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     Abstract 

 
In this paper, we focus on the measurement of the measurement of the capital charges of a bank 
against expected and unexpected losses affecting the bank loan portfolio. In particular, we depart 
from the standard one factor model representation of portfolio credit risk, since we consider an 
hetrogeneous portfolio, and we account for  stochastic dependent recoveries. We estimate and 
identify the common (systemic) shock by fitting a Dynamic Factor model to a large number of 
macro credit drivers. In particular, we, first, consider the case of a systemic shock, interpreted as 
the state of the business cycle. Then, we disentangle the common shock in demand and supply 
innovations and we examine their impact on the bank capital requirements. The scenarios are 
obtained by employing Montecarlo stochastic simulation.  
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Introduction 
 

The proposed new Bank of International Settlement accord (known as Basel 2) provides for greater 

sensitivity of capital requirements to the credit risk inherent in bank loan portfolios.  In light of the 

Basel 2 accord to reform the regulation of bank capital, there has been an extensive research on 

credit risk. The latter can be considered as a dominant component of risk for banks. The risk of an 

individual bank can be measured as the dispersion of future losses to its own portfolio driven by the 

obligors default. However, the focus of risk measurement is not on the standard deviation of the 

portfolio loss, but, given an highly asymmetric portfolio loss distribution, the emphasis is on the 

measurement of the Value at Risk (VaR). This is the minimum loss that a portfolio of credit 

exposures could suffer one out of one thousand years (if we choose the 99.9% percent rule and a 

year as the forecast horizon).  

 

A crucial input of a portfolio credit risk model, PCR, is the appropriate characterisation of default 

correlations to obtain the bank loan portfolio distribution with the relevant percentile (e.g. the 

minimum capital requirement). Recent research suggests that the probability over upgrading, 

downgrading the credit quality of a borrower, vary with the business cycle. These are, for instance, 

the empirical findings, based upon transition matrices calculated using external ratings from 

Moody’s and Standard and Poor’s, of Nickell et al. (2000). Similar findings are in Bangia et al. 

(2000) who concentrate on the ratings of corporate borrowers and in Haldane et al.  (2001) who 

focus on sovereign borrowers. Furthermore, the study of Jordan et al. (2002) and of Cateraineu-

Rabell (2002), use transition matrices computed according to either Moody’s data or to KMW style 

ratings. Their findings suggest swings, across the business cycle, in the minimum capital 

requirements (for a portfolio of 339 loans in a shared national credit program in the United States, 

the former study, and for a selection of banks in G10 countries, the latter study).  Other studies, 

based upon time series data on internal ratings suggests similar conclusions. In particular, the study 

of Carling et al. (2001), find a substantial fall substantial improvement in the internal ratings ver the 

1994-2000 period, and consequently, a fall in the capital charge of a large Swedish bank. This was 

found to be associated with the gradual improvement of the Swedish economy after the financial 

problems of the early 1990s. Segoviano and Lowe (2002), having access to time series data on the 

ratings assigned by a number of Mexican banks to business borrowers, find large swings in required 

capital. Finally, the study of Carpenter et al. (2001) conclude that in the Untied States there is very 

little cyclical impact on capital charges; on the other hand, Ervin and Wilde (2001) find large 

swings in the minimum capital requirements.  
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Also, the role of uncertain recoveries is important for the determination of Credit Risk VaR. The 

empirical study of Hu and Perraudin (2002) shows a negative correlation between probability of 

default and recovery rate. This finding can, for instance, be explained by observing that both default 

and recovery are found to depend on the state of the macro-economy (see the work by Gupton et al.,  

2000 and by Frye, 2000b). 

 

In line with the aforementioned empirical findings, portfolio credit risk models account for the 

influence of the state of the business cycle on credit risk. The study of Shonbucher (2000), based 

upon the assumption of homogeneous portfolio, constant recovery and one common shock 

influencing the systemic component of firm asset values, has provided an analityc solution for the 

limiting portfolio distribution. However, given the heterogenous nature of the portfolio under 

examination in this paper and the empirical evidence of stochastic dependent recoveries (provided 

by the aforementioned studes), we use stochastic simulation to quantify the risk associate to a bank 

loan portfolio. For this purpose,  we follow the method put forward by Krenin et al. (1998) by 

generating scenarios through stochastic simulation to determine conditional default probability and 

conditional portfolio loss distribuion. In order to account for default correlation, we average out 

across all scenarios and we obtain obtain the unconditional portfolio loss distribution. We 

concentrate only on a “default mode” model, that is the model measures credit lossess arising 

exclusively from the event of default. Given the heterogeneous feature of the portfolio under 

examination, we implement Montecarlo simulation (which is standard in the propietary models of 

