
 
Rafael Romeu1 

 

 
 

Abstract 
 
 

Market makers learn about asset values as they set intraday prices and absorb portfolio flows. 
Absorbing these flows causes inventory imbalances.  Previous work has argued that market 
makers change prices to manage incoming flows and offset inventory imbalances. This study 
argues that they have multiple instruments, or ways to manage inventory imbalances and learn 
about evolving asset values. Hence, they smooth inventory levels and update prior information 
about assets using multiple instruments. In ignoring other instruments, previous studies have 
ignored the information that these provide and overemphasize the role of price changes in 
inventory management. The model presented here provides new estimates of asymmetric 
information and inventory effects, the price impact of each instrument, and the cost of liquidity.  
Moreover, the period considered allows estimation of the impact of a Central Bank intervention 
on these costs. 
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I.   INTRODUCTION 

 
 The evidence supporting a tight relationship between a market’s absorption of 
portfolio flows and its assets’ returns is mounting.2 It implies that asset returns depend on 
how traders interact with each other and with end users. The question now is how long 
market trading affects asset returns. Assuming that asset fundamentals follow a random walk, 
there could be permanent effects if trading reveals new information. For example, traders 
aggregating portfolio flows may also aggregate information dispersed in the economy. 
Conversely, the market’s temporary indigestion from absorbing large portfolio shifts may 
imply transitory effects, as in microstructure inventory models. At the level of the individual 
trader, however, there is surprisingly little (if any) evidence supporting theoretically 
predicted inventory effects. This paper presents a new model of asset trading that shows 
evidence of both information and inventory effects at the individual trader level. The 
empirical results link portfolio flows to asset prices at the most micro level, and provide 
direct estimates of the cost of liquidity, asymmetric information, and inventory effects. The 
model suggests that previous studies have underestimated, if not missed or even rejected 
these effects. An example illustrates why. 
 

Consider a foreign exchange (FX) dealer who is trading U.S. dollar-euro and 
watching the price of the currency fluctuate throughout the day. Assume that the dealer is 
constrained with a finite inventory (or, equivalently, inventory costs). If random-walk asset 
values drive incoming trades, she must respond with an inventory-management strategy or 
exhaust her supply. Past models suggest that this dealer divert her price away from the 
equilibrium full-information value to induce trades that compensate for inventory 
imbalances. But changing prices to induce trades equates to intentionally selling low or 
buying high. What if there is another way? Specifically, in FX, she can call other dealers and 
unload her inventory imbalances on them. This allows the dealer another instrument for 
managing inventory and learning about asset values. In this example, the dealer’s instruments 
are to change prices to induce incoming trades (i.e., incoming order flow), or to call others 
and use outgoing trades (i.e., outgoing order flow).  

 
If multiple increasing-marginal-cost instruments are available for managing 

inventory, the dealer optimally spreads her inventory management across all of them. 
Furthermore, just as incoming order flow provides information about asset values, so do 
other instruments used for managing inventory, such as calling out to other dealers. The 
dealer may use this information to update her prior beliefs about asset values and adjust 
inventory levels. Hence, part of observed inventory and price changes may be correlated with 
innovations in information but be unrelated to either inventory carrying costs or incoming 
order flow. This paper models this phenomenon in the context of foreign exchange markets. 
In the model, the ability to make outgoing trades alters both how dealers control inventory 

                                                 
2 Examples in equity markets include Froot, O’Connell and Seasholes (2001), and Froot and Ramadorai 
(2001a). Examples in foreign exchange markets include Evans and Lyons (2002), Froot and Ramadorai 
(2001b),  and Rime (2001).  
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through price setting and how they learn about asset values. Ignoring outgoing orders leads to 
both neglecting the role of information learned from these orders and overemphasizing price 
changes in inventory management. This implies that previous microstructure models 
misspecify and bias estimates of information and inventory effects.  

 
Microstructure models study trading costs and payoffs reflected in asset returns that 

dividend discounting ignores. They point to two general microstructure-pricing effects. The 
first is the inventory effect, in which the specialist must manage a finite stock of the asset 
against a demand that responds to a random-walk fundamental value.3 In this situation, if the 
specialist passively fills orders, the probability of a stock out is unity. Hence, inventory 
models argue that the specialist changes her price away from the expected asset value to 
induce trades that unwind undesired positions. The second effect is the asymmetric 
information effect,4 where the specialist faces a market where some agents have more 
information about the asset’s equilibrium value. Here she will recognize that the incoming 
order flow reflects this information and will change her price accordingly.  

 
Empirical studies have found evidence of asymmetric information in equity markets;5 

however tests for inventory effects are unsuccessful. For example, Madhavan and Smidt 
(1991) and Hasbrouck and Sofianos (1993) do not find inventory effects. Madhavan and 
Smidt (1993) only find evidence of unexpectedly long-lived effects by modeling inventory 
mean reversion with shifts in the desired inventory level. Manaster and Mann (1996) actually 
find robust effects opposite to theoretical predictions. Lyons (1995) extends microstructure 
models to foreign exchange markets and does find inventory effects; however, Romeu (2001) 
revisits the Lyons (1995) data and finds evidence of model misspecification, and specifically 
that inventory and information effects are not simultaneously present in subsamples. Other 
studies of foreign exchange markets also fail to find inventory effects.6 Clearly, the evidence 
supporting inventory effects is at best a mixed bag.  

 
To investigate inventory effects, the model in this study uses the over-the-counter 

institutional structure of FX markets. At its heart is the idea that dealers exploit every 
alternative when rebalancing portfolios, rather than relying on only price-induced order flow 
to change their portfolio composition. As dealers face increasing marginal losses for inducing 
flows, they turn to other methods of unloading unwanted positions. The decentralized nature 

                                                 
3 For example, Stoll (1978), Amihud and Mendelson (1980), Ho and Stoll (1981, 1983), O’Hara and Oldfield 
(1986) among others. 

4 For example, Kyle (1985), Glosten and Milgrom (1985), Admati and Pfleiderer (1988), Easley and O’Hara 
(1987, 1992), among others. 

5 For example, Hasbrouck (1991 a, b), Hasbrouck (1988), Madhavan and Smidt (1991, 1993), among others. 

6 Yao (1998) and Bjonnes and Rime (2000) find no evidence of inventory effects. The former suggests that it is 
due to dealers’ aversion to revealing their position (or private information) through inventory-induced bid 
shading, whereas the latter suggest that the introduction of electronic brokering is the cause. The model here 
suggests that misspecification is the cause. 
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of the foreign exchange market offers a clear opportunity to observe this phenomenon. The 
conclusions suggest that previous models are misspecified because they neglect alternatives 
to controlling inventory through price-induced flows. The model presented here shows why 
previous models are misspecified and fail empirically. 

 
Previous studies address the decentralized nature of FX markets both at the dealer 

level, and at the general equilibrium level. At the dealer level, the approach is to extend 
Madhavan and Smidt (1991) – for example, see Lyons (1995). The model presented here 
suggests that the basic dealer-pricing behavior postulated in those studies is not optimal. 
Mello (1995) also conjectures that a dealer may have multiple instruments and non-linear 
pricing behavior, as presented here. At the general-equilibrium level, models such as Lyons 
(1997) favor modeling dealer pricing with multiple instruments. That study argues that high 
FX volume might be due to dealers passing on inventory imbalances.  

 
Finally, the principle behind this paper is not limited to foreign exchange trading. All 

market makers have an incentive to minimize guaranteed losses from inducing trades via 
price changes. That alternatives exist in FX is clear; however, in other markets alternatives 
exist as well. For example, Madhavan and Sofianos (1997) find that New York Stock 
Exchange (NYSE) specialists engage in selectively trading to balance inventory. Previous 
equity market studies possibly overemphasize the role of prices in inventory management 
and miss other inventory effects. In addition, if previous models account perfectly for 
inventory costs, they still overlook price changes resulting from new information that 
alternative instruments yield. Accounting for both these effects presents more complex 
behavior, where the market maker is using multiple instruments to both manage inventory 
and update priors. 

 
Empirical tests support the model and offer several novel results. For example, 

asymmetric information effects driving price changes are twice as large as previously 
estimated; one can graphically compare prices with the new information signals that the 
dealer sees. Inventory pressure is less present in price changes than was previously estimated. 
After controlling for inventory and information effects, the base bid-ask spread is wider than 
previously estimated. When setting prices, the dealer plans to trade out less than one-quarter 
of the difference between her current and the optimal inventory positions. The cost of 
inducing a standard ($10 million) incoming trade is about 1.5 pips (a pip is the smallest price 
increment in a currency7) or $1,000. The cost of executing an outgoing trade of the same size 
is 9 to 10 times higher. The dealer’s observed incoming trades are, however, 9 to 10 times 
greater than outgoing trades, both in number and in daily volume. Hence, outgoing orders 
trade at a premium, which is consistent with other studies of dealer behavior. 

