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1. INTRODUCTION

Maximizing expected utility is the standard approach for the solution of multiperiod

portfolio selection problems. However, the applicability of the approach is limited:

- It requires a multi-period utility function that re
ects the time and risk preferences

of the investor. Such a utility function can hardly be found.

- It requires a probability distribution of the multi-period portfolio cash 
ows which

is di�cult, if not impossible, to determine.

- The solution can be ine�cient in the sense that the optimal portfolio may enable

arbitrage (e.g., Copeland et al., 2004, pp. 66).

- It is assumed that that the utility function does not depend upon the menu over

which choice is being made. This, for example, has been criticized by Sen (1997).

As an alternative Hellwig (2004), Hellwig et al (2000), Korn (2000) and Selinka (2005)

proposed a di�erent approach where a portfolio is determined based on two conditions.

First, the portfolio is required to be (intertemporal) e�cient. Second, the valuation of

the portfolio cash 
ows is required to support the growth preferences of the investor

concerning the portfolio value. It is shown that under reasonable assumptions a portfo-

lio exists where both conditions are satis�ed. However, the approach poses a number of

problems. First, the portfolio value is de�ned as discounted consumption after present

consumption is realized. This excludes cases where present consumption is part of the

decision problem. Second, the approach rests on the assumption of a given multiperiod

probability distribution that hardly can be found. Finally, the solution does not exclude
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consumption to be negative. How to handle such situations remains open.

The aim of this paper is to solve these problems. In the next two sections the case is

treated where the portfolio value is de�ned as discounted consumption before present

consumption is realized (which will be denoted as ex ante valuation) while section four

treats the case, where the portfolio value is de�ned as discounted consumption after

present consumption has been realized (which will be denoted as ex post valuation).

For both cases it is shown that a solution with a non negative consumption vector exists

under reasonable assumptions. Finally, in section �ve it is shown that under relaxed

growth conditions a solution exists under less restrictive assumptions.

2. THE PORTFOLIO MODEL

The following analysis is based on a �nite-state, discrete-time approach. Uncertainty is

modelled by an event-tree with a �nite set of events (nodes). S = f0; : : : ; ng denotes

the set of nodes, St the set of nodes at time t where t = 0; : : : ; T and S0 = f0g; N(s)

the set of nodes succeeding s; F (s) the set of nodes that immediately follow s and s�

the immediate predecessor of s where it is assumed that s� is unique for every s.

It is assumed that the investor is endowed with a node dependent income vector

b = (b0; : : : ; bn)
0 and can choose in every node s from a set of investment and �nancing

opportunities. This set can be di�erent for every s. x = (x1; : : : ; xm)
0 denotes the ac-

tivity level of all opportunities where x 2 X = fx j 0 � xi � xui ; i = 1; : : : ;mg: xui is
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assumed to be �nite for every i.

Let A 2 IR(n+1) � m denote the payo� matrix. Then Ax is the cash 
ow if the activity

level is x. Let c = (c0; : : : ; cn)
0 be the vector of consumption (withdrawals). c is called

feasible if c 2 C = fc j c = Ax+ b for some x 2 Xg.

Assume c 2 C and denote by p = (p0; : : : ; pn) > 0 the price vector. Then the ex ante

portfolio value in node s will be de�ned as

Vs = Vs(c; p) = cs +
X

k2N(s)

pk
ps
ck = cs +

X
k2F (s)

pk
ps
Vk: (1)

It will be assumed that the desired price vector �p and the desired consumption vector �c

are endogenously determined such that the following conditions are met.

Given �p > 0, �c 2 C should maximize the present portfolio value:

(C1) ( E�ciency) �c is an optimal solution of V0(�c; �p) = maxfV0(c; �p) j c 2 Cg.

Given �c 2 C, �p should support the desired increase of the portfolio value:

(C2) ( Compatibility ) Vs(�c; �p) = (1 + gs)Vs�(�c; �p); s = 1; : : : ; n

where gs is the required growth rate of the portfolio value between nodes s
� and s.

