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Portfolio cross-autocorrelation puzzles

This paper investigates the driving forces underlying lead-lag cross-autocorrelations in daily
portfolio returns. By contrasting autocorrelation patterns using portfolio returns based on
trade prices before an arbitrary point in the trading day with those using returns based on
prices after, we isolate the impact of nonsynchronous trading and conclude decisively that its
impact on portfolio correlation patterns is negligible. Instead, the patterns reflect inefficient
pricing of infrequently-traded stocks—prices of less active stocks appear not to incorporate
some of the recent information that is already contained in the prices of more active stocks.
Portfolio autocorrelations rise systematically when we calculate returns using later times in
the day, indicating that prices of infrequently-traded stocks grow increasingly stale over the
trading day.

JEL Classification: G12, G14.

Keywords: portfolio returns, autocorrelation, non-synchronous trading, market effi-
ciency.



1 Introduction

It is well-established that short-horizon portfolio returns are both significantly autocorrelated

and highly cross-serially correlated (see, for example, Boudoukh, et al. (1994)). Proposed

explanations of these empirical regularities include: market inefficiency, market maker in-

ventory control, transaction costs, short sale constraints, price discreteness, time-varying ex-

pected returns, and nonsynchronous trading. Still, the “puzzle” remains largely unresolved—

there is much disagreement about the relative importance of each of these explanations.

Unlike previous studies, we are able to isolate the impact of nonsynchronous trading on

portfolio autocorrelation patterns and to uncover the extent to which delayed incorporation of

information into the prices of some stocks drives portfolio autocorrelations. By contrasting

autocorrelations for returns calculated using the last transaction before a given point in

the trading day versus those calculated using the first transaction after, we provide sharp

theoretical bounds on the autocorrelations that can be due to nonsynchronous trading. This

allows us to conclude decisively that the impact of nonsynchronous trading is negligible.

We then derive theoretically how variations in information arrival rates, delayed incor-

poration of information into prices and trading frequencies affect autocorrelation patterns.

Numerically, we uncover strong evidence that autocorrelation patterns reflect inefficient pric-

ing of infrequently-traded stocks—prices of less active stocks appear not to incorporate recent

information contained in the prices of more active stocks. In particular, portfolio autocor-

relations rise several fold when we calculate returns using later times in the day, indicating

that prices of infrequently-traded stocks grow increasingly stale over the trading day.

Our findings have important implications for a wide variety of market participants. For

instance, our results suggests that mutual funds which value purchases and redemptions by

calculating net asset values (NAV) using end-of-day prices may, in fact, be using inaccurate

prices, particularly for smaller, less frequently traded stocks.1 The same also applies for

derivatives which are settled based on closing prices. As well, trading strategies based on

1See Chalmers, Edelen, Kadlec (2001) for a description of this problem.
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trading at the close will need to balance the benefits of greater liquidity against these stale

prices. Finally, to the extent which “staleness” is driven by limit orders which have not been

updated, our findings have implications for market design.2

Further analysis precludes other possible explanations of portfolio autocorrelations. Port-

folio autocorrelation patterns are the same whether we use prices or quotes, indicating that

discreteness in pricing does not drive the autocorrelations. Further, contemporaneous port-

folio correlations do not vary over the trading day, while portfolio autocorrelations do, in-

dicating that the phenomena are distinct, and do not reflect time-varying expected returns.

In sum, our numerical findings strongly indicate that the intra-day evolution of pricing

inefficiencies—price staleness—drives the secular rise over the trading day in portfolio auto-

correlations.

To begin, let us see how we identify the impact of nonsynchronous trading. The potential

qualitative impact of nonsynchronous trading on portfolio autocorrelations can be gleaned

by considering the standard practice of using closing prices to calculate returns. Consider

two stocks, X and Y . Suppose that stock X consistently trades later in the day than stock

Y . If significant economic news arrives after stock Y has finished trading, but before stock

X’s last trade, then the closing price of stock X will reflect this information, but the closing

price of stock Y will not. When the stocks resume trading the next day, stock Y ’s price will

be updated to reflect this information. The consequence is that stock X’s returns will lead

(or predict) returns of stock Y . This cross-serial correlation across stocks contributes to the

observed portfolio return autocorrelation.

Our key insights are to recognize that (i) we can compute daily returns using arbitrary

points in the day; and (ii) the impact of nonsynchronous trading on autocorrelation rela-

tionships is reversed if we compute daily returns using the first trade after the arbitrary

time, rather than the last trade before that moment. This permits us to isolate the impact

of nonsynchronous trading on portfolio autocorrelations.

2Cohen et al. (1986) describe three types of price-adjustment delay: (i) transaction price adjustment lag
quotation price adjustments; (ii) specialists-dealers impede quotation price adjustments; and (iii) individual
wait-to-trade delays.
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To see this, suppose that we compute daily (24 hour) returns using the last trade before

noon of each trading day. Then trades of frequently-traded stocks will tend to occur closer

to noon than will trades of infrequently-traded stocks. As a result, lagged stock prices

of frequently-traded stocks will tend to contain economic news that arrived after the last

trade (prior to noon) of infrequently-traded stocks. As a result the impact of nonsychronous

trading when we compute returns using the last trade before noon should be similar to that

when we compute returns using closing prices.

But now suppose that we use the first trade after noon to compute returns. Then the

impact of nonsynchronous trading is reversed precisely because the first trade after noon of

infrequently-traded stocks tends to occur after that of the first trade of frequently-traded

stocks: if stock prices reflect all market information, then prices of infrequently-traded stocks

will tend to contain economic news that arrived after the frequently-traded stocks traded.

Empirically, we find that even when 24-hour returns are computed using the first trade

after a moment in time, lagged returns of large-cap/frequently-traded stocks better predict

current returns on small-cap/infrequently-traded stocks than the converse (corr(rL
t−1, r

S
t )

>> corr(rS
t−1, r

L
t )). This means that pricing of infrequently-traded stocks must reflect some

inefficiency—when prices of infrequently-traded stocks are determined, they must not incor-

porate all of the recent information contained in the prices of frequently-traded stocks. This

is because the impact of nonsynchronous trading in the absence of delayed incorporation of

information gives rise to the opposite correlation pattern.