  
A Fed intervention increases the aymmetric information impact of incoming trades on 

price changes but decreases that of outgoing trades. An intervention lowers the cost by 50 
percent of inducing an incoming trade and by 5 percent of executing an outgoing trade. It 
also lowers inventory costs and tightens the spread. The intervention temporarily moves 
                                                 
7 The value depends on the currency pair. The data used here are dollar/deutsche mark, so a pip is DM 0.0001. 
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prices about 6.7 pips per $100 million (Fed purchases of $300 million move prices about 20 
pips), which supports other studies.8 By comparison, a 20-pip move in our dealer’s price 
induces a purchase of $122 million. 

 
Finally, the model addresses the broader relation between portfolio flows and asset 

prices. It suggests that with multiple instruments, market participants share intraday 
inventory more efficiently. That is, dealers exhaust the gains from sharing a large inventory 
position more quickly and with less price impact in this model. As a result, the transitory 
effects of inventory imbalances are present, albeit less important in determining intraday 
price changes than estimated previously. Furthermore, multiple instruments facilitate a more 
efficient aggregation of the dispersed information embedded in order flow. This information 
translates into permanent price movements. Hence, while both transitory and permanent 
effects are present in the data, the evidence favors a permanent impact of portfolio flows on 
prices. 

 
The paper is organized as follows. Section II describes the theoretical framework and 

the model solution, which is detailed in the Appendix I. Section III shows empirical 
estimates, tests of the model, and discusses intervention effects. Section IV concludes. 
Estimation details are in Appendix II.  

 
II.   AN INTRADAY FOREIGN EXCHANGE PRICING MODEL 

 
 This section extends the Madhavan and Smidt (1993) framework in which an 
uninformed market maker with inventory carrying costs sets prices in a market with informed 
agents. Optimally, the market maker extracts information from arriving order flow, and sets 
prices to induce inventory-balancing trades. A real FX dealer only sets prices when she 
passively receives an order (i.e., another dealer initiates the trade). 9 These prices are the 
focus of this study.  Besides setting prices, however, she can initiate interdealer bilateral, 
brokered, or IMM Futures trades, as well as receive information from these, the financial 
press, news and advisory services, the sales and floor managers, and other sources.  At no 
time does she set interdealer prices under any of these alternatives; however, they may 
indirectly affect her price setting.  It is intractable to model all these alternatives explicitly, 
and the data available (inventory levels, incoming orders, and their corresponding prices) 
would limit empirical tests of any such model.  These limitations withstanding, the dealer 
modeled here has two instruments for balancing inventory: inducing order flow through price 
changes, and initiating outgoing trades with others at their prices.  She also has two 
instruments for updating priors: information reflected in incoming quantities, and 
information reflected in unplanned (at the time of price-setting) outgoing quantities.   
 
                                                 
8 Evans & Lyons (1999) estimate 5 pips and Dominguez and Frankel (1993) estimate 8 pips per $100 million. 

9 An extensive description of the Foreign Exchange (FX) market’s institutional make-up can be found in Lyons 
(2001). FX is traded bilaterally, over–the–counter, and privately, via computer emailing systems called Reuters 
Dealing. There are also electronic brokers similar to bulletin boards, provided by Reuters or EBS. Most large 
trades are done via the Reuters Dealing system.  
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The following sections formalize this modeling approach.  Subsection A.   describes the 
model setting: the market, inventory, capital, and information variables. Subsection B.   
shows the optimal updating using multiple informative signals. Subsection C.   shows the 
optimal inventory management, and the model solution. Subsection D.   shows the model 
nesting previous work, and their misspecifications. Proofs are in the appendix.  
 

A.   The Market 
 

Consider an economy where a dealer holds a portfolio of three assets. She only makes 
markets in the first, a risky asset with a full information value denoted by vt, which evolves 
as a random walk. Write this value as: 
 2

1 , ~ (0, )t t t vv v Nθ θ σ−= + . (1) 

The second is an exogenously endowed risky asset that is correlated with the first, 
and generates income yt. The third is capital, the risk-free zero-return numeraire, denoted by 
Kt. The distribution of the two risky assets is:10 

    
2

1
2,

0
t v vyt

t vy y

v v
N

y
σ σ
σ σ

−
⎛ ⎞⎡ ⎤⎛ ⎞ ⎛ ⎞

≡ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠ ⎣ ⎦⎝ ⎠
. (2) 

The dealer’s total wealth is: 
 t t t t tW v I K y= + + , (3) 
With It being the dealer’s inventory or risky asset position.  

 
The market is open for 1,2,...,t T=  periods. The terminal date T  is unknown, 

however, at the beginning every period t T=  with probability (1 )ρ− . Hence, every period 
the probability that the market closes is (1 )ρ− , at which time the dealer liquidates her 
position and pays a inventory carrying cost.11 With probability ρ , t T≠ , so the dealer 
engages in trading activities, pays the inventory carrying cost, and goes on to the next period.  

 
Figure 1 (page 18) depicts the timing of the model. The total change in the dealer’s 

inventory from one event to the next occurs in two stages. In the first stage, the dealer faces 
an incoming order (denoted by qjt) and knows her inventory (denoted by It). Part of qjt comes 
from informed traders who know the full information value ( tv ). The informed part of qjt, 
denoted by Qt, is driven by differences between the dealer’s price, denoted pt, and the asset 
value vt: 
 ( ), 0.t t tQ v pδ δ= − >  (4) 
The rest of the incoming order is an uninformed or liquidity component, denoted by Xt: 
 ( )20,t XX N σ≡ . (5) 

                                                 
10 Note that this is a one-period-ahead conditional distribution, as the unconditional distribution would have a 
time-varying variance. 

11 The inventory carrying cost, shown below, follows Madhavan and Smidt (1993).  It is a cost proportional to 
the variance of the dealer’s wealth. 
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One can think of the uninformed as quantities demanded by parties not monitoring the 
markets or constrained to trade independent of price, for reasons not modeled here. The 
dealer only observes the aggregate order, (qjt), and sets the price. Hence, the incoming order 
flow is: 
 ( )jt t t t t tq Q X v p Xδ= + = − + . (6) 
  
 At the time of setting prices, the dealer knows that later she can call others and trade 
an outgoing quantity (denoted out

tq ). This is depicted in upper box of Figure 1. out
tq  indicates 

the dealer’s desired outgoing quantity in expectation, and conditional on information 
available at the time of price setting. Because the dealer has out

tq  available, she does not 
control inventory solely through price induced order flow. In this sense, out

tq  captures the 
planned amount the dealer prefers to trade out rather than hold (and pay the inventory 
carrying cost), or dispense via price-induced incoming trades.  
 
 While our dealer is trading out

tq , however, there will be exogenous quantity shocks to 
her inventory, as shown in Figure 1. The source of these shocks can be unplanned trading 
with clients of our dealer’s bank (her employer), other bank dealers, brokered trading, the 
trading floor manager, and so on. These shocks perturb the dealer’s inventory position 
beyond the planned quantity, out

tq . Denote these disturbances as tγ . Accordingly, the total 
quantity 1 1( )out

t tq γ− −+  will be the inventory change apart from the incoming trade (qjt-1) from t-
1 to t. Hence, last event’s inventory (It-1), adjusted for the last incoming trade (qjt-1), as well 
as the total realized outgoing quantity 1 1( )out

t tq γ− −+ , yields next event’s inventory (It). 
 

An example illustrates the trading process.  Suppose our dealer begins the day with 
inventory at zero.  The interdealer computer communicates that a dealer wants to sell her 1 
unit.  Here, t=1, I1=0, qj1=-1.  Suppose our dealer optimally sets the price to 5 (p1=5), and 
plans to buy 2 units from other dealers when trade 1 is through ( 1

outq =2).  In the data we do 
not see our dealer’s trading until someone initiates another trade with her over the interdealer 
computer.  At the next incoming trade (t=2), suppose that I2=6, and qj2=-1.  Considering the 
last trade’s inventory, incoming and planned outgoing quantities, I2 should be three.  It is six, 
which implies that 1γ  was 3.  That is, the dealer planned to aggressively buy 2 after she 
passively buys 1 from the incoming trade. Her inventory should be three, but it is six, which 
implies that the unplanned inventory shock was 3.     
  
 Assume further that new information and events occurring in the clock time between 
events t-1 and t are driving the quantity shocks 1( )tγ − ; hence, assume a linear function 
(denoted ()κ ) such that:12 
 
                                                 
12 The general form of (7) is chosen for ease of exposition; the conclusions are robust to different functional 
forms.  



 - 7 -  

 2
1 0 1 1( ) , ~ (0, )t t t t t N εκ γ α α γ θ ε ε σ− −≡ + = + . (7) 

 
In equation (7), the unexpected inventory shock (noisily) signals innovations in the 

asset value that occur while the dealer executes outgoing trades. 1tγ −  is informative because 
after the dealer chooses her outgoing quantity ( 1

out
tq − ), she should trade this quantity and 

nothing else; that is, the choice made at t-1 is optimal until new information (at the next 
incoming order, qjt) arrives. The only reason our dealer would deviate from the optimal 
outgoing quantity ( 1

out
tq − ) between t-1 and t is that new information is revealed. Hence, the 

evolution of tv  can be inferred from 1tγ − . If this is the case, then the total outgoing quantity 
will reflect the desired quantity ( 1

out
tq −  ) plus the quantity driven by new information ( 1tγ − ). 