De�nition: �c is called ex ante growth-oriented (with respect to g1; : : : ; gn), if a price

vector �p > 0 exists such that (C1) and (C2) are satis�ed.

Contrary to the expected utility maximizing approach the concept of a growth-oriented

consumption vector neither requires a utility function nor a probability distribution.
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Furthermore, e�ciency is guaranteed by (C1). Finally, the concept is not independent

of the menu over which the choice is made. A growth-oriented consumption vector in

principle may be found by expected utility maximization. However - contrary to the

standard approach - if C is changed, then expected utility maximization with the same

utility function may not lead to a growth-oriented consumption vector with respect to

the same growth rates (Hellwig, 2002).

3. EX ANTE VALUATION

What are the consequences of the growth requirements for consumption? Assume c 2 C

and p > 0. Combining (1) with (C2) yields

cs = (1�
X

k2F (s)

pk
ps
(1 + gk))Vs = (1�

X
k2F (s)

pk
ps
(1 + gk))��2T (0;s)(1 + g� )V0 (2)

where T (0; s) denotes the set of nodes between 0 and s (excluding 0 and including s)

and V0 is the optimal present portfolio value given p.

Let p̂ > 0 be an arbitrary price vector and csu(p̂) an optimal solution of maxfV0(c; p̂) j

c 2 Cg: csu(p̂) can be understood as consumption vector supplied by p̂. Similarly, cd(p̂)

given by (2) can be understood as consumption vector that is demanded by p̂. Clearly,

if \excess demand" z(p̂) := cd(p̂) � csu(p̂) is zero, cd(p̂) = csu(p̂) is an ex ante growth-

oriented consumption vector.

Suppose that z(p̂) 6= 0. Then a new price vector may be chosen, for example, as an

optimal solution p(z) of maxfPn
s=0 zs(p̂)ps j p 2 Pg where P is a suitable set of price

vectors. This means that prices should be increased if demand exceeds supply and
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decreased if supply exceeds demand. Performing z(p) : P ! Z where Z denotes the

image of z and thereafter p(z) : Z ! P leads to a multivalued mapping ' = p(z(p)) :

P ! P . In the appendix it is shown that ' has a �xed-point �p > 0 such that that

z(�p) = 0 if the following assumptions hold:

(A1) In every node s 62 ST funds can be invested for one period with a return r1k in

node k for all k 2 F (s):

(A2) Between two arbitrary succeeding nodes s and k 2 F (s) funds can be borrowed at

a rate r2k.

(A3) There exists a consumption vector c� 2 C such that c� � 0; c� 6= 0.

(A4) �1 � gk � r1k (k = 1; : : : ; n).

The opportunities in (A1) and (A2) have to be upper bounded. These bounds are cho-

sen such that they never become active.

Finally, in Lemma 4 it is proved that �c � 0 for every ex-ante growth oriented consump-

tion vector �c if (A4) holds.

This establishes the following theorem.

Theorem 1: Given (A1) - (A4) an ex ante growth-oriented consumption vector �c � 0

exists.
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4. EX POST VALUATION

In the last section, the portfolio value Vs was de�ned as discounted consumption before

consumption in node s is realized. Alternatively, the portfolio value in node s can be

understood as discounted consumption after consumption in node s has been realized,

i.e.

Ws =
X

k2N(s)

pk
ps
ck =

X
k2F (s)

pk
ps
(ck +Wk): (3)

Two problems have to be considered.

First, by de�nition, Ws = 0 for every s 2 ST which may be inconsistent with the growth

requirements. To solve this problem cs will be substituted by cs+Ws (s2 ST ); where cs

is the amount that is actually consumed and Ws the the terminal portfolio value that

remains according to the growth requirements.

Second, c0 has to be �xed a priori because it is not included in W0. In what follows,

c0 � 0.

With these changes a consumption sequence �c will be called ex post growth-oriented if

(C1) and (C2) are satis�ed after substitution of V by W .

