differences are independent of the recovery value 

ρ1. In fact, the influence of ρ1 is the same in both models. It only influences the bondholders’ 

payoff when the firm is liquidated (before maturity). So, although different recovery values lead 

to different bond prices, these changes in price will be the same in both models, which in turn 

will lead to an equal change in the par yields leaving the difference on credit spreads unchanged.  

 

6.  The Influence of the Rating Trigger Covenant. 

 

In the previous section, since the focus was to highlight the overpricing inherent in Bhanot’s 

model, we have assumed, in our model, for the purpose of comparison, that ∆ = 1. In the current 

section, this assumption will be relaxed for two main reasons: to analyze in more detail the 

effects on bond prices and credit spreads of a rating trigger covenant specified as an increase in 

coupon rate or a partial redemption of the principal, and to allow comparisons with bonds issued 

without this kind of covenant. This comparison is also present in Bhanot (2003) but our analysis 

is distinct in several aspects. In the first place, as stated previously, the bond price formula 

 

7a 7b 

(ρ1 = ρ2 = 1) 
 

Figure 7 – Comparison of credit spreads (in basis point), as a function of  time to maturity, in Bhanot´s model and in 

our model (figure 7a); Credit spread differences between the models (in basis point), as a function of  time to maturity, 

(figure 7b). With V0=150; VB1 = 100; VB2 = 50; α1 = 0,07; α2 = 0,10; σ1 = 0,30; σ2 = 0,45; r = 0,075, ρ1 = ρ2 = 1 and 

considering a face value of 100 issued at par.  
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presented by this author does not take into account any kind of change on bondholders’ cash flow 

after the rating change. In essence, the only influence of the rating based covenant on Bhanot’s 

bond price is the consideration of a greater payout ratio and asset value volatility after the 

downgrade of the firm. Additionally, in pricing bonds without covenants, those changes are not 

taken into account
14

; instead Bhanot (2003) uses an implied volatility value
15

. On the contrary, 

relying on the fact that irrespective of the debt type (with or without rating trigger covenants), the 

firm is equally subject to rating notation (and so to rating changes), we always assume the 

existence of the two barriers (the downgrade level and the liquidation level). Thus, for the case of 

bonds without covenants, when the rating of the firm is changed, notwithstanding the fact that the 

bondholders’ cash flow remains unchanged, the firm may alter its cash payout rate and risk in the 

same way as is assumed in the case of bonds with rating trigger covenants. In short, the prices of 

the different bonds are obtained as follow: 

- using expression (4) and (5), with ∆ = 1, for bonds without rating trigger covenants; 

- using expressions (4) and (5), with ∆ > 1, for bonds with rating trigger covenant of the 

type accrued coupon rate, where (∆-1) is the relative change in the coupon rate; 

- using expressions (4) and (6), with ∆ < 1, for bonds with rating trigger covenant of the 

type partial prepayment of the principal, where (1-∆) is the fraction of  the facial value 

that is redeemed; 

 

Remember from section 3, where in this last case, the partial amortization of the debt can be 

financed either through selling assets, cash infusions from shareholders or a combination of both. 

 

In what follows, we will assume for the parameter values:  V0 = 150; VB1 = 100; VB2 = 50; α1 = 

0,07; α2 = 0,10; σ1 = 0,30; σ2 = 0,45; r = 0,075; ρ1 = 0,8; ρ2 = 1. 

 

To compare the three types of bonds, we restrict our analysis to par issued debt. 

 

 

 

                                                 
14

 If they were, there would be no distinction between the two types of bonds.    
15

 “I compute the implied volatility of the asset process that makes the model bond price without covenants equal the 

true price.” Page 61 in Bhanot (2003) 
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6.1 Par yields 

 

Since the existence of a covenant in the bond indenture aims to protect bondholders’ interest, we 

would expect that, for a given face value of debt, bondholders would require a lower coupon rate 

in this kind of bond as compared to that required from unprotected debt. Such a result is provided 

in our model, as illustrated in figure 8a. The figure plots the (par) coupon rate as a function of 

bond’s face value (emission value), assuming a time to maturity of 10 years, for three types of 

debt: a bond without covenant, a bond with accrued coupon rate rating trigger covenant (with ∆ = 

1,2, so a 20% increase in the coupon), and a bond with partial refund rating trigger covenant 

(with ∆ = 0,8, so a 20% reduction in the face value). For this last type, a distinction is also made 

regarding the financing source (fully financed by new equity - θ = 0, or fully financed through 

the sale of assets, θ = 1).  