1tγ −  captures that information in the dealer’s decision process beyond strictly what is derived 
from incoming order flow, while keeping the analysis tractable.13  

 
In summary, the identity that describes the evolution of inventory is:  

 ( )1 1 1 1 1 1
out

t t t t t t tI I v p X qδ γ− − − − − −≡ − − − + +  (8) 
In contrast, at the time of setting prices, the dealer’s expectation of next period’s inventory is: 
 
 1[ | ]j out

t t t jt tE I I q q+ Ω = − + . (9) 
 
Our dealer manages inventory because she pays a cost every period that is 

proportional to the variance of her portfolio wealth, which includes the cash value of the 
inventory. One can motivated this cost, for example, by risk aversion or marginally 
increasing borrowing costs. Assume that the dealer incurs a capital charge due to the γ  
shocks. That is, any gains (losses) entering into the dealer’s wealth due to γ are subtracted 
(added) from (to) the dealer’s capital, Kt at a cost vt.14 In the previous example, the dealer 
would pay inventory costs on 1

outq , and a capital charge on 1γ  at the end of the trade. 
Incorporating this charge, at trade t the dealer’s wealth position is given by:  
 ( ) ( )1 1 1 1[ | ] [ | ]t t t t t t t t t tW v E I E K v yγ γ− − − −= Φ + + Φ − + . (10) 

 
This assumption implies that the dealer only pays the inventory carrying cost on the 

expected wealth, and the inventory carrying cost due to quantity shocks is canceled by the 

                                                 
13 Although they include multiple informative signals, incoming order flow is the only source of private 
information in Madhavan and Smidt (1991) or Lyons (1995).  

14 This assumption simply eases the exposition of the problem at hand, and keeps it in a discrete time 
framework. As discussed below, γ  has a time-varying variance. This complicates calculating the variance of 
the portfolio – this would involve moving the entire model to a continuous time framework. Because of the 
discrete-time arrival process of incoming calls, this would make for a cumbersome solution with very little 
added payoff in relation to the problem of how dealers set prices on incoming orders. It would not, however, 
change the model’s conclusions regarding price setting with multiple instruments.  
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capital charge. The appendix shows that the inventory cost is a function of the deviations 
from the optimal hedge ratio of the risky assets, given by dI .  This hedge ratio optimally 
smooths the dealer’s wealth, and enters the inventory cost as:  

 ( )22
0 1

d
t W tc I Iω σ ω φ φ⎡ ⎤⎡ ⎤= = + −⎣ ⎦ ⎢ ⎥⎣ ⎦

. (11) 

 
B.   The Information Structure 

 
What is of interest is how the dealer sets prices, which occurs only in the event of an 

incoming trade. The incoming trade is, in part, based on the equilibrium asset value, vt. The 
dealer wishes to learn this value, and she will estimate the full information value of the asset 
based on her trading history and any publicly available information. The appendix shows the 
solution to the dealer’s learning problem modeled as a rational expectations consistent 
Kalman filter.15 This section outlines the two sources of information available for learning vt 
and updating prior beliefs in this model. Denote the dealer’s expectation of the full 
information value of the risky asset as:  
 [ ]|t t tE v µΦ = . (12) 

 
The dealer has two ways of updating 1tµ −  and learning about the full information 

value of the asset tv . The first is the incoming trade, qjt. From this incoming quantity the 
dealer extracts a signal of the asset value, tv . Denote this signal by st. The second source of 
information about tv  is the information learned while executing the outgoing trade, which is 
reflected in a function of the inventory shock, 1( )tκ γ − . While both 1( )tκ γ −  and st are used to 
update 1tµ − , assumed that the variance of 1( )tκ γ −  is increasing in the real time (i.e., clock 
time) elapsed between incoming trades. That is, assume that 2var( )t ws σ=  and 

2
1var( ( ))t wκ γ σ τ− = ∆ , with τ∆  being the clock time elapsed between events t-1 and t. As the 

appendix shows, this gives an updating as a function of: 
 ( ) ( )1

1 11 1( )t t t tsτ
τ τµ µ κ γ∆

+∆ +∆− −− = + . (13) 
In equation (13), as elapsed inter-transaction time gets larger ( τ∆ →∞ ) the dealer 

places the majority of the weight on the incoming order’s information, ts . The longer the 
time in between trades, the less relevant is the information from that time in relation to the 
incoming trade’s information. Intuitively, (13) says that the moment the dealer is setting pt, 

ts  has just arrived because it is based on the incoming order itself (qjt). The quantity shock 
signal ( 1( )tκ γ − ) also serves to signal the new innovation, but it arrives between t-1 and t, and 
hence it is not assumed to have the same precision as ts . Instead it is assumed that 1( )tκ γ − ’s 

                                                 
15 Alternatively, one could use a Bayesian updating model, such as Lyons (1995), Madhavan and Smidt (1991), 
Yao (1998) and others. These use total incoming orders (rather than the unexpected component) as signals.  
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precision decreases (i.e., variance increases) as the clock-time elapsed from event 1t −  to t 
increases. As more time has passed in between trades, 1( )tκ γ −  has more noise.16  

Finally, the appendix shows that the estimate of the full-information asset value, tµ , 
generates an unbiased estimate of the liquidity trade, Xt.  We denote this statistic as 

[ | ]t t tE X xΩ = . 
  

 
C.   The Dealer’s Optimization  

 
Here the problem is set up as a stochastic dynamic programming problem; ~ denote 

random variables, and the solution is in the appendix. The dealer solves: 
 ( )[ ]{ }1 1 1 1

,
max( , , , ) 1 ( , , , )

out
t t

t t t t t t t t t t t t t
p q

J I x K E v I K y c J I x Kµ ρ ρ µ+ + + += − + + − + , (14) 

subject to the following evolution constraints: 
Inventory: ( )1 | i out

t t t t t t tE I I p x qδ µ+⎡ ⎤Φ = − − − +⎣ ⎦ , (15) 

Noise Trading: 1 | 0i
t tE x +⎡ ⎤Φ =⎣ ⎦ , (16) 

Information: 1 | i
t t tE µ µ+⎡ ⎤Φ =⎣ ⎦ , (17) 

Capital: ( )1 | (i out out
t t t t t t t t t t t tE K K p p p x q q cδ µ µ α+⎡ ⎤Φ = + − + − + ) −⎣ ⎦ , (18) 

 
Equations (11), and (14) through (18) comprise the optimization problem. (15) 

constrains inventory evolution. (16) constrains liquidity trades to be zero in expectation. (17) 
constrains the asset to a random walk. (18) constrains the capital evolution, and specifies that 
when the dealer trades out

tq , she expects to pay a price centered on the full-information value, 
and with a price impact ( out

t tqµ α+ ) . α captures the price impact of a marginal increase in her 
outgoing quantity. Hence the dealer, while not a monopolist in the interdealer market, does 
face a downward sloping demand curve in her trades. Assuming that the dealer faces α when 
trading out is similar to assuming that there is marginal declining revenue from selling to an 
informed agent (recall that revenue from the sale is ( )p pδ µ − ). Modeling outside prices 
explicitly requires a general equilibrium framework that normally mutes dealer level pricing 
effects.17 The appendix shows the model solution to be: 
 ( ) ( )1 ( )

(1 ) 2 (1 )
dp I I xδ β δδα

δα δ δαµ β + +
+ +⎡ ⎤= + − +⎣ ⎦ ; (19) 

                                                 
16 One might argue that as 0,τ∆ →  the dealer has less time to carry out planned transactions, but she can 
always elect to not answer the incoming calls until the part of planned transactions she wants done are satisfied. 
Furthermore, the increasing frequency of incoming calls and shortening of inter-transaction time would itself be 
a source of new information for the dealer, as suggested by Easley and O’Hara (1992). 

17 For example, the Evans and Lyons (2002) assumes that dealers submit bids simultaneously and transparently, 
which in equilibrium implies that prices be based on common information only. This paper avoids such 
restrictions because the focus is on interdealer price dynamics, but this comes at the expense of the general 
equilibrium insights.  



 - 10 -  

 ( )1
1

( ) ( )out dA
Aq I I p xα δ µ− ⎡ ⎤= − − + − +⎣ ⎦ ; (20) 

 ( )( )1
2' ( )dI I I I xβ
αβ += + − + , (21) 

 1
1 1 1 1 , 1 2 1

(1 )(1 )( ) (1 ) ( )
2

out
t t t j t t t

Ap s A q q xδ β αψ η β γ ψ η κ γ
αδ− − − −

+ +⎛ ⎞∆ = + + + − + − + ∆⎜ ⎟
⎝ ⎠

 (22) 

 
Equation (19) shows the price of the dealer as a function of the estimated asset value, 

( tµ ), the deviation from optimal inventory, ( d
tI I− ), and the liquidity shocks (xt). In (20) the 

outgoing quantity shows that as the price impact of outgoing trades goes to zero, i.e., 0α → , 
outgoing trades fully adjusts inventories to the optimal level (in the appendix, A1<0 is 
shown). In this case, the price will depend only on the estimate of v and the liquidity demand. 
In equation (22), st is the information from incoming order flow (qjt) and the elapsed time is 
measured by 1

τ
τη ∆

+∆= . This equation shows that the increment in dealer price contains 
information-driven components from both the current incoming order ( tsη ) , and the 
previous inventory shock ( 1(1 ) ( )tη κ γ −− ). The 1 , 1( )out

t j tq qγ− −+ −  term captures component of 
the price change attributable to inventory pressure. Finally, the dealer changes her price due 
to the noise-trading component ( tx∆ ).  

