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1 Introduction

Interest rate caps and swaptions collectively represent the largest class of interest rate options.

They are widely used by firms for managing interest rate risk. They are also the most liquid

over-the-counter interest rate derivatives traded. Indeed, according to the Bank of International

Settlement, by the end of 2001 the combined notional values of interest rate caps and swaptions

was well over 10 trillion dollars. This notional value is many times larger than that of comparable

exchange traded interest rate derivatives. Consequently, accurate and efficient pricing of caps

is an important topic for academic research. As pointed out by Dai and Singleton (2003), there

is also an “enormous potential for new insights from using derivatives data in (dynamic term

structure) model estimations.”

Despite the fact that these markets are so voluminous, the majority of the existing liter-

ature uses only at-the-money (ATM) caps and swaptions. The current caps and swaptions

pricing literature has mainly focused on two issues.1 The first issue is the so-called “unspanned

stochastic volatility” puzzle documented by Collin-Dufresne and Goldstein (2002) and Heidari

and Wu (2003) (see also Fan, Gupta, and Ritchken (2002), Li, and Zhao (2006), Casassus,

Collin-Dufresne, and Goldstein (2005)). The “unspanned stochastic volatility” puzzle is that

there appear to be risk factors that drive caps and swaptions prices not spanned by the factors

explaining LIBOR or swap rates. The second issue is the relative pricing between caps and

swaptions. A number of recent papers, including Longstaff, Santa-Clara, Schwartz (2001) and

Jagannathan, Kaplin, Sun (2003), find significant and systematic mispricing between caps and

swaptions using various multi-factor term structure models.

There are very few studies documenting the relative pricing of caps with different strike

prices. Jarrow, Li and Zhao (2006) provide a comprehensive documentation of volatility smile

in the caps market and develop a multifactor LIBOR model with stochastic volatility and

1For a review of the current term structure literature, see Dai and Singleton (2002, 2003).
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jumps.2 Their three factor model can capture volatility smile when significant negative jumps

are allowed. Casassus, Collin-Dufresne and Goldstein (2005) develop a model where the drift

and quadratic variation in the short rate affine in three state variables (the short rate, its long

term mean and variance) while the bond prices are exponential affine functions of only two

state variables, independent of the current interest rate volatility level. They fit their model to

the cross section of cap prices for a one day and show that their model can capture volatility

smile reasonably well.3 In contrast, the attempt to capture the volatility smile in equity option

markets is voluminous and it has been the driving force behind the development of the equity

option pricing literature for the past quarter of a century (see Bakshi, Cao, and Chen (1997) and

references therein).4 Analogously, studying caps with different strike prices seems promising in

delivering new insights about existing term structure models and developing superior models.

We use the same date set as in Li and Zhao (2006) and Jarrow, Li and Zhao (2006). It

comprises more than two years of daily cap price data with different strikes (from August 1,

2000 to November 2, 2002) from SwapPX.5 We study the importance of stochastic volatility

and stochastic correlation of the pricing interest caps. Our data set contains rich cross-sectional

information. For example, we have deep ITM and OTM caps with ten different strike prices

and fifteen different maturities ranging from six months to ten years.

The literature on term structure of interest rates is currently dominated by two different

2Several studies have provided anecdotal evidence for the existence of a volatility smile in interest rate caps

and have developed theoretical models to capture this phenomenon. See Hull and White (2000), Andersen and

Andreasen (2000), Andersen and Brotherton-Ratcliffe (2001), and Glasserman and Kou (2003).
3Gupta and Subrahmanyam (2005) also consider caps with different strikes. As shown below, however, their

data is more limited than that used herein. They also test different term structure models.
4For reviews of the equity option literature, see Duffie (2002) and Campbell, Lo and MacKinlay (1997).
5Jointly developed by GovPX and Garban-ICAP, SwapPX is the first widely distributed service delivering 24

hour real-time rates, data and analytics for the world-wide interest rate swaps market. GovPX was established

in early 1990s by the major U.S. fixed-income dealers as a response to regulators’ demands to increase the

transparency of the fixed-income markets. It aggregates quotes from most of the largest fixed-income dealers in

the world. Garban-ICAP is the world’s leading swap broker specializing in trades between dealers and between

dealers and large customers. According to Harris (2003), “Its securities, derivatives, and money brokerage

businesses have daily transaction volumes in excess of 200 billion dollars”.
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frameworks. The first framework is originated by Vasicek (1977) and extended among others

by Cox, Ingersoll and Ross (1985). It assumes that a finite number of latent factors drive

the whole dynamics of term structure. Dai and Singleton (2003) provide an extensive review

of the theory, estimation and performance of dynamic term structure models (DTSMs). The

prominent class of DTSMs was introduced by Duffie and Kan (1996) and has recently become

the dominant framework for modeling term structure of interest rates. Affine models assume

that the spot rate, the risk neutral drift and instantaneous covariance matrix of the state vector

are linear in the state vector. There are many advantages of using affine models. Bond prices

have a simple exponential-affine structure. Analytic solutions exist for the prices of many fixed

income derivatives, such as options on zero coupon bonds. However, the tractability of affine

models comes at the potential cost of limiting its flexibility in explaining empirical observations.

Jaganathan, Kaplin and Sun (2003) find that low dimensional affine models are unable to capture

the joint dynamics of caps, swaptions and bonds. Affine models quickly become intractable as

the number of factors increases. The other framework comprises curve models. These models

are calibrated to the relevant forward curve. There are three groups of such models: forward

rate models pioneered by Heath, Jarrow and Morton (1992), LIBOR market models developed

by Brace, Garatek and Musiela (1997) and Miltersen, Sandmann and Sondermann (1997), and

random field models introduced by Kennedy (1994,1997), and further developed by Goldstein

(2000), Santa Clara and Sornette (2001) and Kimmel (2004).