As an example let C = fc = (c0; c1) j x + c0 = 110; 1:1x � c1 = 0; x � 0g be the

feasible set underlying the ex ante valuation. For g1 = 0 the ex ante growth-oriented

consumption vector is �c = (10; 110) where V0 = V1 = 110.

In case of an ex post valuation C = fc1 j x = 110; 1:1x� c1 = W1; x � 0g. For g1 = 0

the ex post growth-oriented consumption vector is �c = (0; 11) where W0 = W1 = 110:
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The example illustrates the di�erence between the ex ante and the ex post valua-

tion. Using the ex ante valuation implies that the present value of the economic pro�t

(0:1�110
1:1

= 10) is consumed at t = 0. Using the ex post valuation implies that the eco-

nomic pro�t (0:1 � 110 = 11) is consumed at t = 1. The ex post valuation complies

with the usual procedure where pro�t is paid out only after it is realized. On the other

hand, the ex ante valuation may be appropriate if, for example, an investor wants to

determine the maximum amount that he presently can consume without being worse

o� in the future.

The existence of an ex post growth-oriented consumption vector can be proved similar

to the case of an ex ante valuation. A solution is found by determining some p 2 P

such that excess demand z(p) = cd(p) � csu(p) = 0 where csu(p) is an optimal solution

of (C1) after V is substituted by W and cd(p) is determined as follows.

ps=ps� (p > 0) can be written as

ps
ps�

=
�s

1 + r1s
=

�0s
1 + r01s

(4)

where

�0s :=
�sP

�2F (s�) ��
and 1 + r01s :=

1 + rsP
�2F (s�) ��

:

�0s are uniquely determined for every s 2 St; t = 1; : : : ; T , and can be understood as

(pseudo-) probability of node s after node s� has been realized.

Using (4), Ws can be written as

Ws =
X

�2F (s)

(W� + c� )��
1 + r1�

=
X

�2F (s)

(W� + c� )�
0
�

1 + r01�
; s 2 St; t = 1; : : : ; T � 1: (5)
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(5) is satis�ed if

Ws� =
Ws + cs
1 + r01s

: (6)

Combining (6) and the growth requirements Ws = (1 + gs)Ws� ; s 2 St; t = 1; : : : ; T ,

yields

cs = (r
0
1s � gs)Ws� = (r

0
1s � gs) ��2T (0;s�) (1 + g� ) W0 (7)

for s = 1; : : : ; n.

(7) is a condition for a consumption vector to be ex post growth-oriented. Therefore

such a consumption vector can be understood as a consumption vector cd(p) that is

demanded by p.

Similar to the proof of Theorem 1 in Lemma 5 the following theorem is proved in the

appendix.

Theorem 2: Given (A1) - (A4) an ex post growth oriented consumption sequence �c � 0

exists.

5. WEAKENING THE GROWTH REQUIREMENTS

The existence of an (ex ante or ex post) growth-oriented consumption sequence requires

the possibility of borrowing between arbitrary succeeding nodes. Clearly this assump-

tion is quite restrictive. Fortunately, it can be dropped if (C2) is weakened to
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(C2') Vs(�c; �p) � (1 + gs)Vs�(�c; �p); s = 1; : : : ; n:

To see how the case can be handled where (A2) does not hold assume T = 1; b =

(100; 10; 0)0; g1 = g2 = 0:1 and a riskless investment opportunity with a return of 10%.

Clearly, an ex ante growth-oriented consumption sequence does not exist. However,

changing g1 to 0:2 leads to the growth-oriented consumption sequence �c = (0; 120; 110)
0

where �c is supported by the price vector �p = (1; 0; 1:1�1) and V0(�c; �p) = 100. Note

that �p1 = 0. To understand this assume that there exists a lending opportunity between

nodes 0 and 1 at a rate r21. In this case an ex ante growth-oriented consumption sequence

with respect to g1 = g2 = 0:1 exists and is given by ĉ(r21) = (0; 110+
11

1+r21
; 110+ 11

1+r21
)

with the supporting price vector p̂(r) = (1; 1
1+r21

; 1
1:1

� 1
1+r21

) and an initial value

V0(ĉ; p̂) = 100 + 10
1+r21

. Letting r21 ! 1 and dropping the borrowing opportunity

results in �c and �p:

The following theorem generalizes the result to the multi period case.