To isolate the slight impact of nonsynchronous trading, we must control for differences in

information content across portfolios. We do this by calculating the before-after difference in

portfolio autocorrelations for a fixed pair of portfolios. We consistently find evidence that the

impact of nonsynchronous trading exists, but that it is very small in magnitude. Specifically,

the correlation of lagged large-cap portfolio returns with current small-cap portfolio returns is

slightly higher using the last trade before than using the first trade after; while the correlation

of lagged small cap portfolio returns with current large-cap portfolio returns is slightly higher

using the first trade after, than using last trade before. However, these differences, which
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are roughly twice the impact of nonsynchronous trading, are on the order of 0.005. This

result is robust: it holds no matter (i) which point in time we use to compute before-after

return differences, (ii) whether we compute returns using trades or quotes, and (iii) whether

we construct portfolios by market capitalization or trading frequency.

We next investigate the consequences of delayed incorporation of extant information into

the prices of less active stocks. No matter whether we compute returns using the last trade be-

fore a moment, or the first trade after, the small-capitalization portfolio own-autocorrelation

is always large and positive, exceeding the cross-portfolio lead-lag autocorrelations, and

greatly exceeding large-capitalization portfolio own-autocorrelation. This can be reconciled

if information is impounded more slowly into some small-capitalization stocks than into oth-

ers; but information is impounded uniformly more quickly into large capitalization stocks.

We then provide strong evidence that some stock prices grow increasingly stale over the

trading day. Specifically, both own- and cross-autocorrelations rise dramatically throughout

the trading day, before decreasing slightly at the close. For example, the own-autocorrelation

for small-cap portfolio returns rises from about 0.1 at 1100h to about 0.2 at 1430h and to

0.218 at close, a more than two-fold increase. The cross-autocorrelation between current

large-cap portfolio returns and lagged small-cap portfolio returns rises even more dramati-

cally from about 0.017 at 1100h to about 0.120 at 1430h before declining to 0.093 at close.

These intra-daily differences in cross-autocorrelations are all highly significant.

Crucially, because we control for the impact of trading frequencies, this strong secular

rise in autocorrelations must be due to delayed incorporation of information. Our evidence

suggests that during the overnight period, investors gather information and stock prices

“catch up” but as the trading day progresses, the incorporation of new information into

some stock prices becomes increasingly lagged. The different patterns observed at the close

are consistent with large stock prices getting “fresher” at the close. In turn, this magnifies the

predictive power of lagged large-cap portfolio returns on current small-cap portfolio returns

and is not representative of the autocorrelation patterns observed at other times in the day.

The remainder of the paper is organized as follows. Section 2 reviews related research.
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Section 3 provides a simple theoretical model of the impact of nonsynchronous trading and

delayed incorporation of information for portfolio autocorrelations. Section 4 outlines the

data. Section 5 provides the results. Section 6 concludes.

2 Literature Review

Conrad and Kaul (1988) claim that cross-autocorrelations are the result of time-varying

expected returns. A variant of this explanation suggests that cross-autocorrelations are sim-

ply a restatement of portfolio autocorrelations and contemporaneous correlations (Hameed

(1997)). According to this explanation, once account is taken of portfolio autocorrela-

tions, portfolio cross-autocorrelations should disappear. The second group of explanations

(Boudoukh et al. (1994)) suggest that portfolio autocorrelations and cross-autocorrelations

are due to market microstructure biases such as thin trading or discreteness in prices. A

third explanation is that the lead-lag cross-autocorrelations are caused by the tendency of

some stocks to adjust more slowly (under-react) to economy-wide information than others

(Lo and MacKinlay (1990) and Brennan et al. (1993)).

Our paper provides insights into each of these possible explanations. Specifically, we

show that the impact of thin trading (nonsynchronous trading) is minor, and the fact that

autocorrelations patterns do not depend on whether we use trades or quote midpoints indi-

cates that discreteness is unimportant. We find that contemporaneous correlation patterns

do not vary over the trading day, but lead-lag correlations rise secularly over the trading

day: Hameed’s hypothesis cannot account for this intraday pattern. Rather, it appears that

this intraday evidence can only be reconciled by inefficient pricing of some stocks.

Atchison et al. (1987) and Lo and MacKinlay (1990) derive explicit relations concerning

the magnitude of autocorrelations caused by nonsynchronous trading. Both studies con-

clude that nonsynchronous trading can explain only a small portion of the autocorrelation

that is observed. However, Boudoukh et al. (1994) argue that prior studies seriously un-

derstate the potential effects of nonsynchronous trading. For instance, Boudoukh et al.
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show that portfolios with weekly autocorrelations of 0.07 under standard assumptions can

have autocorrelations as high as 0.20 when the nonsynchronous trading framework allows

for heterogeneity in both nontrading probabilities and security betas.

Kadlec and Patterson (1999) simulate the effects of nonsynchronous trading by sam-

pling stock returns from a return-generating process using transactions data to obtain the

precise time of each stock’s last trade. Their simulated weekly portfolio returns exhibit au-

tocorrelations that are about 25% of observed autocorrelations. However, our before-after

decomposition reveals that nonsynchronous trading has only a small fraction of this impact.

Chordia and Swaminathan (2000) find that daily returns on high trading volume port-

folios lead returns on low volume portfolios, controlling for firm size. While our theoretical

decomposition shows that this could be reconciled by both nonsynchronous trading due to

trading frequency differences, or by delayed incorporation of information into prices of low

volume stocks; our empirical work indicates that it reflects the delayed incorporation of

information.

Chan (1993) provides a model in which market makers observe noisy signals about their

stocks and correct pricing errors by observing the past price changes in other stocks. This

can generate delayed incorporation of information into stock prices, which is consistent with

our empirical findings.

Researchers have studied many other aspects of portfolio autocorrelation patterns. Pa-

pers that explore autocorrelation patterns over longer intervals and longer lags, and the

profitability of contrarian or momentum strategies include Jegadeesh and Titman (1995)

and Lewellen (2002). Sias and Starks (1997), and Badrinath, et al. (1995) look at how trad-

ing by institutional traders in specific groups of stocks can affect portfolio autocorrelations.