 
Intuitively, the dealer would like to maintain inventory at the optimal level, but as a 

market maker she must accept incoming orders that constantly disturb her inventory position. 
As orders arrive ( , , 1,j t j tq q − ) she tries to restore balance to her inventory with 1

out
tq −  and price 

changes. Adjusting back to the optimal level Id via 1
out
tq −  implies absorbing the costs from the 

outgoing order’s price impact (α ). Adjusting inventories via price induced orders implies 
absorbing the certain loss to the informed traders, via ( )t tpδ µ − . The coefficients in (22) 
reflect the balance between these competing losses. Furthermore, the price is centered on the 
best guess of vt, which is derived from two information sources, st and 1( )tκ γ − . The 
respective coefficients reflect the information extraction, which involves weighing these 
signals by the time elapsed between events.  

 
D.   A Comparison with Existing Models 

 
This section shows how the model presented nests the previous dealer-level 

frameworks. Restricting the model to no outgoing trades, and consequently no inventory 
shocks, the solution would be (23). This is the Madhavan and Smidt (1993) pricing behavior 
for an equity market specialist;  
 1 2( ) 0d out

t t t t t tp s I I x q t Tζ ζ γ∆ = + − + ⇔ ≡ ≡ ∀ ≤ . (23) 
 
 This model suggests, however, that these restrictions may shut down other avenues of 
inventory management available to specialists. That is, as NYSE specialists face increasing 
marginal costs to inventory management through price changes, they optimally spread these 
costs across different avenues available. For example, Madhavan and Sofianos (1997) find 
evidence supporting this. Hence, restrictions that yield (23) would lead to biased estimates of 
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inventory effects since they overemphasize the role of changing prices to manage inventory. 
Romeu (2001), Bjonnes and Rime (2000), Yao (1998), Lyons (1995) and Madhavan and 
Smidt (1991) postulate that prices are set according to:  
 
 ( )d

t t t tp I I Dµ= + − + . (24) 
 
Equation (24) yields the price change as: 
 
 0 1 2 1 , 1 1 1 3 1 4 5 1( )out

t jt t j t t t t t tp q I q q I D Dβ β β γ β β β− − − − − −∆ = + + − + + + + +  (25) 
 
With the data used here, Romeu (2001) shows that estimates of (25) are misspecified. 

Breaks present in the data coincide with systematic differences in the length of inter-
transaction time ( τ∆ ). The changes in inter-transaction times are exogenous and imply 
changes in the precision of the informative variables ( ,jt tq γ ). To see why these would cause 
breaks, rewrite (25) consistent with this paper’s data generation process, and note the omitted 
term in brackets weighed by (1 tη− ) below: 

 
0 1 2 1 1 1 3 2 1 5 4 1 1( ) ( ) (1 )[ ( ) ]out

t jt jt t t t t t t jt
extraneous term omitted term

p q q q I x qϕ ϕ ϕ γ ϕ ϕ ϕ η ϕ κ γ ϕ− − − − −∆ = + + − + + + − + ∆ + − −  

 
With ( )3 2 0ϕ ϕ− = , so that the true process would place zero weight on lagged 

inventory. When inter-transaction times are long ( τ∆ → ∞  and ( )1 1τ
τ η∆

+∆ ≡ → ), this omitted 
term should be irrelevant. At such times, one should expect the incoming order flow 
coefficient ( 1ϕ ) to be significant. At such times, 1var( ( ))tκ γ − → ∞ , hence 1tγ −  will be mostly 
noise, and uncorrelated to price changes. This would in turn make 2ϕ  less correlated with 

p∆  since there is no term picking up the information role for 1tγ −  other than the inventory 
term. In addition, since there is no role for It-1 in the equation, it is uncorrelated with the price 
change, and as 2 0ϕ → , this would make ( )3 2ϕ ϕ− tend to zero. Hence, one would not expect 
to see inventory effects at these times. When inter-transaction times are short ( 0,τ∆ →  and 

0η → ), one would see the coefficient on qjt become insignificant, whereas the coefficients 
on the inventory terms would be significant.  
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III.   DATA AND EMPIRICAL TESTS 

 
 This section empirically tests the model. The first subsection discusses the data; the 
second subsection estimates and tests the model (details are in the appendix). The third 
subsection shows the impact of an intervention on the estimates, and on δ (the cost of 
inducing order flow) and α  (the cost of placing outgoing orders). 
 

A.   Data Considerations 
 
  The data set used to test the model consists of one week of a New York based foreign 
exchange dealer’s prices, incoming order flow, inventory levels, and transaction clock 
times.18 Hence, pt, qjt, It, and τ∆ (and η ) come directly from the recordings of a Reuters 
Dealing 2000-1 computer trading system. Out of the 843 transactions, the four overnight 
price changes are discarded, since the model at hand deals exclusively with intraday pricing.  

 
The fundamental question that this model seeks to resolve is how dealers set prices, 

and hence, of interest is the price change equation (22). Its estimation requires knowledge of 
the unobservable outgoing orders, out

tq , and inventory shocks, 1,t tγ γ− . These are 
unobservable because out

tq represents the dealer’s commitment to make an outgoing trade at 
the moment of price setting only. It is at this moment that she commits irreversibly to a price 
who’s optimality depends on being able to trade out

tq ; one of the messages of this model is 
that the price would be different if out

tq  were not available. Actual outgoing quantities may be 
different from the planned out

tq  due to unanticipated information, frictions, or differences in 
the trading venues utilized to execute the outgoing trade. Although they cannot be observed, 
the model solution provides equations which allow estimation of out

tq  and 1,t tγ γ− .  
 
The model solution also suggests that price changes depend on updating priors using 

two sources of information: the unexpected part of the incoming order flow ( ts ), and the 
unexpected outgoing order flow ( 1tγ − ). Other models typically employ incoming order flow 
as a source of information; however, the use of 1tγ −  as a source of information is new. To get 
a feel for this variable, Figure 2 (page 19) superimposes cumulative daily unexpected order 
flow on the price, and Figure 3 does the same for cumulative daily inventory shocks (i.e., 
cumulative daily 1tγ − ). 

 
The vertical lines represent the end of each day of the five-day sample (Monday 

through Friday). The correlation of two signals with price seems to vary. For example, on 
Monday and Wednesday, incoming order flow appears to be a more precise signal of price 

                                                 
18 The data are for the dollar/DM market from August 3–7, 1992. See Lyons (1995) for an extensive exposition 
of this data set. 
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than inventory shocks, whereas on Friday the opposite seems to be true. In the model, 
elapsed clock-time affects the relative precision between these signals. Table 1 (page 20) 
reports the daily correlations and average intertransaction clock-time. Although these are 
cumulative signals, Friday gives an example of short intertransaciton clock-time, and higher 
correlation in the (cumulative) inventory shocks than (cumulative) order flow shocks. 

  
B.   Estimation 

 
Table 2 (page 20) lays out the three optimality conditions of the model and their 

estimable forms. The first is the optimal inventory evolution, which is directly estimated and 
yields the optimal inventory level. The second equation partitions the non-incoming 
inventory change into the optimal outgoing order, out

tq , and the inventory shock, tγ . The 
final equation then estimates the change in price as the sum of the three components in the 
model. The first reflects information effects from incoming order flow. The second reflects 
inventory accumulation pressure on the price. The third reflects information from the 
inventory shock. Two direction-of-trade dummy variables are included to capture the fixed 
costs such as order processing costs, and pick up the base spread for quantities close to zero. 
These variables equal one if the incoming order is a purchase (i.e., the caller buys), and 
negative one if the incoming order is a sale (i.e., the caller sells).  

 
 The elapsed time in between transactions is measured to the minute, and estimates are 
robust to monotonic transformations of η . The estimate of the unobservable inventory shock 
proved to be problematic. Its inclusion opens the door to multicollinearity and is possibly 
correlated with the residual. As a result, it is instrumented out using its own lags. The 
unexpected incoming order flow ( ts∗ ) is calculated as the residual of a VAR.19  

 
2

1

ˆ;jt jt k t t t
k

q q sε ε∗
−

=

= + =∑ . (26) 

 
The final price change regression is estimated using non-linear least squares. The 

results are robust to changing initial parameter values. Table 3 (page 21) shows the 
estimations of the model, as well as estimates of the data using the Lyons (1995) 
specification.20  

 
The estimations indicate that the model fits the data fairly well. The asymmetric 

information components (c1 and c3) are significant and much larger than previous estimates 
given by 1β  (105 multiply all coefficients). The estimates indicate that the dealer widens her 
spread by between roughly 3.5 and 9 pips per $10 million of unexpected incoming order flow 
or inventory shocks (double c1 and c3). This indicates a more intense asymmetric information 
                                                 
19 As in Hasbrouck (1991) and Madhavan and Smidt (1993). See appendix for estimation details on the 
generated regressors and instrumentation of the inventory shocks. 

