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Abstract 

This paper derives the relationship between the CAPM beta and three measures 

of downside beta. Assuming the market model and a downside variant of the 

market model as data generating processes restrictions on the risk measures are 

derived. The restrictions are used to establish the relationships between the betas. 

We argue that restrictions such as the ones that we have derived on the risk 

measures may be used to explain differing conclusions in comparable empirical 

studies. Through an empirical example we highlight how such relationships may 

reveal the underlying characteristics of different risk measures with respect to an 

assumed data generating process. Restrictions such as those we have derived 

could provide more insights on empirical validity of risk measures and hence 

may lead to proper conclusions in empirical investigations of competing asset 

pricing models. 
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1. Introduction 

There is strong evidence that the mean-variance CAPM performs poorly. A criticism of the 

mean-variance CAPM is its disregard to up and down movements of asset returns. The 

concept of downside risk is considered as an alternative. However, only a few studies 

compare the performance of the mean-variance CAPM and the pricing models in a downside 

framework. A study of UK equity markets by Pedersen and Hwang (2003) is one example. 

Data generating processes are widely used in designing asset pricing tests. In the popular 

Fama-MacBeth (1973) two-stage estimation and testing of equilibrium pricing models 

erroneous conclusions is possible due to high collinearity of estimated parameters. Data 

generating processes could to a certain extent arrest this problem. Barone-Adesi (1985) argue 

that when the Kraus and Litzenberger (1976) three-moment asset pricing model is 

reformulated as a quadratic market model parameter estimation in the quadratic market model 

is less likely to be affected by multicollinearity than when estimating the three-moment model 

itself. Studies that employ data generating processes to test the empirical validity of asset 

pricing models often report differing conclusions.  

In this paper we establish restrictions on the downside beta and the CAPM beta in two 

assumed data generating processes. Through the relationships that we develop we highlight 

the conditions under which systematic risk captured by the CAPM beta may be numerically 

equal to the systematic risk estimated by the downside risk measure.  We argue that such 

information may be useful to explain results in empirical studies that investigate competing 

asset pricing models through their equivalent data generating processes.1  

We consider two data generating processes. The market model is considered as one data 

generating process. The other is a variant of the market model that accounts only for the 

downside movements of the market. These are the two commonly discussed pricing models 

                                                 
1 Hwang and Satchell (1999) considered the linear market model, the quadratic market model and the 

cubic market model as the data generating processes that has been shown to be consistent with their 

equivalent CAPM versions. They derive restrictions for the systematic risk/s implied by the data 

generating processes.  
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under the mean-variance and mean semi-variance frameworks.  We illustrate the relationships 

that we derive through an empirical example.  

The paper is organized as follows. The downside risk measures are defined in the next 

section followed by data generating processes in the mean-variance framework and in a 

downside framework. There after the relationships derived are illustrated via an empirical 

example. The paper finishes with some concluding remarks.      

2. Downside risk measures 

In this study we focus only on the risk associated with the second moment. Therefore our 

discussion is limited to the CAPM beta and some measures of downside beta. There are 

several measures of downside risk proposed in the literature. We consider three such 

measures. Bawa and Lindenberg (1977) in their interpretation of the CAPM in a downside 

framework defined downside beta (BL-beta) which we denote by  as )(BL
imβ
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where  is the return on security i,  is the return on market portfolio and  is the risk-

free rate. The numerator in (1) is referred to as the co-semi-variance of returns below  on 

the market portfolio with returns in excess of excess of  on security i.  
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Harlow and Rao (1989) developed a pricing model citing the earlier work of Hogan and 

Warren (1974) and Bawa and Lindenberg (1977). They revealed that market participants 

appear to characterize risk as downside deviations below a target that is related to equity 

market mean returns rather than to the risk-free rate. In that case the expression for the 

downside beta (HR-beta) becomes 
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where iµ  and mµ  are security i and market average returns respectively.  
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Estrada (2002) defines an asset i’s covariance with the market portfolio in a downside 

framework as ( ) ( )[ 0,min0,min mmii RRE ]µµ −−  leading to a measure of systematic 

downside beta-risk (E-beta) given by 
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im
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3. Mean-variance framework 