In this paper, a generalized affine model with stochastic volatility and correlation (SCSV)

is implemented and used to price interest rate caps given LIBOR rates. This framework was

introduced by Collin-Dufresne and Goldstein (2003). The advantage of the generalized affine

framework is that it circumvents the limitations of the finite-dimensional models while retaining

the tractability of the traditional affine class of models. The log-bond prices themselves are

considered as state variables, hence the state vector is of infinite dimension as it includes all

bonds PT (t) for the continuum of maturities T > t, and all the state variables that drive

innovations in volatility and correlation structure. Closed form solutions are readily obtained
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for many fixed income derivatives. The model can be calibrated to fit the initial term structures

of both interest rates and volatility. Finally, generalized affine framework naturally includes

both unspanned stochastic volatility and stochastic correlation. In particular, for a "switching"

correlation structure estimated in this paper there are either closed form solutions or a system of

ODEs can be solved numerically. All that makes generalized affine models a superior framework

for pricing fixed income derivatives.

Despite all this attractive features of generalized affine models, no general implementation

technique is developed and no comprehensive testing of these models has been done so far.

This paper closes this gap in the literature. We provide the implementation procedure that

actually delivers accurate and computationally efficient estimation of generalized affine models.

In analyzing the generalized affine model, we reach the following conclusions. First, the simple

version of the generalized affine model, the parsimonious string model, has large pricing errors

and performs poorly. Second, its more advanced versions have much smaller pricing errors and

thus can generate a volatility smile. We describe our estimation techniques and show how certain

implementation difficulties can be overcome providing an accurate and computationally efficient

procedure. We show that stochastic volatility is especially important for capturing volatility

smile. Stochastic correlation is also useful. Although all considered models still cannot capture

the entire smile. More research is warranted in particular multiple sources of stochastic volatility

might significantly improve the fit of a model.

The rest of this paper is organized as follows. In Section 2, we introduce a "generalized

affine" model with unspanned stochastic volatility and stochastic correlation and provide its

important special cases. In Section 3, we describe the data set and our estimation procedure.

In Section 4, we provide the details of computational implementation of our procedure. In

section 5 we discuss the estimation results. Section 6 concludes.
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2 A ‘Generalized Affine’ Model with Unspanned Stochastic Volatil-

ity and Stochastic Correlation (SCSV)

We consider here the most general "generalized affine" model with unspanned stochastic

volatility and stochastic correlation (SCSV). The specialized models with stochastic correlation

(SC), unspanned stochastic volatility (SV) and the parsimonious string model (PSM) are derived

as reductions of the SCSV model.

In the SCSV model the risk-neutral bond price PT dynamics are assumed to follow

dPT (s)

PT (s)
= rs ds− σT (s) dZT

Q(s)−BT (s)
p
Σ(s) dω1Q(s), (1)

where T is a maturity date, s is a current date, rs, σT (s) and BT (s) are arbitrary deterministic

functions. The volatility state variable Σ(s) follows the diffusion

dΣ(s) = κ (θ − Σ(s)) ds+ ϑ
p
Σ(s)

³
νdω1Q(s) +

p
1− ν2dω2Q(s)

´
, (2)

Brownian field dZT
Q(s) and two Brownian motions dω

1
Q(s) and dω2Q(s) are assumed to be mu-

tually independent and have the following correlation structure

dZT
Q(s)dZ

U
Q(s) ≡ c(s, U, T, ρ) ds. (3)

We refer to Kennedy (1994, 1997), Goldstein (2000) and Santa-Clara and Sornette (2001) for

Brownian fields application in fixed income literature. In particular different functional forms

for the correlation function c(s, U, T, ρ) were proposed. Note that in contrast to the standard

affine framework, generalized affine framework does not have a finite state representation and,

moreover, instantaneous correlation matrix has full rank for any number of bonds considered.

Correlation structure c(s, T, U, ρ) is driven by a single state variable ρ that follows a continuous

time two-state Markov chain with transition probabilities given by

P
¡
ρs+ds = ρH

¯̄
ρs = ρL

¢
= pLH ds,

P
¡
ρs+ds = ρL

¯̄
ρs = ρH

¢
= pHL ds.
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Correlation may jump between deterministic forms cL(s, T, U) and cH(s, T, U) independently

from dZT
Q(s), dω

1
Q(s) and dω2Q(s).

The date-t price of a European bond-option with exercise date T and underlying zero-coupon

bond maturing at date U can be written as

C (t, T, U) = PU (t)ΠUt (logK)−KPT (t)ΠTt (logK) ,

ΠWt (k) = EW
t

h
1logPU (T )>K

i
.

If the characteristic function of the random variable logPU (T ) under the W -forward neutral

measure is

GW
t (iλ) = EW

t

h
eiλ logP

U (t)
i
, (4)

then it follows from Fourier inversion theorem that

C (t, T, U) = PU (t)

µ
1

2
+
1

π

Z ∞

0
dλRe

µ
e−iλ logKGU

t (iλ)

iλ

¶¶
−KPT (t)

µ
1

2
+
1

π

Z ∞

0
dλRe

µ
e−iλ logKGT

t (iλ)

iλ

¶¶
(5)

If GW
t (iλ) can be written in closed-form, then so can the bond-option price, for any speci-

fications of the deterministic functions BT (s) , σT (s) , cH (s, T, U) , cL (s, T, U).

We cite here Proposition 4 proven by Collin-Dufesne and Goldstein (2002) for their special

case m = 1.6

Proposition 1 The characteristic function of the log-bond price takes the form

GW
s (λ) = eλ log(P

T1(s)/PT0(s))+MS(s)+N(s)Σ(s), S ∈ {L,H} ,

where the deterministic function N(s,W ) satisfies the ‘final condition’ N (T0,W ) = 0 and the

6 In this paper we are studying pricing of interest rate caps. For this purpose it is enough for us to use

Proposition 4 from Collin-Dufesne and Goldstein (2002) only for their case when m = 1. Below we made an

extension of this proposition also for this special case. We note though that similar extensions hold for m > 1 .