Portfolio Credit Risk analysis). The novel aspect of the paper are described as follows. First, the 

macro scenarios are associated to common shocks identified (as aggregate demand and supply) and 

estimated by fitting a  Dynamic Factor model to a large number of credit crivers. Secondly, we 

account for the impact of stochastic recoveries dependent on defaults.  

 

The outline of the paper is as follows. Section 2 describes the basic definitions underlying the credit 

portfolio loss distribution. Section 3 describes the analytic solution to retrieve the unconditional loss 

distribution. Section 4 and 5 describe the stochastic simulation exercise and the Dynamic Factor 

modelling approach, respectively. Section 6 describes the empirical results. Section 7 concludes. 
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2. Credit Portfolio Loss Distribution 
 

The credit portfolio loss L is given by:  

 

      (1) 

 

 

where N is the number of counterparts, Dj  is a default indicator for obligor j (e.g. it takes value 1 if 

firm j defaults, 0 otherwise). Furthermore, the loss from counterpart j is given by: 
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where EADhj is the exposure at default to the h business unit of obligor j. Finally, LGDhj is the 

corresponding loss given default (equal to one minus the recovery rate, see below).  

Since L is a random variable, it is crucial to retrieve its probability distribution to measure portfolio 

credit risk. For this purpose, from (1) and (2) we can observe that we need to consider as a random 

variable, at least one from Dj, EADhj, and LGDhj.  In this paper, we concentrate on the stochastic 

nature of defaults and loss given defaults, treating the exposures as deterministic If the portfolio loss 

is uncertain in the future, then we can concentrate on few moments of the portfolio loss distribution.  

First, it can be relevant the measurement of the expected loss (e.g. the sample mean of the overall 

distribution). However, as in standard portfolio risk analysis, the standard deviation of the total 

portfolio loss is used to measure risk associated to the bank loan portfolio. However, given highly 

asymmetric credit portfolio loss distribution, it is customary to measure risk as the difference 

between the 99.9% percentile (as suggested by Basel 2) and the expected loss. This is the 

unexpected loss (economic capital). If the forecast horizon is a year, then the unexpected loss 

predicts the minimum loss (above the expected one) that can occur in one out one thousand years. 

Finally, if such an extreme event occurs, the loss is predicted by the expected shortfall, computed as 

the mean of the distribution values beyond the 99.9% percentile.  
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3. Stochastic PD’s and Credit Portfolio Risk analysis 
 

In this section we treat only defaults as stochastic random variables and we model them being 

dependent on the state of the business cycle. For this purpose, it is customary, in Portfolio Credit 

Portfolio Risk analysis, to implement a factor model specification for asset returns. In particular, the 

dynamics of the level of firm j’s asset value index is given by:  

 

1j j j jA Uβ β ν= + −                             (3) 

 

where U is a systematic risk shock affecting simultaneously every firm (parodying the state of the 

macro-economy) and νj is an idiosyncratic (firm specific) risk shock. The two shocks in (3) are 

assumed to have independent standard normal distributions, implying that Aj has a standard normal 

distribution. The parameter βj measures the effects of the common shock on the whole set of 

different obligors.   

 

According to Merton (1974), a firm defaults when its asset value index falls below a threshold cj. 

Specifically, define Aj as the level of firm j’s asset value index, which proxies the creditworthiness 

of obligor j.  Let Dj symbolise the default event of firm j, then we can observe that: 

 

if Aj < cj, then Dj = 1; Dj = 0 otherwise.  

 

The default boundaries cj are pre-specified and obtained from the (unconditional) probabilities of 

default PDj, given by:  

 

PDj = P(Aj < cj) = Φ(cj)                        (4) 

 

where Φ is the cumulative standard normal probability distribution. From eq. (4) it is possible to 

retrieve the level of threshold cj, which is given by Φ-1(PDj).  