20 However, Romeu (2001) finds evidence of model misspecification present in the estimates from Lyons 
(1995) that used here as a basis for comparison. 
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effect; not only are they higher than previous models suggest, but there are two sources of 
information pushing price changes.21 In comparing information from incoming trades versus 
inventory shocks, price is more sensitive to the latter. This may result from outgoing trades 
providing a more heterogeneous and richer information component due to the variety of 
sources (end users, IMM Futures, etc.). Another reason may be that in practice incoming 
trades are larger or more frequent, so that the same unit increase will push prices less than a 
unit increase in inventory shocks. It may also result from this dealer’s focus on providing 
liquidity for incoming trades, rather than aggressively trading out.22  

 
In addition, the coefficient on inventory management b2 is significant and tends to be 

similar in size to the previous models’ 2β ; however, since previous models have two 
inventory terms, the total inventory effect is:  

2 3

2 3 1 2 1 1 1 1 3 1 2 1 1 1 2 3 1
0 0; | |

( ) ( ) ( )out out
t t t jt t t t jt t t tI I I q q I q q I

β β
β β β γ β β γ β β− − − − − − − − − −

< < >
+ ≡ − + + + ≡ − + + + + .      (27) 

Hence, the inventory impact on price of 2β  is augmented by 2 3 1( ) tIβ β −+ . Our dealer alters 
her price less in response to inventory accumulation than the total inventory driven change in 
previous models.  
  
 These differences in the estimates are due to the market maker’s use of multiple 
increasing–marginal–cost instruments to manage inventory and learn new information. 
Consider the inventory overweighting of previous models. Estimations that ignore multiple 
instruments will overweigh the inventory component because price changes have such an 
important role in inventory management. The model presented here suggests that price is but 
one of multiple instruments used to control inventory costs. As a result, inventory 
accumulation is not as important in explaining price changes. Consider now why previous 
work underestimates the information component. Even if pure inventory pressures were 
perfectly explained by previous models, there is a component of inventory change driven by 
new information. Inventory theory cannot explain this information-driven inventory 
component. This component is one of multiple signals that, according to the model, vary in 
precision depending on elapsed clock-time. This suggests that incoming order flow can be 
relatively less informative at different times, and should be weighed accordingly. Previous 
estimations assign all information-driven price changes to the (at times, noisy) incoming 
order flow, and mute its true informative impact.  
  
 Finally, c4 measures the effective spread for qjt close to zero. It suggests that after 
having controlled for information and inventory effects, the baseline spread is roughly 2.5-
2.8 pips (twice c4 times 10-5). Note that these estimates are remarkably close to the median 
interdealer spread observed in the FX market of 3 pips.  

                                                 
21 A caveat here is that the model measures unexpected incoming order flow as an information signal, which is 
not directly comparable to previous estimates that use the entire order. In addition, the estimates are subject to 
measurement errors, however, the lower bound estimate is higher than the Lyons (1995) estimate. 

22 Lyons (1996) describes this dealer as a “liquidity machine.” As noted in section III.   C.   below, outgoing 
orders are observed about one-ninth as often as incoming orders are received. 



 - 15 -  

  
 The left panel of Table 4 (page 21) shows the estimate for the optimal outgoing 
quantity, out

tq . The estimate suggests that at every event the dealer plans to trade out less than 
one fourth of the difference between the current and optimal inventory, (It -Id). The right 
panel shows estimates of the inventory evolution, and the optimal inventory level, Id, which 
is about two million dollars long.  

 
The results withstand various robustness tests. First, no evidence of the presence or 

location of (possibly multiple) structural breaks is found.23 These tests are robust to possible 
heterogeneity and autocorrelation in the residuals. In addition, the estimated linear 
regressions use Huber/White robust standard errors. Estimation with various monotonic 
transformations of η  produces no significant change in the results. The adjusted R2 indicates 
a good fit for the data. Finally, the appendix details the estimation of several linear 
approximations to the non-linear equation and various tests performed as further evidence of 
robustness.  

 
C.   Fed Intervention and the Cost of Liquidity 

 
The last five percent of recorded trades occurred while the Fed intervened to support 

the dollar. In Figure 2 (page 19), the sharp appreciation on the last day reflects the market 
reaction to the intervention. It perhaps succeeded in slowing the slide of the dollar, but was 
unsuccessful in sustaining a reversal. The market closed down on the day, and down from its 
high after the start of intervention. It involved multiple dollar purchases totaling $300 million 
after the close of European markets. The exact start time is unknown; however, from the 
financial press three suspected times are shown in the first column of Table 7 (page 23).24 
There are too few observations to meaningfully estimate the intervention in isolation. Instead, 
this section compares estimates of the model and the liquidity costs with and without the 
intervention period (i.e., 95 percent of the sample, versus 100 percent). Non-linear Wald tests 
fail to reject equality between the two sets of estimates, which is foreseeable given nearly 
identical underlying samples. 

 
Table 3 (page 20) shows the impact of the intervention on the estimated parameters. 

The intervention increases the asymmetric information effect of incoming order flow (c1) by 
over 50 percent. Surprisingly, the estimate for inventory shocks (c3) declines, although by 
just 5 percent. This asymmetry may be idiosyncratic to this dealer; she is a major liquidity 
provider in the market, and consummates many more incoming trades. Turning to inventory 
effects (c2), these become less negative as the Fed dollar buys dollars and injects liquidity. 

                                                 
23 Sup{F} tests based on Andrews (1993)/Bai Perron (1998). 

24 Quoting the Wall Street Journal, August 10, 1992: “The Federal Reserve Bank of New York moved to 
support the U.S. currency... as the dollar traded at 1.4720.” This is the most precise documentation available of 
the intervention start, and that price corresponds to 12:32 pm. Other times are selected because of reports of a 
mid-day start (hence, 12:02 pm), and at 12:26 pm the price jumps 36 pips, suggesting a possible intervention 
start at that point. 
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This is also consistent with the tightening of the spread (c4). From Table 4, the desired 
inventory, Id, declines by 14 percent, indicating perhaps that the dealer (presciently) bets 
against an appreciation due to the intervention. Finally, the dealer increases the planned 
outgoing trade by 1 percent at every event. 

 
The model estimates allow one to recover the respective costs of liquidity for trading 

out or inducing incoming trades (show in the appendix). That is, estimates of δ (from 
( )pδ µ − ) and α  (from ( )out outq qµ α+ ) are recovered from the estimated parameters in 

Table 5 (page 22). The cost of inducing a $10 million order (based on δ ) is presented and 
converted to pips, dollars, and as a percent of $10 million. It costs our dealer 1.63 pips (about 
$1,100 or just over one basis point of the order size) before the intervention, and 1.36 pips 
(about $900 or less than one basis point) with the intervention. The cost of a $1 million 
outgoing trade (α ) is significantly higher. It costs 1.48 pips without the intervention and 
1.42 pips including it. So, without the intervention, it is about nine times more expensive to 
trade $1 million out than to induce $1 million. During the intervention, it is over ten times 
more expensive! This cost disparity is stunning, but Table 6 lends support to this result and 
insight as to why.  

 
Table 6 (page 20) shows the observed number of outgoing and incoming trades by the 

dealer. Incoming trades outnumber outgoing trades 8.5 to 1. The table also gives the average 
and median sizes of incoming trades ( jtq ) and outgoing trades ( out

tq ). Incoming trades are 
slightly larger than outgoing trades, both in mean and median. These, and the fact that 
incoming trades are far more in number, imply incoming trades handle about nine to ten 
times the daily volume of dollars that outgoing trades do. This accords well with the 
estimated costs of the respective instruments. It suggests that the dealer primarily handles 
incoming trades, but occasionally uses outgoing trades, perhaps because of a need to trade 
with end users, some other segment of the market, or some special convenience outgoing 
trades provide.  

 
Table 7 (page 23) compares the price impact of the Fed’s $300 million intervention 

with the price impact faced by our dealer. From the start of the intervention (12:32 pm) to the 
highest price, the dollar appreciated 20 pips, but it then closed 9 pips below the start. 
Columns (2) and (3) show that this implies -3 and 6.67 pips per $100 million of intervention 
from the start to the closing and high price, respectively. Columns (4) and (5) show that if 
our dealer moves her price -9 (3 times -3) or 20 (3 times 6.67) pips, she could sell $55 
million or buy $122 million, respectively. For a given price impact, the Fed’s purchases more 
dollars than the dealer does, since these purchases are realized against a falling market.25 
These estimates are similar to those in previous work.  