This is important in pricing such derivatives as swaptions which however is not a focus of this paper.
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ODE

− ∂

∂s
N(s,W ) =

ϑ2

2
N2(s,W )−N(s,W )

¡
κ+ νϑ

¡
BW (s) + λ

¡
BT1(s)−BT0(s)

¢¢¢
+
λ

2

¡
BT1(s)−BT0(s)

¢ ¡
2BW (s)−BT1(s)−BT0(s)

¢
+

λ2

2

¡
BT1(s)−BT0(s)

¢2
,

while ML(s,W ) and MH(s,W ) satisfy the ‘final condition’ ML (T0,W ) =MH (T0,W ) = 0 and

the coupled ODEs

− ∂

∂s
MS1(s,W ) = λ

µ
σW (s)σT1(s)cS1 (s, T1,W )− 1

2

¡
σT1(s)

¢2
−σW (s)σT0(s)cS1 (s, T0,W ) +

1

2

¡
σT0(s)

¢2¶
+
λ2

2

³¡
σT1(s)

¢2
+
¡
σT0(s)

¢2 − 2σT0(s)σT1(s)cS1 (s, T0, T1)´
+κθN(s,W ) + pS1S2

³
eMS2

(s,W )−MS1
(s,W ) − 1

´
,

where S1 and S2 are correlation states, (S1, S2) ∈ {(H,L), (L,H)}.

For the W = Tj , j ∈ {0, 1} these ODEs can be written as

− ∂

∂s
N(s, Tj) =

ϑ2

2
N2(s, Tj)−N(s, Tj)

¡
κ+ νϑ

¡
BTj (s) + λ

¡
BT1(s)−BT0(s)

¢¢¢
+
λ

2

³
λ+ (−1)j+1

´ ¡
BT1(s)−BT0(s)

¢2
, (6)

and

− ∂

∂s
MS1(s, Tj) =

λ

2

³
λ+ (−1)j+1

´³
σT0,T1f,S (s)

´2
+κθN(s, Tj) + pS1S2

³
eMS2

(s,Tj)−MS1
(s,Tj) − 1

´
, (7)

where ³
σT0,T1f,S (s)

´2
=
¡
σT0(s)

¢2 − 2σT0(s)σT1(s)cS(s, T0, T1) + ¡σT1(s)¢2 .
As we show below, pricing of interest rate caps improves when we allow for correlation

parameter ν. For this purpose we now extend the Proposition 2 proven to the correlation ν.
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Proposition 2 If the volatility structure for zero-coupon bonds is assumed to be of the Gaussian-

Vasicek type

BT (s) =
1

βB

³
1− e−βB(T−s)

´
,

then (6) possesses a unique solution given by

N(s, Tj) =
βBe

−βB(T0−s)w0j(e
−βB(T0−s))

c2wj(e−βB(T0−s))
, (8)

where

wj(u) = ehu
³
αΦ(ã, b̃; ηu) + (ηu)1−b̃Φ(ã− b̃+ 1, 2− b̃; ηu)

´
,

Φ(ã, b̃; ξ) denotes the Kummer (or confluent hypergeometric) function 1F1(ã, b̃; ξ),

α = η1−b̃
hΦ
³
ã− b̃+ 1, 2− b̃; η

´
+ ηΦ03

³
ã− b̃+ 1, 2− b̃; η

´
+
³
1− b̃

´
Φ
³
ã− b̃+ 1, 2− b̃; η

´
hΦ
³
ã, b̃; η

´
+ ηΦ03

³
ã, b̃; η

´ ,

h =
D − a

2βB
,

ã =
(βB + c1) (D − a)

2βBD
,

b̃ = 1 +
c1
βB

,

η = − D

βB
,

D =
p
a2 − 4c0c2,

and

c2 =
ϑ2

2
,

c1 = −κ− νϑ

βB
,

a = νϑ

Ã
e−βB(Tj−T0)

βB
− λbδβB

!
,

c0 =
λ
³
λ− (−1)j

´
2

³
bδβB

´2
,

bδβ =
1− e−βBδ

βB
.
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For the special case ν = 0 ODE (6) is reduced to the ODE

− ∂

∂s
N(s, Tj) =

ϑ2

2
N2(s, Tj)− κN(s,W ) +

λ

2

³
λ+ (−1)j+1

´ ¡
BT1(s)−BT0(s)

¢2
. (9)

If we replace βB with β in (8), than it will coincide with the solution obtained by Collin-Dufesne

and Goldstein (2003):

N(s, Tj) =
1

ϑ2

κ+ e−βBτ
p
2φ

αJ 0 κ
2βB

³
e−βBτ

βB

p
φ/2

´
+ Y 0 κ

2βB

³
e−βBτ

βB

p
φ/2

´
αJ κ

2βB

³
e−βBτ

βB

p
φ/2

´
+ Y κ

2βB

³
e−βBτ

βB

p
φ/2

´
 , (10)

where J and Y are Bessel functions, τ = T0 − s,

φ =
λ

2

³
λ+ (−1)j+1

´ ϑ2

β2B

³
1− e−βB(T1−T0)

´2
e−2βBτ ,

α = −
κY κ

2βB

³
1
βB

p
φ/2

´
+
√
2φY 0 κ

2βB

³
1
βB

p
φ/2

´
κJ κ

2βB

³
1
βB

p
φ/2

´
+
√
2φJ 0 κ

2βB

³
1
βB

p
φ/2

´ .
2.1 Stochastic correlation model (SC)

To obtain the model with only stochastic correlation we eliminate the stochastic volatility

component from the SCSV model by assuming BT (s) ≡ 0. This can be obtained in the limit as
βB →∞. The risk-neutral bond price dynamics (1) are reduced to

dPT (s)

PT (s)
= rs ds− σT (s) dZT

Q(s), (11)

while the system of coupled ODEs (7) remains intact, and ODE (6) simplifies to

− ∂

∂s
N(s, Tj) =

ϑ2

2
N2(s, Tj)− κN(s, Tj). (12)

ODE (12) possesses the unique solution N(s, Tj) ≡ 0. This further simplifies this case.