 

The main ingredients of a factor model for Portfolio Credit Risk analysis are the individual 

unconditional PD’s (here obtained from the internal rating system of the bank) together with a 

measure of the asset correlation (measured by the cross product of the factor loadings in eq. (3)).  

These two inputs are all we need to measure default correlation. Intuitively, negative realisation of 
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the common shock can lead the asset firm values of different obligors to fall below their 

corresponding threshold values and then lead these obligors into default.  

 

3.1 Analytic solution for the Credit Portfolio Loss 

 

The Basel II proposal (as of January 2001) for the determination of economic capital is based upon 

the Schonbucher (2000) analytic solution for the unconditional portfolio loss distribution. For this 

purpose, the author (op. cit.) implements the factor model specification described above. The 

starting point is the estimation of the probability of default conditional on a specific realisation of 

the common shock. Under the assumption of homogenous portfolio1 (e.g., same exposure, 

probability of default, loading factor across obligors) and deterministic loss given default, the 

probability of default for firm j conditional on a realisation u of the common shock U is given by: 
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           (5) 

 

 

Therefore, conditioning on a specific realisation of the common shock, we obtain independent 

defaults across obligors, and, as a consequence, the conditional probability of having exactly n 

defaults is:  

 

 

 

 

Furthermore, averaging out across the different realisations of the common shock, the unconditional 

cumulative distribution is: 
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1 More recently, Wehrspohn (2003) provides analytic closed form solution of the limiting distribution and of the credit 

portfolio loss, under the classical one factor model representation, relaxing the assumption of homogeneous portfolio.  
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Combining the assumption of homogeneous portfolio with the assumption of an infinitely granular 

portfolio (where each exposure is set to be equal to 1/N, with large N), Schonbucher (2000) derives 

the  analytical solution for the unconditional cumulative loss distribution:   

 

( )1 11 11 1 ( ) ( )Xp x x p
N

β
β

− −  ≤ = Φ − Φ −Φ  
    

       (7) 

 
  

In particular, the Basel 2 computation for the unexpected loss is based upon considering the 99.9th 

percentile of the distribution in (7) and by fixing the loading factor β = 0.2. 

 

3.2 Stochastic recovery 
 
Recently, few studies, have taken into account the stochastic feature of the recovery rate as well as 

defaults. In particular, the dependence between the default events and losses given default is 

introduced through a single factor that drives both default events and recovery rates. The recovery 

rate is then modelled by specifying the collateral value distribution (for instance, Frye, 2000a uses a 

Gaussian collateral value, whereas Pykhtin, 2003, focuses on a log normal distribution). These 

studies provide a macro type of explanation of an inverse relationship between PD’s and recoveries 

documented, for instance, in Hu and Perraudin (2002). In particular, given a negative cyclical 

downturn, collateral values as well as asset firm values would fall, and, as a consequence, there 

would be an increase in the number of defaults and a decrease in the number of recoveries (given 

their dependence on the collateral). The empirical studies by Altman and Brady (2002), and also by 

Altman, et al. (2003) find that not only the state of the business cycle, but also contract–specific 

factors, such as, seniority and collateral, seem to affect recovery rates. Therefore, in addition to a 

macro-side explanation, also a micro-side explanation has been put forward to explain the 

relationship between PD’s and recoveries. In particular, in presence of an high number of defaults, 

there is an excess of supply of distressed debt bonds, depressing the price of these bond, and 

consequently, the corresponding recovery rate.    

 

To our knowledge, at the industry level, the computation of Credit Risk Portfolio VaR does not 

fully account for the stochastic dependence of recoveries from default. Proprietary models 

employed in Credit Portfolio Risk analysis treat the recovery rate either as deterministic or as 

stochastic (modelled through a beta distribution), but independent from the probability of default. In 
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line with the study of Altman et al. (2002), we model stochastic dependent recoveries, by imposing  

a perfect rank correlation between the LGD and the default rate associated with the common shock 

scenarios. In particular, we sort (in descending order) the number of defaults for each common 

shock scenario, we associate the corresponding percentiles of rr obtained from inverting the beta 

distribution corresponding to the recoveries sorted in ascending order2. For example, when the 

common shock scenarios produce the largest number of defaults, the recovery rate takes the 

smallest value. On the other hand, when the common shock scenarios produce the smallest number 

of defaults, the recovery rate takes the largest value.  

