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Bounds and Prices of Currency Cross-Rate Options 

 

Abstract 

This paper derives pricing bounds of a currency cross-rate option using the prices of 

two related dollar-rate options via a copula theory. Our option pricing bounds are very 

general and do not rely on the distribution assumptions of the state variables or on the 

selection of the copula function. Moreover, the technique utilized to derive our cross-

rate option bounds can be applied to any European derivative security (such as quanto 

options) whose payoff can be rearranged as the same type as that of an exchange op-

tion. The empirical tests are conducted to examine the dynamics and tightness of our 

pricing bounds in comparison to the market prices for the cross-rate options. We find 

that there are persistent and stable relationships between the market prices and the es-

timated bounds of the cross-rate options. The empirical results also indicate that our 

option pricing bounds (obtained from the market prices of two dollar-rate options) and 

the historical correlation of two dollar rates are effective for inferring the prices of the 

cross-rate options. 

 



I. Introduction 

In the option pricing literature, researchers are not only interested in pricing 

but also interested in bounding the option values. There are many useful techniques 

that can be employed to derive option pricing bounds. For example, Merton (1973), 

Garman (1976), Levy (1985), and Grundy (1991) use the arbitrage-free approach to 

derive option pricing bounds. The fundamental idea behind this approach is that it is 

not possible to formulate a dominant portfolio using the underlying stock, the risk-free 

bond, and the options if the market is absent of arbitrage opportunities. Ritchken 

(1985), Ritchken and Kuo (1989), Basso and Pianco (1997), Mathur and Ritchken 

(2000), and Ryan (2003) use the linear programming methods to derive option pricing 

bounds. These studies model option pricing bounds as a linear programming problem 

with a discrete state space, which involves complicated calculations. In addition to the 

above two types of techniques, some other approaches, such as the optimization 

methods1 and the restrictions on the volatility of the pricing kernel,2 have also been 

used in the literature. 

Most if not all of the previous studies derive option pricing bounds by directly 

using the price information (such as the price distribution or price process) of the un-

derlying asset. In contrast to the previous literature, this study uses the prices of the 

related dollar-rate options to derive the pricing bounds for the cross-rate option. In 

other words, we bind cross-rate option values using the prices of the dollar-rate op-

tions.3 From this sense, the idea of this paper is close to that in the static hedge litera-

                                                 
1 See Boyle and Lin (1997) and Bertsimus and Popescu (2002) for the applications of the optimization 
methods. 
2 Please see Cochrane and Saa-Requejo (2000) for details. 
3  The motivation for doing this is as follows. It is generally observed that options on dollar-
denominated exchange rates are traded under satisfactory liquidity, while cross-rate option markets are 
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ture where the exotic options are priced (and hedged) in terms of the prices of stan-

dard options.4 Our option pricing bounds are very general and do not rely on the dis-

tribution assumptions of the state variables. Moreover, our pricing bounds have eco-

nomic meanings, because they are portfolios composed of the dollar-rate options (and 

sometimes also composed of spot dollar-rates). 

Since a cross-rate option under the dollar measure is equivalent to an option 

that allows the buyer to exchange one asset (one dollar-rate) for the other asset (the 

other dollar-rate), this study derives the price bounds for cross-rate options by utiliz-

ing the exchange option price bounds implied in the copula theory.5 Nonetheless, the 

bounds do not rely on the selection of the copula function. Using the prices of options 

on foreign exchange rates among the US dollar, euro, and pound sterling, we empiri-

cally test the relationship between the market prices and the estimated bounds of the 

cross-rate options. We estimate a time-series regression model where the market 

prices of one-month cross-rate (€/£) options are regressed on the estimated bounds. 

The average adjusted 2R  of our regressions across all cross-rate options is as high as 

0.8341.  Moreover, the regression coefficients of both the upper bound and the lower 

bound are also highly significant. In other words, our results suggest that there are 

strong and stable relationships between the market prices of cross-rate options (par-

ticularly for the deep-in-the-money and deep-out-of-the-money options) and the pric-

ing bounds obtained from the market prices of the two dollar-rate options. 

                                                                                                                                            

much less liquid. Thus, the pricing bounds obtained from the liquid market prices of dollar-rate options 
are useful for pricing, hedging, and arbitraging. 
4 See Carr, Ellis, and Gupta (1998) for an example of static hedge. 
5 The details of the copula theory can be found in Joe (1997) and Nelsen (1999). Cherubini, Luciano, 
and Vechiato (2004) first applied the copula theory to derive the pricing bounds for the exchange op-
tions. 
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 Because the correlation between two risky assets of an exchange option af-

fects the pricing of this option, we expect that the correlation between two dollar rates, 

whose information is not included in our bounds, has the explanatory power for the 

market prices of the corresponding cross-rate options. Our empirical results show that 

the adjusted 2R  increases substantially when the historical correlation is added into 

the regression model.6 In particular, the correlation between two dollar rates effec-

tively improves the explanatory power for the at-the-money cross-rate option prices, 

which have the lowest adjusted 2R  in the previous regression model. 

We also infer the cross-rate option prices from our pricing bounds and the his-

torical correlation using the estimated regression model. The inferred prices are very 

close to the market prices of the cross-rate options across deltas. Particularly, the pric-

ing errors for the deep-in-the-money and deep-out-of-the-money options are relatively 

small (smaller than 0.13%). Therefore, this study provides an accurate pricing model 

in comparison to the traditional option pricing methods which use the underlying asset 

price information only. 

Since there is a triangular relationship between the foreign exchange rates 

among three currencies, Taylor and Wang (2005) show that it is plausible to estimate 

risk-neutral densities and option prices of a cross-rate under the correct numeraire us-

ing the market prices of two related dollar-rate options.7 Instead of directly exploring 

the option pricing formula as in Taylor and Wang (2005), this paper provides pricing 

                                                 
6 Our results are in line with the analysis of Driessen, Maenhout, and Vilkov (2005) who find that the 
risk of changes in equity correlations is priced, using data on S&P 100 options and options on all the 
stocks in the index. 
7 Taylor and Wang (2005) first establish the theoretical relationship between the risk-neutral density 
(RND) of the cross-rate and the bivariate RND of two related dollar rates. They then estimate the 
bivariate RND using the marginal RNDs for the two dollar rates and a copula function where the mar-
ginal RNDs are obtained from the market prices of the dollar-rate options. Taylor and Wang (2005) 
demonstrate that it is effective to use the price information of dollar-rates options to price cross-rate 
options when historical or implied correlations are available. 
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bounds for the cross-rate options. In compassion to Taylor and Wang (2005), our op-

tion pricing bounds (and the inferred option prices) are of economic meanings, be-

cause they are portfolios of the related dollar-rate options.8 Moreover, our pricing 

bounds are also effective for inferring the prices of cross-rate options. 