In the mean-variance framework the data generating process consistent with the CAPM may 

be expressed as  

( ) itfmtiifit RRbbRR ε+−+=− 21                                           (4) 

where ( ) 0=itE ε .3 In this section assuming (4) holds we derive expressions for the CAPM 

beta and the downside betas in terms of the parameters of the data generating process. Also 

we discuss the conditions under which downside beta may be approximated numerically by 

the CAPM beta. 

 

3.1 CAPM beta 

Taking the expectation of (4), 

( ) ( ) fimiifi RbREbbRRE 221 −+=−                                          (5) 

and subtracting (5) from (4) we obtain 

( ) ( )( ) itmmtiiit RERbRER ε+−=− 2                                          (6) 

Multiplying (6) by ( )( )mmt RER −  and applying the expectation operator follows 

( )( ) ( )( )[ ] ( )( )[ ]22 mmtimmtiit REREbRERRERE −=−−                       (7) 

                                                 
2 While aggregation applies for a threshold or target of zero (or the risk-free rate when using excess 

returns) it generally does not apply for other thresholds. This calls into question the theoretical basis for 

the HR-beta. On the other hand the E-beta cannot be linked to a well-behaved utility function due to the 

focus only on negative returns for the evaluated asset. Notwithstanding these shortcomings we consider 

all three measures due to their presence in the literature. 
3 A pricing model equivalent to this data generating process is ( ) ( )[ ]fmfit RREbRRE −+= . The data 

generating process defined in (4) is also referred to as the market model.  
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This reduces to  

( )( ) ( )( )[ ]
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where imβ  is the CAPM beta. 

 

3.2 Harlow and Rao beta 

Now writing  as ( mmt RER − ) ( )( ) ( )( )[ ]0,max0,min mmtmmt RERRER −+−  in (6)  

( ) ( )( ) ( )( )[ ] itmmtmmtiiit RERRERbRER ε+−+−=− 0,max0,min2                (9) 

Multiplying (9) by , substituting ( )( 0,min mmt RER − )

( )( ) ( )( ) 00,max0,min =−− mmtmmt RERRER  and taking the expectation follows 
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The above result indicates that when (4) adequately describes the data generating process the 

downside risk measure defined by Harlow and Rao is equal to the slope parameter of the 

market model and is therefore numerically equal to the CAPM beta.   

 

3.3 Estrada beta 

Writing  as ( )iit RER − ( )( ) ( )( )[ ]0,max0,min iitiit RERRER −+−  in (9) we obtain 
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Multiplying (12) by  and taking the expectation  ( )( 0,min mmt RER − )
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This reduces to  
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This result indicates that if we assume (4) as the asset price generating process the slope 

parameter under-estimates Estrada beta.4 In other words when the mean-variance CAPM 

applies, the systematic risk measured by the CAPM beta is lower than the risk measured by 

the Estrada beta. Further, when the asset follows the market  approximates the CAPM 

beta. In particular E-beta differs numerically from the CAPM beta only when the asset 

realises upward movement (asset return in excess of the asset mean return is positive) while 

the market experiences downward movement (market return in excess of the mean market 

return is negative).  

)(E
imβ

 

3.4 Bawa and Lindenberg beta 

Writing  as fmt RR − ( ) ( )[ ]0,max0,min fmtfmt RRRR −+−  in (4) we obtain 

( ) ( )[ ] itfmtfmtiifit RRRRbbRR ε+−+−+=− 0,max0,min21                     (15) 

Multiplying (15) by ( )0,min fmt RR −  and taking the expectation 
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Hence follows 
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In this case  when im
BL

im ββ =)( 01 =ib .5 If the CAPM is not valid and the market model is 

assumed as the data generating process Bawa and Lindenberg beta will be numerically higher 

