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Abstract  

 We compare density forecasts of the S&P 500 index from 1991 to 2004, obtained 

from option prices and daily and five-minute index returns, over seven horizons ranging from 

one day to twelve weeks. Risk-neutral forecasts are derived both from lognormal densities 

and by estimating the Heston stochastic volatility process from option prices, which provides 

a closed-form density for all future times. Out-of-sample methods, both parametric and non-

parametric, are applied to transform the risk-neutral densities into real-world densities. These 

option-based densities are compared with historical densities defined by ARCH models. 

 We find the best forecasts are produced by the risk-transformations of the risk-neutral 

densities, for horizons of one, two and four weeks, while the best historical forecasts are 

generally superior for the one-day horizon, when forecast methods are ranked by the out-of-

sample likelihood of observed index levels. For all risk-transformations, a mixture of the real-

world densities and the historical densities obtained from five-minute returns has a higher 

likelihood than both components of the mixture, for horizons of one day, one week and two 

weeks. 

 The Kolmogorov-Smirnov and Berkowitz diagnostic tests show that the risk-

transformed, option-based densities nearly always pass these tests, and they do so more often 

than the other density forecasting methods. 

 

JEL classifications: C52, C53, G13. 

Keywords: Density forecasting, Options, High frequency, Heston, S&P 500. 
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A multi-horizon comparison of density forecasts for  

the S&P 500 using index returns and option prices1 

 

1.  Introduction 

 

 Option prices reflect competitive opinions about the risk-neutral density of the 

underlying asset when a set of option contracts expire. Several empirical methods are able to 

convert option prices into an estimated risk-neutral density for a single expiry date, as has 

been illustrated by Jackwerth and Rubinstein (1996), Melick and Thomas (1997), Ait-Sahalia 

and Lo (1998), Bliss and Panigirtzoglou (2002) and Taylor (2005). The more difficult 

problem of estimating the risk-neutral dynamics of the underlying asset, at a specific moment 

in time from option prices for several expiry dates, has received much less attention. The 

most comprehensive study is the pricing and hedging paper by Bakshi, Cao and Chen (1997), 

that summarizes daily estimates for the S&P 500 index for the four-year period from 1988 to 

1991. Our first contribution is to estimate the risk-neutral dynamics of Heston (1993) for 

S&P 500 futures prices, on each day in the fifteen years from 1990 to 2004 inclusive. We can 

then derive the risk-neutral densities for all time horizons, using our estimates of the Heston 

parameters. 

 Transformations from risk-neutral (Q) to real-world (P)2 densities have been proposed 

and estimated by Bakshi, Kapadia and Madan (2003), Bliss and Panigirtzoglou (2004), 

Anagnou-Basioudis et al (2005) and Liu et al (2005). These real-world densities have, 
                                                 
1 We thank Christoph Schleicher for several helpful comments and also seminar participants at the Bank of 
England, the MathFinance workshop in Frankfurt, the Juan Carlos III University of Madrid, the University of 
Manchester, the University of Warwick and the University of Zurich. 
2 Like Liu et al (2005), we prefer ‘real-world’ to alternative adjectives, such as ‘subjective’, ‘objective’, 
‘statistical’, ‘physical’, ‘true’, ‘risk-adjusted’ and ‘historical’. We use ‘historical’ to refer to densities that are 
obtained from time series of prices for the underlying asset. 
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however, been obtained for option expiry dates alone. Furthermore, only ex post information 

has been used to estimate transformation parameters. Our second contribution is to obtain and 

study ex ante, real-world densities for seven forecast horizons that range from one day to 

twelve weeks. 

 There is a vast literature that compares volatility forecasts obtained from historical 

asset prices and current option prices, surveyed by Poon and Granger (2003) and Taylor 

(2005).  In contrast, we are only aware of two prior studies that make similar comparisons for 

density forecasts, namely Anagnou-Basioudis et al (2005) and Liu et al (2005) for small 

samples of forecasts for option expiry dates. Our third contribution is to compare ARCH and 

option-based forecasts for multiple horizons. 

 As option forecasts of volatility are often more accurate than historical forecasts, even 

when these are based upon intraday returns (Martens and Zein (2004), Jiang and Tian 

(2005)), we anticipate that a similar conclusion may apply to density forecasts. We provide 

the first results for density forecasts obtained from intraday returns. We find that real-world 

density forecasts obtained from option prices are superior to historical forecasts obtained 

from daily and intraday returns for horizons of one, two and four weeks, but historical 

forecasts rank very highly for the one-day horizon. Weighted combinations of historical and 

option densities outperform densities obtained from only one of the two sources of price 

information, however, for the shortest horizons of one day, one week and two weeks. 

 Our methodology requires us to specify a continuous-time, stochastic process for the 

underlying asset price, whose parameters can be estimated rapidly from daily panels of option 

prices. An appropriate process for a stock index must incorporate a stochastic volatility 

component, whose increments can have a general level of correlation with price increments. 

The price dynamics of Heston (1993) satisfy all of our requirements: these dynamics assume 

that the variance of asset prices follows a square-root process, and they provide closed-form 
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formulae for densities and option prices, based upon the numerical inversion of characteristic 

functions. Several previous studies have estimated the Heston parameters from S&P option 

prices, including Bakshi, Cao and Chen (1997), Nandi (1998) and Bates (2000). 

 More complicated price dynamics, that include jumps in prices and/or volatility, have 

been studied by Bates (1996, 2000), Bakshi, Cao and Chen (1997), Bollerslev and Zhou 

(2002), Duffie, Pan and Singleton (2000), Pan (2002), Eraker, Johannes and Polson (2003), 

Carr and Wu (2004), Eraker (2004) and Huang and Wu (2004). We do not consider jump 

components, firstly because it is difficult to estimate the additional parameters from daily 

panels of option prices and secondly because our transformations from risk-neutral to real-

world densities are able to remove systematic mis-specifications of the risk-neutral densities. 

 It is possible that the mathematical sophistication of the Heston process and the 

extensions above may be counterproductive when the final goal is to produce real-world 

densities. Consequently, we also investigate transformations of risk-neutral, lognormal 

densities. 

 The positive risk premium for the aggregate equity market shows that some 

transformation must be applied to risk-neutral densities before appropriate, real-world, 

density forecasts can be made. Bliss and Panigirtzoglou (2004) evaluate single-parameter, 

utility transformations that can be motivated by a representative-agent model. They estimate 

the risk parameter by minimizing the diagnostic test statistic of Berkowitz (2001); this test 

assesses the uniformity and independence of observed, cumulative probabilities. Bliss and 

Panigirtzoglou find that ex post, real-world densities for the S&P 500 and FTSE 100 indices 

are a significant improvement upon their risk-neutral densities. Anagnou-Basioudis et al 

(2005) for the S&P 500, and Liu et al (2005) and Kang and Kim (2006) for the FTSE 100, 

also provide empirical results for utility transformations. 
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 Liu et al (2005) estimate the two parameters of a more flexible transformation, by 

maximizing the ex post, likelihood of the observed index levels on the monthly, option expiry 

dates. We apply the same calibration transformation, but instead employ ex ante 

transformation parameters. These are obtained separately for seven forecast horizons, that are 

not restricted by the timing of option expiry dates. We also provide the first analysis of two 

further transformations from risk-neutral to real-world densities: one assumes the Heston 

dynamics apply in the real world by incorporating appropriate risk-premium functions, and 

the other applies a non-parametric calibration function. 

All our density forecasting methods are described in Section 2. We consider historical 

densities obtained from ARCH models that are estimated from daily and intraday returns, 

risk-neutral (Q) densities that are either lognormal or provided by Heston’s price dynamics, 

real-world (P) densities given by the three transformations of the Q-densities, and mixture 

densities that use all of the information derived from historical and option prices. The 

econometric methodology used to provide ex ante parameters and forecasts is presented in 

Section 3. We also present our criteria for making out-of-sample comparisons between the 

various sets of density forecasts. 

 The S&P 500 futures and options price data are described in Section 4. The empirical 

results are all contained in Section 5. We find that the best forecasts are given by the risk-

transformations of the risk-neutral densities, for horizons of one, two and four weeks, when 

the ranking criterion is the out-of-sample likelihood of observed index levels. In contrast, the 

one-day ahead historical densities are superior to all but one set of P-densities. For horizons 

between six and twelve weeks, all the methods have similar out-of-sample likelihoods. A 

mixture of the best option-based and the best historical densities outperforms both 

components of the mixture, for the three shortest horizons. Standard diagnostic tests show 
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that the risk-transformed, option-based densities nearly always pass these tests, while the 

other density forecasting methods have more test failures. Finally, Section 6 concludes. 