The remainder of this paper is organized as follows. Section II derives option 

pricing bounds for the cross-rate options, using the exchange option pricing bounds 

implied from the copula theory. Data and methodologies for generating the risk-

neutral densities and option pricing bounds are presented in Section III. Section IV 

discusses the empirical results while Section V concludes the paper. 

II. Pricing Bounds of the Cross-Rate Options 

By applying the copula theory, Cherubini, Luciano, and Vechiato (2004) show 

that the super-replication bounds of the option to exchange one asset for the other as-

set are composed of the prices of the univariate options on the two individual ex-

changed assets. To utilize their results, we first show that the payoff of a cross-rate 

option under the dollar measure is equivalent to that of an exchange option where the 

two risky assets are the corresponding dollar rates. We then verify that our pricing 

bounds for the cross-rate option are portfolios composed of the dollar-rate options 

(and sometimes also composed of spot dollar-rates). 

Consider options whose payoffs depend on the exchange rates among the fol-

lowing three currencies:  US dollars ($, USD), British pounds (£, GBP), and euros (€, 

EUR). We denote the dollar price of one pound at time t by  and likewise the dol-

lar price of one euro at the same time is denoted by . The cross-rate price of one 

pound in euros is then given by 

£/$
tS

€/$
tS

€/$£/$£/€
ttt SSS =  under the no-arbitrage argument. 

                                                 
8 The choice of copula functions in Taylor and Wang (2005) is arbitrary and lacks economic meaning. 
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Now consider a European call option where the holder has the right to buy £1 

for €K at time T. Under the dollar measure (or from the viewpoint of U.S. residents), 

the above option is identical to an option to exchange  dollars for €/$
TKS £/$

TS  dollars 

at time T. Hence, a cross-rate call option under the dollar numeraire is equivalent to an 

option to exchange one asset for the other asset and its dollar payoff equals 

. This payoff can be re-arranged as a function of the payoff of 

an option on the minimum of two risky asset prices (  and ), with strike 

price 0, as the following: 

)0 ,max( €/$£/$
TT KSS −

£/$
TS €/$

TKS

(1)         . ]0),,max[min( €/$£/$£/$
TTT KSSS −

Hence, the current price of an exchange option is determined as follows: 

(2)        , ),,0,,( €/$£/$
min

£/$£/€
$ TtKSSCallSCall t −=

where ),,0,,( 21min TtSSCall  represents the price at time t of an option on the mini-

mum of  and  with strike price 0 and maturity time T. 1S 2S

Let Pr denote the probability,  the cumulative distribution function, and r 

the dollar risk-free interest rate. With probability distribution techniques, the price of 

an option on the minimum of two risky assets can be expressed as:

)(xFi

9

,))(),((

),Pr(

)),Pr(min(),,0,,(

€/$£/$
0

)(

0

€/$£/$)(

0

€/$£/$)(€/$£/$
min

dxxFxFCe

dxxKSxSe

dxxKSSeTtKSSCall

KSS
tTr

tTr

tTr

∫
∫
∫

∞−−

∞−−

∞−−

=

>>=

>=

 (3)                

                                                 
9 According to Breeden and Litzenberger (1978), 

2

2
)( )()(

x
xCexf tTr

∂
∂

= −  where  is the risk-neutral den-

sity of the underlying asset price. Thus, we have  for a 

univariate option. Similarly, one can derive that . 

(.)f

∫∫
∞−−∞−− >=−=
K

tTr

K

tTr dxxSedxxFeC )Pr())(1( )()(

∫
∞−− >=

0 21
)(

21min )),Pr(min(),,0,,( dxxSSeTtSSC tTr
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C  is a survival copula10 and )(1)( xFxF ii −=where . 

ding to the Fréchet bounds in the copula theory, it is true that Accor

),min(),()0,1max( vuvuCvu ≤≤−+  since ),( vuC  is a copula. Consequently, the 

imum option are given as the following, respec-

tively: 

(4)          

upper and lower bounds of the min

.)0,1)()(max(),,0,,(

,))(),(

€/$£/$

€/$£/$

0

)(€/$£/$
min

)(

dxxFxFeTtKSSCall

dxxFxe

KSS
tTr

KSS
tTr

−+= ∫
∫

−−−

−−

 
min(),,0,,(

0

€/$£/$
min FTtKSSCall =

∞

∞+

In conjunction with equation (2) and the put-call parity, we obtain the upper 

bound of the cross-rate option price ( ) as follows (the details of derivation are 

shown in Appendix A): 

(5)       

t

+£/€
$Call

        ),,",(),,,( €/$**£/$£/€
$ TtKSKPutTtKSCallCall +=

+ , 

where **K  is a constant satisfying tha  1)() **** =+ KF , and ( €/$£/$ KF
KSS

. Similarly, we define another constant K* which solves  KKK /**" =

 )()( **
€/$£/$ KFKF

KSS
= . If )()( **

€/$£/$ KFKF
KSS

<  for , then it is shown in Ap-

pendix that the lower bound of the cross-rate option price ( ) is as follows: 

(6)            

where , otherwise if  

*Ku <

−£/€
$Call

),,,,( ),,,( '€/$*£/$£/€
$ TtKSCallKTtKSCallCall −=

−

KKK /*' = )()( **
€/$£/$ KFKF KSS >  for , then we 

derive that: 

                                                

*Ku <

 
10 If two uniform variables U and V are jointed with a copula function C, then the joint probability that 

 and V  are greater than and U u v , respectively, is given by a survival function: 
 )1,1(),(1),Pr(~ vuCvuCvuvVuUC −−=+−−=>>= .   
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(7)            (l ),,,),,,( *£/$'€/$€/$£/$£/€
$ TtKSCalTtKSKCallKSSCall tt −+−=

− . 

e equations ( tee that the lower bound is po

constrain that

Becaus 6) and (7) do not guaran sitive, it is 

necessary to  0£/€
$ ≥

−
Call . 

From equations (5) to (7), we observe that our pricing bounds for cross-rate 

options are portfolios of the corresponding dollar-rate options (and may be also of the 

spot assets). Therefore, different from most option pricing bounds in the literature, the 

 economic m nings. 

ized here to derive the price bounds 

for any

A. Data 

used in this article are option prices quoted as Black-Scholes 

implied volatilities for three currency options ($/£, $/€, and €/£). Some settlement 

 are av o Mercantile Exchange, 

rrespond to almost no trading volume. Consequently, we rely on over-the-

counter (OTC) option prices, with which we have the same time-to-maturity option 

                                                

derived pricing bounds have ea

The derivation of our cross-rate option pricing bounds do not rely on the selec-

tion of an appropriate copula function, but on the Fréchet bounds which represents a 

necessary relationship between any two individual distributions and their joint distri-

bution. Therefore, we can apply the technique util

 European-style derivatives whose payoffs can be rearranged as the same type 

as that of an exchange option. Some examples have been given in Cherubini et al. 