(lower) than the CAPM beta when 01 <ib  ( ). 01 >ib

                                                 
4 Note that ( )( )[ ] ( )( )[ ]0,min0,max mmtiit RERRER −−  is non-positive. 

5 A condition that should be satisfied for validity of the CAPM is 01 =ib . Alternatively when returns 

are spherically symmetric or quadratic utility is assumed, . im
BL

im ββ =)(
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4. Downside framework 

Here we assume that risk-free rate is the threshold in the market and that the data generating 

process is given by6 

( ) itfmt
d
i

d
ifit RRbbRR ε+−+=− 0,min21                                      (18) 

Equation (18) is a downside variation of the market model. We refer to (18) as the downside 

market model. We derive expressions for the CAPM beta and the three downside betas in 

terms of the model parameters.  

 

4.1 CAPM beta 

Subtracting the expectation of (18) from (18) we obtain 
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Hence follows 

                                                 
6 A pricing model equivalent to this data generating process is ( ) ( )[ ]0,min fm

d
fit RREbRRE −+= . 
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4.2 Bawa and Lindenberg beta 

Multiplying (18) by ( )0,min fmt RR − , taking the expectation and dividing by 
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Equation (23) reveals that the slope parameter of the downside market model equals the Bawa 

and Lindenberg beta when the intercept is zero. In that case the asset pricing model in the 

downside framework may be expressed as  

                                        ( ) ( )[ ]0,min)(
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imfi RRERRE −+= β                                         (24) 

 

4.3 Harlow and Rao beta 

Multiplying (19) by , applying the expectation operator and dividing by 
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Hence follows 
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4.4 Estrada beta 

Writing  as ( )( )iit RER − ( )( ) ( )( )0,max0,min iitiit RERRER −+−  in (25) we obtain 
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Equations (26) and (28) give the relationship between  and  as )(E
imβ )(HR

imβ
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A summary of the relationships between the CAPM beta and the downside betas are given in 

Table 1. 

 

5. An illustrative example 

5.1 Data 

The data used here is from the MSCI database on emerging market monthly indices. We 

investigate emerging markets for several reasons: (i) the traditional CAPM has failed to 

explain the variation in equity prices (Harvey, 1995), (ii) return distributions are found to be 

non-symmetric (Susmel, 2001; Hwang and Pedersen, 2002) and (iii) returns are highly 

volatile (Bekaert and Harvey, 2003).7 Moreover, downside risk in emerging markets has 

recently been investigated (Estrada, 2002). Estrada (2002) reports evidence that supports E-

beta over the CAPM beta. We consider the same 27 emerging markets that Estrada (2002) 

considered- 10 Asian, 7 Latin American and 10 African, Middle-Eastern and European. The 

sample period is from January 1995 to December 2004. The returns are computed as the 
                                                 
7 See also Hwang and Satchell (1999) for more features of emerging markets which suggests that the 

mean-variance CAPM might not be applicable for emerging markets. 
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difference in two consecutive monthly log returns. The proxy used for the market index is the 

world index available in the MSCI database and the proxy for the risk-free rate is the 10-year 

US Treasury bond rate. 

The complete list of the markets and some summary statistics is given in Table 2. Entries 

in Table 2 reveal that for markets, the minimum return ranges from –93.1 percent to –8.5 

percent while the maximum varies between 54.4 percent and 8.5 percent. Excess kurtosis can 

be as high as 2.4 with the minimum being –3.6. Excess kurtosis is positive in eight markets. 

The skewness ranges from –1.2 to 0.6 with twenty markets with negative skew. The world 

market return distribution is negatively skewed and has -2.1 excess kurtosis and 0.5 percent 

mean return.   