 

4. Stochastic simulation  
 

In this paper, in line with equation (3), we assume that both the common and the idiosyncratic 

innovations are standard Gaussian. However, we consider an heterogeneous portfolio, and we also 

treat recoveries as stochastic and dependent on default events. Finally, we also let two common 

shocks affect the systemic components of the creditworthiness indices. Therefore, we cannot use the 

analytic solution for the unconditional portfolio loss distribution given in (6) and we need to 

implement Montecarlo simulation for the generation of the asset returns according to the factor 

model specification given in (3). Comparing the simulated asset returns with pre-specified 

thresholds (given the availability of data regarding the one-year unconditional PD’s, as explained 

above) we are able to detect whether, conditioning on a specific macro scenario and a specific 

realisation of the idiosyncratic shock, an obligor defaults. The common shocks driving the systemic 

component in (3) are estimated and identified by fitting a Dynamic Factor model, DF (see Stock 

and Watson, 2002) to a large dataset of macroeconomic variables: the credit drivers. In the section 

below we describe the model used to produce the scenarios. 

 

 5. Dynamic Factor model 

 

As anticipated in section 4, the identification and estimation of common shocks is obtained by 

fitting a Dynamic Factor model to xnt, which is the n dimensional dataset of credit drivers (see Stock 

and Watson, 2002): 

  

nt t tx Cf ξ= +            (7) 

                                                           
2The shape of the beta distribution depends on the parameters a and b, linked to µ and σ, which are the sample mean  
and std. deviation of the recovery rate, respectively as follows: b ={[µ* (µ-1)2]/σ2+µ-1};  a=(b*µ)/(µ-1). 
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the first addend of the r.h.s. of  (7) is the common component for each credit driver given by the 

product of the r dimensional vector of static factors ft and the n r× coefficient matrix of factor 

loadings. The factor dynamics is modelled as follows (see Forni et al, 2003): 

  

1t t tf f Ru−= Γ +                       (8) 

 

where R measures the impact multiplier effect of the q dimensional vector of common shocks ut on 

ft.  

 

5.1 Estimation and identification 

 

The static factor space can be consistently estimated by either the generalised principal component 

estimator proposed by Forni et al. (2000) or the principal component estimator proposed by Stock 

and Watson (2002)3. In this paper we use the procedure proposed by Stock and Watson which (in 

case of a cross section dimension exceeding the time series dimension) gives a consistent estimator 

of the static factors ft is given by :   

 

t nf TW=             (9) 

 

where nW  is the n×r matrix having on the columns the eigenvectors corresponding to the first r 

largest eigenvalues of the covariance matrix of xnt. In the second stage of the analysis, according to 

(7), we estimate, by OLS, a VAR(1) on the static factors tf : 

 

1t t tf f ε−= Γ +            (10) 

 

The structural form impact multiplier matrix R in (8) is given by KMH, where: 

 

1) M is the diagonal matrix having on the diagonal the square roots of the q largest eigenvalues 

of covariance matrix of the residuals εt. 

2) K is the r×q matrix whose columns are the eigenvectors corresponding to the q largest 

eigenvalues of covariance matrix of the residuals εt. 
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3) H is a q×q rotation matrix, which (in case of q = 2) is given by: 

 

cos sin
sin cos

H
θ θ
θ θ

− 
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 

 

 

The identification of common shocks ut in (8) is achieved by finding the rotation of the angle θ in H 

which complies with sign restrictions on the impulse response profile of the credit drivers xnt: 

 

( )C I L R−Γ                         (11) 

 

In eq. (11) a consistent estimate (for n > T) of the reduced form factor loading matrix C is obtained 

by regressing xnt on ft (see Forni et al., 2003). The sign restrictions used to identify R (and the 

common shocks u) are along the lines of Uhlig (2004). In particular, we select all the rotations of 

the angle θ that imply, over the 12 months forecast horizon of the impulse response profile, a 

negative impact of the first shock on the real industrial production index, IP, and a positive impact 

on the aggregate consumer price, CPI, index. Among the selected rotations, we pick the one 

delivering the lowest impact, in the first three months of the impulse response forecast horizon (in 

order to allow a delayed effect from the shocks), on the aforementioned series. This particular 

rotation would then identify a supply shock. If, for this particular rotation, the impulse response 

profile corresponding to the second shock implies a positive co-movement between CPI and IP 

series, then the second shock is identified as demand-side structural form innovation.  