(2004)11. As a demonstration, we provide another example, the price bounds of quanto 

options, in Appendix B. 

III. Data and Empirical Methodologies 

The primary data 

prices ailable for cross-rate options traded in the Chicag

but they co

 
11 These examples include the bivariate digital option, the minimum option and the exchange option. 
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data ev

ied volatilities for these three exchange rate 

options

nerating the Bounds 

ery day. Such prices are not in the public domain to the best of our knowledge. 

We make use of a confidential file of OTC option price mid-quotes, supplied by the 

trading desk of an investment bank. Our currency option data cover the period from 

15 March 1999 to 11 January 2001. The OTC quotes are for all three foreign ex-

change options, recorded at the end of the day in London. The data include option 

prices for seven exercise prices, based upon “deltas” equal to 0.1, 0.25, 0.37, 0.5, 0.63, 

0.75, and 0.9. The maturity of the options is one month, with which options in the 

OTC market are most frequently traded. 

The summary statistics of the quoted implied volatilities are shown in Table 1 

and the patterns of average implied volatilities across deltas are shown in Figure 1. All 

implied volatility functions exhibit a smile shape with the level for the $/€ options be-

ing the highest while the level for the $/£ options being the lowest. The low standard 

deviations imply that the levels of impl

 do not change much as time goes.  

We also use the spot exchange rates of $/£, $/€, and €/£ and the euro-currency 

interest rates (proxies of risk-free rates) of $, £, and € recorded by DataStream as the 

inputs of all relevant calculations. 

B. Empirical Methodologies for Ge

*K **K  Because  and are determined by the risk-neutral densities of two dollar 

rates, we use the observed market prices of European call options on $/£ and $/€ and a 

parametric distribution specification to estimate their risk-neutral densities. After the 

risk-neutral densities, *K , and **K  are obtained, we are able to price dollar rate op-

tions with all strikes and to get pricing bounds of cross-rate options using equations (5) 

to (7). The details of the empirical procedures are described as the following. 
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At time t we assume there is a complete market for two dollar-rate ($/£ and $/€) 

Europe tio ice

e ’s p

In the first step we use the observed market prices of options on two dollar-

rates, $/£ and $/€, to estimate  and . Many types of univariate RNDs 

have been proposed, including lognormal mixtures (Ritchey (1990) and Melick and 

Thomas (1997)), generalized beta densities (Bookstaber and MacDonald (1987)), 

crete  (Jackwerth and Rubin

girt-

). Provi g that options are traded for a range of exercise prices that 

encomp  

ila pirical estim

generalized beta density of the second kind (GB2) to estimate the RNDs of two dollar 

rates. The GB2 density has few parameters, but preserves many desirable properties:  

general levels of skewness and kurtosis are allowed, the shapes of the tails are fat rela-

tive to the lognormal density, and there are analytic formulae for the density, its mo-

ments, and the prices of options. Furthermore, the parameter estimation of the GB2 

density is easy and does not involve any subjective choices occurred to non-

parametric approaches, and the estimated densities are never negative. The details of 

the estimation of the GB2 density are shown in Appendix C. 

an call op ns, pr d in US dollars and expiring at time T. This implies the 

existence of a unique risk-neutral density (RND) for £/$
TS  under the US dollar meas-

ure. The RND for £/$
TS  is denoted as )( £/$

$ TSf , where the dollar subscript emphasizes 

that the numeraire of th option ayoffs is US dollars. Likewise, the RND for €/$
TS  

is denoted as )( €/$Sf . $ T

)( £/$
$ TSf )( €/$

$ TSf

multi-parameter dis  distributions stein (1996)), and densi-

ties derived from fitting spline functions to implied volatilities44 (Bliss and Pani

zoglou (2002) din

ass most area of the risk-neutral distribution, it is documented that several

flexible density families provide sim r em ates. In this paper we use the 
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Once )( £/$
$ TSf  and )( €/$

$ TSf  are obtained, K* and K** can be easily calculated 

with a numerical method (such as the Newton-Raphson method) to solve 

)()( ** KFKF =  and €/$£/$ KSS 1)()( ****
KSS

, respectively. We then 

utilize )($ TSf  and )($ TSf  to estimate the prices of dollar rate options with strikes 

K

€/$£ =+ KFK

£/$£/$
$

*
TT dSSf

T
 Conse-

quently ricing b  of cros

IV. Empirical Resu

The empirical tests in

hips with the market prices of the cross-

rate options. Next, we investigate the explanatory powers of the pricing bounds and 

the correlation between two dollar rates for the market prices of the cross-rate options. 

Then, this study examines the accuracy of our empirical models for pricing cross-rate 

ecks for the accuracy of our results are provided. 

A. Em

In order to have a standardized comparison, all the market prices and pricing 

bounds are converted to the implied volatilities of the Black-Scholes model. The esti-

Figure 2 and their descriptive statistics are shown in Table 2. 

As shown in Figure 2, the evolution of market implied volatility of the cross-

ds across deltas. 

As the 

/$F

£/$ €/$

* and K** numerically, e.g. [)( *
£/$ *£/$

$

KS

Tr KxeKC ∫
∞

=

− −= .)(]

, the p ounds s-rate (S€/£) options are generated using equations 

(5) to (7). 

lts 

 this article contain four parts. We first analyze the prop-

erties of our pricing bounds and their relations

options. Finally, some robust ch

pirical Pricing Bounds of the Cross-Rate Options 

mated pricing bounds and the market implied volatilities across deltas are shown in 

rate (€/£) option exhibits a similar pattern to that of the estimated boun

foreign exchange market became more volatile from 1999 to 2000, the bound 

range, defined as the difference between the upper bound and the lower bound, turned 
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wider as time went by during the period. Furthermore, it is clearly seen from Figure 2 

that the deeper the moneyness is, the closer the market implied volatility is to the 

lower b

rket implied volatilities (0.1054 and 0.1050) are slightly 

lower t

further look at the behavior of the bound range, the dif-

ference

ound. For options with deltas 10 and 90, the market implied volatilities and the 

lower bounds almost overlap. 