 

5.2 Discussion of the results 

For each emerging market we compute the CAPM beta, and the downside betas using 

equations (1), (2) and (3). We then estimate the parameters of the two data generating 

processes (4) and (18) and estimate the CAPM beta and the downside betas according to the 

relationships identified in Sections (2) and (3). We plot these estimates to illustrate the 

relationships between the betas. The graphs are in Figure 1. The results are presented in four 

panels, one for each of the betas considered. In each panel of Figure 1 the beta estimated 

using the formula, the market model parameters and the downside market model parameters 

and the estimated slope coefficient of the market model and the downside market model for 

the 27 emerging markets are illustrated. In the graphical illustration the markets are sorted in 

ascending order according to the beta estimated using the relevant formula. We refer to the 

beta estimated using the formula as the true beta.            

 The graph in panel (a) where the CAPM betas are illustrated reveals that the beta 

estimated in the market model (using (8)) and in the downside market model (using (22)) are 

similar in magnitude for emerging markets with low true CAPM betas. In other words if the 

sample consist of emerging markets with low true CAPM betas it makes no difference in 

using the market model or the downside market model as long as in the downside market 
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model the CAPM beta is estimated using (22). For the emerging markets with high true 

CAPM betas the CAPM beta estimated in (22) is lower than the true CAPM beta. This 

highlights the problems that may be encountered in empirical studies as the sample 

characteristics could easily lead to erroneous conclusions. As expected the estimated slope of 

the downside market model  is a very poor estimator of the true CAPM-beta. Further,  

overestimates the downside market model CAPM beta (formula 22) in all emerging markets 

by a common fraction (0.407) of .8 So the overestimation is higher for emerging markets 

with high .   

d
ib 2

d
ib 2

d
ib 2

d
ib 2

 Panel (b) of Figure 1 shows that the E-beta estimated in the market model (using (14)) 

and using the downside market model (using (28)) underestimate the true E-beta. In this case 

we see no pattern in the plot mainly because estimation of E-beta using (14) and (28) requires 

information on asset return as well.   

 The graphs of the estimated BL-betas and HR-betas are shown in panels (c) and (d) 

respectively. As shown in panel (d) the estimated slope in the downside market model 

overestimates the HR-beta estimated in the market model (using (11) as well as using the 

formula. The HR-beta estimated in the downside market model (using 26) is similar to the 

true estimate obtained via the formula. BL-betas plotted in panel (c) of Figure 1 displays 

patterns similar to those in panel (d).  

 In general for emerging markets considered here the estimated slope of the market model 

is a better estimator of Bawa and Lindenberg and Harlow and Rao downside betas compared 

to the estimated slope of the downside market model. Both data generating processes do not 

estimate the Estrada beta well. This is not surprising given that Estrada beta considers only 

the downside movements of asset returns. 

 

6. Concluding remarks 

                                                 
8 Pederson and Hwang (2003) derive restrictions on the systematic CAPM higher-order co-moments in 

terms of the parameters of the data generating process equivalent to the higher-order CAPM.  
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We consider CAPM beta and downside beta risk measures due to Bawa and Lindenberg, 

Harlow and Rao and Estrada. Assuming the market model and a downside variant of the 

market model as data generating processes we drive restrictions on the risk measures. The 

restrictions are then used to establish the relationships between the betas. We argue that 

restrictions such as the ones that we have derived on the risk measures may be used to explain 

differing conclusions in comparable empirical studies. Through an empirical example we 

highlight how such relationships may reveal the underlying characteristics of different risk 

measures with respect to an assumed data generating process. Restrictions such as those we 

have derived could provide more insights on the empirical validity of risk measures and hence 

may lead to proper conclusions in empirical investigations of competing asset pricing models. 
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Table 1. Relationship between downside beta and CAPM beta  
Pricing model: ( ) ( )[ ]fmfit RREbRRE −+=   

Equivalent DGP: ( ) itfmtiifit RRbbRR ε+−+=− 21  

2iim b=β                                                                                                  Equation  (8) 

im
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im ββ =)(                                                                                              Equation (11) 
( )miim
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im RKb 11

)( += ββ                                                                          Equation (17) 
( miim

E
im RRK ,2

)( −= ββ )                                                                         Equation (14) 
 
Pricing model: ( ) ( )[ ]0,min fm

d
fit RREbRRE −+=  

Equivalent DGP: ( ) itfmt
d
i

d
ifit RRbbRR ε+−+=− 0,min21  

( ) d
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( ) imm
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d
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im RKbRK 615

)( += ββ )
)
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( ) ( miimm
E

im RRKRK ,87
)( −= ββ                                                            Equation (28) 

 
 
Notes: DGP= data generating process, ( )mj RK  denotes a function of the market returns and 

 denotes a function of the asset and market returns. ( mij RRK , ) ( ) ( ) 061 <= mm RKRK . 