 

2.  Density forecasts 

 

2.1 Historical densities 

 By estimating ARCH models, the prices of the underlying asset up to and including 

time t can be used to produce historical density forecasts for the asset price at time 1+t . One 

period of time defines a constant forecast horizon in this section, that may be one day, one 

week or several weeks. Supposing the underlying asset is a futures contract, we define one-

period returns by )log( 1−= ttt FFr ; here 1−tF  and tF  are end-of-period prices for the same 

contract. 

 A specific ARCH model uses price information tI , known at the end of period t, to 

produce a parametric density function, )( 1 tt Irf + , for the next return, 1+tr . The historical 

density for the next end-of-period price, 1+tF , is then: 

.
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We describe four specifications for the historical density )( 1 tt Irf + . 

 The most elementary and credible ARCH model for a stock market index is the 

GJR(1, 1) model of Glosten, Jagannathan and Runkle (1993). The conditional variance th  is 

then an asymmetric function of returns. We define the model as follows, with a constant 

conditional meanµ : 

ttr εµ +=  
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The term tN  represents the number of trading days during period t, so that the conditional 

variance is proportional to the amount of trading time. Normal distributions for the i.i.d., 

standardized residuals tz  define a specification that we refer to as the GJR model. As it is 

well-known that fat-tailed, conditional distributions are preferable for daily horizons, we also 

define the GJR-t model by supposing the tz  have the standardized t-distribution, with 

degrees-of-freedom ν , as first evaluated in Bollerslev (1987). 

 Sums of squared intraday returns are superior to squared daily returns as measures of 

realized volatility (Andersen and Bollerslev, 1998, Andersen et al, 2001) and these sums can 

be used to improve volatility forecasts (Blair, Poon and Taylor, 2001, Martens and Zein, 

2004). Let tIntra  represent the total of some set of squared intra-period returns for period t. 

Then the Intra and Intra-t models are here defined by the conditional variance equation: 

1
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−− +
+=

t

tIntrat

t

t
N

hIntra
N
h βγ

ω                                                                 (3) 

with, respectively, conditional normal distributions and conditional t-distributions. 

 

2.2 Risk-neutral densities 

 Almost all of the methods that estimate risk-neutral densities (RNDs) from option 

prices only provide densities for the underlying asset at option expiry times. To obtain 

densities for all future times, however, it is necessary to specify the risk-neutral dynamics of 

the underlying asset price. We consider two specifications. The first ignores the stochastic 
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property of volatility and simply assumes that prices follow geometric Brownian motion 

(GBM). All the RNDs are then lognormal. The second specifies a risk-neutral volatility 

process that ideally provides theoretical option prices that are compatible with observed 

prices. 

 The stochastic volatility process of Heston (1993) is a natural candidate, because it 

provides satisfactory, closed-form, theoretical option prices. The continuous-time, risk-

neutral dynamics for a futures price, tF , are given by supposing that the stochastic variance, 

tV , follows the square-root process of Cox, Ingersoll and Ross (1985): 

,1dWVFdF =  

and 

2)( dWVdtVdV ξθκ +−= ,                                              (4) 

with correlation ρ  between the increments of the two Wiener processes, tW ,1  and tW ,2 . The 

time t is now measured in years. The special case of GBM, with constant volatility θ , occurs 

when θ=0V  and 0=ξ . 

 Several futures contracts are traded at the same time, with different expiry dates. We 

suppose that their prices satisfy standard, no-arbitrage, equations that imply the same 

variance process and the same parameters ( ρξθκ ,,, ) are applicable to all contracts. 

 Heston (1993) provides an analytic formula for the characteristic function of )log( TF , 

for given initial values 0F  and 0V  and any positive time T. Our notation for this 

characteristic function is ))]log([exp()(~
T

Q FiEg ψψ = , with ψ  a real number and Q the 

risk-neutral measure. The following inversion formula then gives the risk-neutral density of 

TF , denoted by )(, xg TQ , for positive values of x: 

. )](~))log(Re[exp( 1)(
0

, ψψψ
π

dgxi
x

xg TQ ∫ −=
∞

                                             (5)  
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A straightforward numerical integration is required for each value of x. Heston (1993) also 

proves that the fair price of a European call option, whose strike is K, has the form: 

)),(),((),( 020100 KFKPKFPFeKFc rT −= −                                                          (6) 

where r is the risk-free rate, ),( 02 KFP  is the risk-neutral probability that the option expires 

in-the-money and ),( 01 KFP is a different probability for the same event when a different 

measure is applied. Both ),( 01 KFP  and ),( 02 KFP  are obtained by inversion formulae that 

require numerical integration. 

 

2.3 Real-world densities 

 The risk-neutral density will always be incorrectly specified if it is used to make 

statements about real-world probabilities determined by a real-world measure P. Although a 

risk premium that compensates for price risk ensures this conclusion, it is possible that there 

is also a volatility risk premium. Furthermore, the assumption of a square-root process for 

volatility is at best a convenient approximation. 

 Transformations from risk-neutral to real-world densities rely on assumptions. These 

can be provided by a representative agent model, by specifying risk-premia functions or by 

calibration theory. We prefer the additional flexibility provided by either two risk-premium 

functions or the two-parameter calibration transformation of Fackler and King (1990) and Liu 

et al (2005) to the one-parameter utility transformation of Bliss and Panigirtzoglou (2004) 

and Anagnou-Basioudis et al (2005). We also investigate a non-parametric calibration 

transformation. 

 

a) Risk-premium transformations 
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The Heston dynamics in (4) describe a risk-neutral, affine diffusion process. An affine real-

world process is defined by including linear drift terms in both the price and the variance 

equations, thus: 

,~
11 WdVVdtFdF += λ  

and 

( ) 22
~][ WdVdtVVdV ξθκλ +−+= .                                              (7) 

The assumption of linear functions for the risk premia ensures the availability of analytic 

formulae for the real-world, characteristic functions of future prices. The inversion formula (5) 

then provides real-world densities )(, xg TP  that depend on the premium coefficients, 1λ  and 

2λ . 

 

b) Calibration theory 

 At time 0, suppose )(, xg TQ  and )(, xG TQ  respectively denote the risk-neutral density 

and cumulative distribution function (c.d.f.) of the random variable TF , and then define 

)(, TTQT FGU = . Following Bunn (1984), let the calibration function )(uCT  be the real-

world c.d.f. of the random variable TU ; our notation emphasizes that the calibration function 

depends on the forecast horizon T. Now consider the real-world c.d.f. of TF . With “Pr” 

referring to real-world probabilities, this c.d.f. is 

))(())(Pr())()(Pr()Pr( ,,, xGCxGUxGFGxF TQTTQTTTQT =≤=≤=≤ .               (8) 

Consequently, the real-world c.d.f. of TF  is: 

))(()( ,, xGCxG TQTTP = .                                                          (9) 

Also, if )(, xGu TQ= , the real-world density of TF  is given by 
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                                         (10) 

with )(ucT  representing the density of TU . 

These formulae for the real-world density and c.d.f. can be implemented providing we 

make the assumption that the calibration function )(uCT  is invariant through time and hence 

can be estimated.  

 

c) A parametric calibration function 

Our preferred parametric calibration function is the c.d.f. of the Beta distribution, 

recommended by Fackler and King (1990) in their innovative study of densities obtained 

from commodity option prices. The c.d.f. is defined by the incomplete beta function: 

),(/)1( )( 1

0

1 kjBdvvvuC ku j
T

−
∫

− −= .                                              (11) 

Here the constant ),( kjB  is defined by )(/)()(),( kjkjkjB +ΓΓΓ= .  

There are two calibration parameters, j and k, that are expected to depend on the 

horizon T. The special case 1== kj  defines a uniform distribution and then the risk-neutral 

and real-world densities are identical. Liu et al (2005) show that the calibration 

transformation may define the same risk transformation as a utility function within a 

representative agent model. The necessary and sufficient conditions for an implicit risk-

averse utility function are jk ≤≤ 1  (with kj ≠ ).  

From (10), the real-world density is  

)(
),(

))(1()(
)( ,

1
,

1
,

, xg
kjB

xGxG
xg TQ

k
TQ

j
TQ

TP

−− −
= .                                   (12) 

This equation can be evaluated rapidly using numerical methods. 
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d) A non-parametric calibration function 

 An empirical calibration function can be estimated using a sample of n observations, 

},...,,{ 21 nuuu , from the distribution of )(, TTQT FGU = , when we can assume these 

observations are i.i.d. with c.d.f. given by )(uCT . 