The results of Table 2 suggest that the variation of the upper bounds is the 

highest while the variation of the lower bounds is the lowest. For example, for at-the-

money (ATM, delta 50) options, the standard deviations for the upper bounds, the 

market implied volatilities, and the lower bounds are 0.0331, 0.0176, and 0.0117, re-

spectively. Although for deep-in-the-money and deep-out-of-the-money options (del-

tas 90 and 10), the average ma

han the lower bound (0.1108 and 0.1066), the differences are tiny and smaller 

than the bid-ask spread observed in the OTC market. Therefore, there is no evidence 

to support the violation of our super-replication bounds and thus the existence of arbi-

trage opportunities in the foreign exchange option market, especially when we take 

market frictions into account. 

It is apparent from Figure 2 and Table 2 that the level, the mean, and the vola-

tility of the upper bounds are almost the same across deltas with an extremely shallow 

smile. In contrast, the lower bound and the market implied volatilities exhibit clearer 

smile shapes across deltas with the lower bound smile being deeper than the market 

implied smile. To deeply explore the relationships between the option market prices 

and the estimated bounds, we 

 between the upper bound and the market implied (upper range), and the dif-

ference between the lower bound and the market implied (lower range). Their descrip-

tive statistics are illustrated in Table 3. 
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Consistent with what we have observed in Figure 2 and Table 2 whereby the 

lower bounds exhibit a smile shape while the upper bounds are flat across deltas, Ta-

ble 3 indicates that the deeper the moneyness is, the smaller the bound ranges and the 

lower ranges are. In contrast, we cannot statistically reject that the upper range is con-

sistent across deltas (F statistic: 1.21; p value: 0.2993). Moreover, this study finds that 

the vol

tly different across deltas, but stable across time.   

B. Pr

rate options and the pricing bounds estimated from two corresponding dollar-rate op-

option prices can be explained by our pricing bounds. We regress the market implied 

es-

sion m

atilities of all of the ranges are very small (between 0.51% and 3.24%), which 

signals that the relationships between the market implied and the estimated bounds are 

persistent across time. 

In summary, the lower bounds exhibit a deep smile shape while the upper 

bounds and the market implied volatilities are relatively flat across deltas. Both the 

upper and lower bounds exhibit tractable and persistent relationships with the market 

prices of cross-rate options. The divergences between the lower bounds and the mar-

ket prices are significan

icing Bounds, Correlation, and the Cross-Rate Option Prices 

Since there are persistent relationships between the market prices of the cross-

tions, we further use a regression model to measure the extent where the cross-rate 

volatilities either on the bound ranges or on the upper and lower bounds. The regr

odels are specified as follows: 

(8)         Model 1: ttt BRcMIV εβ ++=   

tttt LBUBcMIV εββ +++=   21 , (9)         Model 2: 

12 



where tMIV , tBR , tUB , and tLB  respectively denote the market implied volatility of 

the cross-rate option on €/£, the bound range, the upper bound, and the lower bound at 

time t, and tε  is the residual term. Intuitively, when the market is more turbulent, the 

d be wider and then β is expected to be positive. The estimates for 

these two models are shown in Panels 1 and 2 of Table 4. 

From Panel 1 of Table 4, we find that the regression coefficient β in Model 1 

is highly significant across deltas (all p values <0.005) and that the bound ranges can 

explain about 35% to 51% of the cross-rate option prices. The positive β also confirms 

ighly significant regression 

coeffic

bound range shoul

the intuition that the larger the bound range is, the higher the market implied volatility 

will be. Similarly, from Panel 2 of Table 4, we also find h

ients (β1 and β2) in Model 2. In comparison to Model 1, the adjusted 2R  are 

much higher in Model 2 (between 0.76 and 0.91), particularly for deep-in-the-money 

and deep-out-of-the-money options. It is noticeable that β1 is adhered to a small range 

(between 0.33 and 0.41) while β2 ranges from 0.39 to 0.79 with β2 the smallest for the 

ATM option. In other words, the upper bound contains almost same level of informa-

tion content for the cross-rate options across delta, while the lower bound contains 

much less for the ATM option. This finding corresponds to our previous observation 

that the deeper the moneyness is, the closer the lower bound to the market implied and 

also explains why the adjusted R2 is the highest for the deep-in-the-money and deep-

out-of-the-money options. In conclusion, we confirm that there are strong and stable 

relationships between the market prices of cross-rate options and the pricing bounds 

estimated from the market prices of the two dollar-rate options. 

By analyzing the relationship between the prices of stock index options and 

the prices of individual stock options included in the index, Driessen, Maenhout, and 
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Vilkov (2005) show the relevance of correlation risk and the associated premium for 

stock index options pricing.12 Moreover, according to compositions of the bounds in 

equations (5) to (7), we find that no correlation information is used in the calculation 

of the pricing bounds of the cross-rate options, for which we only utilize the price in-

formation of two dollar rate options individually. As a result, this paper includes an 

extra explanatory variable, the historical correlation of two dollar rates, into Model 2 

to see whether the correlation is able to provide any additional explanatory power. 

Thus, the regression model is modified as the following: 

(10)             Model 3: ttttt CorrLBUBcMIV εβββ ++++= 321   , 

where is the correlation coefficients of two dollar rates at time t. When the cor-

rela o dollar rates increases, the variance of the cross rate decreases and thus 

the cross-rate option price also decreases. Therefore, the regression coefficient of the 

tCorr  

tion of tw

historical correlation ( 3β ) is expected to be negative. 

The 

important implication in many 

ways s

Table 4. 
                                                

correlation coefficients are estimated using the dynamic conditional corre-

lation (DCC) multivariate GARCH model proposed by Engle (2002) using the his-

torical time series data of two dollar spot rates. The fact that correlations between fi-

nancial assets are usually time-varying has crucial 

uch as portfolio hedging and multivariate asset pricing. This model overcomes 

the complexity of conventional multivariate GARCH models in computation by di-

rectly modeling the time-varying correlation as a conditional process. The procedure 

of using the DCC GARCH model to generate the time-varying correlation series is 

detailed in Appendix D and the regression results for Model 3 are shown in Panel 3 of 

 
12 In the same vein, a currency cross-rate can be regarded as an equal weight index of two dollar rates 
since its log return can be decomposed into the sum of the log returns of the two dollar rates. 

14 



It is clearly seen from Panel 3 of Table 4 that the correlations of two dollar 

rates provide incremental information in deciding cross-rate option prices as all ad-

justed 2R s increase. In particular, the correlation effectively improves the explanatory 

power for the ATM cross-rate option, which has the lowest 2R  in Model 2. The re-

gression coefficients for the correlation across deltas are significantly negative and 

consist

Th

hile the correlation of two 

dollar 

pirical models (Models 1 to 3) for pricing cross-rate options. Given the esti-

mated parameters of the previous models, we infer the current implied volatility for 

t market prices of the dollar-rate options 

and the

ent with our expectation. Furthermore, our results are in line with the analyses 

and findings of Driessen, Maenhout, and Vilkov (2005). 

e pricing bounds estimated from option prices of two dollar rates and the 

correlation of two dollar rates can provide almost perfect information for determining 

the cross-rate option prices across deltas. Specifically, the information contained in 

the dollar-rate option prices explains most proportion of the prices of the deep-in-the-

money and deep-out-of-the-money cross-rate options, w

rates provides profound information for the prices of the ATM cross-rate op-

tions.  