Other important papers on portfolio autocorrelation patterns include McQueen, Pinegar,

and Thorley (1996), Mech (1993), and Bessembinder and Hertzel (1993).

The closest related work to ours is McInish and Wood (1991). Using a 1984 data tape of

1,400 NYSE stocks, they calculate intraday-to-intraday 24-hour returns at successive fifteen

minute intervals throughout the trading day. They consider six equally-weighted indexes:
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one comprised of all stocks and five comprised of stocks ranked by quintiles of average number

of trades per day over the year. They show that the plot of first-order autocorrelation of

daily index returns against time of day has a crude U-shaped pattern. For each stock, they

calculate the average time from the last trade (which might occur prior to the beginning of

the interval) to the interval end. Using these times, they argue that the observed intraday

patterns in first-order autocorrelation of return indexes cannot be explained by trading

delays.

Our analysis extends that of McInish and Wood (1991) in four key respects: (i) we com-

pare correlation patterns before and after a particular point in time; (ii) we examine cross-

correlation patterns, whereas McInish and Wood focus exclusively on own-autocorrelation

patterns; (iii) we use a longer, more recent time-series data which allows for us to study

the impact of market design changes; (iv) we use an advanced block of blocks bootstrap

technique to establish the statistical significance of our findings.

3 Theory

We next develop how the impact of nonsynchronous trading on portfolio autocorrelations

depends on the 24-hour window used to compute returns. We first consider a base case of

identical stocks that differ only in their trading frequency and derive the lead-lag autocor-

relation patterns for returns computed over different windows. We then allow for random

trade arrival. Finally, we consider how outcomes are affected when prices of some stocks do

not incorporate the latest valuation information.

The base framework: Consider two stocks, X and Y , that each have an identical end-of-

date t value given by

Vt = Vt−1 + δ0
t + δ1

t + . . . + δ`
t + δ`+1

t + . . . + δc
t ,

where, for simplicity, we assume that the innovations δj
t are independently distributed. In-

terpret δ0
t as an overnight innovation that arrives after the date t − 1 market closes, δ1

t as

the first innovation after the market opens and δc
t as the last innovation before market close.
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Stocks X and Y are distinguished solely by the fact that X trades more frequently

than Y . Specifically, we suppose that X trades before and after each innovation; while Y

last trades just before δc
t has been realized, and Y first trades just after δ1

t has been realized.

Then, if the innovations are immediately incorporated into prices, the closing price of X

will be pXc
t = Vt, but the closing price of Y will not incorporate the last innovation so that

pY c
t = Vt − δc

t . In sharp contrast, the opening price of X will be pXo
t = Vt−1 + δ0

t , but Y ’s

opening price will incorporate the first innovation of the trading day, pY o
t = Vt−1 + δ0

t + δ1
t .

See figure 1.

We now consider the implications of trading frequencies for the covariance in daily lead-

lag price changes, i.e., cov(pt+1− pt, pt− pt−1). Our exposition considers covariance patterns

in daily price changes rather than returns because the qualitative insights are identical, and

they are most easily presented via price changes.3 When innovations are independently

distributed, then no matter whether we use opening or closing prices, lagged change in own

price is always uncorrelated with current changes in own price. The closing price of stock X

reflects all of the day’s innovations, so that pXc
t+1 − pXc

t = δ0
t + δ1

t + . . . + δc
t . Thus,

cov
(
pXc

t+1 − pXc
t , pXc

t − pXc
t−1

)
= cov

(
δ0
t + δ1

t + . . . + δc
t , δ

0
t−1 + δ1

t−1 + . . . + δc
t−1

)
= 0.

Similarly, pY c
t+1 − pY c

t = δc
t−1 + δ0

t + δ1
t + . . . + δc−1

t , so that

cov
(
pY c

t+1 − pY c
t , pY c

t − pY c
t−1

)
= cov

(
δc
t−1 + δ0

t + . . . + δc−1
t , δc

t−2 + δ0
t−1 + . . . + δc−1

t−1

)
= 0.

Matters are very different when we compute the cross-stock lead-lag autocorrelations. Using

closing prices, the lagged price change of stock X contains the innovation δc
t that enters the

current price change of stock Y . As a result,

cov
(
pY c

t+1 − pY c
t , pXc

t − pXc
t−1

)
= cov

(
δc
t−1 + δ0

t + δ1
t + . . . + δc−1

t , δ0
t−1 + δ1

t−1 + . . . + δc
t−1

)

= var(δc
t−1) > 0.

This is the well-understood impact of nonsynchronous trading: changes in the closing prices

of frequently-traded stocks contain information that has yet to be incorporated in the closing

prices of infrequently-traded stocks, leading to a positive cross-autocorrelation.

3Alternatively, this presentation captures returns if innovations are multiplicative and prices are in logs.
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Conversely, lagged price changes in the infrequently-traded stock, Y are uncorrelated

with current price changes in X, because there is no information overlap,

cov
(
pXc

t+1 − pXc
t , pY c

t − pY c
t−1

)
= cov

(
δ0
t + δ1

t + . . . + δc
t , δ

c
t−2 + δ0

t−1 + δ1
t−1 + . . . + δc−1

t−1

)
= 0.

We now show that the impact of nonsynchronous trading is reversed if we use opening

prices to compute changes. The cross-autocorrelation patterns are reversed precisely because

infrequently-traded stock Y ’s first trade occurs after that for X. As a result, lagged prices

changes in Y contain information about δ1
t that will enter the current price change in X.

Hence, lagged price changes in Y are positively correlated with current price changes in X,

but not conversely,

cov
(
pXo

t+1 − pXo
t , pY o

t − pY o
t−1

)
= var

(
δ1
t

)
; and cov

(
pY o

t+1 − pY o
t , pXo

t − pXo
t−1

)
= 0!

Indeed, if there is more information arrival at open than at close, i.e., if var (δ1
t ) > var (δc

t ),

then this relationship should be even stronger than the standard lead-lag autocorrelations

documented using closing prices.