          

Comparing both covenants, accrued coupon rate and partial amortization of principal when 

financed through cash infusion (θ = 0), for the same par value, and a same percentage change 

(positive in the former, negative in the latter case), the required par coupon rate for the first case 

is always greater than that for the second case. In other words, for the two types of bonds to have 

the same required par coupon rate (thus being equivalent at the issue date), the percentage 

increase in the coupon rate must be greater than the face value percentage decrease. For example, 

considering a time to maturity of 10 years and a par emission value of 100, the par coupon rate of 

a bond with a 20% reduction of principal rating trigger covenant is 10,994%, while for the 

accrued coupon rate rating trigger covenant case, the percentage increase in the coupon that 

returns the same par coupon rate is 37,53%. Note however, that after the debt is in place, the 

respective par yields evolve differently ways as time passes.   

Notice that what differentiates these two types of bonds is the coupons received by bondholders 

and the way the principal is redeemed, after the rating downgrade. Specifically, in one case, 

bondholders receive higher coupons but are exposed to a greater loss if bankruptcy occurs (they 

receive ρ1VB2 instead of F). In the other case, although bondholders receive a lower coupon, the 

loss incurred in the bankruptcy scenario is also lower (ρ1VB2 instead of ∆F
16

), since part of the 

                                                 
16

 It is important to remember that we are assuming that ∆F (the new face value after the partial redemption of 

principal) is greater than VB2.  
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principal was already received when the firm’s rating changed. Note also that, in either case, the 

probabilities of the firm entering into bankruptcy (VB2 be crossed) are the same
17

.     

 

        

 

 

 

On the other hand, when the partial refund is funded through the sale of assets (θ =1), the 

downgrade in the firm’s credit rating leads to a downward jump in the value of the assets (by the 

amount of the refund) which in turn will cause an increase in the probability of bankruptcy. Thus, 

this kind of bond is riskier or less protected, when compared with the equity issue case, and that 

fact is reflected in the higher par coupon rate required by bondholders (at the issue date) as 

illustrated in figure 8a. The greater the face value, the greater the downward jump (for a fixed ∆) 

would be, and also the greater the difference would be between the required coupon rate on the 

two bonds. In effect, for high values of principal, the partial refund rating trigger covenant bond, 

when financed by the selling of assets, can be riskier than the accrued coupon rate rating trigger 

covenant bond.    

 

                                                 
17

 Yet, the probability of default at maturity is different since ∆F < F.   

  
 

         (∆ =1,2) 

(∆ =0,8; θ = 0) 

(∆ =0,8; θ = 1) 

         (∆ =1,2) 

(∆ =0,8; θ = 0) 

(∆ =0,8; θ = 1) 

(F = 100) (T-t = 10) 

8a 8b 

 

Figure 8 –Par coupon rate (in percentage) as a function of the face value considering a 10 years maturity 

bond (figure 8a). Par yields (in percentage) as a function o time to maturity, considering F=100 (figure 8b). 

V0=150; VB1=100; VB2 = 50; α1 = 0,07; α2 = 0,10; σ1 = 0,30; σ2 = 0,45; r = 0,075, ρ1 = 0,8 and ρ2 = 1.  
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The par yield curves for the four bonds are also plotted (figure 8b), assuming a 100 face value. 

As we can see, in conformity with what was stated in the previous paragraphs, the bond without 

the covenant yields the highest credit spreads (reaching to almost 500 basis points for a time 

lapse to maturity of 7,5 years given the values for the parameters in the example) while the 

lowest credit spreads are generated by the partial refund rating trigger covenant when financed by 

cash infusion (where the credit spreads do not exceed 250 basis points). 

 

It must be emphasised that these numerical results rely upon the specific parameter values used. 