C. Pricing the Cross-Rate Options 

Owing to the significant explanatory power of the estimated bounds and corre-

lation to the market prices of cross-rate options, we are interested in the accuracy of 

our em

the cross-rate (€/£) options from the curren

 historical correlation. The actual and inferred implied volatilities of the cross-

rate options across deltas are shown in Figure 3 and the descriptive statistics of the 

estimation errors are shown in Table 5. The estimation errors are defined as the abso-

lute values of the actual values minus the inferred values. 

15 



From Table 5 we observe that the pricing errors of the inferred prices from 

Model 3 are the lowest while the errors of Model 1 are the highest. In Model 3 the 

precision of the estimations is very satisfactory across deltas, particularly for the deep-

in-the-money and deep-out-of-the-money options. The average errors range from 

0.12% to 0.33%, which are much lower than the bid-ask spread in the OTC market. 

The pricing errors for the options with deltas 90 and 10 are only 0.12% and 0.13%, 

respectively. In addition, the volatilities of the errors are very small as well (ranging 

from 0.11% to 0.29%), implying that the estimation performs consistently well across 

time. 

since most option pricing methods in the 

literature have difficulties in accurately pricing deep-in-the-money and deep-out-of-

the-money options while our method performs particularly satisfactorily for these op-

tions. In other words, the inferred prices (or portfolios) are applicable to practical us-

age not only for pricing, but also for hedging. 

wness, and the implied kurtosis levels 

estimated from the market prices of the cross-rate options. 

Similar results are found for the inferred prices of Model 2. However, since 

Model 2 does not take the correlation into account, its accuracy is inferior to that of 

Model 3, especially for the ATM options. Nevertheless, the accuracy of the inferred 

prices from Model 2 is still remarkably small for deep-in-the-money and deep-out-of-

the-money options. The results are valuable 

D. Robustness Analysis 

To investigate whether our results are robust, we analyze whether the accuracy 

of the inference of cross-rate option prices from Model 3 is sensitive to sample selec-

tion, and the implied volatility, the implied ske

16 



To check whether sample selection affects our findings, we redo the option 

pricing inference for two evenly divided sub-samples. The average pricing errors 

across deltas are shown in Panel 1 of Table 6. Although the pricing errors are slightly 

higher in the second sub-periods, the patterns across deltas are the same. In other 

words, our finding, that the pricing errors are very small with the smallest for the 

deep-in-the-money and deep-out-of-the-money options, does not depend on sample 

selection. 

rcentage) and market volatility levels13 across deltas are shown in Panel 2 

of Table 6. All correlations are very low and the sign is not all the same across deltas 

(-0.09 ~ 0.09). 

(11)             VolEcE   1

As the volatility of exchange rates increases over our sample period, it is natu-

ral to check whether the increasing volatility changes the accuracy of information 

provided by our pricing bounds. The correlation coefficients between the pricing er-

rors (in pe

To further check whether pricing errors depend on volatility, we run the fol-

lowing regression model. 

t tt βα ++= − , 

where E

ification is motivated by the high first-order autocorre-

lation of pricing errors. The estimates are reported in Panel 3 of Table 6. All β coeffi-

t under the 5% significance level. In summary, the accuracy of 

information provided by our pricing bounds is immune to the volatility change. 

                                                

t and Volt respectively denote the percentage pricing error and the volatility 

level at time t. The AR(1) spec

cients are insignifican  

 
13 The implied volatility of the ATM cross-rate option is chosen as the proxy of the market volatility 
level. Other proxies such as OTM (or ITM) cross-rate options or two ATM dollar-rate options are also 
used and the results (not reported here) are almost unchanged. 
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As discussed before, Figure 1 and Table 1 show that the average implied vola-

tilities of all exchange rates exhibit a smile shape. However the slopes of the implied 

volatility curves vary from negatively sloped to positively sloped during our sample 

period. This implies that risk neutral skewness and kurtosis change substantially eve-

ryday. In order to investigate the impact of changes in implied volatility curves on our 

results, we first calculate the implied skewness and kurtosis using the Theorem 1 of 

Bakshi, Kapadia, and Madan (2003). We then run the following regression models to 

see whether the pricing errors are affected by changes in skewness and kurtosis: 

 (12)             ,  1 ttt SkewEcE βα ++= −  

(13)             ,  1 ttt KurtEcE βα ++= −  

where  and  are implied skewness and implied kurtosis, respectively. tSkew tKurt

Figure 4 indicates that the risk neutral distributions of the cross-rates are fat-

tailed (average kurtosis equals 3.31) and slightly negatively skewed (average kurtosis 

).14 Figure 4 also shows that the implied skewness changes noticeably 

over time. Nevertheless Panel 4 of Table 6 suggests that the pricing errors across del-

not a d eve ients 

are small and insignificant under the 5% confidence interval. Similarly Panel 5 of Ta-

ble 6 shows that the implied kurtosis has little impact on the pricing errors across del-

tas. 

                                                

equals -0.13

tas are ffecte n though implied skewness changes much. All β coeffic

In conclusion, our results seem robust across different levels and slopes of im-

plied volatility curves. 

 
14 The risk neutral distributions of two dollar rates also exhibit the same pattern, i.e. fat-tailed and 
slightly negatively skewed. 
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V. Concluding Remarks 

Instead of pricing cross-rate options directly, this study relates the option pric-

ing bounds to the prices of the corresponding dollar-rate options. Our pricing bounds 

are derived from

Different from most option pricing bounds in 

the literature, our cross-rate option bounds are functions of two dollar-rate option 

unds are portfolios of the dollar-rate options (and 

sometim

explanatory power of the option bounds and the 

correla

 a general result of the copula theory and thus do not rely on the dis-

tribution assumptions of state variables. 

prices. In particular, our pricing bo

es also of spot dollar-rates). 

Using the prices of options on foreign exchange rates among US dollar, euro, 

and pound sterling for the empirical tests, we show the persistent relationships be-

tween the market prices of the cross-rate (€/£) options and the estimated bounds. This 

study also finds that the dollar-rate option prices and the correlation between two dol-

lar rates provide almost perfect information in deciding the prices of the cross-rate 

options. Owing to the almost perfect 

tion to the market prices of the cross-rate options, we successfully price the 

cross-rate options under the circumstance where the current option prices of two dol-

lar rates are available. In particular, the pricing errors are the smallest for deep-in-the-

money and deep-out-of-the-money options, which is valuable, because most option 

pricing methods in the literature have difficulties in pricing these options accurately. 