Because information arrival rates may differ at open and close, i.e., var(δ1
t ) 6= var(δc

t ),

inference about the impact of non-synchronous trading using only opening and closing prices

may be difficult. However, we can control for information arrival rates if we instead compute

returns using the last transaction before and the first transaction after a specified time

` in the trading day. Using the last transaction before time ` is akin to using closing

prices—the last transaction of the frequently-traded stock before time ` will tend to be after

the infrequently-traded stock, so lagged returns of the frequently-traded stock will contain

information about current returns of the infrequently-traded stock. Conversely, using the

first transaction after a moment in time, lagged returns in the infrequently-traded stock

should predict current returns in the frequently-traded stock.

To make this explicit, suppose that δ`
t occurs before time `, and is incorporated into the

time ` price of stock X, but not of stock Y ; and that the first transaction after time ` in

stock X occurs before δ`+1
t is realized, but that the first transaction in infrequently-traded
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stock Y occurs after (see figure 2). Then

cov
(
pY b`

t+1 − pY b`
t , pXb`

t − pXb`
t−1

)
= var

(
δ`
t

)
; and cov

(
pY b`

t+1 − pY b`
t , pXb`

t − pXb`
t−1

)
= 0,

where the index b` denotes the last transaction before time `. Conversely if we used the first

transaction price after `, the lead-lag pattern is reversed:

cov
(
pY a`

t+1 − pY a`
t , pXa`

t − pXa`
t−1

)
= 0; and cov

(
pXa`

t+1 − pXa`
t , pY a`

t − pY a`
t−1

)
= var

(
δ`+1
t

)
.

As long as information arrival just before ` is essentially the same as that just after `, so

that var(δ`+1
t ) ∼ var(δ`

t), the lead-lag relationships should be exactly reversed. Thus, the

key force driving the impact of nonsynchronous trading on the lead-lag return correlation

pattern is whether prices are computed using the last price before a moment in time (as at

close), or the first price after a moment in time (as at open).

Finally, this example supposes that stock Y trades only slightly less often than stock X.

Were Y to trade even less frequently, more innovations arrived between trades, raising the

magnitude of the autocorrelations, but preserving otherwise the qualitative pattern.

Portfolios: In practice, the last trade of an infrequently-traded stock sometimes takes

place after that of frequently-traded stocks. To determine how this affects autocorrelations,

consider now portfolios of infrequently- and frequently-traded stocks, that are otherwise

identical. Suppose that fraction ρf of frequently-traded stocks trade after innovation δ`
t is

realized, but before time `; and for the remaining fraction 1−ρf , the last trade occurs before

δ`
t is realized. In contrast, suppose that fraction ρi < ρf of infrequently-traded stocks trade

after innovation δ`
t is realized, but before time `; and for the remaining fraction 1 − ρi, the

last trade occurs after δ`−1
t , but before δ`

t is realized.

Thus, ρf −ρi measures the degree to which frequently-traded stocks are more likely than

infrequently-traded stocks to trade after an innovation. Because large capitalization stocks

tend to trade more frequently than small capitalization stocks, one interpretation is that

portfolios of frequently- and of infrequently-traded stocks are analogous to portfolios of large

and of small capitalization stocks, respectively.
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We denote the average price change for a very large portfolio of N frequently-traded

stocks using the last price before time ` by

∆pfb`
t =

1

N

∑N

n=1

[
pfb`

t (n)− pfb`
t−1(n)

]
.

For this portfolio of frequently-traded stocks, the impact of non-synchronous trading for its

own lead-lag covariance is

cov
(
∆pfb`

t , ∆pfb`
t−1

)
= ρf (1− ρf )Nvar(δ`

t). (1)

So, too, if fraction ρf of frequently-traded stocks also trade after time `, but before innovation

δ`+1
t is realized, then using the first transaction after ` to compute the own lead-lag covariance

for the portfolio frequently-traded stocks yields

cov
(
∆pfa`

t , ∆pfa`
t−1

)
= ρf (1− ρf )Nvar(δ`+1

t ).

The analogous lead-lag covariances using the portfolio of infrequently traded stocks are

cov
(
∆pib`

t , ∆pib`
t−1

)
= ρi(1− ρi)Nvar(δ`

t) and cov
(
∆pia`

t , ∆pia`
t−1

)
= ρi(1− ρi)Nvar(δ`+1

t ).

If var(δ`+1
t ) ∼ var(δ`

t), own portfolio return lead-lag correlations should be essentially the

same no matter whether we use the last trade before a particular time or first trade after.

However, absent knowing ρf and ρi, we cannot say whether the lead-lag covariance should

be stronger for frequently- or infrequently-traded stocks.

What about the cross-portfolio lead-lag covariances? If we compute returns using the

last transaction before `, then the portfolio of lagged price changes for frequently-traded

stocks will co-vary more strongly with current price changes for infrequently-traded stocks,

than its opposite counterpart. That is, because ρf > ρi,

cov
(
∆pib`

t , ∆pfb`
t−1

)
= ρf (1− ρi)Nvar(δ`

t) > ρi(1− ρf )Nvar(δ`
t) = cov

(
∆pfb`

t , ∆pib`
t−1

)
.

But, the opposite pattern arises if we instead use the first trade after time `,

cov
(
∆pia`

t , ∆pfa`
t−1

)
= (1− ρf )ρiNvar(δ`+1

t ) < ρf (1− ρi)Nvar(δ`+1
t ) = cov

(
∆pfa`

t , ∆pia`
t−1

)
.

11



Thus, the qualitative insights from the two stock example extend when we consider portfolios.

Delayed Incorporation of Information into Prices. We next derive how delays in

the incorporation of information into prices affect autocorrelation patterns. There is both

evidence that (i) information arrival drives trading frequency, so that a stock that trades

more frequently than usual is likely to reflect information arrival (see Hollifield, et al. (2003)),

and (ii) transaction prices of infrequently-traded stocks may reflect lagged valuations. These

observations are crucially different: the first is consistent with efficient markets, while the

second is not.

If trade frequency is driven only by information arrival, then the impact of nonsynchro-

nous trading on correlation patterns is unaltered: in our analysis, this simply provides an

interpretation of which stocks in a given portfolio happen to trade frequently, i.e., to trade

close to time `. But what happens if information is incorporated into some stocks with a

lag?

To present this most simply, suppose that all innovations have the same variance, σ2, and

that a stock price either reflects all relevant information, or the price reflects information with

a lag of z > 0. Let πf (z) and πi(z) be the respective fraction of frequently- and infrequently-

traded stocks that have a lag of z, where we assume that z is small enough that the stock

price reflects the stock’s value sometime within the previous 24 hours.