 

 

5.2 Simulation of the credit worthiness index 

 

Given that the credit drivers used in this paper are observed at monthly frequency and the forecast 

horizon is a year, we need to project the static factors 12 step ahead. Since  εt = KMHut we can 

derive the h-step ahead projection of the static factors (with h = 12) by rolling forward the VAR(1) 

in (10): 

 
1

1 ...h h
t h t t t hf f KMHu KMHu−
+ + + = Γ +Γ + +        (13) 

 

                                                                                                                                                                                                 
3 More recently, Kapetanios and Marcellino (2003) have proposed an alternative method, based on a state space model 
to estimate a large dimensional Dynamic Factor model. 
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Once we obtain an OLS estimate of the rx1 vector of sensitivities coefficients βj, by regressing the 

stock returns obligor j on the r estimated static factors, we are able to project the systemic 

component of the creditworthiness indices:  

 

,j j t ht h
A fβ ++

=             (14) 

 

We can observe from (13) and (14) that in line with multifactor models for asset returns, the 

systemic component (driven by the common shocks) can be split in two parts. The first, described 

the first addend in the r.h.s of eq. (13), is the predictable component, which is a function of current 

and past values of the common shocks. These values describe the information set available at time t 

when the rolling forecasts are produced. The remaining addends in (13) capture the unanticipated 

systemic component, given that they are a function only of future common innovations.  

The unpredictability of the Aj is further enhanced by allowing an idiosyncratic (firm specific) 

disturbance to affect the asset returns. Consequently, the h step ahead projection of the firm j asset 

return is given by: 

 

,j j t h jt h
A fβ ν++

= +           (15) 

 

where νj is the idiosyncratic (firm specific) innovation.  

 

Since we want to compare the results obtained under the simulation of the portfolio loss with those 

corresponding to the analytic solution (see above), we need to generate return series that are N(0,1). 

For this purpose the systemic component has to be standardised, hence the final specification for the 

creditworthiness proxies is given by: 

 
1

2 21
, 1 1

... 1
' ' ... '

h
t t h

j t h j j j jh h

Ru RuA R R
RR RR

β ν
−

+ +
+ − −

 Γ + +
= + − Γ Γ + + 

     (16) 

 

where the 2
jR  are the goodness of fit measures obtained from the OLS regression of the stock 

returns on the static factors. In eq. (3) underlying the analytic solution of the portfolio loss, the 

projection of the asset returns is entirely static and, furthermore, it is difficult to interpret the 

common shocks, in case they are at least two. If we focus on eq. (16), then the (reduced form) 

dynamic multipliers given by the powers of Γ and the structural form impact multipliers matrix R 
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allow to account for the dynamics of the credit drivers and to identify the systemic shocks, 

respectively.  

 

To summarise, in the empirical analysis described below, we, first, consider the analytic solution for 

the portfolio loss obtained assuming that the asset returns follow the stochastic process given by (3). 

Then, we consider the simulation of portfolio loss, assuming that the asset returns dynamics is given 

by (16). In particular, we distinguish among three different cases. The first involves the  assumption 

that there is only one common shock (interpreted as the state of the business cycle) driving the 

systemic component. In the second and third case we fix the dimension of ut to two and we consider 

the marginal contribution to the overall portfolio loss due to either a supply or a demand shock. For 

this purpose, the first column of the structural form dynamic multipliers would identify the supply 

shock and the second column of the structural form dynamic multipliers would identify the demand 

shock. 

 

Finally, we follow Krenin (1998) suggestions on how to deal with the replications in the simulation 

experiment. More specifically, we carried out 1000 simulations for each scenario, and conditional 

on each scenario we carried out 1000 simulations for the idiosyncratic component of each obligor 

creditworthiness index. This gives one million observations and by sorting them in ascending order 

we are able to obtain the unconditional portfolio loss distribution. 