Therefore, our results are useful for risk management and derivative pricing, particu-

larly for those having cross-rate risk exposures. 

The technique utilized to derive our cross-rate option bounds can be applied to 

any European derivative security whose payoff can be rearranged as the same type as 

that of an exchange option. As an example, we also derive the price bounds for quanto 

options using the same copula approach. Due to the lack of data, the empirical tests of 

19 



the tightness and the information efficiency of our quanto option price bounds are left 

to interested readers for future research. 
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Appendix 

A. Derivation of the Price Bounds for the Cross-Rate Option 

Define  as the constant such that **K 1)()( ****
€/$£/$ =+ KFKF

KSS . Since )(uFi  

is a decreasing function of u, it is true that 1)()( ****
€/$£/$ ≥+ KFKF

KSS
 for  

Therefore, the lower bound of the minimum option is 

.**Ku ≤
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Substituting equation (A.1) into equation (1) and applying the put-call parity, we ob-

tain the upper price bound of the cross-rate option as follows: 

(A.2)           
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Assume that there exists a constant K* such that )()( **
€/$£/$ KFKF

KSS
= . If 

)()( **
€/$£/$ KFKF

KSS
<  for , then it is straightforward to show that the upper 

bound of the minimum option is: 

*Ku <
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where . Substituting equation (A.3) into equation (1) yields the lower 

price bound of the cross-rate option as follows: 

KKK /*' =

 (A.4)          
).,,,( ),,,(              
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$
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Similarly, if )()( **
€/$£/$ KFKF KSS >  for , then one can derive that: *Ku <

 (A.5)      
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B. Price Bounds for the Quanto Options 

Consider a European quanto call option where the holder has the right to buy 1 

share of foreign asset by paying K  units of domestic currency. In other words, the 

payoff in the domestic currency of a European quanto call option at maturity T equals 

)0,max( KS
X

T

T − , 

where TX   and  are the prices in the foreign currency of the foreign asset price and 

one unit of domestic currency, respectively. Under the foreign-currency measure, the 

above quanto call option is identical to an option to exchange KS

TS

T units of foreign cur-

rency for one share of foreign asset. Therefore, we can regard this option as an ex-

change option to obtain its super-replication price bounds under the foreign-currency 

measure and then apply the law of one price to convert the bounds to those in the do-

mestic-currency measure.  

Assume  is the constant such that **K 1)()( **** =+ KFKF KSX . The upper 

bound of the quanto option ( ) in the domestic-currency measure is +
dQuanto
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where .  KKK /**" =

Define a constant K* such that )()( ** KFKF KSX = . If )()( ** KFKF KSX <  for 

, the lower bound is *Ku <
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where . If   KKK /*' = )()( ** KFKF KSX >  for , the lower bound becomes *Ku <
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C. The GB2 Density and Its Estimation 

Bookstaber and McDonald (1987) proposed the GB2 distribution for asset 

prices, with four positive parameters that define a parameter vector ),,,( qpba=θ . 

The risk-neutral density function for  under the GB2 distribution is defined as: TS

(A.9)                  
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where function B is defined in terms of the Gamma function by 

)()()(),( qpqpqpB +ΓΓΓ= . European call option prices can then be derived as fol-

lows: 

(A.10)   ]),),,((1[)],),,((1[)( 11 qpbaXuFXeaqapbaXuFFeXC rTrT
ββ −−−+−= −−−− , 

where  is the incomplete beta function given by: βF
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and 
a

a

bX
bXbaXu

)(1
)(),,(

+
= . Risk-neutrality constrains the mean of the density to be: 

(A.12)                                   ),(],[ 11 qpBaqapbBF −− −+= , 

which also requires the constraint . 1>aq

Several loss functions can be considered when estimating the parameter vector 

θ  of either density family. As is common in the RND literature, we minimize the sum 

of squared pricing errors for a set of market call prices denoted by . When 

there are market prices available for options with a common expiry time T, but with N 

distinct exercise prices, we estimate 

)( im XC

θ  by minimizing: 

(A.13)                                       ∑
=

−=
N

i
iim XCXCG

1

2))()(()( θθ . 

D. The DCC GARCH Model 

In the DCC GARCH model, returns15 at time t  from k assets ( ) are assumed 

to be a conditional multivariate normal distribution with zero mean and covariance 

matrix , i.e. 

tR

tH

(A.14)                                         ),,0(~| 1 ttt HNR −Φ  

(A.15)                                                ,tttt DDH Ψ=  

where  is the k × k diagonal matrix of time varying standard deviation from uni-

variate GARCH models with 

tD

tih ,  on the ith diagonal and tΨ  is the time varying cor-

relation matrix. Therefore, the first step is to estimate k univariate GARCH models to 

generate the conditional variance series. 

                                                 
15 Note that the returns can be de-meaned assets returns or the residuals filtered from an econometric 
model. 
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The dynamic correlation structure is proposed as 
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where Q  is the unconditional covariance of the standardized residuals (zt) from the 

first step and  
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* . 

In other words,  is a diagonal matrix composed of the square root of the diagonal 

elements (

*
tQ

iiq ) of Qt.  

The second step is to estimate the parameters in the dynamic correlation struc-

ture and generate the time-varying correlation series by maximizing the following log-

likelihood function: 

(A.19)                    ∑
=

−Ψ+Ψ++−=
T

t
ttttt zzDkL

1

1' )|)log(||)log(|2)2log((
2
1 π . 