Let (.)φ  and (.)Φ  respectively denote the density and the c.d.f. of the standard normal 

distribution; also let (.)1−Φ  denote the inverse function defined by yy =ΦΦ− ))((1 . We 

transform the observations iu , whose domain is from 0 to 1, to new variables )(1
ii uy −Φ=  

and then fit a nonparametric, kernel c.d.f. to the set },...,,{ 21 nyyy . We use a normal kernel, 

with bandwidth B, and so obtain the kernel density and c.d.f. respectively as: 

                               ∑ ⎟
⎠
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The empirical calibration function is then 

))((ˆ)(ˆ 1 uHuC TT
−Φ=                                                            (14) 

and, from (9), the real-world c.d.f. becomes 

))((ˆ)( ,, xGCxG TQTTP = .                                                        (15) 

With )(, xGu TQ=  and )(1 uy −Φ= , the real-world density is then: 

.
)(

)(ˆ)(

)(ˆ)(ˆ
)))(((ˆ)(

,

,
1

,

y
yhxg

yh
du
dy

dx
du

dy
yHd

dx
dyxGH

dx
dxg

TTQ

T
T

TQTTP

φ
=

==Φ= −

                     (16) 

Once more, it is easy to evaluate this density using numerical methods. 
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2.4 Mixture densities 

 At some general time t, both ARCH densities and option-based densities may contain 

incremental information about the asset price at a later time .Tt +  Consequently, we also 

evaluate the mixture density: 

)()1()()( ,,, xgxgxg TARCHTPTmix αα −+= ,     10 ≤≤α .                       (17) 

As option traders know the historical price information, it is possible that 1=α  if the 

transformations are able to translate an “efficient” risk-neutral density into the best possible 

real-world density. At the other extreme, 0=α  might occur if option prices contain no real-

world information that is incremental to the historical record of asset prices. 

 

3. Empirical methods 

 

3.1 Estimation of parameters 

 The historical, the risk-neutral and the real-world densities are all parametric. We 

always use ex ante estimates of parameters, to ensure that all density forecasts are evaluated 

out-of-sample. Consequently, all parameters required at time t are estimated by only using 

information available at time t. While the parameters of the Heston process are estimated 

daily from option prices by minimizing a least-squares function, all the other parameters are 

estimated by maximizing the log-likelihood function of selected, observed asset prices.  

 The parameters of the continuous-time, risk-neutral processes for asset prices are 

estimated at the end of each trading day. The estimated volatility of the GBM process is 

provided by the simplest credible estimate, namely the end-of-day, nearest-the-money 

implied volatility for the nearest-to-expiry options. For the Heston process defined by (4), at 

the end of day n we estimate the initial variance nV , the three volatility parameters, nn θκ  ,  
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and nξ , and the correlation nρ  between the price and volatility differentials. Suppose nN  

European, call3 option contracts are traded on day n, labeled by nNi ,...,1= , with strikes 

inK , , expiry times inT ,  and market prices inc , ; also, suppose inF ,  is the futures price for the 

asset after inT ,  years. Then the five Q-parameters are estimated by minimizing 

2
,,,

1
, )),,,,,,,(( nnnnnininin

N

i
in VTKFcc

n
ρξθκ−∑

=
 .                                     (18) 

with (.)c  the Heston pricing formula, given by (6). We denote these risk-neutral parameters 

estimates obtained at time n by nΘ . 

 

Maximum likelihood estimates 

The parameters of the risk-premium functions that are assumed in (7), namely 1λ  and 

2λ , are estimated separately for each of seven forecast horizons. Each horizon defines a set 

of time periods. For one of these sets, at the end of period s corresponding to day sn , we can 

numerically evaluate the real-world density ),,( 21,, snTsP xg Θλλ  for the asset price T years 

later, at the end of period 1+s . The ex ante maximum likelihood estimates (MLEs) of 1λ  and 

2λ  at time t are given by maximizing the log-likelihood function of the observed asset prices 

sF  at the ends of periods .,...,2,1 ts =  Thus we maximize: 

)),,(log( ),,...,(log 211
1

0
,,211 sns

t

s
TsPt FgFFL Θ∑= +

−

=
λλλλ .                                 (19) 

Likewise, the parameters of the parametric calibration function (11), namely j and k, 

are also estimated separately for each of several forecast horizons. The risk-neutral density 

                                                 
3 We only include call prices in the estimation function, (18). We explain in Section 4.3 that the put prices in our 
database are converted to equivalent European call prices, using the put-call parity relationship, and are then 
included in (18). 
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)(,, snTsQ xg Θ  and its c.d.f are used to evaluate the real-world density ),,(,, snTsP kjxg Θ  

given by (12). The ex ante MLEs of j and k at time t are also given by maximizing the log-

likelihood function of the available, observed asset prices, i.e.: 

)),,(log( ),,...,(log 1
1

0
,,1 sns

t

s
TsPt kjFgkjFFL Θ∑= +

−

=
.                             (20) 

 The non-parametric calibration function is re-estimated at the end of each period t. 

The observed prices define the cumulative, risk-neutral probabilities, 

)( 1,,1 snsTsQs FGu Θ= ++  , from which we can obtain the real-world density by using (13) 

and (16). The bandwidth B in (13) should decrease as t increases. We have used the standard 

formula of Silverman (1986), 2.09.0 tB yσ= , with yσ  the standard deviation of 

}1 ),({ 1 tsuy ss ≤≤Φ= − . 

 The ARCH densities for one-period returns, specified by (2) and (3), have the general 

form ),( 1 ϑ−ss Irf , that depends on a parameter vector ϑ  and a set 1−sI  of historical 

returns. The MLE at time t is the vector tϑ̂  that maximizes the log-likelihood function of all 

the returns since some earlier time τ  (assumed to precede the first available option prices):  

)),(log(  ),...,,...,(log 11 ∑=
=

−
t

s
sst IrfrrrL

τ
τ ϑϑ .                               (21) 

From (1), the ex ante density of the next end-of-period price, 1+tF , is then given by 

xIrfIxg tttttARCH )ˆ,()ˆ,(, ϑϑ = ,     with ).log( tFxr =                (22) 

 Similarly, the MLE of the mixture parameter α , that determines the weights given to 

option-based and historical densities in (17), can be obtained by maximizing an appropriate 

log-likelihood function. We use a two-step method. The first-step provides estimates of all 

the parameters except α . Then, at time t we will know the observed values of the 
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components of the mixture, for example we know ),ˆ,ˆ(~
1,,, snsssTsPsP kjFgg Θ= +  and 

)ˆ,(~
1,, ssssARCHsA IFgg ϑ+=  for times ts <≤0 . The MLE of α  at time t is given by the 

number tα̂  that maximizes 

∑ −+=
−

=

1

0
,,21 )~)1(~ log( ) ,..., ,(log

t

s
sAsPt ggFFFL ααα .                 (23) 

The ex ante mixture density for 1+tF  is then 

)ˆ,()ˆ1(),ˆ,ˆ(ˆ ,,, tttARCHtnttTtPt Ixgkjxg
t

ϑαα −+Θ .                  (24) 

 

3.2 Evaluation of the density forecasts 

 The forecasts are assessed using several numerical criteria, that include the out-of-

sample likelihood and the values of diagnostic test statistics. For a fixed forecast horizon, 

suppose method m provides a series of density forecasts )(, xg tm , made at times wtv ≤≤ , 

that are to be evaluated at times from 1+v  to 1+w  inclusive. 

 Our preferred method is the one that maximizes the out-of-sample, log-likelihood of 

observed asset prices. This equals 

))(log( 1, +
=
∑= t
w

vt
tmm FgL .                                                  (25) 

The same criterion is used by Bao, Lee and Saltoglu (2004) to compare ARCH density 

forecasting methods applied to equity indices. The out-of-sample, log-likelihood is a special 

case of the weighted log-likelihood criterion used by Amisano and Giacomini (2005) to test 

for differences between the accuracy of competing forecasts. 

 Note that if one of the methods, say method M, correctly specifies the densities then it 

will have the highest expected log-likelihood. This follows from a property of the information 

criterion of Kullback and Liebler (1951), also called relative entropy; it is defined by 
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dxxgxgxgFgFgE tmtMtMttmttM  ))()(log()(]))()([log( ,,
0

,1,1, ∫=
∞

++ .            (26) 

The relative entropy is positive whenever the two densities are continuous and distinct. 