Then the covariance between the lagged returns of the frequently-traded portfolio and

the current returns of the infrequently-traded portfolio before time ` is

cov(∆pfb`
t−1, ∆pib`

t ) = Nσ2
[
(ρfρi + (1− ρf )(1− ρi))πf (0)πi(z)z + ρf (1− ρi)[πf (0)πi(0)(1)

+πf (0)πi(z)(z + 1) + πf (z)πi(z)(1)] + (1− ρf )ρiπf (0)πi(z)(z − 1)
]
,

and the corresponding covariance after time ` is

cov(∆pfa`
t−1, ∆pia`

t ) = Nσ2
[
(ρfρi + (1− ρf )(1− ρi))πf (0)πi(z)z + ρi(1− ρf )[πf (0)πi(0)(1)

+πf (0)πi(z)(z + 1) + πf (z)πi(z)(1)] + (1− ρi)ρfπf (0)πi(z)(z − 1)
]
.
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Taking the difference between these two covariances yields

Nσ2(ρf − ρi) [πi(0)πf (0)(1) + πi(0)πi(z)(z + 1) + πf (z)πi(z)(1)− πf (0)πi(z)(z − 1)]

= Nσ2(ρf − ρi) [πi(0)πf (0) + 2πi(0)πi(z) + πf (z)πi(z)]

= Nσ2(ρf − ρi) (1 + πf (0)− πi(0)) .

If a greater fraction of infrequently-traded stock prices reflect lagged information (rela-

tive to frequently-traded stock prices) as the day progresses, then, all else equal, cross-

autocorrelations should rise throughout the day as should before-after cross-autocorrelations

differences.

Further, to the extent that frequently-traded stocks and infrequently-traded stocks are

composed of stocks that systematically vary in the extent to which they trade and/or

incorporation information, then before-after patterns similar to those found with cross-

autocorrelations emerge with autocorrelations. To illustrate, suppose for the fraction ρf

of frequently-traded stocks that trade “within an innovation” of time `, fraction πff (z) have

prices that reflect lagged information; and for the fraction 1− ρf of frequently-traded stocks

that trade more than an innovation of time `, fraction πfi(z) have prices that reflect lagged

information, where πfi(z) > πff (z). Intuitively, this captures that within the portfolio of

stocks that tend to trade frequently, those that locally traded near a moment of time `

are more likely to be traded frequently at that moment, and the fact that they are more

frequently-traded means that substantial information arrival is more likely, information that

is more likely to be incorporated into price. In contrast, the cost of not keeping up with a

stock with less information arrival is less; such stocks trade less frequently as a result, and

their prices are more likely not to reflect all extant information.

Then the own-autocovariance for the portfolio of frequently-traded stocks before time `

is:

cov(∆pfb`
t−1, ∆pfb`

t ) = Nσ2[(1− ρf )πfi(z)[ρfπff (z) + (1− ρf )πfi(0)z + ρπff (0)(z + 1)]

+ρfπff (z)[(1− ρf )πfi(0)(z − 1) + ρfπff (0)z] + (1− ρf )ρfπfi(0)πff (0)]
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and the own-autocovariance after time ` is:

cov(∆pfa`
t−1, ∆pfa`

t ) = Nσ2[ρfπff (z)[(1− ρf )πfi(z) + ρfπff (0)z + (1− ρf )πfi(0)(z + 1)]

+(1− ρf )πfi(z)[ρfπff (0)(z − 1) + (1− ρf )πfi(0)z] + ρfπff (0)(1− ρf )πfi(0)]

The difference between before and after own-autocovariances is:

cov(∆pfb`
t−1, ∆pfb`

t )− cov(∆pfa`
t−1, ∆pfa`

t ) = 2Nσ2ρf (1− ρf )[πff (0)− πfi(0)]

If πff (0) ∼ πfi(0), then there should be little or no difference between the before and after

own-autocovariances. If |πff (0)−πfi(0)| < |πif (0)−πii(0)|, then the difference in before/after

own-autocovariances should be larger for portfolios of infrequently-traded stocks than for

portfolios of frequently-traded stocks.

4 Data

Trade and quote data are obtained from the TAQ database for the period 1993 to 1998. From

Datastream, we obtain the market capitalization on January 1st of each year for all NYSE-

listed stocks.4 We eliminate stocks for which Datastream does not have market capitalization

data, stocks based outside the United States, and securities that are not ordinary common

shares. Finally, we eliminate stocks that do not trade at least 200 times each month and

stocks that change their ticker symbol during the year. From the remaining sample, on a

yearly basis we select the largest 500 firms by market capitalization and sort these into two

portfolios: (i) the largest (L) 250 stocks and (ii) the smallest (S) 250 stocks. The same 500

firms are also divided into two groups according to their trade volume in the first month of

the year: (i) 250 frequently-traded (f) stocks and (ii) 250 infrequently-traded (i) stocks.5

4Results for Nasdaq-listed stocks were found to be qualitatively similar and are not presented here to
improve clarity and length. They are available from the authors upon request.

5Barberis and Shleifer (2003) find that assets grouped according to a “style” exhibit even stronger own-
and cross-autocorrelation patterns at a monthly return horizon. To the extent that style-based flows change
on a daily horizon, our results might be different if we divide the stocks according to style-based character-
istics.
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We focus on actively-traded, large stocks it is easiest to interpret our results when stocks

trade in (virtually) all 24-hour periods. Later, we consider how our results might change if

we include highly-illiquid stocks.

We consider τ ∈ {market open, 1100h, 1200h, 1245h, 1330h, 1430h, market close} as arbi-

trary times. We focus on these times for our statistical analysis because they are sufficiently

far apart to keep overlap in trade times to a minimum. For each stock, a series of daily prices

are created for each of the following criteria: first trade price after time τ , last trade price

before time τ , the mid-quote of the first quote revision after time τ , and the mid-quote of

the last quote revision prior to time τ . Based on this series of prices, daily portfolio returns

are calculated as: rt = 1
I

∑I
i=1

Pti−Pt−1,i

Pt−1,i
. Note that the last trade prior to an arbitrary time

might occur on the previous trading day and the first trade after an arbitrary time might

occur on the next trading day (within 24 hours). We eliminate potentially erroneous prices

for which the absolute daily price change is greater than 50% or for which the bid price

exceeds the ask price. In the absence of suitable prices, we assume that the daily return for

that particular stock is zero.