2.2 Stochastic volatility model (SV)

We obtain the stochastic volatility model if we eliminate stochastic correlation from the SCSV

model by assuming ρH = ρL = ρ. This restriction does not change ODE (6). From coupled
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ODEs (7) it follows that

∂

∂s
(MH(s, Tj)−ML(s, Tj)) = pLH

³
eMH(s,Tj)−ML(s,Tj) − 1

´
− pHL

³
eML(s,Tj)−MH(s,Tj) − 1

´
,

(13)

hence for any pLH and pHL we can conclude that MH(s, Tj) = ML(s, Tj) for any s ≤ T0.

Therefore

− ∂

∂s
M(s, Tj) = κθN(s, Tj) +

λ

2

³
λ+ (−1)j+1

´³
σT0,T1f (s)

´2
.

From (8) it follows that

N(s, Tj) =
2

ϑ2
∂

∂s
logwj(e

−βB(T0−s)), (14)

hence integration from t to T0 and boundary conditions M(T0, Tj) = N(T0, Tj) = 0 yield

M(s, Tj) = −2κθ
ϑ2

logwj(e
−βB(T0−s)) +

λ

2

³
λ+ (−1)j+1

´
Ω(s, T0, T1), (15)

where

Ω(s, T0, T1) =

Z T0

s

³
σT0,T1f (t)

´2
dt.

2.3 Parsimonious ‘string’ model (PSM)

The parsimonious string model can be obtained from the SV model in a limiting case BT (s) ≡ 0.
This is done by setting βB →∞. This framework has been empirically investigated by Longstaff,
Santa Clara and Schwartz (2001). They demonstrated the practical nature of this framework.

Though both paper approximate their models with low dimentional factor approximations. This

significantly simplifies calibration of the model, although significant advantage of infinite factor

specification of PSMmodel (and the whole class of generalized affine models) has been sacrificed.

We, however, do not make here this approximation and rather study the original infinite version

of PSM as we do for all other models in this paper. The risk-neutral bond price dynamics is

reduced to
dPT (s)

PT (s)
= rs ds− σT (s) dZT

Q(s). (16)
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In that case

N(s, Tj) = 0, (17)

M(s, Tj) =
λ

2

³
λ+ (−1)j+1

´
Ω(t, T0, T1),

hence from (5) we have

C(t, T0, T1) = PT0(t)

Ã
1

2
+
1

π

Z ∞

0
Re

Ã
e−iλµ+

iλ
2
(iλ+1)Ω

iλ

!
dλ

!

−KPT1(t)

Ã
1

2
+
1

π

Z ∞

0
Re

Ã
e−iλµ+

iλ
2
(iλ−1)Ω

iλ

!
dλ

!

= PT0(t)

Ã
1

2
+
1

π

Z ∞

0
e−

λ2

2
Ω sin

¡−λ ¡µ− Ω
2

¢¢
λ

dλ

!

−KPT1(t)

Ã
1

2
+
1

π

Z ∞

0
e−

λ2

2
Ω sin

¡−λ ¡µ+ Ω
2

¢¢
λ

dλ

!

= PT0(t)N

Ã
−µ+ 1

2Ω√
Ω

!
−KPT1(t)N

Ã
−µ− 1

2Ω√
Ω

!
,

where Ω = Ω(t, T0, T1), T1 = T0 + δ and

µ = log

Ã
K̃PT1(t)

PT0(t)

!
= log

³
(1 + δK)PT0,T1

f (t)
´
.

The indexed price of a caplet given by

Cpl(t, T0, T1)
PT0(t)

= N

Ã
−µ+ 1

2Ω(t, T0, T1)p
Ω(t, T0, T1)

!
− eµN

Ã
−µ− 1

2Ω(t, T0, T1)p
Ω(t, T0, T1)

!
. (18)

is now a function of µ and Ω(t, T0, T1) only.

3 Estimation

For estimation purposes we need to make additional assumptions on the behavior of the volatility

σT (s) and correlation structure cS(s, T, U). We assume here that

σT (s) =
σ

β

³
1− e−β(T−s)

´
,
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and correlation structure in state S ∈ {H,L} is generated by an integrated Ornstein-Uhlenbeck
process

cS(s, T, U) = e−ρS |T−U | (1 + ρS |T − U |) .

Note that, of course, more general specifications may improve our empirical results. Further

research is warranted to see the pricing of interest rate caps with other specifications. In general

the task of finding the best specifications for σT (s) and cS(s, T, U) seems to be daunting given

enormous possible behavior dynamics for the volatility and correlation in general. Though we

believe that this fact should rather inspire future research. While for the purpose of our paper we

restrict ourselves to these specifications since as we show below they render the main conlusion

of our paper that stochastic volatility and stochastic correlation are important for pricing ITM

and OTM interest rate caps suffices and models that have them price interest rate caps better

that the basic PSM model .

3.1 Data set

Our data set contains caplet market prices gCpl(t, t + mi−1δ, t + miδ,Kj(t)), where δ = 1/4

corresponds to 3 month period, are maturity multipliers mi are taken from the vector m =

(2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 24, 28, 32, 36, 40). These values of m correspond to 6 month, 1,

1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8, 9 and 10 year maturities respectively. Date t belongs to the

set T of n = 557 trading days between 08/01/00 and 11/07/02. For each day t, 10 different

strikes Kj(t) are available in the form of annual rates. Caplet prices are censored to satisfy

no-arbitrage conditions and outliers are removed. Let us denote by Ti,j the subset of all dates

t such that caplet price with tenor [mi−1,mi] and strike Kj(t) was not ruled out.

Our data set also contains LIBOR rates L(t, t+ li−1δ, t+ liδ) for the periods [li−1δ, liδ] ob-

served at dates t ∈ T , where maturity multipliers li belong to the vector l = (0, 1, 2, 4, 8, 12, 16, 20, 28, 40).

12



It is standard to define LIBOR rate as

L(t+ li−1δ, t+ liδ) =
1

δ (li − li−1)

µ
1

P t+liδ(t+ li−1δ)
− 1
¶
,

P t+liδ(t+ li−1δ) = exp

(
−
Z t+liδ

t+li−1δ
f(t, s)ds

)
.