Consequently, ][][ mM LELE >  for Mm ≠ and we may expect the sample value of ML  to 

exceed that of mL  when the number of forecasts made is sufficiently large. When none of the 

methods correctly specifies the densities, maximizing the likelihood criterion will select the 

densities that are nearest to the true densities according to the information criterion (Bao et al, 

2004). 

 Several diagnostic tests are available to assess the adequacy of a set of forecasts. We 

focus on tests that use the time series of observed cumulative probabilities, },...,{ 11 ++ wv uu , 

as recommended by Diebold, Gunther and Tay (1998). For a general method m these 

probabilities are defined by 

dxxgu
tF

tmt )(
1

0
,1 ∫=

+

+  .                                                        (27) 

We check first whether or not the values of u are consistent with i.i.d. observations from the 

uniform distribution between zero and one. The Kolmogorov-Smirnov (KS) test is used, that 

relies on the maximum difference between the sample and theoretical cumulative functions. 

The sample c.d.f. of },...,{ 11 ++ wv uu , evaluated at u, is the proportion of outcomes less than 

or equal to u, i.e.: 
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 Secondly, we use the test of Berkowitz (2001) to check whether the values of 

)(1 uy −Φ=  are consistent with the null hypothesis of i.i.d. observations from a standard 

normal distribution. The alternative hypothesis for the test is a stationary, Gaussian, AR(1) 

process with no restrictions on the mean, variance and autoregressive parameters. The test is 

decided by comparing a likelihood-ratio statistic (LR3) with 2
3χ ; LR3 is defined by the 

maximum log-likelihood of },...,{ 11 ++ wv yy for the alternative hypothesis minus the log-

likelihood for the null4.  

 

4.  Data 

 

The underlying assets for the density forecasts are futures contracts written on the S&P 

500 index, traded at the CME. We investigate density forecasts for the futures price, rather 

than the spot level of the index, because of the availability of contemporaneous, settlement 

prices for futures and options contracts. A second advantage of working with futures data is 

that it is not necessary to consider dividend payments on the stocks that define the index. 

Option prices for S&P 500 futures have also been studied by Bates (2000), Bliss and 

Panigirtzoglou (2004) and Anagnou-Basioudis et al (2005).  

 

4.1 Futures prices 

End-of-day settlement prices and intraday prices for S&P 500 futures contracts are 

studied from 28 April 1982 until 31 December 2004. The settlement and intraday prices are 

                                                 
4 Bliss and Panigirtzoglou (2004) estimate their risk transformation parameters by minimizing the Berkowitz 
test statistic. We only use the Berkowitz test as a diagnostic test. Extensive Monte Carlo simulations, that we 
will report elsewhere, compare density parameters estimated either by maximizing the likelihood function or by 
minimizing the Berkowitz statistic. The likelihood estimator is never less accurate than the Berkowitz 
alternative and it is much more accurate for estimating the mixture parameter α . Also see Bao et al (2004) who 
document theoretical advantages from applying likelihood methods to prices and not to the values of 

)(1 uy −Φ= . 
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respectively provided by the CME and Price-Data.com. S&P 500 futures are contracts written 

on the index level on the third Fridays of March, June, September and December. All returns 

are calculated from the nearest contract, except on the expiry days and on the Thursdays that 

precede them when the next contract is used. 

The high-frequency, realized variances are calculated from five-minute returns. This 

frequency provides a satisfactory trade-off between maximizing the accuracy of volatility 

estimates and minimizing the bias attributable to microstructure effects (Bandi and Russell, 

2006). As the S&P 500 futures contracts are traded from 08:30 to 15:15 local time at the 

CME, we use 81 intraday returns for each day. The realized variance for day t is defined as 

the sum of the squares of the five-minute returns itr , :  

∑=
=

81

1

2
,

i
itt rIntra .                                                       (30) 

 

4.2 Interest rates 

Three-month, six-month and one-year U.S. Treasury bill rates have been converted to 

continuously compounded rates. The risk-free rate r employed in an option pricing formula is 

then the three-month rate for option lives up to three months, otherwise the rate is given by 

linear interpolation. 

 

4.3 Option prices 

We study the prices of options on S&P 500 futures contracts for fifteen years, from 2 

January 1990 to 31 December 2004.  These prices post-date the crash of October 1987, after 

which the skewness of risk-neutral densities became significantly negative (Jackwerth and 

Rubinstein (1996)). 
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We consider prices for each option-on-futures contract that expires on the same Friday 

as its underlying futures contract. We do not use the prices of the remaining option contracts 

that expire one or two months earlier than the futures, because they are less actively traded. 

Option contracts with seven or less calendar days until expiry are excluded. 

Call and put settlement prices for the same strike and expiry date should theoretically 

contain the same information. Either the call or the put will be out-of-the-money (OTM), 

except for the rare occasions when both are at-the-money (ATM). We choose to only use the 

information provided by the prices of OTM and ATM options, since the in-the-money option 

contracts are usually less actively traded. 

The option contracts are American. We obtain equivalent European option prices from 

the American prices, that have the same implied volatility when the pricing formulae are 

those of Black (1976) and Barone-Adesi and Whaley (1987). The early exercise premia are 

small for OTM options and hence only very small errors can be created by approximating the 

premia by using the formulae of  Barone-Adesi and Whaley. Finally, the put-call parity 

equation for options on futures is used to obtain equivalent European call prices from the 

European OTM put prices. 

We analyze 435,100 option prices for the 3,777 trading days from 1990 to 2004. The 

average number of option prices studied per day is 115, made up of 45 OTM calls and 70 

OTM puts. The number of different expiry dates available on any day is 2, 3 or 4 and the 

average number is 3.1. Table 1 summarizes the quantity, the moneyness (defined as KF ), 

and the time-to-expiry of the contracts that provide the observed prices. There are far more 

prices for deep-OTM put options than for deep-OTM call options, reflecting the greater 

demand for put options. 

 

4.4 Volatility comparisons 
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 Figure 1 shows, as dark dots, the time series of the implied volatilities obtained from 

the nearest-to-the-money options that are nearest to expiry. Figure 1 also shows, as light dots, 

the time series of the annualized, intraday, realized standard deviation, defined by 

tIntra252 . 

 The intraday and option measures of volatility move together, as expected, but the 

implied level is higher than the intraday, realized level. The first reason for this is that the 

intraday measure excludes the price variation from the market’s close until the market 

reopens. From 1990 until 2004, the average of the daily realized variances ( 41093.0 −× ) 

equals 80% of the variance of the daily returns ( 41017.1 −× ). The second reason is a 

systematic difference between historical variance and risk-neutral variance: the average of the 

squared implied volatilities on Figure 1, converted to daily units ( 41032.1 −× ) is 113% of the 

variance of the daily returns. Stated as annualized, standard deviations, these average 

measures of volatility are 15.3% for Intra, 17.2% for daily returns and 18.3% for near-the-

money options. The higher level for risk-neutral volatility is to be expected, because of the 

evidence supporting a negative, volatility risk premium in U.S. equity indices; this has been 

documented in several papers, including Jackwerth and Rubinstein (1996), Bakshi and 

Kapadia (2003) and Bollerslev, Gibson and Zhou (2005). 

 

5.  Empirical results 

 

Density forecasts are evaluated for the fourteen years from January 1991 until December 

2004 inclusive. The option prices during 1990 are only used to contribute to the ex ante 

information that is required to estimate the transformations from risk-neutral to real-world 

densities. 
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 The density forecasts are made for seven horizons: one trading day and one, two, four, 

six, eight and twelve weeks. The first forecast for each horizon is made on Wednesday, 3 

January 1990. The forecasts for the multi-day horizons do not overlap and they are all made 

on Wednesdays. The forecast density at time t for time Tt +  always refers to the first futures 

contract that matures at least one calendar day after time Tt + . 

 

5.1 Illustrative density plots   

 The final one-day ahead densities, calculated from the information available on 30 

December 2004, are shown on Figures 2a, 2b and 2c. Figure 2a shows the four historical 

densities; the conditional t-densities have higher peaks and fatter tails than the conditional 

normal densities. Figures 2b and 2c respectively show how the risk-transformations change 

the shapes of the lognormal and the Heston risk-neutral densities. The labels P1, P2 and P3 

for the real-world densities respectively refer to the parametric calibration, the non-

parametric calibration and the risk-premium transformations. It can be seen that each 

transformation increases the peak of the density and decreases the probability of a large price 

change, consistent with the real-world density having a lower standard deviation than the 

risk-neutral density. 

 Illustrative densities for the longer horizon of four weeks, calculated on 17 November 

2004, are shown on Figures 3a, 3b and 3c. The real-world standard deviations are again less 

than the risk-neutral levels. From Figures 2c and 3c it is seen that the illustrative P1-densities 

are very similar to the corresponding P3-densities. 