Specifically it was assumed that after the rating downgrade, the payout ratio of the firm changed 

in the same manner irrespective of the bond type. If instead, depending on what happens to the 

coupon value after the rating change, we had considered different changes in the payout ratio, the 

results would also be different. For example, if we had assumed no change for the no covenant 

case (since the coupon remains unchanged) and a decrease for the partial amortization case (since 

the reduction in the principal reduces the coupon), the par yields of these bonds would have been 

lower
18

. In particular, the par yields of the bond with the partial refund covenant when fully 

financed by the selling of assets, could even be lower than those from the accrued coupon rate 

case. 

 

6.2 Equity and leveraged firm value 

 

It is interesting to compare the values of equity and the whole leveraged firm associated with the 

various kinds of debt. Table 1 reports those values considering a 100 face value bond issued at 

par with a maturity of 10 years. For bonds without the rating trigger covenant and accrued 

coupon rate rating trigger covenant type, the values are obtained for the issue date (t = 0), and for 

two hypothetical downgrade dates, τ1 = 6 and τ1 = 8 (the barrier VB1 is hit when the time to 

maturity of the bond is 4 and 2 years respectively). For bonds with a partial refund rating trigger 

covenant, besides the issued date, values are obtained for τ1 = 6, and immediately after (τ1
+
).            

 

In addition to some of the previous findings, the table shows that the equity value, and the 

leveraged firm value are insensitive in relation to the percentage increase on the coupon rate. The 

same result does not hold for the partial refund rating trigger covenant case. Indeed, in this latter 

                                                 
18

 Nonetheless, the bond with no covenants would still have the highest par yields.   
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case, the greater the amortization of principal, the lower the equity and the corresponding 

leveraged firm value.       

     

  
Par coupon 

rate 
Equity Value Leveraged Firm value Bond value 

   t = 0 τ1 = 6  τ1 = 8 t = 0 τ1 = 6  τ1 = 8 t = 0 τ1 = 6 τ1 =8 

 ∆ = 1 12,44 % 68,41 28,55 22,83 168,40 104,31 102,9 100 76,76 80,07 

            

 ∆ = 1,2 11,63 % 68,41 26,32 21,33 168,40 105,51 103,7 100 79,19 82,37 

 ∆ = 1,3753 10,99 % 68,41 24,59 20,17 168,40 106,44 104,33 100 81,85 84,16 

            

            

  Par coupon 

rate 
Equity Value Leveraged Firm value Bond value 

   t = 0 τ1 = 6  τ1
+

 t = 0 τ1 = 6  τ1
+ t = 0 τ1 = 6  τ1

+ 

∆ = 0,8 10,99 % 64.38 17,98 37,98 164,38 101,41 101,41 100 83,43 63,43 

θ
 =

 0
 

∆ = 0,7 10,21 % 62.41 12,75 42,75 162,41 100,1 100,1 100 87,35 57,35 

            

∆ = 0,8 11,39 % 64,05 19,34 29,34 164,05 100,26 90,26 100 80,92 60,92 

∆ = 0,7 10,69 % 61,80 14,06 29,06 161,80 98,36 83,36 100 84,3 54,3 

θ
 =

 0
,5

 

           

∆ = 0,8 11,91 % 63,63 20,98 20,98 163,63 98,79 78,79 100 77,81 57,81 

θ
 =

 1
 

∆ = 0,7 11,40 % 60,95 15,83 15,83 160,95 95,86 65,86 100 80,03 50,03 

 

 

 

 

7. Conclusion 

 

Using a framework similar to that used by Bhanot (2003), we developed a model to price finite 

maturity coupon bonds with rating trigger based covenants, which resolved an inconsistency 

inherent in that model. namely, the absence of default at maturity. We showed that, this limitation 

in Bhanot’s model could lead to a significant bond overvaluation . In addition, comparisons were 

made considering bonds with different types of rating trigger covenants. Although, the bond with 

a partial refund rating trigger covenant, when fully financed by equity infusion, offers the greatest 

bondholder “protection” and thus the lowest credit spread, the corresponding equity and 

leveraged firm values are lower when compared with those corresponding to the accrued coupon 

rating trigger covenant.  