Theorem 3: Given (A1), (A3) and (A4) an (ex ante or ex post) growth-oriented

consumption vector �c � 0 with respect to growth rates g0s � gs; s = 1; : : : ; n; exists.

Proof: Assume the ex post valuation. For p 2 P let csu be an optimal solution

of maxfW0(c; �p) = c0 +
P
s2N(0) cs�ps j c 2 C; cs � 0, s=2 STg where the bor-

rowing opportunities according to (A2) are dropped for the �rst T-1 periods and cd

satisfy (7) for g0s = r01s; s = 1; : : : ; n. Then analogue to the preceeding analysis a

�xed point p� of z(p) exists where z� (p
�) = 0 for � 2 St; t = 0; :::; T � 1: Because

�1+P�2F (s) (1+r1� )
p�
ps
= �1+P�2F (s) (1+r1� )

��
1+r1s

� 0 it follows that P
�2F (s)

�� � 1.
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Thus g0s = r
0
1s � r1s � gs for all � 2 F (s) : The result follows after letting r2s !1 for

all s 2 ST and dropping all borrowing opportunities in period T. A simular argumenta-

tion applies to the ex ante valuation.

APPENDIX

Lemma 1: Let P := fp j p0 = 1; pls � ps
ps�
(s 62 S0); 1 � 1

ps

P
k2F (s) pk(1 + r1k) � 0 (s 62

ST )g where 0 < r1k < r1k and pls > 0 are chosen such that P 6= ;. Then ' has a

�xed-point.

Proof: P is compact, non-void and convex where p > 0 for every p 2 P . csu(p̂) is

upper-semicontinuous and V0 = V0(c(p̂); p̂) (and consequently Vs for s = 1; : : : ; n) con-

tinuous (e.g., Luenberger, 1995, pp. 467). cd(p̂) is continuous. Therefore z(p̂) is upper-

semicontinuous. Because P is compact and non-void, p(z) is upper-semicontinuous

(Luenberger, 1995, p. 468). This implies that ' (as a combination of two upper-

semicontinuous mappings) is upper-semicontinuous. ' is convex, because the set of

optimal solutions of a convex optimization problem is convex. Therefore (applying

Kakutani`s �xed point theorem, Kakutani, 1948), a �xed point exists.

Lemma 2: z(p̂) = 0 for every �xed point p̂ of ' if the following conditions hold:

(B1) p 2 P; 1� 1
ps

P
k2F (s) pk(1 + r1k) = 0) zs(p) � 0 (s 62 ST ):

(B2) p 2 P; ps
ps�

= pls ) zs(p) � 0 (s 62 S0):
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Proof: Since p̂ is a �xed point of ', maxfPs zs(p̂)ps j p 2 Pg = P
s zs(p̂)p̂s: Fur-

thermore
Pn
s=0 cds(p̂s)p̂s =

Pn
s=0 Vsp̂s �

P
s 62ST

P
k2F (s) p̂k(1 + gk)Vs =

Pn
s=0 Vsp̂s �P

s 62ST
P
k2F (s) Vkp̂k = V0. Because

Pn
s=0 c

su
s (p̂s)p̂s = V0 this implies

Pn
s=0 zs(p̂)p̂s = 0:

The dual of maxfPn
s=0 zs(p̂)ps j p 2 Pg is min y0 subject to

X
k2F (0)

plkvk � w0 + y0 � z0(p̂) (8)

�vs +
X

k2F (s)
plkvk � ws + (1 + r1s)ws� � zs(p̂) (s 62 S0; ST ) (9)

�vs + (1 + r1s)ws� � zs(p̂) (s 2 ST ) (10)

vs � 0 (s 62 S0); ws � 0 (s 62 ST ); y0 2 IR:

Since p̂ > 0, (8), (9) and (10) hold as equalities for every optimal solution �vs (s 62

S0); �ws (s 62 ST ); �y0 where �y0 = 0. Therefore zs(p̂) < 0 implies �vs > 0 and/or �ws > 0.