                                                 
25 Estimates are presented for other suspected intervention start times. Because these times imply a much larger 
price movement, they also imply a much more effective intervention. This, however, is not consistent with 
previous estimates of intervention price impact (pips per $100 million), the financial press reports of the 
intervention’s ineffectiveness, or the fact that in subsequent days, further interventions were executed in support 
of the dollar. These withstanding, they are presented for comparison purposes. 
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IV.   CONCLUSIONS 

 
The model presented incorporates the realistic options available to market makers for 

absorbing portfolio flows. Past models say that making markets entails moving prices away 
from the full information value to induce trades that compensate inventory imbalances. But 
this equates to intentionally selling low or buying high to avoid paying inventory costs. This 
paper suggests that there is a better way.  

 
One clear example is that in FX, the dealer has the ability to call others in the market 

and unload her unwanted inventory on them. Of course this is not to suggest that outgoing 
orders are a panacea for inventory problems, so these are modeled with price impact (i.e., 
increasing marginal costs). However, at the margin, she will equate the loss of trading 
unwanted inventory to incoming calls with the marginal price impact (i.e., the loss of trading 
unwanted inventory in outgoing calls) and with the marginal loss of the inventory imbalance 
(i.e., the marginal inventory carrying cost). 

 
In addition, these outgoing calls do not occur in a vacuum. As long as events transpire 

during the outgoing call period, the dealer will learn through trading at those times and 
update her beliefs. These updates bring about price changes that neither inventory costs nor 
incoming order flow can explain. And FX dealers are just one example of market makers 
who smooth costs over multiple instruments. This paper argues that one should consider 
where dealers or specialists might be substituting away from conventional inventory costs 
when modeling price setting. Price-induced order flow is one of a multiplicity of informative 
instruments available to market makers.  

 
The estimations support the proposed model and provide several novel empirical 

results. Generally, these indicate that previous studies overemphasize the role of price 
changes in inventory management, since no other instruments are considered. This omission 
biases downward the role of information in price changes, can make inventory effects appear 
insignificant, and tightens the bid-ask spread. At the time of price setting, planned outgoing 
trades are less than one-quarter of the difference between current and optimal inventory 
positions. The cost of inducing a $10 million trade is about 1.5 pips, or $1,000. Outgoing 
trades are observed roughly one-tenth less frequently than incoming trades, and are estimated 
to be ten times more expensive. A Fed intervention increases the informativeness of order 
flow, and lowers the cost of liquidity for the dealer. It also lowers inventory costs and 
tightens the spread.  

 
Finally, the model addresses the broader relation between portfolio flows and asset 

prices. The presence of inventory effects suggests that part of observed price changes is 
transitory. However, with multiple instruments, dealers exhaust the gains from sharing a 
large inventory position with less price impact. As a result, the transitory component of price 
changes is less important than the information components from the multiple instruments. 
Hence, while both transitory and permanent effects are present in the data, the model favors a 
permanent impact of portfolio flows on prices. 



 - 18 -  

Figure 1. The Timing of the Model 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The figure above describes the timing of the model. At every event: 

1. if t≠T, the dealer knows her current inventory (denoted It), and a new incoming trade (one source of 
information for updating priors) occurs. The incoming quantity is qjt.  

2. The dealer decides her price (denoted by Pt) and plans her outgoing trade (denoted by out
tq ). These are 

the alternate methods available for offsetting inventory disturbances caused by the incoming trade.  
3. Between events, the dealer executes the planned outgoing trade ( out

tq ), and faces a quantity shock, 

(denoted by tγ ). This is another source of information for updating priors. 

4. In addition, the dealer observes time elapsed between trades (denoted by τ∆ ).  
5. At the next event (t+1), the dealer uses the new incoming trade qjt+1 as well as the quantity shock 

between trades and the time elapsed between trades to update priors on the evolution of the asset value, 
and set prices.  

 

Event t≠T; 
Incoming order: qjt 
Known: 1, , 1t tI γ τ− ∆ −  

Choose: , out
t tP q  

 

Event t+1≠T; 
Incoming order: qjt+1 
Known: 1, ,t tI γ τ+ ∆  

Choose: 1 1, out
t tP q+ +  

 

Between Events t & t+1; 
Trade: out

tq  at price ( )out
t tqµ α+  

Shock: tγ  

Elapsed clock-time: τ∆  

Event time 
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Figure 2. Daily Cumulative Incoming Unexpected Order Flow versus Price 
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Price Unexpected Order Flow  
 Figure 2 superimposes price on cumulative incoming unexpected order flow, August 3-7, 1992.  

Figure 3. Daily Cumulative Inventory Shocks versus Price 
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Price Inventory Shocks  
  Figure 3 superimposes price on cumulative inventory shocks, August 3-7, 1992.  
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Table 1. Daily Correlation of Order Flow Variables with Price 
Order Flow Unexpected Inventory Mean Elapsed

Order Flow Shocks Time*
Monday 0.83 0.83 -0.54 1.77
Tuesday 0.69 0.71 0.58 1.86
Wednesday 0.53 0.48 0.03 2.44
Thursday 0.82 0.81 0.66 2.01
Friday -0.03 -0.02 0.71 1.31  
Table 1 shows the daily correlation between price and the order flow variable used to update 
priors. The first column shows incoming unexpected order flow and the second inventory 
shocks correlations for each day, August 3-7, 1992. The last column shows daily mean 
elapsed intertransaction time. 
* Reporting errors imply mean absolute value transaction time. 

 

Table 2. Model Solutions and Estimable Equations 
 

Model Solution 
 

 
Empirical Implementation 

 
Parameters Recovered 
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Liquidity Cost Parameters  
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Table 2 compares the algebraic solution to the model (in the first column) with the estimable equations these 
imply (in the second column). The final column shows the parameters recovered for economic interpretation. 
Row (1) shows inventory evolution, row (2) shows outgoing quantity, and row (3) shows price changes. The 
bottom shows how the structural parameters measuring the cost of liquidity are recovered from the estimates.  
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Table 3. Price Change Equation 

0 1 2 1 1 , 1 3 1 4 5 1 3,ˆ( ) (1 )out
t t t t j t t t t tp c c s c q q c c D c Dη γ η γ ε∗

− − − − −∆ = + + + − + − + + +  

Full -1.98 2.51 -0.98 4.33 12.45 -9.06 0.21
0.39 0.00 0.00 0.02 0.00 0.00

No Fed -4.38 1.73 -1.12 4.58 14.15 -9.98 0.29
0.03 0.02 0.00 0.00 0.00 0.00

0c 2.Adj R1c 2c 3c 4c 5c

 
 

Previous Estimates 

0 1 2 3 1 4 5 1 (1)t jt t t t tp q I I D D maβ β β β β β− −∆ = + + + + + +  

Estimate -1.30 1.44 -0.98 0.79 10.15 -8.93 0.21
0.99 0.00 0.00 0.00 0.00 0.00

0β 2.Adj R1β 2β 3β 4β 5β

 
Table 3 compares the non-linear regression estimates of the model presented here with estimates of 
inventory and asymmetric information effects in these data using previous models. The upper panel 
shows two sets of estimated parameters (with p-values in italics). The row labeled Full includes a $300 
million Fed intervention in the last 5 percent of the sample, August 7, 1992. The row labeled No Fed 
excludes this intervention. The bottom panel reproduces the previous estimation of Lyons (1995).  All 
estimates multiplied by 105. 

 

Table 4. Model Estimates 

 ( ) 2,
ˆ( ) ( )out d

t t t jt tq b I I qγ ε+ = − − + +  1 0 1 1,t t tI a a I ε+ = + +  

Full 0.243 0.23 0.214 0.900 0.81 2.14
0.00 0.37 0.00

No Fed 0.239 0.23 0.240 0.904 0.81 2.50
0.00 0.37 0.00

b 2.Adj R 0a 1a 2.A d j R I∗

 
Table 4 shows the linear regression estimates from the auxiliary regressions in rows (1) and (2) of 
Table 2, August 3-7, 1992. P-values obtained using Huber/White robust standard errors are in italics 
below point estimates. In the left panel, the estimate b̂  represents the proportion of the undesired 
inventory that the dealer trades out. In the right panel, *I  indicates the desired inventory position. 
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Table 5. Cost of Liquidity 

Incoming Liquidity: ( ) ;jt t t tq v p Xδ= − +  Outgoing Liquidity: ( )out out
t tq qµ α+ ; 

       

Sample Pips Dollars Percent

Full 73408.72 1.36 $923.03 0.0092% 1.43 10.5

No Fed 61279.39 1.63 $1,105.73 0.0111% 1.48 9.1

Incoming Cost of $10 M Cost 
Ratioαδ

 
Table 5 shows the structural parameter values recovered from the coefficient estimates. δ  measures the 
change in the incoming order from changing the price (in millions of dollars). The Incoming Cost of $10 
M columns measure the cost of attracting a $10 million order (standard size) in: pips (DM0.0001), US 
dollars, and dollar cost as a percent of the $10 million order. α  measures the price impact of 
augmenting the outgoing order by $1 million in pips. The final column measures the ratio of costs of 
dealing $1million through outgoing order flow (numerator) versus incoming order flow (denominator).   
 

 
 
 
 
 
 
 
 
 

Table 6. Incoming versus Outgoing Order Flow 

Trades Median Average Median Average
Incoming 170 2.50 3.80 8.6 9.9
Outgoing 20 2.48 3.26

Daily Avg. 
No.