 

5.3 Comparison with the existing methods. 

 

It is important to observe that existing portfolio credit risk models involved in the generation of 

macro scenarios through Montecarlo simulation rely on eq. (13) to project the systemic component 

for the creiditworthiness indices. However, two are the main differences with the method propsed 

here. First, the shocks u are as many as the number of the observed credit drivers (see either Credit 

Portfolio View approach developed by Wilson, 1997, or the method suggested by Pesaran et al., 

2004). In our method there are only few shocks underlying the dynamic of credit drivers. Secondly, 

the impact multiplier matrix R in equation (8) is diagonal in Wilson (1997) and lower triangular in 

Pesaran et al. (2004)4. We argue that the aforementioned identifying schemes are arbitrary. 

Consequently, we appeal to sign restrictions to identify the u’s. Finally, our preference of fitting a 

Dynamic a Dynamic Factor model rather than a VAR to the credit drivers can be explained as 

follows. First, the exogeneity assumptions used by Pesaran et al. (2004) to handle a relative large 

number of macro-variables characterising cannot be applied to our dataset (given that most of the 
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time series we consider are specific to only one country: Italy). Second, as shown in Giannone et al. 

(2003), the impulse response profile of macro-aggregates (whose  observations are contaminated by 

measurement error) implied by equilibrium business cycle models, is better proxied by the impulse 

response profile (especially, in the short and medium run)) estimated from a Dynamic Factor than 

the corresponding profile obtained by fitting a VAR to the empirically observed data. This can 

explained by, first, acknowledging that the rank reduction feature of the system of endogenous 

variables is preserved by a DF model and, by also considering that the extraction of the factors is 

obtained by minimising the noise (which captures the measurement error) to signal ratio.  

Finally, the last remark regards the simulation experiment suggested by Pesaran et al. (2004) which 

is based upon the joint draw of shocks to the credit drivers and specific to each firm (e.g. 

idiosyncratic innovations). This simulation procedure can be implemented only when the number of 

obligors is relatively small. However, in this paper, we deal with a large portfolio of obligors (see 

section 6.1), and we follow the suggestion of Krenin et al. (198) regarding the generation of 

different scenarios (see section 5.2).  

 

6. Empirical analysis 

 
6.1 Data 

 

We consider a corporate portfolio, describing the exposures of an Italian bank towards corporate  

small and medium sized enterprises, SME. Specifically, in this portfolio, there are 270.000 claims 

which according to the different type of instruments (such as receivables, trade credit loans, and 

financial letters of credit) are associated with 150.000 counterparts, which gives 53 billions Euro 

regarding the committed amount and 31 billions Euro regarding the drawn amount. The obligors 

with marginal exposure have been grouped in homogenous clusters in terms of rating and economic 

sector. This allows to consider a portfolio with 9912 obligors (with cluster and non-clusters) which 

gives a total exposure of 44 billions of Euro. To summarise, we consider an heterogeneous portfolio 

consisting of 9912 sub-portfolios, with obligors treated identically within each sub-portfolio, but 

with probability of default, exposure and sensitivity differing across the sub-portfolios. 

 
 

The data span (monthly frequency) under investigation corresponds to the period after the 

introduction of EMU, starting in January 1999 and ending in May 2003.We now describe the data 

regarding the proxy for the creditworthiness index and for the credit drivers.  
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Given that most of the obligors are non floated in the stock market, we assemble the counterparts in 

twenty large clusters corresponding to the following Italian MIB sub-sectors stock price indices: 

Food/Grocery, Insurance, Banking, Paper Print, Building, Chemicals, Transport/Tourism,  

Distribution, Electrical, Real Estate, Auto, Metal/Mining, Textiles, Industrial Miscellaneous, 

Plants/Machinery, Financial Services, Finance/Part, Financial Miscellaneous, Public Utility, Media. 

The returns on these stock indices are used to proxy the creditworthiness indices of each obligor.  
 

We consider a large number of credit drivers. First, in line with CreditMetrics (1997), we consider 

financial variables, given by the MSCI stock price indices for a number of sectors (e.g. Energy, 

Materials, Industrials, Consumer Discretionary, Consumer Staples, Health, Financials, Information 

Technology, Telecommunications, Utilities) corresponding to different geographical areas (World, 

US, Europe, Emerging Markets). We also add to the stock prices data (which are the only ones 

considered by CreditMetrics, 1997), other financial, nominal and real macroeconomic credit 

drivers.  