In our sample, on average, more than 99.8% of stocks have a trade/quote during each

24-hour time period over which returns are calculated—thus, non-trading over multiple days

is not a significant concern. Non-trading over multiple days reduces cross-autocorrelation

patterns in daily returns, because there is then no overlap in information arrival.

5 Results

5.1 Empirical Cumulative Distribution of Transaction Times

Figure 3 illustrates the empirical cumulative distribution of times of the first trade after

0930h for the large capitalization and small capitalization stock portfolios. The trade times

of large capitalization firms stochastically dominate (first-order) the trade times of small

capitalization firms. Note that there is surprisingly little difference in the distribution of

opening trade times between the large and small stocks samples.
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Figure 4 illustrates the analogous empirical cumulative distribution of the time of the

last trade prior to 1600h. Previous studies of cross-autocorrelation patterns are based on

official closing prices, which may reflect market-on-close (MOC) and limit-on-close (LOC)

trades. MOC and LOC orders must be submitted prior to 1540h.6 When the market closes

at 1600h, all MOC orders are executed against the prevailing bid or offer. An imbalance

of buy orders would be executed against the offer side of the market and an imbalance of

sell orders, the bid side. If an imbalance still remains at 1600h, the specialist executes a

proprietary trade to alleviate the disparity between supply and demand or seek approval for

a trading halt if a significant order imbalance remains after publication and receipt of any

offsetting orders. In general, most of the delay in reporting times after 1600h in figure 5

reflect the arbitrary time the specialist and his clerk decide to report the trade, rather than

information-driven factors. Note that the stochastic dominance in closing trade times is still

present when MOC and LOC trades are considered.

In addition to the open and close, we conduct our before/after autocorrelation analysis

at different times during the day. Figure 6 provides the distribution of trade times around

1245h. We highlight this trading time because it divides the trading day in half. This

time is sufficiently far away from the open and close that we can avoid problems associated

with the opening call auction and different rates of information release at the open and

close, thereby examining the nonsynchronous trading effect “directly”. Our analysis is most

transparent when trade times are symmetrically distributed around our arbitrary times, as

figure 6 verifies.

Figures 7 and 8 provide the corresponding empirical cumulative distributions of the time

of the first and last quote revision, respectively. It is worth noting that there is little difference

in the distribution of first quote times for the large and small stock portfolios.

6All MOC and LOC orders must be entered by 1540h either systemically or by floor brokers representing
MOC and LOC orders who must communicate their interest to the specialist trading the stock. After 1540h,
MOC and LOC orders can only be entered if they are on the contra side of the last imbalance published.
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5.2 Autocorrelation Patterns

Table 1 presents the cross-autocorrelation results for size-sorted (large and small) portfolios

with returns calculated using both trade prices and quote midpoints. The distribution of

autocorrelation estimates is highly non-normal and exhibits significant skew. Thus, using

asymptotic standard errors to construct symmetric confidence intervals for our autocorre-

lation estimates will produce confidence bounds that are too wide and incorrectly centered

around our estimate. Since the difference in autocorrelation estimates measured before and

after a particular point in time is potentially very small, it is important that we construct

confidence intervals that reflect the underlying true distribution as closely as possible. To

do so, we construct bootstrap confidence intervals for the autocorrelation estimates.

First, we observe that using a standard block bootstrap approach to estimate autocorre-

lations is inappropriate because a substantial proportion of the pairs in a resampled series

will lie across a join between blocks, and will therefore be independent. To overcome this

whitening effect of block resampling, we instead use a blocks of blocks bootstrap approach

designed to preserve the time dependence structure in the original data. See Davison and

Hinkley (1997, p. 398) for details. Suppose our original data series is (y1, y2, . . . , yn) and we

seek to calculate a lag 1 autocovariance. Then, we set

(y′1, . . . , y
′
n−1) =

(
y′11 y′12 · · · y′1,n−1

y′21 y′22 · · · y′2,n−1

)
=

(
y1 y2 · · · yn−1

y2 y3 · · · yn

)
.

We then resample blocks of the new “data” y′1, . . . , y
′
n−m+1, each of the observations of which

is a block of the original data. The key point is that our statistic of interest should not

compare observations adjacent in each row. With n = 12 observations and a block length of

l = 4 a bootstrap replicate might be

{y′∗j } =

(
y5 y6 y7 y8

y6 y7 y8 y9

y1 y2 y3 y4

y2 y3 y4 y5

y7 y8 y9 y10

y8 y9 y10 y11

)
.

For each bootstrap replication b = 1, . . . , B, the statistic of interest, tb, is calculated based

on the corresponding bootstrap replicate. The number of replications B is selected such

that α(B + 1) is an integer. A basic (percentile) bootstrap confidence interval with nominal
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coverage of (1−α) is obtained by sorting the statistics tb from largest to smallest, t∗1, t
∗
2, . . . , t

∗
B

and then constructing the confidence interval with confidence limits θ̂α = 2t − t∗(B+1)(1−α)

and θ̂1−α = 2t− t∗(B+1)α.

We construct confidence intervals with B = 9999 bootstrap replications and using a block

length of l = 5. Robustness checks show that our results are not sensitive to using different

“reasonable” block lengths. Table 2 presents the confidence intervals with 95% nominal

coverage obtained using this blocks of blocks bootstrap technique. Our estimated confidence

intervals for the reported autocorrelations have widths of approximately 0.14. That is, it

is difficult to establish the level of correlation precisely. In contrast, we can compare two

correlations by taking their difference and then constructing a bootstrap confidence interval

of the difference. The confidence intervals for the difference have widths of about 0.01 and

thus provide a very precise estimate of the relative orderings of the correlations. For instance,

we show that the confidence interval of the difference corr(rLb
t−1, r

Sb
t )− corr(rLa

t−1, r
Sa
t ) bounds

strictly positive numbers, while the confidence interval of the difference corr(rSb
t−1, r

Lb
t ) −

corr(rSa
t−1, r

La
t ) bounds strictly negative numbers.