 

5.2 Historical densities 

 The parameters of the one-day ahead, ARCH densities have been estimated from 

daily and intraday return data that commences on 4 January 1988 and thus post-dates the 
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crash of October 1987. Referring to equation (2), the averages of the ex ante, GJR parameter 

estimates, used in the densities from 1991 onwards, include ,032.01 =α  043.02 =α  and 

913.0=β . For the more credible GJR-t specification, with degrees-of-freedom ν , the 

averages include ,70.4=ν  ,009.01 =α  046.02 =α  and 960.0=β , with the persistence 

parameter equal to 992.05.0 21 =++ βαα . The corresponding averages for the Intra-t 

specification, given by (3), are ,76.4=ν  145.0=γ and 864.0=β . 

 The ARCH densities for the one-week and longer periods are estimated from data that 

commences on 28 April 1982. All the averages for the degrees-of-freedom parameter indicate 

a high level of excess kurtosis in the conditional distributions. The averages of ν  are 6.20 

and 7.22 for the one-week returns, respectively for the GJR-t and Intra-t models, and they are 

4.95 and 4.18 for the longest return period of twelve weeks. 

 Comparisons of the log-likelihoods of the four ARCH specifications favor the Intra-t 

model for all return periods, as will be shown in Section 5.7. 

 

5.3 Risk-neutral Heston parameters 

Several previous studies have estimated the parameters of Heston’s continuous-time 

process from S&P 500 index levels and/or option prices. The risk-neutral, price dynamics are, 

in our notation:   

1dWVFdF =     and    2)( dWVdtVdV ξθκ +−= ,         

with correlation ρ  between the two Wiener processes.                                     

 As researchers use a variety of markets (underlying and/or options), derivatives prices 

(none, spot options or futures options), different sample periods and different estimation 

methodologies, it is not surprising that their parameter estimates are rather diverse. We 

compare the risk-neutral estimates of ,κ  ,θ  ξ  and ρ  in Bakshi, Cao and Chen (1997), 
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Nandi (1998) and Bates (2000), provided in Table 2, with our risk-neutral estimates that are 

summarized in Table 3. We also tabulate historical and real-world parameters for five studies 

in Table 2. The estimates in Table 2 are for complete sample periods, while our estimates are 

obtained separately for each trading day. Our only non-trivial constraint is that the “half-life” 

parameter of the variance process, equal to κ)2log(  years, is at least one week, i.e. 36≤κ .   

 The stochastic variance reverts towards the level θ . Our median estimate is 0.0452, 

which is equivalent to a volatility of 21.3%, compared with the risk-neutral estimates of 

0.040 in Bakshi et al (1997), 0.028 in Nandi (1998) and 0.067 in Bates (2000); the real-world 

estimates in Table 2 are generally lower, which is consistent with the negative risk premium 

for S&P 500 volatility mentioned in Section 4.4. 

 The rate of reversion towards θ  is determined by κ . Our median estimate of κ is 

4.15; the “half-life” parameter of the variance process is then two months. Previous estimates 

of κ are generally lower, ranging from 0.93 in Chernov and Ghysels (2000) to 5.81 in Eraker, 

Johannes and Polson (2003). 

 The kurtosis of returns is primarily controlled by the “volatility of volatility” 

parameter ξ . Estimates obtained solely from option prices, such as our median value of 0.79, 

the 0.74 of Bates (2000) and the 1.28 of Nandi (1998), are much higher than those that are 

obtained from asset returns and option prices; a typical lower estimate is the 0.22 of Eraker 

(2004), that is obtained from returns data alone.  

 Our median estimate of the correlation ρ  is 66.0− . This is similar to the average, 

risk-neutral estimate of  64.0−  in Bakshi et al (1997), which is far more negative than their 

estimate of 28.0− obtained from time series of asset returns and changes in implied 

volatilities. 

 

5.4 Risk-neutral densities 
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 The one-day ahead, risk-neutral densities, now denoted by ),(, xg tQ provide 

cumulative distribution functions )(, xG tQ  that are evaluated at the next, observed futures 

prices, 1+tF , to define observed probabilities defined by )( 1,1 ++ = ttQt FGu . As expected, the 

observed probabilities are incompatible with a uniform distribution. They are calculated 

separately for the lognormal and the Heston risk-neutral densities. 

 The sample c.d.f. calculated from a time series }{ 1+tu  is denoted by )(~ uC  and 

defined by (28). We show the differences between sample and uniform probabilities, 

,)(~ uuC −  as the dark curve on Figure 4b for the Heston densities. It is obvious that there are 

too few outcomes for u near to either zero or one; only 5.7% of the observed u-values are 

below 0.1 and only 6.6% of them are above 0.9. The maximum value of uuC −)(~  equals 

6.6%; this value of the Kolmogorov-Smirnov test statistic rejects the null hypothesis of a 

uniform distribution at the 0.01% level. The deviations uuC −)(~  for the lognormal densities 

are similar, as can be seen from Figure 4a. 

 The shape of the deviation curves can be explained primarily by the fact that the risk-

neutral, standard deviations are, on average, significantly higher than the historical standard 

deviations, as we observed in Section 4.4. Consequently, the risk-neutral probabilities of 

extreme price changes exceed the real-world probabilities. 

 

5.5 Calibration transformations 

 A non-parametric estimate of the density of the probabilities 1+tu  (from 1991 to 2004) 

is provided by differentiating the empirical, non-parametric, calibration function shown in 

(13). This estimated density, )(ˆ uc , is shown by the light curves on Figures 5a and 5b, 

respectively for the lognormal and Heston cases. 
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 The time series averages of the ex ante estimates for the parametric calibration 

transformation applied to the risk-neutral Heston densities are 434.1=j  and 412.1=k . The 

corresponding calibration density can be found from (11) and it is plotted as the dark curve 

on Figure 5b. It can be seen that the parametric and non-parametric calibration densities are 

similar, except near the end points of the distribution. The ex ante estimates of j and k vary 

between 1.3 and 1.6 and nearly always have kj > . The corresponding ex ante estimates for 

the risk-neutral lognormal densities are between 1.15 and 1.4 and their time series averages 

are 1.280 and 1.247, which define the calibration density shown by the dark curve on Figure 

5a. 

 The calibration method is intended to produce real-world densities whose observed 

probabilities }{ 1+tu  are uniformly distributed. After applying the parametric and the non-

parametric calibration transformations, the deviations uuC −)(~  estimated ex ante from all the 

data are shown as light curves on Figures 4a and 4b. It can be seen that these deviations are 

much nearer to zero than those for the risk-neutral densities, particularly for the non-

parametric transformation. 

 Similar results and conclusions are obtained for the one-week ahead densities. The 

time series averages of the Heston-estimates of j and k are 1.424 and 1.409 respectively. For 

horizons of two or more weeks, the average Heston-estimate of j is between 1.45 and 1.58, 

and it is always more than the average estimate of k which ranges from 1.30 to 1.43.  

 Figure 6a shows the four-week ahead deviations uuC −)(~  for the risk-neutral 

lognormal densities and their derived real-world densities, while Figure 6b shows the 

corresponding deviations that are based upon the risk-neutral Heston densities. 

 

5.6 Risk-premium transformations 



 26

 The third transformation of the risk-neutral Heston densities into real-world densities 

adjusts the drift rates of the price and the volatility and thereby incorporates both price and 

volatility risk premia. The premia coefficients 1λ  and 2λ  in the bivariate diffusion (7) have 

been estimated separately for each of the seven horizons. These estimates should be similar 

across horizons if the assumed risk-neutral and real-world dynamics are correct. We find that 

the seven estimates of 1λ  (the return risk premium per unit variance) are indeed similar, 

including 2.41, 2.25 and 2.86 for the one-day, one-week and two-weeks horizons estimated 

from the entire sample from 1991 to 2004. All the full-period estimates of 2λ  (the variance 

risk premium per unit of variance) are negative, which is compatible with the evidence 

elsewhere for a negative volatility premium. The estimates, however, are approximately 

proportional to the reciprocal of the forecast horizon, varying from 197−  for the one-day 

horizon to 2.4−  for the 12-week horizon. This empirical effect is consistent with the real-

world variance at time t being systematically lower than the estimated initial level tV  of the 

stochastic process for the risk-neutral variance.  