The other financial variables considered are the short term and long term interest rates in Italy (e.g. 

one, two, three, six, nine, twelve months Italian  interbank rates; the MSCI Italian government bond 

yields for the following maturities: one to three years; three to five years; five to seven years; seven 

to ten years; over ten years).  

The nominal variables are the consumer prices, CPI, and the producer prices, PPI. In particular the 

CPI  indices considered are for all items (e.g. aggregate), and for different following aggregate 

goods: clothing and footwear; communications; education; electricity and other fuels; energy;  food; 

furnishing; health; restaurants and hotels; insurance; recreation; transport. The PPI Indices are for 

all items and for the following sectors: basic metals; chemicals; consumer goods durable; non 

durable; electricity, gas and water, supply; electricity, gas, steam and hot water; energy; food, 

beverages and tobacco, intermediate goods; machinery and equipment; mining and quarrying; 

motor vehicles; publishing, printing and reproduction; textiles and raw materials.  

The real credit drivers considered are given by the real seasonally adjusted (real) indices for 

aggregate industrial production and for the following sectors: investment goods, intermediate 

goods, energy, manufacturing, food, textiles, leather, wood, paper, coke, chemicals, rubber, non 

metals, metals, machinery, electricity, other, furniture, energy. Finally, among the set of real 

economic variables, we also include the real effective exchange rate.  

The CPI and PPI series have been de-seasonalised by employing monthly deterministic dummies. 

Stationarity has been achieved by taking the first order differences. Finally, each series in the 

dataset have been standardised to have zero mean and unit variance. 
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6.2 Clustering 

 

It is important to observe that in the portfolio under examination (see below), some obligors sharing 

common features are aggregated in clusters. Each of these clusters contains a large number of 

obligors, each with a small contribution. In order to estimate the conditional losses for each cluster, 

we apply the Law of Large Numbers, hence the whole distribution collapses into a single value: the 

corresponding expected loss. As for the large number of obligors organised in non-clusters and 

given their relative large exposure, we use Montecarlo simulation to obtain the corresponding 

conditional portfolio loss distribution. Furthermore, in each scenario, the sum of losses deriving 

from default of the non cluster obligors (obtained through simulation) and the expected loss from 

the clusters gives the (conditional) portfolio loss distribution. Finally, the Montecarlo simulation 

has been based upon the simplifying assumptions that: a) we do not account for the use of financial 

collateral and of credit risk mitigation techniques;  b) we consider the year as the reference temporal 

horizon; c) we do not consider claims maturing in a period less than a year. 

 

6.3 Credit risk measurement 

 

Standard AIC and BIC criteria to select the number of static factors cannot be employed since they 

rely on the minimisation of a penalty function only of the time series dimension.  Therefore, we 

employ the method suggested by Bai-Ng (2002), which involves the minimisation of a penalty 

function depending on both the cross section and time series dimension, and the number of static 

factors, r, is found to be equal to four. As for the estimation of the sensitivies β of the multifactor 

model for the asset returns, we use OLS, and the the corresponding R2 are given in Table 1. 

Employing the scenario generation described in section 5, we obtain the simulated loss 

distributions. As we can observe (see Fig. 1-6) the shape of the unconditional loss distribution is 

asymmetric and highly skewed to the right.  

 

From the Figures below and Tables 2 and 3 (numbers are in milions of Euros) we can draw the 

following conclusions. First, by comparing the second and third column of Table 3, we can observe 

that the Basel II measure of the unexpected loss (obtained from the analytic solution described in 

equation (7)) approximates closely the economic capital obtained from the simulated loss 

distribution relaxing only the assumption of homogeneous portfolio. Secondly, by comparing 

results in Tables 2 and 3, we can observe that the consideration of stochastic dependent recovery 
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shifts to the right the unconditional loss distribution, implying high values for the expected loss, 

unexpected loss and expected shortfall. Finally, If we disentangle the common shock in two 

structural shocks: aggregate demand and aggregate supply, then we can observe that the demand 

shock has an higher impact on the credit risk measure of interests (see the fourth and fifth column of 

Table 2 and Table 3). This holds for both the case of constant and of stochastic dependent recovery.  