Table 1 – Equity, bond and leverage firm values at the issue date (t=0) and at the rating downgrade date (τ1 = 6 and 8 for the 

no covenant and accrued coupon rate cases -first panel; and τ1 = 6 for the partial amortization case - second panel). The bonds 

have a face value of 100 issued at par with a maturity of 10 years, and V0=150; VB1 = 100; VB2 = 50; α1 = 0,07; α2 = 0,10; 

σ1= 0,30; σ2=0,45; r = 0,075, ρ1 =0,8 and  ρ2 = 1.  
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Appendix 

Preliminaries  

• The dynamics of the logarithm of the assets value, Y = lnV are:  

   dY = µi
X
dt + σidW

X
 

where W
X
 is a Wiener process under the probability measure QX and µi

X
 is the correspondent  

drift (X = B, V or m).  

QB – is the probability measure when the assets value process is normalized by the saving 

account; 

QV – is the probability measure when the assets value is used as numeraire; 

Qm – is the probability measure when assets paying one unit at default are used as numeraire. 

The corresponding drift terms are defined as follows: 

B

iµ = (r - αi - 
2

iσ /2) 

V

iµ  = B

iµ  + 2

iσ  = (r - αi + 2

iσ /2) 

m

iµ  = ( ) 2

i

2B

i r2 σ+µ  

 

• [ ] ( )
tt
FF AQ1E XA

QX =  = probability, under measure QX, of event A occurring.  

 

• The first passage time density at T (T > t) of the assets value from Vt to a barrier level VB (Vt 

> VB), under probability measure QX is given by:   

  gX(T, Vt, VB) =    
( )
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and the corresponding cumulative distribution function, is: 

GX(T, Vt, VB) = ∫
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Where N[. ] stands for the cumulative standard normal density function. 
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• Considering the definitions of τ1 and τ2 in the body of the text:  

QX(τ1 ≤ T| Ft) = GX(T, Vt, VB1) -  using X

1µ  and σ1 in expression P1. 

QX(τ2 ≤ T| 
1τ

F ) = GX(T, 
1

Vτ , VB2) and  QX(τ2 ≤ T| tF ) = GX(T, tV , VB2) – using X

2µ  and σ2 in 

expression P1. 
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V
1eE 2m

2B

1B
T

rQ

τ

σ

µ−µ

τ≤τ

τ−τ−
≤τ








= FF  

• ( )[ ] ( )
== ∫

−α−

≤τ

−τα−
u)dV ,V ,u(ge1eE

T

t

BitV

tu

T

tQ i

i

iiV

t
F =








∫














−

σ

µ−µ

u)dV ,V ,u(g
V

V
T

t

Bitm

1

Bi

t

2
i

B
i

m
i

 

  ( )
t
FTQ

V

V
im

1

Bi

t

2
i

B
i

m
i

≤τ







=














−

σ

µ−µ

,  where i = 1, 2. 

A.1  

• B(V, t, T; c, F, ∆) = ( )








∫ τ<

−−

t
Fds1cFeE

T

t

s

tsrQ

1

B  +  
( )[ ]

t
FFV,T

tTrQ

T1

B 1FeE ≥>τ

−−
 +  

( )[ ]
t
FFV,TT2

tTrQ

T1

B 1VeE <>τ

−− ρ  + 
( ) ( )[ ]

t
F∆ττ<τ

−τ−
,F,c,T,,VB1eE 1T

trQ

11

1B  

 

 

First term: ( )








∫ τ<

−−

t
Fds1cFeE

T

t

s

tsrQ

1

B  = 
( )












∫

τ∧

−−

t
FdscFeE

1

B

T

t

tsrQ
=  

= 
( ) ( )[ ]

t
F11e1eE

r

cF
T

tr

T

tTrQ

1

1

1

B −+− ≤τ

−τ−

>τ

−−
 =  

( ) [ ] ( )[ ]{ }
tt
FF T

trQ

T

QtTr

1

1B

1

B 1eE1Ee1
r

cF
≤τ

−τ−

>τ

−− −−  = 

  = 
( ) ( ) ( )

















≤τ







−>τ−

σ

µ−µ

−−
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FF TQ

V

V
TQe1

r

cF
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t
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2
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B
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m
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Second term:  
( )[ ]

t
FFV,T

tTrQ

T1

B 1FeE ≥>τ

−−
 = 

( ) ( )
t
FFV,TQFe T1

tTr ≥>τ−−
  

 