 With 01 >λ  and 02 <λ , the risk-premium transformation ensures that the means and 

the standard deviations of the real-world densities are respectively above and below their 

risk-neutral counterparts. For the one-day horizon, Figure 4b shows that the risk-premium 

transformation reduces the magnitudes of the deviations uuC −)(~  as expected. It can also be 

seen that the deviation curves for the risk-premium and the parametric calibration 

transformations are very similar.  

 A risk transformation of the risk-neutral lognormal densities has also been 

investigated. Only the single risk parameter 1λ  is then available, which improves the means 

but not the standard deviations of the densities. Consequently, the transformation only 

changes the log-likelihoods by minor amounts and so the results are not reported. 
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5.7 Likelihood comparisons 

 Table 4 shows the log-likelihoods of the observed futures prices from January 1991 

until December 2004, for eleven ex ante density forecasting methods. These log-likelihoods 

are given for non-overlapping forecasts, made for seven horizons that range from one day to 

twelve weeks. We define the benchmark log-likelihoods as the values for the simplest 

historical method, namely the GJR densities. Table 4 shows the log-likelihood values in 

excess of the benchmark levels, for all other methods. 

 Initially, we consider the log-likelihoods of the four historical methods. These values 

are always higher for conditional t-densities than for the matched conditional normal 

densities. They are also always higher for densities obtained from high-frequency returns 

than for the matched densities obtained from one-period returns. Consequently, the best of 

the four methods is the Intra-t method for all seven horizons. At the shortest horizon of one 

day, incorporating non-normality adds more to the log-likelihood than incorporating intraday 

price information. The relative contributions of non-normality and intraday prices are equal 

for the one-week horizon, while intraday prices contribute more for horizons that are two 

weeks or longer. 

 Likelihood comparisons are now made between eight methods, which define Intra-t 

densities and seven option-based sets of densities. We refer to the risk-neutral densities as the 

lognormal-Q and the Heston-Q densities. The real world densities are labeled lognormal-P1, 

lognormal-P2, Heston-P1, Heston-P2 and Heston-P3; P1 refers to the parametric calibration 

transformation, P2 to the non-parametric calibration transformation and P3 to the risk-

premium transformation. 
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One-day horizon 

 The log-likelihoods, in excess of the GJR benchmark value, are as follows in 

descending order: Heston-P2 127, Intra-t 123, Heston-P1 104, lognormal-P2 101, Heston-P3 

94, lognormal-P1 73, lognormal-Q 27 and Heston-Q 2− . These numbers are summarized in 

five remarks. First, the Intra-t densities obtained from high-frequency returns have high log-

likelihoods compared with the option-based densities. Second, the Heston P-densities have 

higher log-likelihoods than the lognormal P-densities, the differences being 30.4 for P1 and 

27.5 for P2. Third, the non-parametric risk transformation P2 is superior to the parametric 

transformation P1, with the differences respectively equal to 23.5 and 27.4 for the Heston and 

lognormal cases. Fourth, the risk-premium transformation P3 ranks behind the statistical 

transformations P1 and P2. Finally, as expected the Q-densities are seen to be far inferior to 

the P-densities, reflecting the fact that the transformations are able to diminish the impact of 

systematic mis-specification in the risk-neutral densities. 

 

Horizons from one to four weeks 

 The ex ante best method depends on the horizon, being Heston-P2 for one day, 

Heston-P1 for one week, lognormal-P2 for two weeks and Heston-P3 for four weeks. The 

absence of a uniformly best method reflects the similarity of the log-likelihoods for the five 

option-based, P-densities, for all but the shortest horizon; the five one-week numbers in Table 

4 range from 32.8 to 41.5, for two weeks from 22.4 to 27.8 and for four weeks from 15.8 to 

23.2. 

 Next we note that the P-densities are superior to the Intra-t densities for 14 of the 15 

possible comparisons when the horizon is between one and four weeks inclusive; for the 

single exception, the one-week Intra-t densities are slightly ahead of the lognormal-P1 

densities. For the one-week horizon, the excess log-likelihood for Intra-t is 34.4 and the 
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average for the five sets of P-densities is 37.3. The corresponding comparisons are 19.2 

versus 25.9 for two weeks and 12.3 versus 18.6 for four weeks. 

 Each set of P-densities always outperforms the corresponding set of Q-densities. The 

differences vary between 15.8 and 33.0 for one week, 7.6 and 14.2 for two weeks and from 

0.9 to 7.2 for four weeks. 

 

Horizons from six to twelve weeks 

 The differences between the log-likelihoods of the various methods decrease as the 

horizon increases, primarily because the numbers of non-overlapping forecasts decrease. The 

best methods for the longer horizons are Heston-P3 for six weeks, lognormal-P1 for eight 

weeks and Heston-Q for twelve weeks, while the worst is always lognormal-Q. The 

differences between the best and the worst methods are 3.6, 4.5 and 3.8 for these horizons. 

 

Mixtures 

 Mixture densities are defined by (17). We now consider the log-likelihoods for 

mixtures defined by a fraction α  of an option-based density added to a fraction α−1  of the 

best historical density specification, which is given by the Intra-t model. Table 5 shows the 

log-likelihoods of ex ante mixture densities and the time series averages of the ex ante 

estimates of α . The mixtures always have a higher log-likelihood than their component 

densities for horizons of one day, one week and two weeks. The mixtures are, however, often 

inferior for horizons of four or more weeks. 

 The one-day mixtures of the Heston-P2 and the Intra-t densities give a 51% weight, 

on average, to the options-based densities and the remaining 49% weight to the historical 

densities. The log-likelihood of these mixtures is 143 above the benchmark level, which is far 

above the 127 of the Heston-P2 densities and the 123 of the Intra-t densities. The usual 
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likelihood-ratio test values for the null hypotheses 0=α  and 1=α  are then 41 and 32 

respectively, which clearly reject these hypotheses when comparisons are made with the 2
1χ  

distribution5. The same test conclusions are obtained for all of the other one-day mixture 

densities. 

 The average weight given to the five sets of P-densities increases as the horizon 

increases. These averages are 42% for the one-day horizon, 50% for one week, 61% for two 

weeks and 66% for four weeks. The null hypothesis 0=α  is rejected at the 5% level for all 

three Heston P-mixtures for all horizons up to four weeks, but 1=α  is only rejected at this 

level by all three mixtures for the one-week horizon.  

 

5.8 Diagnostic tests                

The Kolmogorov-Smirnov (KS) test statistic, defined by (29) as the maximum value of 

uuC −)(~ , can be used to test the null hypothesis that a set of densities are correctly 

specified. This test makes the assumption that the observed cumulative probabilities are 

observations of independent random variables. Figures 4a and 4b show that there are high 

values of uuC −)(~  for the risk-neutral densities (RNDs) for short horizons, so that the KS 

test establishes that these densities are indeed mis-specified. 

Table 6 lists the percentage p-values for the KS test for the eleven ex ante density 

forecasting methods, for each of the seven horizons. As the null hypothesis is rejected at the 

α % level whenever α<p , it can be checked that 24 of the 77 test values reject the null 

hypothesis at the 5% level. Two-thirds of the 24 rejections occur for densities that might be 

expected to be mis-specified, namely the RNDs and the ARCH densities that are 

conditionally normal. It is noteworthy that the P2-densities obtained by applying the non-

                                                 
5 The standard, asymptotic theory needs to be interpreted cautiously, because we re-estimate α  for each time 
period. 
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parametric transformation to the RNDs have the most satisfactory p-values: 9 of the 14 p-

values exceed 50% and their minimum is 18%, while the values for the one-day horizon are 

47% for Heston-P2 and 88% for lognormal-P2 compared with 6% for the highest value given 

by the other nine sets of one-day densities. We also note that the Heston-P1 and the Heston-

P3 densities provide satisfactory p-values, except for the one-day horizon when the p-values 

are less than 0.5%. 

The likelihood-ratio test statistic of Berkowitz (2001), denoted by LR3, tests the null 

hypothesis that the numbers )(1
tt uy −Φ=  are i.i.d. observations from a standard normal 

distribution against the alternative that they are from a stationary, Gaussian, AR(1) process 

with no restrictions on the mean, variance and autoregressive parameters. Table 7 contains 

the values of LR3 and the MLEs of the variance and autoregressive parameters, once more 

for the eleven ex ante density forecasting methods and for each of the seven horizons. 

The MLEs of the autoregressive parameter are all between 006.0−  and 0.005 for the 

sets of one-day forecasts, so they provide no evidence to doubt that the time series }{ tu  are 

composed of independent observations. The corresponding MLEs for the one-week forecasts 

are, however, all between 12.0−  and 08.0−  inclusive; they reject the null hypothesis that 

the autoregressive parameter is zero at the 5% level for all the historical and all the option-

based sets of densities. There is no significant evidence of time-series dependence for 

horizons of two weeks or longer. 