This last finding can be explained by taking into account that two are the type of recession scenarios 

driven by the identified common shocks. The first, driven by a demand shock, is a deflationary type 

recession scenario, given that both output and prices fall. The second recession scenario is driven by 

a supply shock, and it is described by a fall in output and increase in the price level. In this case, the 

increase in the price level, redistributing wealth from lenders to borrowers (and, also decreasing the 

level of real interest rates), can mitigate the depressive effect on the firms cash-flows driven by a 

fall in output. Consequently, the supply shock can have a less severe impact on the financial health 

status of the obligors, and on the overall risk associate to the bank loan portfolio.  
 

 

7. Conclusions 
 

The aim of this paper is the measurement of the capital requirements for a bank, by taking into 

account, especially, the role played by the business cycle on default probabilities and loss given 

defaults. In order to account for interdependencies of defaults across different obligors, we focus on 

the unconditional portfolio loss distribution. In particular, since we depart from the homogeneous 

portfolio and constant recovery assumptions, our measures of the capital requirements are obtained 

from the simulated (unconditional) portfolio loss distribution. The macro scenarios are obtained by 

fitting a Dynamic Factor model to a number of macroeconomic credit drivers. The choice of this 

model is motivated by taking into account its good approximation (in the short-run) of the dynamics 

implied by equilibrium business cycle models (see Giannone et al. 2003). As for the identification 

of the systemic shock, we consider, first, the case of a single common shock (interpreted as the state 

of the business cycle) underlying the dynamics of the different credit drivers. Then, we disentangle 

the common shock in aggregate demand and supply innovations in order to assess their impact on 

the bank capital requirements for the chosen forecast horizon. We find evidence of capital 

requirements sensitive to the business cycle. Specifically, the empirical results suggest that, in line 

with Altman et al. (2002), ignoring the main feature of recoveries (as stochastic and dependent on 

default), can imply serious under provision of minimum capital requirements (especially in 

presence of macro-economic shocks identified as demand side innovations).  
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Table 1: R2 from the multifactor regressions 

Food/Grocery 0.21 
Insurance 0.44 
Banking 0.57 
Paper Print 0.27 
Building 0.49 
Chemicals 0.36 
Transport/Tourism 0.23 
Distribution 0.27 
Electrical 0.58 
Real Estate 0.30 
Auto 0.30 
Metal/Mining 0.19 
Textiles 0.46 
Industrial Miscellaneous 0.07 
Plants/Machinery 0.36 
Financial Services 0.33 
Finance/Part 0.37 
Financial Miscellaneous 0.37 
Public Utility 0.53 
Media 0.61 
 

Table 1: credit risk measures with constant recovery 
 analytic: impact 

of  common shock  
simulation: impact of  
common shock 

simulation: impact of    
demand shock 

simulation: impact of 
supply shock 

Expected 
Loss  
 

   330 348.57 340.67 335.94 

Unexpected 
Loss 

2418.53 2711.90 4682.29 3841.66 

Expected 
Shortfall 

       - 4047.75 5874.96 4349.66 

Note: numbers are in milions of Euros 
 
                                Table 2: credit risk measures with stochastic dependent recovery 
 simulation: impact of  

common shock 
simulation: impact of    
demand shock 

simulation: impact of 
supply shock 

Expected Loss  534.45 532.16 509.94 
Unexpected Loss  9593.14 8376.73 6886.07 
Expected Shortfall 11694.21 10412.04 7703.47 
Note: numbers are in milions of Euros 
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Figure 1: Unconditional loss distribution: common shock and constant recovery 
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Figure 2: Unconditional loss distribution: demand shock and constant recovery 
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Figure 3: Unconditional loss distribution: supply shock and constant recovery 
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Figure 4: Unconditional loss distribution: common shock and stochastic dependent recovery 
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Figure 5: Unconditional loss distribution: demand shock and stochastic dependent recovery 

0

100000

200000

300000

400000

500000

600000

700000

800000

0 2000 4000 6000 8000 10000 12000

Series: SER01
Sample 1 1000000
Observations 1000000

Mean       518.7834
Median   170.4547
Maximum  11992.62
Minimum  1.374711
Std. Dev.   979.6755
Skewness   4.334064
Kurtosis   27.93255

Jarque-Bera  29032015
Probability  0.000000

 
Figure 6: Unconditional loss distribution: supply shock and stochastic dependent recovery 
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