. ( ) ( )mimi RRKRRK ,, 82 =
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Table 2. Summary statistics of emerging market monthly log return 
Country Min Max Mean SD Skew Kurtosis 
Argentina -38.43 42.47 0.017 11.558 -0.353 2.338 
Brazil -49.44 31.12 0.295 12.345 -1.013 2.531 
Chile -34.40 18.28 0.030 7.155 -0.956 3.835 
China -32.40 38.18 -0.858 11.363 0.332 1.755 
Colombia -27.59 26.47 0.395 9.774 -0.191 0.791 
Czech 
    Republic -32.40 26.30 0.898 8.667 -0.497 1.661 

Egypt -15.11 28.04 0.869 8.261 0.615 0.634 
Hungary -49.09 37.96 1.575 10.596 -0.783 4.733 
India -19.53 19.89 0.241 8.494 -0.076 -0.560 
Indonesia -52.47 44.20 -0.581 15.852 -0.325 1.487 
Israel -20.94 23.86 0.660 7.855 -0.374 0.584 
Jordan -8.48 15.58 0.568 4.417 0.460 0.156 
Korea -37.48 53.41 0.062 13.036 0.390 2.546 
Malaysia -36.11 40.51 -0.347 10.532 -0.040 3.323 
Mexico -41.95 17.42 0.716 9.474 -1.186 3.016 
Morocco -16.49 16.28 0.597 5.045 -0.036 0.917 
Pakistan -47.62 31.68 -0.399 12.269 -0.261 1.879 
Peru -40.98 30.44 0.532 8.404 -0.902 5.390 
Philippines -34.65 36.01 -1.219 10.103 0.101 2.044 
Poland -42.98 33.93 0.561 10.808 -0.262 2.110 
Russia -93.07 47.71 1.307 19.519 -1.001 4.154 
South 
   Africa -36.88 17.73 0.282 8.231 -1.218 3.409 

Sri Lanka -28.97 39.49 -0.391 10.446 0.459 2.511 
Taiwan -24.68 25.64 -0.285 9.271 0.129 0.225 
Thailand -41.63 35.90 -0.988 13.784 -0.219 1.161 
Turkey -53.18 54.41 0.895 17.449 -0.184 1.150 
Venezuela -63.77 48.04 0.350 14.800 -0.908 5.040 
World  
    market -14.45 8.53 0.531 4.233 -0.777 0.921 

 
Notes: The returns are expressed as a percentage. Sample period is from January 1995 to December 
2004.  
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  Figure 1. Graphs of estimated CAPM beta and downside beta 
                                   (a)                                                                 (b)           

CAPM beta 

0

0.5

1

1.5

2

2.5

3

3.5

0 3 6 9 12 15 18 21 24 27

Market sorted by formula beta

Formula bi2(M M )
Downside model bi2(DSM )  

Estrada beta 

0

0.5

1

1.5

2

2.5

3

3.5

4

0 3 6 9 12 15 18 21 24 27

Market sorted by formula beta
Formula M arket model 
bi2(DSM ) Downside model
bi2(M M )  

 
                                  (c)                                                                    (d)  
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Notes: bi2(MM) = estimated slope in the market model for emerging market i. bi2(DSM) = estimated 
slope in the downside market model for emerging market i. Formula = beta estimated using the relevant 
formula, market model = beta estimated in the market model and downside model = beta estimated in the 
downside market model. Prior to graphing the emerging markets are sorted by the beta estimated by 
using the relevant formula.  
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