Third term:  
( )[ ]

t
FFV,TT2

tTrQ

T1

B 1VeE <>τ

−− ρ  = 
( )

( )( )









ρ <>τ

−α−−
−α−

t
FFV,T

t

T

tTr
QtT

t2 T1

1

B1 1
V

Ve
EeV  =  

( )
( )( )

[ ]
tt
FF FV,T

Q

t

T

tTr
QtT

t2 T1

V

1

B1 1E
V

Ve
EeV <>τ

−α−−
−α−









ρ  = 

( ) ( )
t
FFV,TQeV T1V

tT

t2
1 <>τρ

−α−
  

(note: ( )( )
T

tTr Ve 1 −α−−  is a martingale under probability measure QB) 

 

Fourth term: 
( ) ( )[ ]

t
F∆ττ<τ

−τ−
,F,c,T,,VB1eE 1T

trQ

11

1B  = ( ) ( ) ( ) 11Bt1B

T

t

11B

tr
dV,V,g,F,c,T,,VBe 1 ττ∆τ∫

−τ−  

Collecting terms and noting that ( ) ( )⋅≤τ−=⋅>τ  TQ1 TQ iXiX , yields the expression (4) in the 

body of the text. 

• B(
1

Vτ , τ1, T; c, F, ∆) = ( )












∆∫

τ

τ<

τ−−

1

1

2

1B

τ

T

s

srQ
ds1cFeE F  + ( )[ ]

1T2

1B

τFV,T

TrQ
1FeE F≥>τ

τ−−  +  

+ ( )[ ]
1T2

1B

τFV,TT2

TrQ
1VeE F<>τ

τ−− ρ  + ( )[ ]  1VeE T1

rQ

22

12B

1

Fτ<ττ

τ−τ−
ρ  

 

Notice that the first three terms in the above expression are similar to those relating B(V, t, T; c, 

F, ∆), the difference being the filtration considered (τ1 instead of t) and the coupon (∆cF instead 

of cF). Thus, applying the same derivation, the solution will be the same as that obtained 

previously after replacing Vt by 
1

Vτ = VB1, t by τ1 and cF by ∆cF. 

 

For the fourth term:  ( )[ ]  1VeE
122

12B

τT1

rQ
F<ττ

τ−τ−
ρ  = ( )[ ]  1eEV

12

12B

τT

rQ

2B1 F<τ

τ−τ−
ρ  = 

      = ( )
1

2
2

B
2

m
2

TQ
V

V
V 2m

2B

1B
2B1 τ

σ

µ−µ

≤τ







ρ F  

Collecting terms and noting that ( ) ( )⋅≤τ−=⋅>τ  TQ1 TQ iXiX , yields the expression (5) in the 

body of the text. 
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• After the downgrade, the bond value is defined as B(
1

Vτ , τ1, T; c, F, ∆), but since t > τ1 

the relevant filtration is Ft , thus:     

B( tV , t, T; c, F, ∆)= ( )








∆∫ τ<

−−

t

T

t

s

tsrQ
ds1cFeE

2

B F  + ( )[ ]tFV,T

tTrQ

T2

B 1FeE F≥>τ

−−  +  

+ ( )[ ]tFV,TT2

tTrQ

T2

B 1VeE F<>τ

−− ρ  + 
( )[ ]  1VeE tT1

trQ

22

2B F<ττ

−τ−
ρ  

 Whose solution will be the same of B(
1

Vτ , τ1, T; c, F, ∆) (expression 5) after replacing, VB1 by 

Vt and τ1 by t yielding expression (5’). 

 

A.2 

• Equity value at t < τ1: 

 E(Vt, t, T, c, F, ∆) = BQE ( )( ) ( )








ι−−α∫ τ<

−−

t

T

t

s

tsr

s1 ds1e1cFV
1
F + BQE ( )( )[ ]

t
FFV,TT

tTr

T1
1FVe ≥>τ

−− −   +  

+ BQE
( ) ( )[ ]

t
F∆ττ<τ

−τ−
,F,c,T,,VE1e 1T

tr

11

1   

 

 

First term:    ( )( ) ( )








ι−−α∫ τ<

−−

t
F

T

t

s

tsr

s1

Q
ds1e1cFVE

1

B  =  

= ( )[ ] 