For pricing purpose we need forward rates

P
t+mi−1δ,t+miδ
f (t) =

P t+miδ(t)

P t+mi−1δ(t)
, (19)

where PT0,T1
f (t) is defined as a forward price quoted at date t and paid at date T0 for delivery

at date T0 of a zero-coupon bond that matures at T1.

1 + (li − li−1) δL(t+ li−1δ, t+ li−1δ) = exp

(Z t+liδ

t+li−1δ
f(t, s)ds

)

= exp

½
δ (li − li−1)

f(t, t+ li−1δ) + f(t, t+ liδ)

2

¾

3.2 Objective function

For the given subset I of tenor indices our objective function is

WMSE =
1

NI

X
i∈I

10X
j=1

X
t∈Ti,j

e2i,j(t)

σ̂2i,j(t)
, (20)

where NI =
P

i∈I
P10

j=1

P
t∈Ti,j 1 is a number of caplet prices and indexed pricing error ei,j(t)

for caplet with tenor [mi−1,mi] and strike Kj(t) are defined by

ei,j(t) =
gCpl(t, t+mi−1δ, t+miδ,Kj(t))− Cpl(t, t+mi−1δ, t+miδ,Kj(t))

P
t+mi−1δ,t+miδ
f (t)

. (21)

Indexed pricing error variances.σ̂2i,j (t) are estimated nonparametrically using Bartlett kernel.

First, nonparametric estimates of indexed caplet prices are obtained as

dCpl(t, t+mi−1δ, t+miδ,Kj(t))

P
t+mi−1δ,t+miδ
f (t)

=

P10
j0=1

P
t0∈Ti,j0 k(µi,j(t)− µi,j0(t

0))
gCpl(t0,t0+mi−1δ,t0+miδ,Kj0(t0))

P
t0+mi−1δ,t0+miδ

f (t0)P10
j0=1

P
t0∈Ti,j k

¡
µi,j (t)− µi,j0 (t

0)
¢ ,
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where moneyness is defined by

µi,j(t) = log
³
(1 + δ (mi−1 −mi)Kj(t))P

t+mi−1δ,t+miδ
f (t)

´
.

Note that µi,j (t) differs from another definition of moneyness

ki,j(t) = log

 Kj(t)³
1− P

t+mi−1δ,t+miδ
f (t)

´
/ (mi −mi−1) δ

 ,

but both definitions are equivalent as δ tends to zero.

Alternatively, additional smoothing dimension of maturity might be used. Here maturity

specific averaging is chosen. This is done since there is a well pronounced maturity-driven

shift in observed caplet market price curves plotted as functions of caplet moneyness. Under

assumptions made, there should be no shifts like that.

Estimated indexed caplet pricing errors are given by

êi,j(t) =
gCpl(t, t+mi−1δ, t+miδ,Kj(t))−dCpl(t, t+mi−1δ, t+miδ,Kj(t))

P
t+mi−1δ,t+miδ
f (t)

, (22)

and their estimated variances are computed as

σ̂2i,j(t) =

P10
j0=1

P
t0∈Ti,j0 k(µi,j(t)− µi,j0(t

0))ê2i,j(t)P10
j0=1

P
t0∈Ti,j0 k(µi,j(t)− µi,j0(t

0))
. (23)

3.3 Estimation procedure

We limit our study to the caplets with maturities ranging from 2 years up to 10 years, i.e.

I = 4, ..., 15. One reason for that is a number of caplet prices for 6 month and 1 year maturities

that satisfy no-arbitrage conditions is as half as smaller than for other maturities. Also, as

figure 1 suggests, caplets with maturities shorter that 2 years do not fit well into the surface

with prices of caplets with longer maturities. This might be rigorously measured by increase in

MSE as additional short maturity is added to the set of longer maturities.

After variances of indexed caplet pricing errors are estimated, 40 outliers from the set of

indexed caplet prices are removed for each maturity, that accounts for less than 1%. Outliers

14



are selected by the ratio of the corresponding estimated indexed pricing error to the estimated

variance of the indexed pricing error. Remaining 59153 caplet prices are used as an input to

the estimation procedure.

In the PSM only time-invariant parameters θ ∈ Θ need to be estimated. For SC and SCSV
models, we also need to estimate a time profile of binary 0,1 correlation state latent variables. We

require that sample ratio of number of low-correlation days and high-correlation days coincides

with its theoretical value. In other words, if we define

nS = |{t ∈ T : ρt = ρS}|

for S ∈ {H,L}, then nL + nH = n and we limit (ρt)t∈T to the constraint set

R (θ) =

½
(ρt)t∈T : nL =

·
n

pHL

pHL + pLH

¸¾
.

For the SV and SCSV model a time profile of real-valued nonnegative stochastic volatil-

ities (Σt)t∈T has to be estimated. For the given value θ of the time-invariant parameters

and for each day t we minimize daily WMSEt(θ, ρ,Σt) (in SV case) or both WMSEt(θ, ρL,Σt)

and WMSEt(θ, ρH ,Σt) independently (in SCSV case) with respect to Σt. Then the sum of

WMSEt(θ, ρt, Σ̂t) over entire sample is minimized with respect to (ρt)t∈T ∈ R (θ). Finally, for

WMSE(θ̂, (ρ̂t, Σ̂t)t∈T ) is obtained by minimization with respect to time-invariant parameters

θ ∈ Θ. The procedure might be summarized as:

WMSE(θ̂, (ρ̂t, Σ̂t)t∈T ) = min
θ∈Θ

WMSE(θ, (ρ̂t, Σ̂t)t∈T ),

WMSE(θ, (ρ̂t, Σ̂t)t∈T ) = min
(ρt)t∈T∈R(θ)

X
t∈T

WMSEt(θ, ρt, Σ̂t),

WMSEt(θ, ρt, Σ̂t) = min
Σt≥0

X
i∈I

10X
j=1

1{t∈Ti,j}
e2i,j(t)

σ̂2i,j(t)
.