Consistent with previous research, we find that when closing prices are used to calcu-

late returns, corr(rL
t−1, r

S
t ) is significantly positive and far exceeds corr(rS

t−1, r
L
t ). In fact,

regardless of when we compute returns, we find that corr(rL
t−1, r

S
t ) >> corr(rS

t−1, r
L
t ), i.e.,

the correlation of lagged returns of large-capitalization stocks with current returns of small-

capitalization stocks always exceeds the “reverse” cross-autocorrelation. This can be easily

verified by constructing confidence intervals of the difference between them using the blocks

of blocks bootstrap approach.

We find clear evidence that the impact of nonsynchronous trading is very small. For

example, the predictive power of large stocks is slightly higher using the last trade before

1245h, corr(rLb
t−1, r

Sb
t ) = 0.104, than using the first trade after 1245h, corr(rLa

t−1, r
Sa
t ) = 0.101;

while the predictive power of small stocks is slightly higher using the first trade after 1245h,

corr(rSa
t−1, r

La
t ) = 0.078, than using last trade before 1245h, corr(rSb

t−1, r
Lb
t ) = 0.073. In fact,

the corresponding confidence intervals of the difference in correlations [−0.002, 0.008] and
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[−0.001, 0.010] both include zero. Thus, the correlations at 1245h move in exactly the

direction predicted by the impact of nonsynchronous trading, but the impact is slight (and

often insignificant from zero).

Further evidence of the slight impact of nonsynchronous trading can be gleaned from

the before-after own-autocorrelation patterns. Specifically, it has been well-established that

information arrival drives trading frequency. As a result, within a portfolio stocks that trade

frequently will tend to have more information. As we have seen using the last trade before a

time ` creates an time overlap for lagged frequently-traded stocks with current infrequently-

traded stocks, while using the first trade after ` creates the opposite time overlap. As a

result, the own-autocorrelation pattern should mirror the cross-serial correlation pattern of

lagged frequently-traded portfolio returns with current infrequently-traded portfolio returns.

Consistent with this, table 1 reveals that own portfolio lagged autocorrelation is slightly

higher using the last trade before than using the first trade after. Again, this slight difference

indicates that nonsynchronous trading has only a minor impact.

The fact that corr(rLa
t−1, r

Sa
t ) is substantially greater than corr(rSa

t−1, r
La
t ) strongly indi-

cates that pricing of infrequently-traded stocks reflect some inefficiency—when prices of

infrequently-traded stocks are determined, they must not incorporate some of the recent in-

formation that is already contained in the prices of frequently-traded stocks. This is because

the impact of nonsynchronous trading in the absence of delayed incorporation of information

would give rise to the opposite inequality.

The own-autocorrelation patterns provide added evidence that recent information is not

immediately incorporated into prices of infrequently-traded stocks. No matter whether we

use the last trade before some time `, or the first trade after `, corr(rS
t−1, r

S
t ) is always large

and positive (exceeding the cross-portfolio lead-lag autocorrelations), and greatly exceeding

corr(rL
t−1, r

L
t ). This can be reconciled if information is impounded more quickly into some

stocks than others, especially for small capitalization stocks.

Our analysis of autocorrelation patterns at different points in the trading day uncov-

ers several other strong empirical regularities. First, the before-after difference in cross-
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autocorrelations is very consistent throughout the trading day. Specifically at 1100h, 1200h,

1245h, 1330h, and 1430h, we find that corr(rLb
t−1, r

Sb
t ) > corr(rLa

t−1, r
Sa
t ), while corr(rSb

t−1, r
Lb
t ) <

corr(rSa
t−1, r

La
t ). This result is robust: it holds no matter whether we compute returns using

trades or quotes. Nonetheless, the impact of nonsynchronous trading remains negligible at

all points in the trading day. We also find quite generally that the autocorrelation patterns

are very similar whether we compute returns using trades or quotes: the extent to which the

bid-ask bounce in trade-to-trade returns induces first-order autocorrelation does not underlie

any of our findings.

Second, autocorrelations are increasing throughout the trading day, prior to decreasing

slightly at the market close. This effect is dramatic. For example, from 1100 to close,

corr(rL
t−1, r

S
t ), essentially triples, while the own correlation of small-capitalization stocks

corr(rS
t−1, r

S
t ) doubles.

In order to confirm that the statistical significance of the increasing autocorrelations

during the day, for each of 9999 bootstrap replications, using the block of blocks bootstrap

method with a block length of 40,7 we perform a nonparametric Wilcoxon Signed-Rank test

based on the following 16 differences:

corr(rL
t−1, r

L
t )time=1430 − corr(rL

t−1, r
L
t )time=1245

corr(rL
t−1, r

L
t )time=1245 − corr(rL

t−1, r
L
t )time=1100

corr(rL
t−1, r

L
t )time=1430 − corr(rL

t−1, r
L
t )time=1100

corr(rL
t−1, r

L
t )time=1330 − corr(rL

t−1, r
L
t )time=1200

corr(rS
t−1, r

S
t )time=1430 − corr(rS

t−1, r
S
t )time=1245

corr(rS
t−1, r

S
t )time=1245 − corr(rS

t−1, r
S
t )time=1100

corr(rS
t−1, r

S
t )time=1430 − corr(rS

t−1, r
S
t )time=1100

corr(rS
t−1, r

S
t )time=1330 − corr(rS

t−1, r
S
t )time=1200

corr(rL
t−1, r

S
t )time=1430 − corr(rL

t−1, r
S
t )time=1245

corr(rL
t−1, r

S
t )time=1245 − corr(rL

t−1, r
S
t )time=1100

corr(rL
t−1, r

S
t )time=1430 − corr(rL

t−1, r
S
t )time=1100

corr(rL
t−1, r

S
t )time=1330 − corr(rL

t−1, r
S
t )time=1200

corr(rS
t−1, r

L
t )time=1430 − corr(rS

t−1, r
L
t )time=1245

corr(rS
t−1, r

L
t )time=1245 − corr(rS

t−1, r
L
t )time=1100

corr(rS
t−1, r

L
t )time=1430 − corr(rS

t−1, r
L
t )time=1100

corr(rS
t−1, r

L
t )time=1330 − corr(rS

t−1, r
L
t )time=1200

(2)

For portfolios sorted based on market capitalization, the test statistic is significant at the

5% level for 9176 replications when returns are based on trade prices, implying a bootstrap

p-value of 0.0824. For quotes, the bootstrap p-value is 0.0860. For portfolios sorted based

7A longer block length is used to place greater emphasis on the relative ordering of the correlations rather
than the level of the correlations.
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on the value of trading volume, the bootstrap p-value is 0.0689 for trades and 0.0617 for

quotes. Thus, we conclude that the intraday pattern of rising autocorrelations is significant.