Size (Abs. Val.) Daily Volume Ratio

 
Table 6 shows the observed trades that the dealer made, August 3–7, 1992. Incoming refers to 
trades that the dealer made when contacted by others. Outgoing refers to trades that initiated 
by contacting others. Size is the absolute value of the order size; the median and average are 
given. Daily volume ratio gives the ratio of the average incoming daily volume (average or 
median size times average number of trades) to the average outgoing volume. These do not 
include brokered trade, for which the initiator of the trade is unknown.  
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Table 7. Cost of Intervention 

(1) (2) (3) (4) (5)

To Closing To High To Closing To High
(Intervention Start)

* 12:32 PM -3.00 6.67 -$55.13 $122.51
-(9.0) (20.0)

(Other Studies)
Evans & Lyons (1999) 5
Dominguez & Frankel (1993) 8

(Other possible start times)
12:02 PM 19.33 29.00 $355.27 $532.90

(58.0) (87.0)

12:26 PM 15.33 25.00 $281.76 $459.40
(46.0) (75.0)

Fed moves this many pips per $100 M 
($300 M)

Orders induced for an intervention-
equivalent price change

 
Table 7 shows cost comparisons for the $300 million Fed intervention on August 7, 1992. The exact start time 
and sequence of the intervention is unknown. Column (1) lists three possible times. Columns (2) and (3) show 
the price change in pips (DM 0.0001) that a $100 million Fed purchase induces from the start of the intervention 
to the closing price (2), or high price (3). Columns (4) & (5) show how many millions of dollars the dealer 
could induce by changing her price the number of pips as the $300 million intervention price change.  
* Wall Street Journal, August 10, 1992: “The Federal Reserve Bank of New York moved to support the U.S. 
currency... as the dollar traded at 1.4720.” This is the most precise documentation available of the intervention 
start, and that price corresponds to 12:32 pm. Other times selected because of reports of a mid-day start, and 
because between 12:26 and 12:32 pm, the price jumped 36 pips, suggesting a possible intervention start there.  
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APPENDIXES  
 

I. MODEL SOLUTION 
 

Inventory Carrying Cost 

From equations (2) and (3) the variance of the dealer’s portfolio is 
 2 2 2 2 2

tW V t y t vyI Iσ σ σ σ= + + . (28) 

Add and subtract 
2

2
vy

v

σ
σ

⎛ ⎞
⎜ ⎟
⎝ ⎠

into (11) to get: 

 
2 2 2 2

2 2 2 2 2
2 2 2 22vy vy vy vy

t y V t t vy y v t
v v v v

c I I I
σ σ σ σ

ω σ σ σ ω σ σ
σ σ σ σ

⎡ ⎤⎡ ⎤ ⎛ ⎞ −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟⎢ ⎥= − + + + = − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎝ ⎠⎣ ⎦
(29) 

Which is the right-hand-side of (11) with coefficients: 

 
2

2 2
1 02 2

vy vyd
v y

v v

I
σ σ

φ σ φ σ
σ σ
−⎛ ⎞ ⎛ ⎞

= = = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. (30) 

 
Dealer’s Beliefs 

Given market demand qjt, the dealer creates a statistic based on the intercept of the demand 
curve, which is independent of her price. Denote this statistic as Dt. 
 ( )t jt t t t t t t tD q p v p X p v Xδ δ δ δ= + = − + + = + . (31) 
From the signal of market demand Dt the dealer forms two statistics. The first is an 
innovation in the full information value of the risky asset, which shall be denoted as st. The 
second is a signal of the liquidity demand, which is denoted as (lower case) xt, and will 
depend on the estimate of full information value, tµ . 

 1 ; [ ]tX
t t t t tw D v E w vδδ −= = + =  (32) 

 [ ],t t t t tx D E x Xδµ= − = . (33) 
Consistent with rational expectations, assume that the dealer’s previous estimate, 1tµ −  is the 
steady state distribution over the true asset value vt, and that the variance of tµ is proportional 
to the variance of wt . Hence, one can write 2 2

wµσ σ= Ω . Given the variance of wt, form a 
signal to noise ratio given by: 

 
2

2 2 2
2 ,v

w x
w

withσ σ δ σ
σ

−ϒ = = . (34) 

The dealer uses the recursive updating of a Kalman filter to form the expectations over vt. 
This implies that she updates the prior belief 1tµ −  using the current order flow wt. The 
resulting posterior, tµ , converges to a steady-state distribution whose time varying mean is 
an unbiased estimate of the true value of vt. The recursive equations to generate this estimate 
are given by: 
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2 4

2
−ϒ + ϒ + ϒ

Ω = , (35) 

Hence, if the dealer had only information based on the incoming order, she would use the 
following estimate, which is denoted as Z

tµ , as the estimate of tv :  
 ( ) 11Z

t t twµ µ −= Ω + −Ω . (36) 

Note, however, that the dealer also receives information for updating 1tµ −  through a linear 
function of the inventory shock which is denoted by 1( )κ γ − . Given 1( )κ γ − , an unbiased 
estimate of tv is given by: 
 1 1 1 1 1[ ( )] (1 ) ( )t t t t t t

γµ µ κ γ µ µ κ γ− − − − −= Ω + + −Ω = +Ω , (37) 
where the same Kalman filter algorithm as defined above is used. Hence there are two signals 
of tv  at the time of setting the price. Given the assumption, the variance of t

γµ  is a linear 
function of the variance of Z

tµ . That is, 
 2 2var( ) , var( ) *Z

t Z t Z
γµ σ µ σ τ= = ∆ , (38) 

where τ∆ is the elapsed clock time between incoming order (t-1) and t. The optimal signal 
for the dealer is then:  
 1 1 1(1 ) [ (1 ) ] (1 )[ ( )]Z

t t t t t t twγµ ηµ η µ η µ η µ κ γ− − −= + − = Ω + −Ω + − +Ω . (39) 
 
with ( )1

τ
τη ∆

+∆= . Now grouping and rearranging:  

 1
1 1 1 1 1( ) (1 ) ( ) ( ) (1 ) ( )t t t t t t t tw Dµ µ η µ η κ γ η δ µ η κ γ−
− − − − −− = Ω − + − Ω = Ω − + − Ω  (40) 

Since ,t
t t t

Xw D vδ
δ

−1= = +
 

 1
1 1 1( ( ) ) (1 ) ( )t t jt t t tq pµ µ η δ δ µ η κ γ−
− − −− = Ω + − + − Ω  (41) 

Add and subtract δµ  to get: 
 1

1 1 1[ ( ) ( )] (1 ) ( )t t jt t t t t tq pµ µ η δ δ µ δ µ µ η κ γ−
− − −− = Ω − − + − + − Ω  (42) 

Solving for 1( )t tµ µ −−  yields, 
 1

1 1( )[1 ] [ ( )] (1 ) ( )t t jt t t tq pµ µ η η δ δ µ η κ γ−
− −− −Ω = Ω − − + − Ω  (43) 

Which gives the final relationship for the updating: 
 1 1 2 1( ) ( )t t tsµ µ ξ ξ κ γ− −− = + , (44) 
Where ( )t jt t ts q pδ µ= − −  is the unexpected order flow, and  

 1 2
1 2

(1 )& 0; & 0
(1 ) (1 )

ξ ξη ηξ ξ
δ η η δ η η

∂ ∂Ω − Ω
= > = <

−Ω ∂ −Ω ∂
. (45) 

 
Hence, 1ξ  and 2ξ  are inversely related with respect to η , and as intertransaction time is 
longer, more weight is placed on the unexpected incoming order flow signal st. Here, 

1( )tκ γ − is assumed to be some simple linear function: 1 0 1 1( )t tκ γ ω ω γ− −= + , where 0ω may be 
assumed zero if desired.  
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The Dealer’s Problem 

The dealer’s problem is reproduced here: 
( )[ ]{ }1 1 1 1

,
max( , , , ) 1 ( , , , )

out
t t

t t t t t t t t t t t t
p q

J I x K E v I K c J I x Kµ ρ ρ µ+ + + += − + − + , (46) 

subject to the following evolution constraints: 
 ( )1 | i out

t t t t t t tE I I p x qδ µ+⎡ ⎤Φ = − − − +⎣ ⎦ , (47) 

 1 | 0i
t tE x +⎡ ⎤Φ =⎣ ⎦ , (48) 

 1 | i
t t tE µ µ+⎡ ⎤Φ =⎣ ⎦ , (49) 

 ( )1 | (i out out
t t t t t t t t t t t tE K K p p p x q q cδ µ µ α+⎡ ⎤Φ = + − + − + ) −⎣ ⎦ , (50) 

For expositional simplicity, in what follows the expectation operators on the evolution 
equations and the time subscripts are dropped, and a forward lag is denoted by a 
‘superscript.’ The first order conditions are given by: 
 [ ] [ ]: ( ', ', ', ') ( 2 ) ( ', ', ', ') 0I Kp E J I x K p x E J I x Kδ µ δµ δ µ+ − + = , (51) 
 [ ] [ ]: ( ', ', ', ') ( 2 ) ( ', ', ', ') 0out out