Consider the constraint set R(θ). Expression nL =
h

npHL
pHL+pLH

i
reflects the fact that number

of low correlation days is always integer. This restriction might result in discontinuous WMSE

in SC and SCSV cases since for arbitrary close θ0 and θ00 we might get different optimal n0L and
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n00L. To avoid that complication, we assume for WMSE calculation purposes only that at the

boundary date t∗ = t∗(θ, (ρ̂t, Σ̂t)t∈T ) defined as

t∗ = argmin
t∈T

n
WMSEt(θ, ρt, Σ̂t) : ρt = ρH

o
we have anWMSEt∗(θ, ρt∗ , Σ̂t∗) to be a weighted sum ofWMSEt∗(θ, ρL, Σ̂t∗) andWMSEt∗(θ, ρH , Σ̂t∗)

given by

WMSE∗t∗(θ, ρt∗ , Σ̂t∗) =

µ
npHL

pHL + pLH
− nL

¶
WMSEt∗(θ, ρL, Σ̂t∗) (24)

+

µ
nL + 1− npHL

pHL + pLH

¶
WMSEt∗(θ, ρH , Σ̂t∗).

Since WMSEt∗ is weighted in the objective function with a relative weight which is approx-

imately 1/n = 1/557, hence the impact of that change to the value of the objective function

might be considered as negligible.

To estimate PSM, BFGS is used. Combination of BFGS and directional search is used

for SV,SC and SCSV models. Both SVSC and SV models with daily calibrated Σ(s) can be

approximated by SVSC and SV with Σ(s) ≡ θ and ϑ = 0.

Both SC and SCSV error surfaces might exhibit nonsmoothness since for arbitrary close θ0

and θ00 minimization procedure might switch between different profiles (ρ0t) and (ρ00t ) that would

result in discontinuity in gradient. A problem of the same sort might be brought by switching

from boundary Σt = 0 to internal Σt > 0 in SV and SCSV models. We are not taking any

precautions in that aspect because we expect only one switching of that type for any sufficiently

close θ0 and θ00, and nonsmoothness that it introduces is summed in the objective function with

relative weight of magnitude 1/n = 1/557. Efficiencies of both BFGS and directional search are

not expected to be seriously affected, and numerical evidence confirms that.

4 Computational Implementation

For each set of parameters 59153 caplets should be priced, hence more than 100000 computation-

ally costly numerical Fourier transforms should be performed. We need to reduce computational
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costs substantially. For these purpose, to solve ODEs for N(λ),MH(λ) and ML(λ) efficiently,

three ranges of the Fourier inversion parameter λ are considered separately.

• For small λ, N(λ),MH(λ) and ML(λ) are analytic in λ, and coefficients of their power

series expansions can be recursively derived from ODEs.

• For big λ, ODE for N(λ) can be solved in closed form while coupled ODEs for MH(λ)

and ML(λ) do not seem to have a closed form solution. It turns out that (1/λ)N(λ) is

analytic in 1/λ, and coefficients of its power series expansion can be recursively derived

from the ODE. The closed form solution helps to determine the radius of convergence of

that expansion. It is trick to derive the expansions of MH(λ) and ML(λ) from the system

os coupled ODEs. Numerical methods are used to detect convergence.

• For intermediate λ numerical ODE solvers deliver acceptable performance. For non-

correlated case the closed-form solution might be used as well.

• Given that N(λ),MH(λ) and ML(λ) can be accurately evaluated for any λ ≥ 0 and their
asymptotics as λ −→ 0 and λ −→ ∞ are known, we approximate them after proper

normalization as functions of λ on a certain finite segment using cubic splines. It reduces

the number of costly N(λ),MH(λ) andML(λ) evaluations in the integration step. Splines

as a smoothing device helps integration routines.

• Now N(λ),MH(λ) and ML(λ) are accurate, smooth and can be obtained efficiently for

any λ ≥ 0, but 100000 integrations over λ are still too costly. Cubic splines are used to
approximate a caplet price as a function of moneyness. When the SV component is present,

cubic splines are also used to approximate a caplet price as a function of initial stochastic

volatility Σt. This approximation is especially useful for optimization with respect to Σt.
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5 Estimation Results

Parameter estimates and their standard errors are listed in Table 1. Apart from the above PSM,

SC, SV and SCSV models we also estimate SV and SCSV models with estimated correlation

parameter ν. We denote these models SVc and SCSVc correspondingly. Table 2 shows the

goodness of fit using two measures: square root MSE and WMSE. MSE in this table correspond

to the non-indexed pricing errors normalized to single quarterly caplet. When nonparametric

estimates bei,j(t) are plugged into objective function instead of pricing errors ei,j , we get the
benchmark case \WMSE ≈ 1.

Figure 1 shows
√
MSE and

√
MSRE of non-indexed caplet prices for separate maturities.

Nonparametrically smoothed pricing errors for non-indexed caplet prices as functions of mon-

eyness on Figure 2 clearly emphasizes that the previous literature concentration on comparison

of pricing errors only ATM is misleading. Figure 2 shows that those models that are best

ATM may be really poor ITM or OTM. Caplets with adjacent maturities are pooled together

if their pricing error curves are similar. To further explore whether some important dynamics

has not been priced, we analyze principle component of pricing errors for all models under

consideration. The results are summarized in Tables 3 and 4 and Figure 3. Table 3 shows

eigenvalues of principal components of pricing errors while Table 4 shows the explanation power

of this components. Figure 3 displays eigenvectors that correspond to the 3 largest eigenvalues.

Eigenvectors are normalized to the unit length. Their direction is inverted when it is needed

to make the coordinate with largest modulus positive. It is clear that PSM is dominated by its

more sophisticated counterparts. However, neither graphical analysis, nor principal component

analysis leads to clear cut conclusion about the best model. We perform statistical analysis to

further differentiate between models.