The MLEs of the variance parameter are usually near one, as required for correctly 

specified densities. The low estimates for the RNDs, such as the 0.68 and the 0.79 for the 

one-day ahead Heston-Q and lognormal-Q forecasts, are a direct consequence of historical 

volatility being lower (on average) than risk-neutral volatility. 

The null distribution of LR3 is 2
3χ  and thus a test value is significant at the 5% level if 

it exceeds 7.81. Table 7 shows that the null is always rejected for the lognormal-Q densities 
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at the 5% level. For the other methods, rejections of the null at the 5% level occur for various 

sets of one-day, one-week and two-week forecasts; there are no rejections for the longer 

horizons, which may reflect low power when few forecasts are evaluated. The only density 

forecasting methods whose densities always pass the LR3-test at the 5% level are the Heston-

P1 and Heston-P3 methods. The highest significant values of LR3 are for the Q-densities, 

which can be explained by the substantial difference between the MLEs of their variances 

and the null value of one. Almost all of the other significant values of LR3 may be explained 

either by an incorrect normal assumption about the conditional shape of a historical density or 

by the negative estimates of the autoregressive parameter for the one-week horizon. 

 

6.  Conclusions       

 

Option-based density estimation methods only provide results within a risk-neutral 

context and most methods require the forecast horizon to coincide with an option expiry date. 

In contrast, we have provided the first evidence that it is possible to construct informative, 

real-world densities for many forecast horizons by using currently available price information. 

Jiang and Tian (2005) have shown that the information content of option prices is 

higher than that of daily and intraday index values when forecasting the volatility of the S&P 

500 index. Our study shows that the same conclusion does not apply to ex ante density 

forecasts of the S&P 500 index when the forecast horizon is only one day, but it does apply 

for intermediate horizons between one and four weeks inclusive. 

For the intermediate horizons we find that three transformations of the risk-neutral 

density, estimated from index levels, option prices and Heston’s pricing formula, all provide 

real-world densities that are more informative than the historical densities estimated from 

ARCH models and high-frequency returns. We say the real-world densities are more 
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informative because they rank higher according to the out-of-sample likelihood criterion. The 

real-world densities also pass almost all of the standard diagnostic tests that we have 

evaluated. 

Option prices are extrapolated, as a function of time-to-expiry, to obtain the one-day-

ahead risk-neutral densities. This may explain why the best historical densities are relatively 

more successful than the real-world densities for the shortest horizon. A mixture of real-

world and historical densities, however, outperforms the components of the mixture both for 

the one-day horizon and also for horizons equal to one or two weeks.  
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Table 1 
 

Summary statistics for the S&P 500 futures option dataset 
 

Information about the numbers of out-of-the-money (OTM) options on S&P 500 futures, 
from 1990 to 2004 

 
 

  Total number Average options 
per day 

Max number 
per day 

Min number 
per day 

Calls  171,383 45 157 8 

Puts  263,717 70 173 8 

Overall  435,100 115 255 29 

Number of 
cross-section 

  3.1 4 2 

Moneyness\Maturity F/K 1 month Between 1 and 6 
months 6 month Subtotal 

Deep OTM put <0.90 10,800 
(2.48%) 

89,779 
(20.63%) 

39,879 
(9.17%) 

140,458 
(32.28%) 

OTM put 0.90−0.97 8,743 
(2.01%) 

52,427 
(12.05%) 

23,964 
(5.51%) 

85,134 
(19.57%) 

Near the money 0.97−1.03 7720 
(1.77%) 

47,325 
(10.88%) 

20,206 
(4.64%) 

75,251 
(17.30%) 

OTM call 1.03−1.10 6,881 
(1.58%) 

45,519 
(10.46%) 

19,178 
(4.41%) 

71,578 
(16.45%) 

Deep OTM call >1.10 2,483 
(0.57%) 

42,253 
(9.71%) 

17,943 
(4.12%) 

62,679 
(14.41%) 

Subtotal  36,627 
(8.42%) 

277,303 
(63.73%) 

121,170 
(27.85%) 

435,100 
(100.00%) 

 



Table 2 
 

Recent empirical studies of the Heston model using S&P 500 index data 
 
 

The continuous-time dynamics for prices and volatility are 

1dWVdtSdS += µ     and 
( ) 2dWVdtVdV ξθκ +−= , 

for the spot index, with dtdWdW ρ=21 . The parameters have been estimated for the risk-
neutral (Q) and real world (P) measures. 
 

 

Paper Measure   κ     ρ     ξ  θ  Data Estimation 
method 

Sample 
period 

Paper 
Objective 

Bakshi et al 
(1997) Q 1.15 -0.64 0.390 0.040 Spot option      RMSE 1988-1991 Hedging 

and pricing 

Nandi 
(1998) Q 3.29 -0.79 1.280 0.028 Spot option 

Likelihood on 
group-specific 

errors 
1991-1992 

Volatilities 
and returns 
correlation 

Bates 
(2000) Q 1.49 -0.57 0.742 0.067 Futures 

option 

Likelihood on 
group-specific 

errors 
1988-1993 

Options and 
returns 

consistency 

Chernov and 
Ghysels 
(2000) 

P 0.93 -0.02 0.061 0.007 Spot option 
and returns EMM 1985-1994 Hedging 

and pricing 

Benzoni 
(2002) P 3.93 -0.60 0.078 0.013 Spot option 

and returns EMM 1996-1997 Pricing 

Pan 
(2002) P 5.3 -0.57 0.380 0.024 Spot option 

and returns GMM 1989-1996 Pricing 

Eraker 
(2004) P 4.80 -0.57 0.22 0.049 Returns MCMC 1987-1996 Pricing 

Eraker et al 
(2003) P 5.81 -0.40 0.143 0.023 Spot option 

and returns MCMC 1987-1999 Pricing 

This study Q 4.93 -0.66 0.93 0.05 Futures 
option RMSE 1990-2004 Density 

forecasts 

 



Table 3 
 

Summary statistics for the daily estimates of the Heston parameters  
 

                                                     
Estimates are summarised for the risk-neutral dynamics  

1dWVFdF =   and 
( ) 2dWVdtVdV ξθκ +−= , 

with dtdWdW ρ=21 . The parameters are estimated each day from 1990 to 2004, for the out-
of-the-money options on S&P 500 futures, by minimizing the mean squared error (MSE) of 
the fitted option prices.  

 

Parameters Mean Median Max Min Standard Deviation 

tV  0.1898 0.1787 0.6785 0.0558 0.0741 

κ  4.9292 4.1528 36* 0.1940 3.6598 

ρ  -0.6590 -0.6624 -0.3610 -0.9710 0.0875 

ξ 0.9296 0.7925 7.3848 0.3243 0.5160 

θ  0.0505 0.0452 0.2747 0.0169 0.0273 

MSE 0.1621 0.0472 3.4433 0.0000 0.3126 

                

                   *The constraint κ ≤ 36 is applied. 



Table 4 
 

Log-likelihoods for sets of density forecasts   
 

The numbers tabulated are the log-likelihoods of the GJR density forecasts and the log-likelihoods of the other sets of forecasts in excess 
of the GJR benchmark values. The risk transformation P1 refers to the parametric calibration transformation, P2 to the nonparametric 
calibration transformation, and P3 to the risk-premia transformation.  
 

Risk-transformed  
Lognormal 

Risk-transformed 
Heston 

Forecast 
horizon 

Number of 
Obs. GJR GJR-t Intra Intra-t Log 

normal
P1 P2 

Heston
P1 P2 P3 

Data source  Daily 
returns 

Daily 
returns 

Intraday 
returns 

Intraday 
returns Options Options Options Options Options Options Options 

1 day 3520 -11951.2 91.4 52.9 122.7 27.0 73.5 100.9 -2.4 103.9 127.4 93.7 

1week 711 -2961.9 13.5 13.5 34.4 17.0 32.8 36.5 18.5 41.5 35.2 40.6 

2 weeks 351 -1574.0 10.4 14.4 19.2 13.6 27.8 26.4 14.8 26.9 22.4 25.8 

4 weeks 176 -853.6 4.1 7.6 12.3 12.5 13.4 15.8 16.0 20.3 20.2 23.2 

6 weeks 115 -596.9 5.7 15.0 16.0 16.0 17.1 16.9 19.6 16.3 18.7 20.3 

8 weeks 86 -446.1 1.5 2.8 5.3 4.9 9.4 9.3 6.7 7.8 7.5 7.5 

12 weeks 58 -310.2 5.2 6.9 7.9 5.6 6.9 6.8 9.8 8.5 9.1 7.6 



 

Table 5 

  Log likelihoods for mixtures of historical densities and option-based densities 
 

Each log-likelihood is the value in excess of the GJR benchmark given in Table 4. The mixture densities are a fraction α of the option-
based density plus a fraction α−1  of the Intra-t density. α  is estimated ex ante. The risk transformation P1 refers to the parametric 
calibration transformation, P2 to the nonparametric calibration transformation, and P3 to the risk-premia transformation.  
 