By complementary slackness p̂s
p̂s�

= pls and/or
P
k2F (s) p̂k(1+r1k) = p̂s which contradicts

(B1) and (B2). Thus zs(p̂) � 0. Noting
P
s zs(p̂s)p̂s = 0 and p̂ > 0 completes the proof.

Lemma 3: (B1) and (B2) follow from (A1) and (A2).

Proof: Assume, that (A1) holds. Choose p̂ 2 P such that
P
k2F (0) p̂k(1 + r1k) = 1.

Then the net present value of investing one unit according to (A1) in t = 0 is

�1 +P
k2F (0) p̂k(1 + r1k) > �1 +

P
k2F (0) p̂k(1 + r1k) = 0: Value maximization therefore

requires to invest as much as possible. As a result c0(p̂) strictly decreases with the
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amount invested. On the other hand cd(p̂) = (1 � P
k2F (0) p̂k(1 + gk))V0 = 0. Thus

z0(p̂) > 0 if the investment is increased su�ciently. A similar argumentation applies to

all nodes s 2 S1 and subsequently to all nodes s 2 St; t = 2; : : : ; T � 1: This proves

(B1).

Now assume that (A2) holds. For k 2 F (0) choose plk such that plk < (1 + r2k)�1 and

p̂ 2 P such that p̂k
p̂0
= plk. Then the time zero value of borrowing one unit between nodes

s = 0 and k is 1 � p̂k(1 + r2k) = 1 � plk(1 + r2k) > 0: Therefore as much as possible

should be borrowed and ck(p̂) strictly decreases with the amount borrowed. On the

other hand cdk(p̂) = (1 � 1
p̂k

P
�2F (k) p̂� (1 + g� ))V0 � 0 since p̂ 2 P and V0 � 0 by (A3).

Thus zk(p̂) > 0 if the upper bound for borrowing is chosen su�ciently high. A similar

argumentation subsequently applies to the succeeding nodes. This proves (B2).

Lemma 4: Given (A1) - (A4). Then �c � 0 for every ex ante growth-oriented consump-

tion sequence �c.

Proof: Let �c and p satisfy (C1) and (C2). (A3) and (A4) imply Vs � 0 for s = 1; : : : ; n:

Inserting (4) into (2) yields cs = (1�
P
k2F (s)

pk
ps
(1+gk))Vs = cs = (1�

P
k2F (s)

�0k
1+r0

1k
(1+

gk))Vs: Furthermore�1+
P
k2F (s)

�k(1+r1k)
1+r1k

� 0 that is P
k2F (s)

�k � 1.Thus r01k � r1k � gk

for all k2 F (s) which implies cs � 0:

Proof of Theorem 2:

Under the ex post valuation cd(p) is given by (7). Lemma 1 remains valid. Lemma 2
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remains valid because

nX
s=0

cds (p̂s) p̂s = 0 =
nX
s=1

(r01s � gs)Ws p̂s +
X
s2ST

Ws� p̂s

=
nX
s=1

(1 + r01s)Ws�) p̂s �
nX
s=1

(1 + gs)Ws� p̂s +
X
s2ST

Wsp̂s

=
nX
s=1

(1 + r01s)
p̂s� �

0
s

1 + r01s
Ws� �

nX
s=1

Wsp̂s +
X
s2ST

Wsp̂s

=
nX
s=1

�0s p̂s� Ws� �
X

s 62S0;ST
Ws p̂s = W0

Lemma 3 remains valid because, using Ws� � 0 and r01s � gs; cds = (r01s � gs) Ws� � 0.
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