For any model M and day t we define WMSEM
t as a weighted mean squared pricing error

for indexed caplets of all maturities at the day t. The null hypothesis

H0 :
1

T

TX
t=1

WMSEM1
t =

1

T

TX
t=1

WMSEM2
t (25)
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against the alternative

H1 :
1

T

TX
t=1

WMSEM1
t >

1

T

TX
t=1

WMSEM2
t (26)

is tested for each pair of models M1 and M2. The Newey-West statistic is N(0, 1) under

the null. The upper triangle is obtained using the quadratic spectral kernel, the lower triangle

corresponds to the Bartlet kernel. Bandwidth is chosen to be h = 0.1, T = 557. The results

of this test are summarized in Table 5.To show the robustness of DM results with respect to

bandwidth, the null is tested for 100 equidistant bandwidths 0.01 ≤ h < 1 and the significance

levels αmin are presented in Table 5. For any bandwidth 0.01 ≤ h < 1 the null hypothesis H0

is rejected in favor of the alternative hypothesis H1 at any significance level up to 1 − αKmin.

It follows from Table 5 that the models with stochastic volatility term improve over PSM and

SC at any reasonable significance level. We cannot conclude that SVc improves upon SCSV.

The null can be always rejected for the pair SCSVc, SCSV only at 69% level. All other pairs of

models always show improvement at 82% significance level.

6 Conclusion

Using more than two years of daily ITM and OTM interest rate cap price data, we provide

probably the first comprehensive empirical analysis of performance of the generalized affine

models of Collin-Dufresne and Goldstein (2003) in pricing interest rate derivatives. We develop

efficient implementation procedure for estimation of these models. In analyzing the generalized

affine model, we reach the following conclusions. First, we find that a popular version of

generalized affine models, parsimonious string model with constant volatility and correlation of

bond yields, cannot price caps well. Second, stochastic volatility provides the most significant

improvement in model performance and stochastic correlation is also important. Finally we show

that the generalized affine model is very flexible and as tractable as the traditional affine models.

Our analysis demonstrates the empirical importance of incorporating stochastic volatility and
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correlation in bond yields for pricing interest rate derivatives. Although all considered models

still cannot capture the entire smile. More research is warranted. In particular multiple sources

of stochastic volatility might significantly improve the fit of a model. This paper show that

stochastic correlation indeed matters for pricing interest rate caps. Thus study of more flexible

correlation structures should be performed in future research. Another important aspect is

out-of-sample performance of generalized affine models in pricing interest rate caps. Finally

similar analysis of swaption would be desirable. The advantage of generalized affine framework

in allowing consistently price different interest rate derivatives, especially caps and swaptions

should be fully utilized.
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7 Appendix.

Proof of Proposition 2.

If we define Ñ (T0 − s, Tj) = N (s, Tj) and τ = T0−s, then ODE (6) equation can be written
as

Ñ 0
τ (τ , Tj) =

ϑ2

2
Ñ2(τ , Tj)− Ñ(τ , Tj)

¡
κ+ νϑ

¡
BTj (T0 − τ) + λ

¡
BT1(T0 − τ)−BT0(T0 − τ)

¢¢¢
+
λ
³
λ− (−1)j

´
2

³
bδβB

´2
e−2βτ

=
ϑ2

2
Ñ2 (τ , Tj)− Ñ (τ , Tj)

Ã
κ+ νϑ

Ã
1− e−β(Tj−T0+τ)

β
+ λe−βτbδβB

!!

+
λ
³
λ− (−1)j

´
2

³
bδβB

´2
e−2βτ

= c2Ñ
2 (τ , Tj) + Ñ (τ , Tj)

³
c1 + ae−βτ

´
+ c0e

−2βτ ,

Ñ(0, Tj) = 0,

where δ = T1 − T0 and the coefficients are determined by

bδβ =
1− e−βBδ

βB
, c2 =

ϑ2

2
, c1 = −κ− νϑ

βB
,

a = νϑ

Ã
e−βB(Tj−T0)

βB
− λbδβB

!
, c0 =

λ
³
λ− (−1)j

´
2

³
bδβB

´2
.

In correlated case ν > 0 we have Ñ(τ , T0) 6= Ñ(τ , T1). If x0j (τ) is defined by

c2Ñ(τ , Tj) = −x
0
j(τ)

xj(τ)
,

x0j(0) = 0,

then

x00j (τ) = x0j(τ)
³
c1 + ae−βBτ

´
− c0c2xj(τ)e

−2βBτ = 0,

x0j(0) = 0.



If we define u = e−βBτ and wj(u) = xj(τ) (p.149, 141, k = 0), then

β2Buw
00
j (u) + (βBau+ βB (βB + c1))w

0
j(u) + c0c2uwj(u) = 0,

wj(1) = 0.

It has form

(a2u+ b2)w
00
j (u) + (a1u+ b1)w

0
j(u) + (a0u+ b0)wj(u) = 0,

where

a2 = β2 6= 0, b2 = 0, a1 = βa 6= 0, b1 = β (β + c1) ,

a0 = c0c2 6= 0, b0 = 0,D2 = a21 − 4a0a2.

If D 6= 0, then

wj(u) = ehuz(ξ(u)),

ξ(u) = (u− µ) η,

h =
D − a1
2a2

=

√
a2 − 4c0c2 − a

2βB
,

η−1 = − a2
A(h)

= − βB√
a2 − 4c0c2

,

µ = − b2
a2
= 0,

D2 = a21 − 4a0a2 = β2B
¡
a2 − 4c0c2

¢
,

A(h) = 2a2h+ a1 = βB
p
a2 − 4c0c2,

B(h) = b2h
2 + b1h+ b0 =

(βB + c1)
¡√

a2 − 4c0c2 − a
¢

2
,

z(ξ) = J
µ
B(h)

A(h)
,
a2b1 − a1b2

a22
; ξ

¶
,

where

J (ã, b̃; ξ) = C1Φ(ã, b̃; ξ) + C2ξ
1−b̃Φ(ã− b̃+ 1, 2− b̃; ξ)

and Φ(ã, b̃; ξ) =1F1(ã, b̃; ξ) is a Kummer (or confluent hypergeometric) function.
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Therefore

wj(u) = ehuz(ξ(u))

= ehuJ
µ
B(h)

A(h)
,
a2b1 − a1b2

a22
; ξ(u)

¶
= ehuJ

µ
b1h

2a2h+ a1
,
b1
a2
;uη

¶
= ehuJ

µ
β (β + c1)h

2β2h+ βa
, 1 +

c1
β
;uη

¶
= e

√
a2−4c0c2−a

2βB
uJ

Ã
(βB + c1)