Intra-t combined with 

Lognormal Heston Forecast 
 Horizon Intra-t only

Q Average 
 α P1 Average

 α P2 Average
 α 

  
Q Average 

α P1 Average
 α P2 Average 

α P3 Average
 α 

1 day 122.7 134.4 23% 139.8 38% 132.1 39% 139.9 19% 151.5 42% 143.4 51% 151.5 38% 

1 week 34.4 33.1 21% 38.4 58% 37.8 37% 34.7 15% 44.5 57% 38.0 37% 44.4 63% 

2 weeks 19.2 19.4 38% 27.0 81% 25.6 44% 20.3 36% 27.5 58% 33.6 54% 27.0 69% 

4 weeks 12.3 12.1 43% 13.5 80% 15.3 50% 16.3 78% 19.4 67% 18.3 57% 22.3 74% 

6 weeks 16.0 16.3 59% 16.7 91% 16.1 73% 18.5 71% 18.9 58% 17.7 70% 19.9 98% 

8 weeks 5.3 4.6 58% 9.4 100% 8.6 71% 6.2 69% 8.1 50% 7.1 53% 7.4 70% 

12 weeks 7.9 6.8 34% 7.1 35% 7.4 36% 9.0 79% 9.2 54% 8.6 57% 8.2 69% 

 
 
 
 

 



Table 6 
 

Results from the Kolmogorov-Smirnov test 
 

The tabulated numbers are the p-values for the Kolmogorov-Smirnov test of the null hypotheses that the variables tu  have a uniform 
distribution. The risk transformation P1 refers to the parametric calibration transformation, P2 to the nonparametric calibration 
transformation, and P3 to the risk-premia transformation.  
 

 
 
 
 
 

Risk-transformed 
Lognormal 

Risk-transformed 
Heston 

Forecast 
horizon 

Number 
of Obs. GJR GJR-t Intra Intra-t Log 

normal
P1 P2 

Heston 
P1 P2 P3 

1 day 3520 0.00% 0.75% 0.00% 6.31% 0.00% 0.06% 87.56% 0.00% 0.32% 46.72% 0.01% 

1 week 711 0.36% 25.09% 0.10% 1.01% 0.04% 1.14% 74.35% 0.60% 96.08% 78.80% 67.58% 

2 weeks 351 13.36% 76.69% 0.15% 88.00% 0.03% 21.60% 67.63% 3.52% 92.71% 66.42% 78.16% 

4 weeks 176 13.09% 82.55% 0.60% 0.17% 0.04% 0.67% 24.86% 7.75% 82.81% 49.13% 69.38% 

6 weeks 115 94.00% 83.30% 14.38% 5.65% 1.57% 14.28% 18.18% 54.23% 84.58% 80.00% 41.38% 

8 weeks 86 59.42% 72.82% 5.77% 8.65% 1.40% 48.79% 98.95% 9.90% 84.75% 99.45% 51.56% 

12 weeks 58 85.19% 89.06% 7.49% 8.86% 0.18% 21.62% 61.28% 31.29% 90.03% 91.03% 85.18% 



Table 7 
 

Berkowitz test values and parameters 
 

The null hypothesis that the variables )(1
tt uy −Φ= are i.i.d with a standard normal distribution is tested against the alternative of an 

AR(1), Gaussian process. The tabulated numbers are the test statistic LR3 and the estimates of the AR and variance parameters. Stars 
indicate that the null is rejected at the 5% level, when LR3>7.81. 

 
Risk-transformed  

Lognormal 
Risk-transformed 

Heston 
Forecast 
horizon  GJR GJR-t Intra Intra-t Log 

normal
P1 P2 

Heston 
P1 P2 P3 

 AR 0.00 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 
1 day Variance 0.93 1.07 0.90 1.02 0.79 1.04 1.00 0.68 1.04 1.02 1.02 

 LR3 9.78* 8.44* 19.06* 0.91 96.82* 2.58 0.09 241.46* 3.72 1.02 0.64 
 AR -0.11 -0.12 -0.10 -0.11 -0.10 -0.10 -0.09 -0.09 -0.09 -0.10 -0.08 

1 week Variance 0.78 0.88 0.69 0.83 0.71 0.97 0.93 0.65 0.98 0.94 0.94 
 LR3 26.57* 13.93* 50.37* 20.38* 46.13* 8.51* 8.27* 61.63* 6.14 8.50* 5.52 
 AR -0.03 -0.05 -0.05 -0.06 -0.02 -0.02 -0.01 -0.01 -0.01 0.00 0.00 

2 weeks Variance 0.86 1.01 0.75 0.91 0.63 0.99 0.91 0.63 1.02 0.94 1.02 
 LR3 3.90 0.89 17.11* 2.72 35.95* 0.94 2.11 32.32* 0.34 1.39 0.33 
 AR 0.00 -0.01 0.06 0.04 0.04 0.04 0.04 0.06 0.05 0.05 0.08 

4 weeks Variance 0.77 0.92 0.81 0.92 0.63 0.99 0.90 0.74 1.00 0.92 1.00 
 LR3 6.04 0.98 6.07 4.01 19.61* 0.93 1.43 7.39 0.71 1.41 1.29 
 AR -0.22 -0.17 -0.09 -0.16 -0.14 -0.11 -0.10 -0.10 -0.09 -0.07 -0.03 

6 weeks Variance 0.93 1.09 0.90 1.11 0.71 1.17 1.05 0.77 1.11 1.07 1.22 
 LR3 6.03 4.19 4.39 7.45 11.63* 3.81 1.89 6.48 1.89 1.74 2.50 
 AR 0.02 0.06 0.09 0.12 0.14 0.16 0.18 0.11 0.18 0.18 0.22 

8 weeks Variance 0.85 1.24 0.83 0.85 0.54 0.94 0.79 0.74 0.93 0.80 0.91 
 LR3 1.65 2.90 4.30 5.54 18.36* 2.39 4.35 5.63 2.71 4.40 4.36 
 AR -0.08 -0.04 0.03 0.02 0.06 0.08 0.11 0.09 0.10 0.15 0.19 

12 weeks Variance 1.40 1.07 0.87 1.00 0.59 1.12 0.93 0.75 1.04 0.98 1.16 
 LR3 4.41 0.46 4.46 3.98 10.95* 1.06 0.82 4.92 0.90 1.62 3.18 



 
Figure 1 

 
Implied volatilities from the at-the-money, shortest-maturity options, and 

realized volatilities from intra-day returns 
 
 

Dark dots are implied volatilities, light dots are realized volatilities 

The first Gulf War 

Russia debt default and 
LTCM crisis 

Asian currency crisis 
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911 



Figure 2a 
One-day ahead density forecasts obtained from ARCH models on Dec 30th, 2004 

 
Figure 2b 

             One-day ahead density forecasts obtained from lognormal densities on Dec 30th, 2004 

 
Figure 2c 

               One-day ahead density forecasts obtained from Heston’s model on Dec 30th, 2004 
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Figure 3a 
Four-week ahead density forecasts obtained from ARCH models on Nov 17th, 2004 

 
Figure 3b 

   Four-week ahead density forecasts obtained from lognormal densities on Nov 17th, 2004 
 

 
Figure 3c 

       Four-week ahead density forecasts obtained from Heston’s model on Nov 17th, 2004 
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Figure 4a 
The function uuC −)(~  for one-day forecasts obtained from 

lognormal densities and risk-transformations 

Figure 4b 
The function uuC −)(~  for one-day forecasts obtained from 

Heston’s model and risk-transformations 
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Figure 5a 
The estimated calibration densities )(ˆ uc  for cumulative probabilities u  

obtained from the one-day lognormal forecasts 
 

Figure 5b 
The estimated calibration densities )(ˆ uc  for cumulative probabilities u  

obtained from the one-day Heston forecasts 
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Figure 6a 
The function uuC −)(~  for four-week forecasts obtained from 

lognormal densities and risk-transformations 

 
Figure 6b 

The function uuC −)(~  for four-week forecasts obtained from 
Heston’s model and risk-transformations 
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