α∫ τ<

−−

T

t

s

tsr

s

Q

1 ds1eVE
1

B

t
F ( ) ( )









ι−− ∫ τ<

−−

t
F

T

t

s

tsrQ
ds1e1cFE

1

B  (by Fubini’s theorem) 

 

= ( ) [ ] 







α∫ τ<

−α−

T

t

s

Qts

t1 ds1EeV
1

V1

t
F  ( ) ( )












ι−− ∫
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−−
1

B

T

t
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dse1cFE

t
F = 

= ( )












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1
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T

t
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1
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t dseEV
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r

1cF
T
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T

tTrQ

1

1

1
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ι−
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= 

=
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t
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t

T

tTQ

t 1
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1

1V 1e1e1EV ≤τ

−τα−
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FF T
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T

QtTr

1

1B

1

B 1eE1Ee1
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
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= ( ) ( ) ( ) −






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

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Second term:  

BQE ( )( )[ ]
t
FFV,TT

tTr

T1
1FVe ≥>τ

−− −  = 
( ) [ ]

t
FFV,T

QtT

t T1

V1 1EeV ≥>τ

−α−
  

( ) [ ]
t
FFV,T

QtTr

T1

B 1EFe ≥>τ

−−−  = 

=  
( ) ( )

t
FFV,TQeV T1V

tT

t
1 ≥>τ

−α−
  

( ) ( )
t
FFV,TQFe T1B

tTr ≥>τ− −−
 =  

= 
( ) ( ) ( )[ ]

tt
FF FV,TQTQeV T1V1V

tT

t
1 <>τ−>τ

−α−
  

( ) ( )
t
FFV,TQFe T1B

tTr ≥>τ− −−
 

  

Third Term: BQE
( ) ( )[ ]

t
F∆ττ<τ

−τ−
,F,c,T,,VE1e 1T

tr

11

1  = ( ) ( ) ( ) 11Bt1B

T

t

11B

tr
dV,V,g,F,c,T,,VEe 1 ττ∆τ∫

−τ−  

Collecting terms yields the expression (9) in the body of the text.  

 

• Equity value at t = τ1, accrued coupon rate case 

 

( )∆ττ ,F,c,T,,VE 11
 =  

( )( ) ( )












ι−∆−α τ

τ

τ<

τ−−

∫ 1

F

T

s
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s2

Q

1

2

1B ds1e1FcVE  + ( ) ( )[ ]
1

Fτ≥>τ

τ−−− FV,T

Tr

T

Q

T2

1B 1eFVE = 

 

Applying the same reasoning as for the two first terms in the previous case but considering now 

the filtration at τ1 yields the expression (10) in the body of the text. 
 

A.3.  
The value of the tax benefits is given by:   

• ( )ι∆,,F,c,T,t,VTB t = BQE ( )








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t
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
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
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



ι∫
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1

B

T

t

t
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dsecFE F
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T
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r
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1

1

1

B F−+
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( ) [ ] ( )[ ]{ }
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Second term: 

BQE
( ) ( )[ ]t1T
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,F,c,T,,VTB1e
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1 F∆ττ<τ

−τ−
 = ( ) ( ) 1

T

t

1Bt1B1

)t(r
dV,V,g ,,F,c,T,,VTBe

1

1 ττι∆τ∫ τ

−τ−
 

Collecting terms yields expression (11) in the body of the text. 

• ( )ι∆ττ ,,F,c,T,,VTB 11
 = BQE ( )












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Whose value, for the accrued coupon rate case (∆>1), will be given by: 

( ) ( ) ( )


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






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And, for the partial amortization case (∆<1, and ( ) )F1VV 1B1
∆−θ−=τ : 
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A.4. In relation to bankruptcy costs: 

 

 ( )∆,F,c,T,t,VBC t = ( ) ( )[ ]tT2FV,T

tTrQ
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• ( )ι∆ττ ,,F,c,T,,VBC 11
 = 
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Whose value, for the accrued coupon rate case (∆>1), will be given by: 
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And, for the partial amortization case (∆<1, and ( ) )F1VV 1B1
∆−θ−=τ : 
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      (14’) 

 
       

 

       