In this study, k = 2 and both M and N are set to be 1. This DCC(1,1) model is the most 

broadly accepted and reliable one in the literature. 
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Figure 1:  The Average Implied Volatilities 

This figure consists of the average implied volatilities for options on the three foreign exchange rates, 
$/£, $/€, and €/£. All implied volatilities are quoted in the OTC market. 
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Figure 2:  The Implied Volatilities from the Market Prices and the Estimated 
Bounds for the Cross-Rate Option 

 

This figure shows the evolutions of the Black-Scholes implied volatilities from the market prices and 
the estimated bounds of the cross-rate (€/£) options across deltas. The option bounds are estimated by 
calibrating equations (5) to (7) using the option prices of two dollar rates, $/£ and $/€. 
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Figure 3:  Actual and Inferred Implied Volatilities for the Cross-Rate Options 

This figure consists of the evolutions of the actual and inferred Black-Scholes implied volatilities of the 
cross-rate (€/£) options across deltas. The actual implied volatilities are backed out from the market 
prices of options. The inferred implied volatilities are obtained from Model 3 in Section IV using the 
current option prices and historical DCC correlation of two dollar rates, $/£ and $/€. 
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Figure 4:  Implied Skewness and Kurtosis for the Cross-Rate Options 

This figure consists of the evolutions of the implied skewness and kurtosis of the cross-rate (€/£) op-
tions. The implied skewness and kurtosis are calculated using the Theorem 1 of Bakshi, Kapadia, and 
Madan (2003). The results indicate that the risk neutral distributions of the cross-rates are fat-tailed 
(average kurtosis equals 3.31) and slightly negatively skewed (average kurtosis equals -0.13). 
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Table 1:  Summary Statistics of Market Implied Volatilities for 

the Foreign Exchange Options 

 

Panel 1: USD/GBP 
Delta 90 75 63 50 37 25 10 
Mean 0.0926 0.0878 0.0870 0.0866 0.0881 0.0904 0.0964 

Std. Dev. 0.0130 0.0130 0.0134 0.0136 0.0139 0.0142 0.0146 
Skewness 0.5772 0.6170 0.6473 0.6703 0.6869 0.7037 0.7065 
Kurtosis 2.6181 2.6621 2.6942 2.7323 2.7607 2.8066 2.8542 

Panel 2: USD/EUR 
Delta 90 75 63 50 37 25 10 
Mean 0.1276 0.1193 0.1172 0.1158 0.1166 0.1179 0.1248 

Std. Dev. 0.0208 0.0213 0.0212 0.0212 0.0213 0.0215 0.0214 
Skewness 0.3428 0.3291 0.3577 0.3483 0.4046 0.4401 0.4890 
Kurtosis 2.2055 2.1561 2.1455 2.1479 2.1585 2.1915 2.2623 

Panel 3: EUR/GBP 
Delta 90 75 63 50 37 25 10 
Mean 0.1054 0.0996 0.0980 0.0972 0.0979 0.0995 0.1050 

Std. Dev. 0.0169 0.0173 0.0176 0.0176 0.0180 0.0180 0.0183 
Skewness 0.2457 0.2441 0.2288 0.2257 0.2222 0.2321 0.2484 
Kurtosis 2.9339 2.7199 2.5933 2.5686 2.4881 2.4722 2.4511 

This table consists of the summary statistics of the market implied volatilities of the two dollar-rate 
($/£ and $/€) options. All implied volatilities are quoted in the OTC market. 
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Table 2:  Summary Statistics of the Implied Volatilities from 

the Market Prices and the Estimated Bounds 

 

Panel 1: Upper Bounds 
Delta 90 75 63 50 37 25 10 
Mean 0.2087 0.2061 0.2056 0.2058 0.2064 0.2077 0.2118 

Std. Dev. 0.0325 0.0329 0.0330 0.0331 0.0332 0.0333 0.0334 
Skewness 0.4752 0.4798 0.4806 0.4807 0.4785 0.4753 0.4675 
Kurtosis 2.3988 2.4038 2.4031 2.3989 2.3914 2.3809 2.3575 

Panel 2: Market Implieds 
Delta 90 75 63 50 37 25 10 
Mean 0.1054 0.0996 0.0980 0.0972 0.0979 0.0995 0.1050 

Std. Dev. 0.0169 0.0173 0.0176 0.0176 0.0180 0.0180 0.0183 
Skewness 0.2457 0.2441 0.2288 0.2257 0.2222 0.2321 0.2484 
Kurtosis 2.9339 2.7199 2.5933 2.5686 2.4881 2.4722 2.4511 

Panel 3: Lower Bounds 
Delta 90 75 63 50 37 25 10 
Mean 0.1108 0.0694 0.0514 0.0462 0.0547 0.0705 0.1066 

Std. Dev. 0.0119 0.0089 0.0102 0.0117 0.0096 0.0088 0.0119 
Skewness 0.8569 1.2038 1.5257 1.0723 1.2282 1.0595 0.9384 
Kurtosis 4.0491 4.4558 5.0837 3.7786 3.8409 3.5790 3.9496 

This table consists of the summary statistics of the market implied volatilities and estimated upper and 
lower bounds of the cross-rate €/£ across deltas. The option bounds are estimated by calibrating equa-
tions (5) and (6) or (7) with the option prices of two dollar-rates, $/£ and $/€. 
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Table 3:  Summary Statistics of the Estimated Bound Ranges, Upper Ranges, 
and Lower Ranges 

 

Panel 1: Bound Ranges 
Delta 90 75 63 50 37 25 10 
Mean 0.0979 0.1367 0.1543 0.1596 0.1518 0.1372 0.1053 

Std. Dev. 0.0303 0.0322 0.0324 0.0313 0.0314 0.0318 0.0320 
Skewness 0.8483 0.7479 0.6806 0.6425 0.6957 0.7450 0.8509 
Kurtosis 2.8798 2.6479 2.5045 2.5029 2.5696 2.6288 2.7514 

Panel 2: Upper Ranges 
Delta 90 75 63 50 37 25 10 
Mean 0.1033 0.1018 0.1031 0.1042 0.1042 0.1041 0.1027 

Std. Dev. 0.0208 0.0183 0.0178 0.0177 0.0175 0.0175 0.0174 
Skewness 0.9414 1.4807 1.5144 1.4947 1.4593 1.3644 1.2319 
Kurtosis 3.4138 5.6058 5.7064 5.6440 5.5473 5.2522 4.8148 

Panel 3: Lower Ranges 
Delta 90 75 63 50 37 25 10 
Mean 0.0115 0.0303 0.0466 0.0510 0.0433 0.0290 0.0129 

Std. Dev. 0.0051 0.0143 0.0159 0.0154 0.0148 0.0145 0.0055 
Skewness  -0.5655 0.3320 0.2528 0.0476 0.1595 0.2596  -0.0298
Kurtosis 2.4787 1.7984 2.1688 2.2946 1.9362 1.6386 2.5738 

This table consists of the summary statistics of the estimated bound ranges, upper ranges, and lower 
ranges of the cross rate (€/£) options across deltas. The bound ranges, upper ranges, and lower ranges 
are the distances between the upper and lower bounds, between the upper bounds and market implieds, 
and between the lower bounds and market implieds, respectively.  
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Table 4:  Explanatory Power of Estimated Bounds and Correlation to 

Market Implied Volatility 

 

Panel 1: Model 1 
Delta 90 75 63 50 37 25 10 
β 0.3322 

(16.25) 
0.3740 
(21.05)

0.3884 
(22.20)

0.3919 
(21.13)