I Kq E J I x K q E J I x Kµ µ α µ− + = . (52) 
Substituting (52) into (51), and assuming for now that [ ]( ', ', ', ') 0KE J I x Kµ ≠  (I confirm 
this later), price is: 

 
2

outxp qµ α
δ

= + + . (53) 

Denote from here on the value function without its arguments for notational simplicity, 
maintaining the convention that ( )J ′  is the forward lag of ()J . Furthermore, in what follows 
a subscript denotes the derivative of the function with respect to that argument. The envelope 
conditions for this problem are: 
 [ ]1() (1 ) [ (')] 2 ( ) (1 ) [ (')]d

I I KJ E J I I E Jρ µ ρ ωφ ρ ρ= − + − − − + ; (54) 

 ( )() [ (')] [ (')]x I KJ E J pE Jρ= − − ; (55) 

 () (1 ) [ (')] [ (')] ( ) [ (')]out
I KJ I E J E J p q E Jµ µρ δρ ρ ρ δ= − − + + − ; (56) 

 () (1 ) [ (')]K KJ E Jρ ρ= − + ; (57) 
Based on the envelope conditions, it is conjectured that the value function takes on the 
functional form: 
 2 2

0 1 2 3( , , , ) ( ) ( )d dJ I x K A I K A I I A x I I A xµ µ= + + + − + − + . (58) 
Using the conjecture, and the evolution equations, taking the derivatives with respect to I and 
K updating:  
 1 2 1[ (')] [ ' 2 ( ' ) '] 2 ( ' )d d

IE J E A I I A x A I Iµ µ= + − + = + − . (59) 
 [ (')] [1] 1KE J E= = . (60) 
Plugging (59) and (60) into (52) yields the optimal outgoing quantity: 

 1 ( ' )d outA I I q
α

− = . (61) 

Substituting (61) into (53) for outq  yields the pricing equation: 
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 1( ' )
2

d xp A I Iµ
δ

= + − + . (62) 

Taking the evolution equation for inventory, (47), one can substitute (62) in for p and solve 
for 'I  to get: 
 ( )( )1

2' ( )dI I I I xβ
αβ += + − + , (63) 

with  

 1
1

1

(1 )
(1 ) (1 )(1 )

A A
A

δα βαβ
α δα β δα
⎛ ⎞ ⎛ ⎞+

= ⇔ =⎜ ⎟ ⎜ ⎟− + + +⎝ ⎠⎝ ⎠
. (64) 

Given the inventory evolution of (63), one can solve for the optimal pricing policy function: 

 1
1

(1 )(1 )( )
2

d Ap A I I xδ β αµ β
αδ
+ +⎛ ⎞= + + − + ⎜ ⎟

⎝ ⎠
. (65) 

Taking first differences of (65), and substituting in:  

 1
1 1 1 1 1

(1 )(1 ) (1 )( )
2

out Ap A Z A q xδ β αµ β β γ
αδ− − −
+ +⎛ ⎞∆ = ∆ − + + + + + ∆⎜ ⎟

⎝ ⎠
. (66) 

Substituting the relationship for the updating of the tµ  given by (44) yields: 

 1
1 1 1 1 , 1 2 1

(1 )(1 )( ) (1 )
2

out
t t t t j t t

Ap s A q q xδ β αψ η β γ ψ η γ
αδ

∗
− − − −

+ +⎛ ⎞∆ = + + + − + − + ∆⎜ ⎟
⎝ ⎠

 (67) 

Next the conjectured functional form of (58) is confirmed. Begin by taking the envelope 
condition for x, (55), and solve for coefficients A2 and A3 of the conjectured functional 
form’s derivative, which is: 
 2 32xJ A x A ε= +  (68) 
Substituting the optimal policy functions into (55), as well as the updated derivatives of the 
conjectured functional form which are given by (59) and (60) yields: 

1( (1 ) )
42 1 3(1 ), AA A A ρ β δ α
δαρ β − + += − + = . Continuing, the envelope condition on I in (58) can 

be solved with the conjectured functional form’s derivative, which is given in (59). This 
yields ( )1

1 (1 )1A ωφ
ρ β

−
− +⎡ ⎤= ⎣ ⎦ . An economically sensible solution requires A1<0, hence, using the 

definition for A1, it is required that: 

 (1 )(1 ) 0
1 (1 )

ωφ β δαβ
ρ β
+ +

+ =
− +

. (69) 

This implies ( 1,0)β ∈ − . As 1β → − , the right-hand-side of (69) goes to negative one. As 
0β → , the right-hand-side of (69) is positive. Hence, since (69) is a continuous function, by 

the Mean Value Theorem ( )1,0β∃ ∈ − ∴ (69) holds. 
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II. FURTHER ESTIMATION DETAILS 
Derivation of Liquidity Cost Parameters 

( )( )
( ) ( )( )

( )( ) ( )( )

1 1

1 1

2

1

2 2 2

1 1 1

1

1 1

2 1

1 1

2

1

(1 )
1 2 1 (1 )

ˆ1
ˆ ˆ 1

ˆˆ ˆ ˆ ( 1)1
ˆ ˆˆ ˆ ˆ

(1 )1
1 ˆ(1 )

ˆˆ ( 1) (1 )1
ˆˆ 1ˆ

ˆˆ ( 1)
ˆˆ

ˆˆ ˆ1 ; ; (1 );

:

( ),

ˆ.

:
ˆ 1 ,

ˆ (1 ),

A A
A A

c
ab

c c c b
a ab a b

A
A a

c b A
a a b

c b
a

a b c A

A

a

A

δα
α α δα

α δαα
α δα α

α δα
α

β β β

α

α

α

δ

β

α α δα

+
− − +

−

− +
− +

− − +

−

= + = = + =

= −

− = =

= + = ⇔ =

= = − +

( ) ( )( ) ( )( ) ( )

( )
( )
( )( ) ( )
( )

2 2

1 11 1

2 1
2
1

1

2 1

2 1 1 1
2 21 1

1 1

1 2

1

ˆ ˆˆ ˆ( 1) ( 1)1 1
ˆ ˆˆ ˆ 1ˆ ˆ

ˆˆ ˆ( 1)( 1)
ˆ 1ˆ

ˆ 1
ˆ

ˆ ˆˆ ˆ ˆ ˆ( 1)( 1) ( 1)( 1)
ˆ ˆˆˆ ˆ

ˆ ˆˆ ˆ( 1)( 1) 1
ˆ ˆˆ ˆ ( 1)

ˆˆ

1 (1 ) ,

(1 ),

,

(1 ),

1 , ,

c b c b
a ab a b a b

c b a
a b

a
c A

c b a a b a
ca b a b

b a a b
a b c b

a b

A

A

α

α α δα

δα

δα

δα

− −

− −

− − − −

− −

−

− = − = − − +

= +

=

= = +

− = =

( )( ) ( )1 1 1

2 1 2

ˆ ˆ ˆˆ ˆ ˆ( 1)( 1) 1
ˆ ˆ ˆˆ ˆ ˆ( 1) ( 1)

;b a a b b a
c b a b c b

δ− − − − −

− −
= =

 

Linear Approximations to the Model 

The following linear approximations to the model were also estimated. The parameter 
estimates obtained were used to initialize the non-linear least squares, as were zeros. Sup-F 
tests for multiple structural breaks were also run on these equations and were generally not 
found. The estimates were consistent with those found here and are available from the author 
upon request. Below, Zt represents the observed incoming order, qjt. 

1.      0 1 2 1 1 3 1 4 5 1ˆ ˆ(1 ) ( ) ( )out
t t t t t t t tp s q Z D Dβ β η β β η γ β β ε− − − −∆ = + − + − + + + +  

2.      0 1 2 1 1 3 1 4 5 1ˆ ˆ(1 ) ( ) ( )out
t t t t t t t tp Z q Z D Dβ β η β β η γ β β ε− − − −∆ = + − + − + + + +  

3.      0 1 2 1 3 1 4 5 1(1 ) ( )t t t t t t tp s Z D Dβ β η β β η γ β β ε− − −∆ = + − + + + + +  

4.      0 1 2 1 3 1 4 5 1(1 ) ( )t t t t t t tp Z Z D Dβ β η β β η γ β β ε− − −∆ = + − + + + + +  

5.      0 1 2 1 1 3 1 4 5 1

0 1 2 1 1 3 2 3 1 4 5 1

ˆ ˆ1 : (1 ) ( )

ˆ ˆˆ ˆ2 : (1 ) ( ) )(

out

t t t t t t t t

out

t t t t t t t t

stage p s q Z D D

stage p s q Z D D

β β η β β ηγ β β ε

β β η β β β β η γ β β ε

− − − −

− − − −

′ ′ ′ ′ ′ ′∆ = + − + − + + + +

′ ′∆ = + − − + + + + ++
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Instrumental Variable Selection 
It is difficult to find a good instrument for γ  since it is a financial market shock. The 
instruments chosen were a lead and a lag. Using only a lag, or only a lead, lowers the 
correlation of the instrument with the variable.  

( )(1) ( 1)t tL Lγ γ= + − . 
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