The intraday pattern can be explained as follows. During the overnight period, investors

gather information and stock prices “catch up” with their true underlying valuations. Dur-

ing the day, the incorporation of new information into stock prices becomes increasingly

lagged, particularly for small stocks. Then, the differences at the close are consistent with

large stocks getting “fresher” at the close. Autocorrelation patterns at the close are not

representative of the patterns throughout the remainder of the day. The close magnifies the

power of the large stock portfolio returns to predict future small stock portfolio returns. It

is important to emphasize that this is due to the delayed incorporation of information, and

not due to lower trading frequencies later in the day.

Samples based on trade frequency: We now repeat the analysis by constructing

samples based on trade frequency. Using the same set of stocks used in the market capital-

ization analysis, we re-sort according to the number of trades in the first month of the year.

The sample is then divided into frequently-traded and infrequently-traded portfolios of 250

stocks. Despite only a loose correspondence between market capitalization and trade fre-

quency (see figure 9), the results in table 3 are qualitatively similar to those found previously.

As expected, the nonsynchronous trading effect is larger when we sort on trading frequency

since there is a greater variation in trade times between the frequently and infrequently port-

folios. To verify this, table 4 reports the corresponding confidence intervals using the blocks

of blocks bootstrap approach: many of the confidence intervals that previously straddled

zero for size sorted portfolios are now strictly positive for trade frequency sorted portfolios.

6 Conclusion

This paper re-examines the extent to which differences in trading frequencies can underlie

lead-lag cross-autocorrelations in stock returns. Our central insight is that by using trade

prices before and after an arbitrary point in the trading day to calculate returns, we can
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isolate the impact of nonsynchronous trading on portfolio correlation patterns. This permits

us to conclude decisively that the impact of nonsynchronous trading is negligible. Rather,

the autocorrelation patterns reflect inefficient pricing of infrequently-traded stocks—when

prices of infrequently-traded stocks are determined, they do not incorporate some of the

recent information that is already contained in the prices of frequently-traded stocks.

Our analysis suggests several directions for future research. First, more detailed order

submission information could be used to establish how much “staleness” is due to infrequently

updated limit orders compared with other sources of staleness. Second, the time series could

be extended in order to examine how intraday autocorrelation patterns have changed over

time as institutional features (e.g. tick size) and trading frequency have changed.
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Market 
Open

Market 
Close

Over-
night

Figure 1: Timeline. Value of each stock at end of date t is given by Vt = Vt−1 + δ0
t + δ1

t +
. . . + δ`

t + δ`+1
t + . . . + δc

t , where the innovations δj
t are independently distributed. Before

and after each innovation, stock X is traded at least once. In contrast, first trade of stock
Y always occurs just after δ1

t has been realized; and Y last trades just before δc
t has been

realized.

Figure 2: Arbitrary point of time. The innovation δ`
t occurs before time ` and is incor-

porated into the time ` price of stock X, but not of stock Y ; The first trade after ` in stock
X occurs before δ`+1

t is realized, but that the first trade in Y occurs after.
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Figure 3: The empirical cumulative distribution at 10 second intervals of the time elapsed
from 0930h to the first trade. The sample period is January 1993. The empirical cumulative
distribution of opening trade times is F̂ (τ) = (1/250) × ∑250

i=1 I(toi < τ), where I(·) is an
indicator function that equals 1 if true, zero otherwise; toi is the opening trade time of
stock i.
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Figure 4: The empirical cumulative distribution at 10 second intervals of the time of the
last trade prior to 1600h. The sample period is January 1993. The empirical cumulative
distribution of closing trade times is F̂ (τ) = (1/250) × ∑250

i=1 I(tci < τ), where I(·) is an
indicator function that equals 1 if true, zero otherwise; tci is the closing trade time of stock i.
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Figure 5: The empirical cumulative distribution at 10 second intervals of the time of the
official last trade, including market-on-close and limit-on-close orders. The sample period
is January 1993. The empirical cumulative distribution of closing trade times is F̂ (τ) =
(1/250) × ∑250

i=1 I(tci < τ), where I(·) is an indicator function that equals 1 if true, zero
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Figure 6: The empirical cumulative distribution of the time elapsed from the last trade prior
to 1245h and after 1245h. The sample period is January 1993. The empirical cumulative
distribution of trade times prior to 1245h is F̂ (τ) = (1/250)×∑250

i=1 I(tb1245
i < τ), where I(·)

is an indicator function that equals 1 if true, zero otherwise; tb1245
i is the time of the last

trade of stock i prior to 1245. The empirical cumulative distribution of trade times after
1245h is F̂ (τ) = (1/250)×∑250

i=1 I(ta1245
i < τ), where I(·) is an indicator function that equals

1 if true, zero otherwise; ta1245
i is the time of the last trade of stock i after 1245.
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Figure 7: The empirical cumulative distribution at 10 second intervals of the time elapsed
from 0930h to the first quote. The sample period is January 1993. The empirical cumulative
distribution of opening quote revision times is F̂ (τ) = (1/250)×∑250

i=1 I(toi < τ), where I(·)
is an indicator function that equals 1 if true, zero otherwise; toi is the time of the first quote
revision of stock i.
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Figure 8: The empirical cumulative distribution at 10 second intervals of times of last quote
prior to 1600h. The sample period is January 1993. The empirical cumulative distribution
of closing quote revision times is F̂ (τ) = (1/250)×∑250

i=1 I(tci < τ), where I(·) is an indicator
function that equals 1 if true, zero otherwise; tci is the time of the last quote revision of
stock i.
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