0.4101 
(22.47)

0.4015 
(21.90) 

0.3606 
(17.86)

Adjusted 
2R  

0.3550 0.4804 0.5071 0.4823 0.5131 0.5004 0.3994 

Panel 2: Model 2 
Delta 90 75 63 50 37 25 10 
β1 0.3336 

(43.58) 
0.3925 
(41.46)

0.4144 
(35.18)

0.4009 
(31.99)

0.3973 
(33.88)

0.3919 
(38.79) 

0.3899 
(44.21)

β2 0.7231 
(34.50) 

0.7987 
(22.81)

0.4930 
(12.88)

0.3967 
(11.23)

0.6078 
(14.94)

0.8133 
(21.36) 

0.6786 
(27.54)

Adjusted 
2R  

0.9096 0.8529 0.7785 0.7639 0.7996 0.8483 0.8861 

Panel 3: Model 3 
Delta 90 75 63 50 37 25 10 
β1 0.3554 

(50.12) 
0.4116 
(52.82)

0.4312 
(48.90)

0.4186 
(44.72)

0.4191 
(45.37)

0.4131 
(46.99) 

0.4055 
(48.91)

β2 0.5916 
(26.81) 

0.6022 
(19.35)

0.3958 
(13.67)

0.3335 
(12.60)

0.4705 
(14.39)

0.6202 
(17.38) 

0.5578 
(21.34)

β3 -0.0545 
(-11.18) 

-0.0844
(-15.66)

-0.1119
(-19.55)

-0.1151
(-19.65)

-0.1032
(-17.50)

-0.0795 
(-13.24) 

-0.0554
(-9.30) 

Adjusted 
2R  

0.9283 0.9028 0.8770 0.8695 0.8779 0.8890 0.9034 

This table consists of the regression results of the following three models: 
Model 1: ttt BRcMIV εβ ++=  
Model 2: tttt LBUBcMIV εββ +++= 21  
Model 3: ttttt CorrLBUBcMIV εβββ ++++= 321 . 
Here, , , , , and  denote respectively the market implied volatility of an option on 
€/£, the bound range, the upper bound, the lower bound, and the historical DCC correlation between 
S/€ and $/£ at time t, and ε

tMIV tBR tUB tLB tCorr

t is the residual term. The numbers in the parentheses are t-statistics. 
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Table 5:  Summary Statistics of Option Pricing Errors 

Panel 1: Inferred from Model 1 
Delta 90 75 63 50 37 25 10 
Mean 0.0062 0.0054 0.0048 0.0048 0.0048 0.0052 0.0059 

Std. Dev. 0.0060 0.0051 0.0043 0.0043 0.0043 0.0050 0.0059 
Skewness 2.2006 2.0448 1.6691 1.6355 1.6100 1.9590 1.9502 
Kurtosis 10.3309 9.3174 6.5211 6.5356 6.0075 8.4346 8.6921 

Panel 2: Inferred from Model 2 
Delta 90 75 63 50 37 25 10 
Mean 0.0013 0.0024 0.0034 0.0037 0.0036 0.0027 0.0013 

Std. Dev. 0.0012 0.0017 0.0027 0.0030 0.0028 0.0019 0.0009 
Skewness 1.5945 1.9094 2.8443 2.3065 2.0411 1.6276 1.8203 
Kurtosis 5.6991 8.5490 21.2433 13.5038 10.4800 5.7794 7.2845 

Panel 3: Inferred from Model 3 
Delta 90 75 63 50 37 25 10 
Mean 0.0012 0.0021 0.0031 0.0033 0.0031 0.0024 0.0013 

Std. Dev. 0.0011 0.0021 0.0028 0.0029 0.0028 0.0024 0.0013 
Skewness 1.7674 2.2141 3.5950 2.8487 2.9133 3.4914 2.0573 
Kurtosis 7.0328 11.2172 34.3467 22.9182 21.9591 27.6906 8.8516 

This table consists of the summary statistics of the pricing errors for the cross-rate (€/£) options. The 
pricing errors are defined as the absolute values of the actual values minus the estimated values of im-
plied volatilities. The actual implied volatilities are backed out from the market prices of options. The 
estimated implied volatilities are inferred from the three regression models in Section IV using the cur-
rent market prices of options on two dollar rates ($/£ and $/€) and/or their DCC historical correlations. 
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Table 6:  Robustness Analysis for Option Pricing Errors 

 

Panel 1: Mean Errors for Sub-samples 
Delta 90 75 63 50 37 25 10 

First half 
sample 

0.0010 
 

0.0017 
 

0.0028 
 

0.0033 
 

0.0030 
 

0.0020 
 

0.0012 

Second half 
sample 

0.0014 0.0025 0.0033 0.0033 0.0033 0.0028 0.0015 

Panel 2: Correlation between Errors and Volatility Levels 
Delta 90 75 63 50 37 25 10 
ρ 0.0030 

 
0.0941 -0.0459 -0.0935 -0.0177 0.0852 -0.0105

Panel 3: Regression of Errors on Volatility Levels 
Delta 90 75 63 50 37 25 10 
β  
 

0.0057 
(0.13) 

0.1040 
(1.37) 

-0.0197
(-0.18) 

-0.0983
(-0.85) 

0.0269 
(0.26) 

0.1624 
(1.94) 

0.0198 
(0.43) 

Panel 4: Regression of Errors on Implied Skewness 
Delta 90 75 63 50 37 25 10 
β  
 

0.0048 
(0.61) 

0.0138 
(0.96) 

0.0122 
(0.59) 

0.0111 
(0.50) 

0.0228 
(1.13) 

0.0175 
(1.08) 

0.0044 
(0.48) 

Panel 5: Regression of Errors on Implied Kurtosis 
Delta 90 75 63 50 37 25 10 
β  
 

0.0012 
(0.15) 

-0.0035
(-0.25) 

0.0090 
(0.44) 

0.0193 
(0.88) 

-0.0032
(-0.16) 

-0.0148 
(-0.92) 

-0.0045
(-0.50) 

This table consists of the summary statistics used to check the sensitivity of the accuracy of option pric-
ing for Model 3. The means of option pricing errors for two evenly divided sub-samples and the corre-
lation coefficients between the errors and volatility levels across deltas are shown in Panel 1 and Panel 
2, respectively. In addition, we run the following regression model to analyze whether pricing errors 
depend on volatility, skewness or kurtosis: 

ttt XEcE   1 βα ++= −
, 

where Et denotes the pricing error in percentage and Xt is the implied volatility, implied skewness and 
implied kurtosis estimated from the market prices of cross-rate options at time t in Panels 3, 4 and 5, 
respectively. The numbers in the parentheses are t-statistics. 
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