¡√
a2 − 4c0c2 − a

¢
2βB
√
a2 − 4c0c2

, 1 +
c1
βB
;−
√
a2 − 4c0c2

βB
u

!
= ehuJ

³
ã, b̃;uη

´
,

Ñ(τ , Tj) = − x0j(τ)
c2xj(τ)

=
βBe

−βBτw0j(e
−βBτ )

c2wj(e−βBτ )
,

w0j (1) =
∂

∂u

³
ehuJ (ã, b̃;uη)

´¯̄̄
u=1

= eh
³
hJ (ã, b̃; η) + ηJ 03

³
ã, b̃; η

´´
= 0,

and that can be written as

J 03
³
ã, b̃; η

´
= C1Φ

0
3

³
ã, b̃; η

´
+ C2η

1−b̃Φ03
³
ã− b̃+ 1, 2− b̃; η

´
+ C2

³
1− b̃

´
η−b̃Φ

³
ã− b̃+ 1, 2− b̃; η

´´
.

Hence

α =
C1
C2

= η1−b̃
hΦ
³
ã− b̃+ 1, 2− b̃; η

´
+ ηΦ03

³
ã− b̃+ 1, 2− b̃; η

´
+
³
1− b̃

´
Φ
³
ã− b̃+ 1, 2− b̃; η

´
hΦ
³
ã, b̃; η

´
+ ηΦ03

³
ã, b̃; η

´
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Table 1. Parameter Estimates and Standard Errors

Parameter PSM SC SV SCSV

σ
0.016572

(0.0019)

0.036447

(0.0041)

0.013852

(0.0029)

0.014099

(0.0027)

β
0.095899

(0.0437)

1.258782

(0.0681)

0.108378

(0.0773)

0.095747

(0.0320)

θVS - -
0.000073

(0.0002)

0.000028

(0.0002)

κVS - -
3.584018

(6.5890)

7.576052

(0.3619)

ϑVS - -
2.436245

(2.7384)

2.753821

(0.3826)

βB - -
0.026702

(0.32579)

0.034288

(0.03803)

ρH
0.014969

(0.3872)

0.000000

(0.0732)

0.097722

(0.1140)

0.041101

(0.0375)

ρL -
0.569314

(0.0627)
-

0.141720

(0.0365)

pHL -
0.452110

(0.0715)
-

0.173817

(0.3186)

pLH -
0.545540

(0.07221)
-

0.280520

(0.3438)



Table 2. Goodness of Fit

Measure NPM PSM SC SV SCSV

WMSE 0.998672 1.281636 0.959661 0.656805 0.595781
√
MSE 0.028986 0.031648 0.026957 0.021137 0.020359

Table3. Eigenvalues of Principal Components of Pricing Errors

PSM SC SV SV c SCSV SCSV c

1 1.4583 0.6391 0.4235 0.4698 0.2536 0.3652

2 0.4514 0.5134 0.2252 0.2172 0.2323 0.2177

3 0.1395 0.1456 0.1566 0.1325 0.1776 0.1307

4 0.1395 0.0881 0.1088 0.0864 0.1014 0.0728

5 0.0601 0.0697 0.0662 0.0646 0.0640 0.0637

6 0.0513 0.0442 0.0505 0.0501 0.0606 0.0495

7 0.0292 0.0285 0.0290 0.0290 0.0335 0.0293

8 0.0206 0.0192 0.0215 0.0197 0.0229 0.0199

9 0.0167 0.0155 0.0163 0.0163 0.0177 0.0157

10 0.0153 0.0135 0.0137 0.0126 0.0147 0.0126

11 0.0113 0.0119 0.0117 0.0114 0.0137 0.0114

12 0.0079 0.0078 0.0083 0.0085 0.0081 0.0080
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Table 4. Explanatory Power of Principal Components of Pricing Errors

PSM SC SV SV c SCSV SCSV c

1 0.6172 0.4003 0.3744 0.4201 0.4135 0.3666

2 0.1911 0.3216 0.1991 0.1942 0.1942 0.2185

3 0.0591 0.0912 0.1384 0.1185 0.1228 0.1311

4 0.0428 0.0552 0.0962 0.0773 0.0651 0.0731

5 0.0254 0.0437 0.0585 0.0578 0.0542 0.0639

6 0.0217 0.0277 0.0447 0.0448 0.0385 0.0496

7 0.0124 0.0179 0.0256 0.0260 0.0325 0.0294

8 0.0087 0.0120 0.0190 0.0176 0.0279 0.0199

9 0.0071 0.0097 0.0144 0.0146 0.0175 0.0158

10 0.0065 0.0084 0.0121 0.0113 0.0134 0.0126

11 0.0048 0.0075 0.0103 0.0102 0.0113 0.0114

12 0.0033 0.0049 0.0073 0.0076 0.0060 0.0080

Table 5. Newey West Statistics

Model PSM SC SV SCSV SV c SCSV c

PSM − 2.65 5.14 5.32 4.66 4.95

SC 2.94 − 7.80 6.88 5.20 5.98

SV 5.67 8.57 − 3.33 1.81 2.44

SCSV 5.86 7.51 3.53 − 0.63 1.17

SV c 5.16 5.77 2.03 0.70 − 2.49

SCSV c 5.47 6.61 2.72 1.30 2.70 −
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Table 6. Significance Levels αmin

Model PSM SC SV SCSV SV c SCSV c

PSM − 0.0110 2× 10−6 2× 10−6 4× 10−5 1× 10−5

SC 0.0060 − 4× 10−13 1× 10−8 4× 10−6 4× 10−7

SV 4× 10−7 8× 10−15 − 0.0178 0.1160 0.0378

SCSV 4× 10−7 2× 10−9 0.0106 − 0.5738 0.3044

SV c 1× 10−5 1× 10−6 0.0880 0.5378 − 0.0164

SCSV c 2× 10−6 1× 10−7 0.0238 0.2582 0.0058 −
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